1
|
Mohammed A, Wang W, Arreola M, Solomon BD, Slepicka PF, Hubka KM, Nguyen HD, Zheng Z, Chavez MG, Yeh CY, Kim DK, Ma MR, Martin E, Li L, Pasca AM, Winn VD, Gifford CA, Kedlian VR, Park JE, Khatri P, Hollander GA, Roncarolo MG, Sebastiano V, Teichmann SA, Gentles AJ, Weinacht KG. Distinct type I and II interferon responses direct cortical and medullary thymic epithelial cell development. Sci Immunol 2025; 10:eado4720. [PMID: 40315299 DOI: 10.1126/sciimmunol.ado4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 12/05/2024] [Accepted: 04/10/2025] [Indexed: 05/04/2025]
Abstract
Advances in genomics have redefined our understanding of thymic epithelial heterogeneity and architecture, yet signals driving thymic epithelial differentiation remain incompletely understood. Here, we elucidated pathways instructing human thymic epithelial cell development in the context of other anterior foregut-derived organs. Activation of interferon response gene regulatory networks distinguished epithelial cells of the thymus from those of other anterior foregut-derived organs. Thymic cortex and medulla epithelia displayed distinctive interferon-responsive signatures defined by lineage-specific chromatin accessibility. We explored the effects of type I and II interferons on thymic epithelial progenitor differentiation from induced pluripotent stem cells. Type II interferon was essential for expressing proteasome and antigen-presenting molecules, whereas type I or II interferons were essential for inducing different cytokines in thymic epithelial progenitor cells. Our findings suggest that interferons are critical to cortical and medullary thymic epithelial cell differentiation.
Collapse
Affiliation(s)
- Abdulvasey Mohammed
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Wenqing Wang
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Martin Arreola
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Benjamin D Solomon
- Department of Pediatrics, Division of Allergy and Immunology, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Priscila F Slepicka
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Kelsea M Hubka
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Hanh Dan Nguyen
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Zihao Zheng
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Michael G Chavez
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Christine Y Yeh
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Doo Kyung Kim
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Michael R Ma
- Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
- Department of Cardiothoracic Surgery, Division of Pediatric Cardiac Surgery, Stanford University, Stanford, CA 94304, USA
| | - Elisabeth Martin
- Department of Cardiothoracic Surgery, Division of Pediatric Cardiac Surgery, Stanford University, Stanford, CA 94304, USA
| | - Li Li
- Department of Pediatrics, Division of Neonatology, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Anca M Pasca
- Department of Pediatrics, Division of Neonatology, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Virginia D Winn
- Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford, CA, USA
| | - Casey A Gifford
- Department of Pediatrics, Division of Cardiology, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Cambridge, UK
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | | | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA 94304, USA
- Center for Biomedical Informatics Research, Department of Medicine, School of Medicine, Stanford University, CA 94305, USA
| | - Georg A Hollander
- Department of Pediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, UK
- Department of Biosystems and Engineering, ETH Zurich, Zurich, Switzerland
- Botnar Institute of Immune Engineering, Basel, Switzerland
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| | - Vittorio Sebastiano
- Department of Obstetrics and Gynecology, Stanford School of Medicine, Stanford, CA, USA
| | - Sarah A Teichmann
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- CIFAR Macmillan Multi-scale Human Programme, CIFAR, Toronto, Canada
| | - Andrew J Gentles
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Katja G Weinacht
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplantation, and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
2
|
Wang W, Liu P, Zhu W, Li T, Wang Y, Wang Y, Li J, Ma J, Leng L. Skin organoid transplantation promotes tissue repair with scarless in frostbite. Protein Cell 2025; 16:240-259. [PMID: 39363875 PMCID: PMC12053479 DOI: 10.1093/procel/pwae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/04/2024] [Indexed: 10/05/2024] Open
Abstract
Frostbite is the most common cold injury and is caused by both immediate cold-induced cell death and the gradual development of localized inflammation and tissue ischemia. Delayed healing of frostbite often leads to scar formation, which not only causes psychological distress but also tends to result in the development of secondary malignant tumors. Therefore, a rapid healing method for frostbite wounds is urgently needed. Herein, we used a mouse skin model of frostbite injury to evaluate the recovery process after frostbite. Moreover, single-cell transcriptomics was used to determine the patterns of changes in monocytes, macrophages, epidermal cells, and fibroblasts during frostbite. Most importantly, human-induced pluripotent stem cell (hiPSC)-derived skin organoids combined with gelatin-hydrogel were constructed for the treatment of frostbite. The results showed that skin organoid treatment significantly accelerated wound healing by reducing early inflammation after frostbite and increasing the proportions of epidermal stem cells. Moreover, in the later stage of wound healing, skin organoids reduced the overall proportions of fibroblasts, significantly reduced fibroblast-to-myofibroblast transition by regulating the integrin α5β1-FAK pathway, and remodeled the extracellular matrix (ECM) through degradation and reassembly mechanisms, facilitating the restoration of physiological ECM and reducing the abundance of ECM associated with abnormal scar formation. These results highlight the potential application of organoids for promoting the reversal of frostbite-related injury and the recovery of skin functions. This study provides a new therapeutic alternative for patients suffering from disfigurement and skin dysfunction caused by frostbite.
Collapse
Affiliation(s)
- Wenwen Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Pu Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Wendi Zhu
- Stem Cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tianwei Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ying Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yujie Wang
- Stem Cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jun Li
- Stem Cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ling Leng
- Stem Cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
3
|
Pala F, Notarangelo LD, Lionakis MS. Thymic inborn errors of immunity. J Allergy Clin Immunol 2025; 155:368-376. [PMID: 39428079 PMCID: PMC11805638 DOI: 10.1016/j.jaci.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024]
Abstract
The thymus is crucial for optimal T-cell development by facilitating the generation and selection of a diverse repertoire of T cells that can recognize foreign antigens while promoting tolerance to self-antigens. A number of inborn errors of immunity causing complete or partial defects in thymic development (athymia) and/or impaired thymic function have been increasingly recognized that manifest clinically with a combination of life-threatening infections, severe multiorgan autoimmunity, and/or cardiac, craniofacial, ectodermal, and endocrine abnormalities. The introduction of newborn screening programs and the advent of thymic transplantation show promise for early detection and improving the outcomes of patients with certain thymic inborn errors of immunity. We discuss our current understanding of the genetics, immunopathogenesis, diagnosis, and treatment of inborn errors of immunity that impair thymic development and/or function.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michail S Lionakis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
4
|
Adekoya TO, Smith N, Kothari P, Dacanay MA, Li Y, Richardson RM. CXCR1 Expression in MDA-PCa-2b Cell Upregulates ITM2A to Inhibit Tumor Growth. Cancers (Basel) 2024; 16:4138. [PMID: 39766038 PMCID: PMC11674668 DOI: 10.3390/cancers16244138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/01/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chemokines, along with their receptors, exert critical roles in tumor development and progression. In prostate cancer (PCa), interleukin-8 (IL-8/CXCL8) was shown to enhance angiogenesis, proliferation, and metastasis. CXCL8 activates two receptors, CXCR1 and CXCR2. While CXCR2 expression was shown to promote PCa growth and metastasis, the role of CXCR1 remains unclear. METHODS In this study, we stably expressed CXCR1 and, as control, CXCR2 in the androgen-dependent PCa cell line MDA-PCa-2b to evaluate the effect of CXCR1 in tumor development. RESULTS MDA-PCa-2b-CXCR1 cells showed decreased cell migration, protein kinase-B (AKT) activation, prostate-specific antigen (PSA) expression, cell proliferation, and tumor development in nude mice, relative to MDA-PCa-2b-Vec and MDA-PCa-2b-CXCR2 cells. MDA-PCa-2b-CXCR1 cells also displayed a significant transition to mesenchymal phenotypes as characterized by decreased E-cadherin expression and a corresponding increased level of N-cadherin and vimentin expression. RNA-seq and Western blot analysis revealed a significant increase in the tumor suppressor integral membrane protein 2A (ITM2A) expression in MDA-PCa-2b-CXCR1 compared to control cells. In prostate adenocarcinoma tissue, ITM2A expression was also shown to be downregulated relative to a normal prostate. Interestingly, the overexpression of ITM2A in MDA-PCa-2b cells (MDA-PCa-2b-ITM2A-GFP) inhibited tumor growth similar to that of MDA-PCa-2b-CXCR1. CONCLUSIONS Taken together, the data suggest that CXCR1 expression in MDA-PCa-2b cells may upregulate ITM2A to abrogate tumor development.
Collapse
Affiliation(s)
- Timothy O. Adekoya
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| | - Nikia Smith
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Parag Kothari
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Monique A. Dacanay
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Ricardo M. Richardson
- Cancer Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
5
|
Mizuno M, Kiyotake S, Matsubayashi M, Kaneko T, Hatai H, Fujimoto Y, Ijiri M, Kawaguchi H, Matsui T, Matsuo T. Potential Development Ability of Residual Zoites, a Second-Generation Meront, Inducing Long-Term Infection by the Mouse Eimerian Parasite, Eimeria krijgsmanni. Acta Parasitol 2024; 69:1860-1865. [PMID: 39207650 PMCID: PMC11649722 DOI: 10.1007/s11686-024-00910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE Coccidiosis caused by eimerian parasites results in lethal watery or bloody diarrhea in hosts, and markedly impairs the growth of and feed utilization by host animals. We previously investigated detailed the life cycle of Eimeria krijgsmanni as a mouse eimerian parasite. Only second-generation meronts, as an asexual stage, were morphologically detected in the epithelium of the host cecum for at least 8 weeks after infection, even though oocyst shedding finished approximately 3 weeks after infection. The presence of zoites was of interest because infection by eimerian parasites is considered to be self-limited after their patent period. METHODS To clarify the significance of residual second-generation meronts in E. krijgsmanni infection, we performed infection experiments using immunocompetent mice under artificial immunosuppression and congenital immunodeficient mice. RESULTS The number of oocysts discharged and the duration of oocyst discharge both increased in immunosuppressed mice. In immunodeficient mice, numerous oocysts were shed over a markedly longer period, and oocyst discharge did not finish until 56 days after inoculation. CONCLUSIONS The present results suggest that the second-generation meronts survived in the epithelial cells of the cecum after the patent period, thereby contributing to extended infection as an asexual stage. The results obtained on E. krijgsmanni indicate that infections by Eimeria spp. are not self-limited and potentially continue for a long period of time.
Collapse
Affiliation(s)
- Masanobu Mizuno
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Satoru Kiyotake
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Makoto Matsubayashi
- Laboratory of Veterinary Immunology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, 598-5831, Osaka, Japan
| | - Takane Kaneko
- Department of Life Sciences, Faculty of Life Sciences, Kyushu Sangyo University, Fukuoka, 813-8503, Japan
| | - Hitoshi Hatai
- Farm Animal Clinical Skills and Diseases Control Center, Iwate University, Morioka, 020-8550, Iwate, Japan
| | - Yoshikazu Fujimoto
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Moe Ijiri
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan
| | - Hiroaki Kawaguchi
- Laboratory of Veterinary Pathology, School of Veterinary Medicine, Kitasato University, Towada, 034-8628, Aomori, Japan
| | | | - Tomohide Matsuo
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
| |
Collapse
|
6
|
Qin J, Zhang Z, Cui H, Yang J, Liu A. Biological characteristics and immune responses of NK Cells in commonly used experimental mouse models. Front Immunol 2024; 15:1478323. [PMID: 39628473 PMCID: PMC11611892 DOI: 10.3389/fimmu.2024.1478323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
The biology of natural killer (NK) cells in commonly used mouse models is discussed in this review, along with their crucial function in a variety of immunological responses. It has been demonstrated that the formation, maturation, subtype variety, and immunological recognition mechanisms of NK cells from various mice strains exhibit notable differences. These variations shed light on the intricacy of NK cell function and offer crucial information regarding their possible uses in treating human illnesses. The application of flow cytometry in mouse NK cell research is also covered in the article. Improved knowledge of the biology of NK cells across species may facilitate the development of new NK cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Jingwen Qin
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhaokai Zhang
- Department of General Surgery II, Cenxi People’s Hospital, Wuzhou, Guangxi, China
| | - Haopeng Cui
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinhua Yang
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Aiqun Liu
- Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
7
|
Sugumaran D, Yong ACH, Stanslas J. Advances in psoriasis research: From pathogenesis to therapeutics. Life Sci 2024; 355:122991. [PMID: 39153596 DOI: 10.1016/j.lfs.2024.122991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Psoriasis is a chronic inflammatory condition affecting approximately 2 % to 3 % of the global population. The pathogenesis of psoriasis is complex, involving immune dysregulation, hyperproliferation and angiogenesis. It is a multifactorial disease which is influenced by genetic and environmental factors. The development of various therapeutic agents, such as JAK inhibitors, small molecules, and biologics with potential anti-psoriatic properties was possible with the vast understanding of the pathogenesis of psoriasis. Various signalling pathways, including NF-κB, JAK-STAT, S1P, PDE-4, and A3AR that are involved in the pathogenesis of psoriasis as well as the preclinical models utilised in the research of psoriasis have been highlighted in this review. The review also focuses on technological advancements that have contributed to a better understanding of psoriasis. Then, the molecules targeting the respective signalling pathways that are still under clinical trials or recently approved as well as the latest breakthroughs in therapeutic and drug delivery approaches that can contribute to the improvement in the management of psoriasis are highlighted in this review. This review provides an extensive understanding of the current state of research in psoriasis, giving rise to opportunities for researchers to discover future therapeutic breakthroughs and personalised interventions. Efficient treatment options for individuals with psoriasis can be achieved by an extensive understanding of pathogenesis, therapeutic agents, and novel drug delivery strategies.
Collapse
Affiliation(s)
- Dineshwar Sugumaran
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Audrey Chee Hui Yong
- Faculty of Pharmacy, Mahsa University, Bandar Saujana Putra, Jenjarom, Selangor, Malaysia
| | - Johnson Stanslas
- Pharmacotherapeutic Unit, Department of Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.
| |
Collapse
|
8
|
Standley A, Xie J, Lau AW, Grote L, Gifford AJ. Working with Miraculous Mice: Mus musculus as a Model Organism. Curr Protoc 2024; 4:e70021. [PMID: 39435766 DOI: 10.1002/cpz1.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The laboratory mouse has been described as a "miracle" model organism, providing a window by which we may gain an understanding of ourselves. Since the first recorded mouse experiment in 1664, the mouse has become the most used animal model in biomedical research. Mice are ideally suited as a model organism because of their small size, short gestation period, large litter size, and genetic similarity to humans. This article provides a broad overview of the laboratory mouse as a model organism and is intended for undergraduates and those new to working with mice. We delve into the history of the laboratory mouse and outline important terminology to accurately describe research mice. The types of laboratory mice available to researchers are reviewed, including outbred stocks, inbred strains, immunocompromised mice, and genetically engineered mice. The critical role mice have played in advancing knowledge in the areas of oncology, immunology, and pharmacology is highlighted by examining the significant contribution of mice to Nobel Prize winning research. International mouse mutagenesis programs and accurate phenotyping of mouse models are outlined. We also explain important considerations for working with mice, including animal ethics; the welfare principles of replacement, refinement, and reduction; and the choice of mouse model in experimental design. Finally, we present practical advice for maintaining a mouse colony, which involves adequate training of staff, the logistics of mouse housing, monitoring colony health, and breeding strategies. Useful resources for working with mice are also listed. The aim of this overview is to equip the reader with a broad appreciation of the enormous potential and some of the complexities of working with the laboratory mouse in a quest to improve human health. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Anick Standley
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Jinhan Xie
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Angelica Wy Lau
- Garvan Institute of Medical Research, St Vincent's Clinical School, Darlinghurst, NSW, Australia
| | - Lauren Grote
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew J Gifford
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia
- Anatomical Pathology, NSW Heath Pathology, Prince of Wales Hospital, Randwick, NSW, Australia
- School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Wang A, Zhu XX, Bie Y, Zhang B, Ji W, Lou J, Huang M, Zhou X, Ren Y. Single-cell RNA-sequencing reveals a profound immune cell response in human cytomegalovirus-infected humanized mice. Virol Sin 2024; 39:782-792. [PMID: 39153545 PMCID: PMC11738796 DOI: 10.1016/j.virs.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024] Open
Abstract
Human cytomegalovirus (HCMV) is a common herpesvirus that persistently infects a large portion of the world's population. Despite the robust host immune response, HCMV is able to replicate, evade host defenses, and establish latency throughout the lifespan by developing multiple immunomodulatory strategies, making the studies on the interaction between HCMV infection and host response particularly important. HCMV has a strict host specificity that specifically infects humans. Therefore, most of the in vivo researches of HCMV rely on clinical samples. Fortunately, the establishment of humanized mouse models allows for convenient in-lab animal experiments involving HCMV infection. Single-cell RNA sequencing enables the study of the relationship between viral and host gene expressions at the single-cell level within host cells. In this study, we assessed the gene expression alterations of PBMCs at the single-cell level within HCMV-infected humanized mice, which sheds light onto the virus-host interactions in the context of HCMV infection of humanized mice and provides a valuable dataset for the related researches.
Collapse
Affiliation(s)
- An Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Xu Zhu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanyuan Bie
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenting Ji
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Lou
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Muhan Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xi Zhou
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Yujie Ren
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Yadav KK, Kenney SP. Hepatitis E virus immunosuppressed animal models. BMC Infect Dis 2024; 24:965. [PMID: 39266958 PMCID: PMC11395946 DOI: 10.1186/s12879-024-09870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
Hepatitis E virus (HEV) is an important emerging pathogen producing significant morbidity in immunosuppressed patients. HEV has been detrimental to solid organ transplant (SOT) patients, cancer patients, and HIV-positive patients, where chronic HEV infections occur. Blood-borne transfusions and multiple cases of chronic HEV infection in transplant patients have been reported in the past few decades, necessitating research on HEV pathogenesis using immunosuppressed animal models. Numerous animal species with unique naturally occurring HEV strains have been found, several of which have the potential to spread to humans and to serve as pathogenesis models. Host immunosuppression leads to viral persistence and chronic HEV infection allows for genetic adaptation to the human host creating new strains with worse disease outcomes. Procedures necessary for SOT often entail blood transfusions placing immunosuppressive patients into a "high risk group" for HEV infection. This scenario requires an appropriate immunosuppressive animal model to understand disease patterns in these patients. Hence, this article reviews the recent advances in the immunosuppressed animal models for chronic HEV infection with emphasis on pathogenesis, immune correlates, and the liver pathology associated with the chronic HEV infections.
Collapse
Affiliation(s)
- Kush Kumar Yadav
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA
| | - Scott P Kenney
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA.
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, 43210, USA.
| |
Collapse
|
11
|
Bin Y, Ren J, Zhang H, Zhang T, Liu P, Xin Z, Yang H, Feng Z, Chen Z, Zhang H. Against all odds: The road to success in the development of human immune reconstitution mice. Animal Model Exp Med 2024; 7:460-470. [PMID: 38591343 PMCID: PMC11369039 DOI: 10.1002/ame2.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
The mouse genome has a high degree of homology with the human genome, and its physiological, biochemical, and developmental regulation mechanisms are similar to those of humans; therefore, mice are widely used as experimental animals. However, it is undeniable that interspecies differences between humans and mice can lead to experimental errors. The differences in the immune system have become an important factor limiting current immunological research. The application of immunodeficient mice provides a possible solution to these problems. By transplanting human immune cells or tissues, such as peripheral blood mononuclear cells or hematopoietic stem cells, into immunodeficient mice, a human immune system can be reconstituted in the mouse body, and the engrafted immune cells can elicit human-specific immune responses. Researchers have been actively exploring the development and differentiation conditions of host recipient animals and grafts in order to achieve better immune reconstitution. Through genetic engineering methods, immunodeficient mice can be further modified to provide a favorable developmental and differentiation microenvironment for the grafts. From initially only being able to reconstruct single T lymphocyte lineages, it is now possible to reconstruct lymphoid and myeloid cells, providing important research tools for immunology-related studies. In this review, we compare the differences in immune systems of humans and mice, describe the development history of human immune reconstitution from the perspectives of immunodeficient mice and grafts, and discuss the latest advances in enhancing the efficiency of human immune cell reconstitution, aiming to provide important references for immunological related researches.
Collapse
Affiliation(s)
- Yixiao Bin
- School of Basic Medical SciencesShaanxi University of Chinese MedicineXianyangChina
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Jing Ren
- School of Basic Medical SciencesShaanxi University of Chinese MedicineXianyangChina
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Haowei Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Peijuan Liu
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhiqian Xin
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Haijiao Yang
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhuan Feng
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
12
|
Chou TC, Maggirwar NS, Marsden MD. HIV Persistence, Latency, and Cure Approaches: Where Are We Now? Viruses 2024; 16:1163. [PMID: 39066325 PMCID: PMC11281696 DOI: 10.3390/v16071163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The latent reservoir remains a major roadblock to curing human immunodeficiency virus (HIV) infection. Currently available antiretroviral therapy (ART) can suppress active HIV replication, reduce viral loads to undetectable levels, and halt disease progression. However, antiretroviral drugs are unable to target cells that are latently infected with HIV, which can seed viral rebound if ART is stopped. Consequently, a major focus of the field is to study the latent viral reservoir and develop safe and effective methods to eliminate it. Here, we provide an overview of the major mechanisms governing the establishment and maintenance of HIV latency, the key challenges posed by latent reservoirs, small animal models utilized to study HIV latency, and contemporary cure approaches. We also discuss ongoing efforts to apply these approaches in combination, with the goal of achieving a safe, effective, and scalable cure for HIV that can be extended to the tens of millions of people with HIV worldwide.
Collapse
Affiliation(s)
- Tessa C. Chou
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Nishad S. Maggirwar
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
| | - Matthew D. Marsden
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92617, USA; (T.C.C.); (N.S.M.)
- Department of Medicine, Division of Infectious Disease, School of Medicine, University of California, Irvine, CA 92617, USA
| |
Collapse
|
13
|
McDonald K, Rodriguez A, Muthukrishnan G. Humanized Mouse Models of Bacterial Infections. Antibiotics (Basel) 2024; 13:640. [PMID: 39061322 PMCID: PMC11273811 DOI: 10.3390/antibiotics13070640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial infections continue to represent a significant healthcare burden worldwide, causing considerable mortality and morbidity every year. The emergence of multidrug-resistant bacterial strains continues to rise, posing serious risks to controlling global disease outbreaks. To develop novel and more effective treatment and vaccination programs, there is a need for clinically relevant small animal models. Since multiple bacterial species have human-specific tropism for numerous virulence factors and toxins, conventional mouse models do not fully represent human disease. Several human disease characteristic phenotypes, such as lung granulomas in the case of Mycobacterium tuberculosis infections, are absent in standard mouse models. Alternatively, certain pathogens, such as Salmonella enterica serovar typhi and Staphylococcus aureus, can be well tolerated in mice and cleared quickly. To address this, multiple groups have developed humanized mouse models and observed enhanced susceptibility to infection and a more faithful recapitulation of human disease. In the last two decades, multiple humanized mouse models have been developed to attempt to recapitulate the human immune system in a small animal model. In this review, we first discuss the history of immunodeficient mice that has enabled the engraftment of human tissue and the engraftment methods currently used in the field. We then highlight how humanized mouse models successfully uncovered critical human immune responses to various bacterial infections, including Salmonella enterica serovar Typhi, Mycobacterium tuberculosis, and Staphylococcus aureus.
Collapse
Affiliation(s)
- Katya McDonald
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Adryiana Rodriguez
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
14
|
Arthur JD, Mullen JL, Uzal FA, Nagamine CM, Casey KM. Epizootic of enterocolitis and clostridial overgrowth in NSG and NSG-related mouse strains. Vet Pathol 2024; 61:653-663. [PMID: 38140953 DOI: 10.1177/03009858231217197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
While the immunodeficient status of NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) and NSG-related mice provides utility for numerous research models, it also results in increased susceptibility to opportunistic pathogens. Over a 9-week period, a high rate of mortality was reported in a housing room of NSG and NSG-related mice. Diagnostics were performed to determine the underlying etiopathogenesis. Mice submitted for evaluation included those found deceased (n = 2), cage mates of deceased mice with or without diarrhea (n = 17), and moribund mice (n = 8). Grossly, mice exhibited small intestinal and cecal dilation with abundant gas and/or digesta (n = 18), serosal hemorrhage and congestion (n = 6), or were grossly normal (n = 3). Histologically, there was erosive to ulcerative enterocolitis (n = 7) of the distal small and large intestine or widespread individual epithelial cell death with luminal sloughing (n = 13) and varying degrees of submucosal edema and mucosal hyperplasia. Cecal dysbiosis, a reduction in typical filamentous bacteria coupled with overgrowth of bacterial rods, was identified in 18 of 24 (75%) mice. Clostridium spp. and Paeniclostridium sordellii were identified in 13 of 23 (57%) and 7 of 23 (30%) mice, respectively. Clostridium perfringens (7 of 23, 30%) was isolated most frequently. Toxinotyping of C. perfringens positive mice (n = 2) identified C. perfringens type A. Luminal immunoreactivity to several clostridial species was identified within lesioned small intestine by immunohistochemistry. Clinicopathologic findings were thus associated with overgrowth of various clostridial species, though direct causality could not be ascribed. A diet shift preceding the mortality event may have contributed to loss of intestinal homeostasis.
Collapse
|
15
|
Cocco E, de Stanchina E. Patient-Derived-Xenografts in Mice: A Preclinical Platform for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041381. [PMID: 37696659 PMCID: PMC11216185 DOI: 10.1101/cshperspect.a041381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The use of patient-derived xenografts (PDXs) has dramatically improved drug development programs. PDXs (1) reproduce the pathological features and the genomic profile of the parental tumors more precisely than other preclinical models, and (2) more faithfully predict therapy response. However, PDXs have limitations. These include the inability to completely capture tumor heterogeneity and the role of the immune system, the low engraftment efficiency of certain tumor types, and the consequences of the human-host interactions. Recently, the use of novel mouse strains and specialized engraftment techniques has enabled the generation of "humanized" PDXs, partially overcoming such limitations. Importantly, establishing, characterizing, and maintaining PDXs is costly and requires a significant regulatory, administrative, clinical, and laboratory infrastructure. In this review, we will retrace the historical milestones that led to the implementation of PDXs for cancer research, review the most recent innovations in the field, and discuss future avenues to tackle deficiencies that still exist.
Collapse
Affiliation(s)
- Emiliano Cocco
- University of Miami, Miller School of Medicine, Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
16
|
Lim JJY, Murata Y, Yuri S, Kitamuro K, Kawai T, Isotani A. Generating an organ-deficient animal model using a multi-targeted CRISPR-Cas9 system. Sci Rep 2024; 14:10636. [PMID: 38724644 PMCID: PMC11082136 DOI: 10.1038/s41598-024-61167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Gene-knockout animal models with organ-deficient phenotypes used for blastocyst complementation are generally not viable. Animals need to be maintained as heterozygous mutants, and homozygous mutant embryos yield only one-fourth of all embryos. In this study, we generated organ-deficient embryos using the CRISPR-Cas9-sgRNAms system that induces cell death with a single-guide RNA (sgRNAms) targeting multiple sites in the genome. The Cas9-sgRNAms system interrupted cell proliferation and induced cell ablation in vitro. The mouse model had Cas9 driven by the Foxn1 promoter with a ubiquitous expression cassette of sgRNAms at the Rosa26 locus (Foxn1Cas9; Rosa26_ms). It showed an athymic phenotype similar to that of nude mice but was not hairless. Eventually, a rat cell-derived thymus in an interspecies chimera was generated by blastocyst complementation of Foxn1Cas9; Rosa26_ms mouse embryos with rat embryonic stem cells. Theoretically, a half of the total embryos has the Cas9-sgRNAms system because Rosa26_ms could be maintained as homozygous.
Collapse
Affiliation(s)
- Jonathan Jun-Yong Lim
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore City, Singapore
| | - Yamato Murata
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
| | - Shunsuke Yuri
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
| | - Kohei Kitamuro
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan
| | - Ayako Isotani
- Laboratory of Organ Developmental Engineering, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0912, Japan.
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
17
|
Sun C, Serra C, Kalicharan BH, Harding J, Rao M. Challenges and Considerations of Preclinical Development for iPSC-Based Myogenic Cell Therapy. Cells 2024; 13:596. [PMID: 38607035 PMCID: PMC11011706 DOI: 10.3390/cells13070596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/13/2024] Open
Abstract
Cell therapies derived from induced pluripotent stem cells (iPSCs) offer a promising avenue in the field of regenerative medicine due to iPSCs' expandability, immune compatibility, and pluripotent potential. An increasing number of preclinical and clinical trials have been carried out, exploring the application of iPSC-based therapies for challenging diseases, such as muscular dystrophies. The unique syncytial nature of skeletal muscle allows stem/progenitor cells to integrate, forming new myonuclei and restoring the expression of genes affected by myopathies. This characteristic makes genome-editing techniques especially attractive in these therapies. With genetic modification and iPSC lineage specification methodologies, immune-compatible healthy iPSC-derived muscle cells can be manufactured to reverse the progression of muscle diseases or facilitate tissue regeneration. Despite this exciting advancement, much of the development of iPSC-based therapies for muscle diseases and tissue regeneration is limited to academic settings, with no successful clinical translation reported. The unknown differentiation process in vivo, potential tumorigenicity, and epigenetic abnormality of transplanted cells are preventing their clinical application. In this review, we give an overview on preclinical development of iPSC-derived myogenic cell transplantation therapies including processes related to iPSC-derived myogenic cells such as differentiation, scaling-up, delivery, and cGMP compliance. And we discuss the potential challenges of each step of clinical translation. Additionally, preclinical model systems for testing myogenic cells intended for clinical applications are described.
Collapse
Affiliation(s)
- Congshan Sun
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| | - Carlo Serra
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Mahendra Rao
- Vita Therapeutics, Baltimore, MD 21043, USA (M.R.)
| |
Collapse
|
18
|
Mori M, Saito N, Shirado T, Wu Y, Asahi R, Yoshizumi K, Yamamoto Y, Zhang B, Yoshimura K. Human Adipose-Derived Endothelial Progenitor Cells Accelerate Epithelialization of Radiation Ulcers in Nude Mice. Plast Reconstr Surg 2024; 153:625-635. [PMID: 37224423 DOI: 10.1097/prs.0000000000010756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Cotransplantation of adipose-derived stem cells (ASCs) and endothelial progenitor cells has shown superior angiogenic effects compared with ASCs alone in recent animal studies. However, endothelial progenitor cells could only be collected from blood vessels or bone marrow. Thus, the authors have established a method for purifying adipose-derived endothelial progenitor cells (AEPCs). The authors hypothesized that AEPCs would enhance the therapeutic effect of ASCs on radiation ulcers. METHODS Seven-week-old male nude mice (BALB/cAJcl-nu/nu) were irradiated on the dorsal skin (total 40 Gy); 12 weeks later, 6-mm-diameter wounds were created. The mice were then treated with subcutaneous injection of human ASCs [1 × 10 5 ( n = 4)], human AEPCs [2 × 10 5 or 5 × 10 5 ( n = 5)], combinations of those [ASCs 1 × 10 5 plus AEPCs 2 × 10 5 ( n = 4) or 5 × 10 5 ( n = 5)], or only vehicle ( n = 7). The nonirradiated group was also prepared as a control ( n = 6). The days required for macroscopic epithelialization was compared, and immunostaining for human-derived cells and vascular endothelial cells was performed at day 28. RESULTS AEPC-ASC combination-treated groups healed faster than the ASC-treated group (14 ± 0 days versus 17 ± 2 days; P < 0.01). Engraftment of the injected cells could not be confirmed. Only the nonirradiated mice had significantly higher vascular density (0.988 ± 0.183 × 10 -5 /µm -2 versus 0.474 ± 0.092 × 10 -5 /µm 2 ; P = 0.02). CONCLUSION The results suggested therapeutic potentials of AEPCs and an enhanced effect of combination with ASCs. This study is a xenogenic transplantation model, and further validation in an autologous transplantation model is needed. CLINICAL RELEVANCE STATEMENT Human AEPCs and their combination with ASCs accelerated epithelialization of radiation ulcers in nude mice. The authors suggest that administration of humoral factors secreted from AEPCs (eg, treatment with culture-conditioned media) could be used for the same purpose.
Collapse
Affiliation(s)
- Masanori Mori
- From the Department of Plastic Surgery, Jichi Medical University
| | - Natsumi Saito
- From the Department of Plastic Surgery, Jichi Medical University
| | - Takako Shirado
- From the Department of Plastic Surgery, Jichi Medical University
| | - Yunyan Wu
- From the Department of Plastic Surgery, Jichi Medical University
| | - Rintaro Asahi
- From the Department of Plastic Surgery, Jichi Medical University
| | - Kayo Yoshizumi
- From the Department of Plastic Surgery, Jichi Medical University
| | | | - Bihang Zhang
- From the Department of Plastic Surgery, Jichi Medical University
| | - Kotaro Yoshimura
- From the Department of Plastic Surgery, Jichi Medical University
| |
Collapse
|
19
|
Dinges SS, Amini K, Notarangelo LD, Delmonte OM. Primary and secondary defects of the thymus. Immunol Rev 2024; 322:178-211. [PMID: 38228406 PMCID: PMC10950553 DOI: 10.1111/imr.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The thymus is the primary site of T-cell development, enabling generation, and selection of a diverse repertoire of T cells that recognize non-self, whilst remaining tolerant to self- antigens. Severe congenital disorders of thymic development (athymia) can be fatal if left untreated due to infections, and thymic tissue implantation is the only cure. While newborn screening for severe combined immune deficiency has allowed improved detection at birth of congenital athymia, thymic disorders acquired later in life are still underrecognized and assessing the quality of thymic function in such conditions remains a challenge. The thymus is sensitive to injury elicited from a variety of endogenous and exogenous factors, and its self-renewal capacity decreases with age. Secondary and age-related forms of thymic dysfunction may lead to an increased risk of infections, malignancy, and autoimmunity. Promising results have been obtained in preclinical models and clinical trials upon administration of soluble factors promoting thymic regeneration, but to date no therapy is approved for clinical use. In this review we provide a background on thymus development, function, and age-related involution. We discuss disease mechanisms, diagnostic, and therapeutic approaches for primary and secondary thymic defects.
Collapse
Affiliation(s)
- Sarah S. Dinges
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Kayla Amini
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ottavia M. Delmonte
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Oftedal BE, Sjøgren T, Wolff ASB. Interferon autoantibodies as signals of a sick thymus. Front Immunol 2024; 15:1327784. [PMID: 38455040 PMCID: PMC10917889 DOI: 10.3389/fimmu.2024.1327784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
Type I interferons (IFN-I) are key immune messenger molecules that play an important role in viral defense. They act as a bridge between microbe sensing, immune function magnitude, and adaptive immunity to fight infections, and they must therefore be tightly regulated. It has become increasingly evident that thymic irregularities and mutations in immune genes affecting thymic tolerance can lead to the production of IFN-I autoantibodies (autoAbs). Whether these biomarkers affect the immune system or tissue integrity of the host is still controversial, but new data show that IFN-I autoAbs may increase susceptibility to severe disease caused by certain viruses, including SARS-CoV-2, herpes zoster, and varicella pneumonia. In this article, we will elaborate on disorders that have been identified with IFN-I autoAbs, discuss models of how tolerance to IFN-Is is lost, and explain the consequences for the host.
Collapse
Affiliation(s)
- Bergithe E. Oftedal
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Thea Sjøgren
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Anette S. B. Wolff
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
21
|
May JF, Kelly RG, Suen AYW, Kim J, Kim J, Anderson CC, Rayat GR, Baldwin TA. Establishment of CD8+ T Cell Thymic Central Tolerance to Tissue-Restricted Antigen Requires PD-1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:271-283. [PMID: 37982696 DOI: 10.4049/jimmunol.2200775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
Highly self-reactive T cells are censored from the repertoire by both central and peripheral tolerance mechanisms upon receipt of high-affinity TCR signals. Clonal deletion is considered a major driver of central tolerance; however, other mechanisms such as induction of regulatory T cells and functional impairment have been described. An understanding of the interplay between these different central tolerance mechanisms is still lacking. We previously showed that impaired clonal deletion to a model tissue-restricted Ag did not compromise tolerance. In this study, we determined that murine T cells that failed clonal deletion were rendered functionally impaired in the thymus. Programmed cell death protein 1 (PD-1) was induced in the thymus and was required to establish cell-intrinsic tolerance to tissue-restricted Ag in CD8+ thymocytes independently of clonal deletion. In bone marrow chimeras, tolerance was not observed in PD-L1-deficient recipients, but tolerance was largely maintained following adoptive transfer of tolerant thymocytes or T cells to PD-L1-deficient recipients. However, CRISPR-mediated ablation of PD-1 in tolerant T cells resulted in broken tolerance, suggesting different PD-1 signaling requirements for establishing versus maintaining tolerance. Finally, we showed that chronic exposure to high-affinity Ag supported the long-term maintenance of tolerance. Taken together, our study identifies a critical role for PD-1 in establishing central tolerance in autoreactive T cells that escape clonal deletion. It also sheds light on potential mechanisms of action of anti-PD-1 pathway immune checkpoint blockade and the development of immune-related adverse events.
Collapse
Affiliation(s)
- Julia F May
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Rees G Kelly
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Y W Suen
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Jeongbee Kim
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Jeongwoo Kim
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Colin C Anderson
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Gina R Rayat
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
- Ray Rajotte Surgical-Medical Research Institute, AB Diabetes and Transplant Institutes, University of Alberta, Edmonton, Alberta, Canada
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Weng T, Jenkins BJ, Saad MI. Patient-Derived Xenografts: A Valuable Preclinical Model for Drug Development and Biomarker Discovery. Methods Mol Biol 2024; 2806:19-30. [PMID: 38676793 DOI: 10.1007/978-1-0716-3858-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
Patient-derived xenografts (PDXs), established by implanting patient tumor cells into immunodeficient mice, offer a platform for faithfully replicating human tumors. They closely mimic the histopathology, genomics, and drug sensitivity of patient tumors. This chapter highlights the versatile applications of PDXs, including studying tumor biology, metastasis, and chemoresistance, as well as their use in biomarker identification, drug screening, and personalized medicine. It also addresses challenges in using PDXs in cancer research, including variations in metastatic potential, lengthy establishment timelines, stromal changes, and limitations in immunocompromised models. Despite these challenges, PDXs remain invaluable tools guiding patient treatment and advancing preclinical drug development.
Collapse
Affiliation(s)
- Teresa Weng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, SA, Australia
| | - Mohamed I Saad
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
- South Australian immunoGENomics Cancer Institute (SAiGENCI), University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
23
|
Meng W, Schreiber RD, Lichti CF. Recent advances in immunopeptidomic-based tumor neoantigen discovery. Adv Immunol 2023; 160:1-36. [PMID: 38042584 DOI: 10.1016/bs.ai.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2023]
Abstract
The role of aberrantly expressed proteins in tumors in driving immune-mediated control of cancer has been well documented for more than five decades. Today, we know that both aberrantly expressed normal proteins as well as mutant proteins (neoantigens) can function as tumor antigens in both humans and mice. Next-generation sequencing (NGS) and high-resolution mass spectrometry (MS) technologies have made significant advances since the early 2010s, enabling detection of rare but clinically relevant neoantigens recognized by T cells. MS profiling of tumor-specific immunopeptidomes remains the most direct method to identify mutant peptides bound to cellular MHC. However, the need for use of large numbers of cells or significant amounts of tumor tissue to achieve neoantigen detection has historically limited the application of MS. Newer, more sensitive MS technologies have recently demonstrated the capacities to detect neoantigens from fewer cells. Here, we highlight recent advancements in immunopeptidomics-based characterization of tumor-specific neoantigens. Various tumor antigen categories and neoantigen identification approaches are also discussed. Furthermore, we summarize recent reports that achieved successful tumor neoantigen detection by MS using a variety of starting materials, MS acquisition modes, and novel ion mobility devices.
Collapse
Affiliation(s)
- Wei Meng
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States
| | - Robert D Schreiber
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| | - Cheryl F Lichti
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, United States; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO, United States.
| |
Collapse
|
24
|
Pelosi AC, Scariot PPM, Garbuio ALP, Kraemer MB, Priolli DG, Masselli Dos Reis IG, Messias LHD. A systematic review of exercise protocols applied to athymic mice in tumor-related experiments. Appl Physiol Nutr Metab 2023; 48:719-729. [PMID: 37384946 DOI: 10.1139/apnm-2023-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Athymic mice are unable to produce T-cells and are then characterized as immunodeficient. This characteristic makes these animals ideal for tumor biology and xenograft research. New non-pharmacological therapeutics are required owing to the exponential increase in global oncology costs over the last 10 years and the high cancer mortality rate. In this sense, physical exercise is regarded as a relevant component of cancer treatment. However, the scientific community lacks information regarding the effect of manipulating training variables on cancer in humans, and experiments with athymic mice. Therefore, this systematic review aimed to address the exercise protocols used in tumor-related experiments using athymic mice. The PubMed, Web of Science, and Scopus databases were searched without restrictions on published data. A combination of key terms such as athymic mice, nude mice, physical activity, physical exercise, and training was used. The database search retrieved 852 studies (PubMed, 245; Web of Science, 390; and Scopus, 217). After title, abstract, and full-text screening, 10 articles were eligible. Based on the included studies, this report highlights the considerable divergences in the training variables adopted for this animal model. No studies have reported the determination of a physiological marker for intensity individualization. Future studies are recommended to explore whether invasive procedures can result in pathogenic infections in athymic mice. Moreover, time-consuming tests cannot be applied to experiments with specific characteristics such as tumor implantation. In summary, non-invasive, low-cost, and time-saving approaches can suppress these limitations and improve the welfare of these animals during experiments.
Collapse
Affiliation(s)
- Andrea Corazzi Pelosi
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | | | - Ana Luíza Paula Garbuio
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Maurício Beitia Kraemer
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Denise Gonçalves Priolli
- Coloproctology service of the Federal University of São Paulo, São Paulo and Faculty of Health Sciences Pitágoras de Codó, Codó, Brazil
| | - Ivan Gustavo Masselli Dos Reis
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| |
Collapse
|
25
|
Walendzik K, Kopcewicz M, Wiśniewska J, Opyd P, Machcińska-Zielińska S, Gawrońska-Kozak B. Dermal white adipose tissue development and metabolism: The role of transcription factor Foxn1. FASEB J 2023; 37:e23171. [PMID: 37682531 DOI: 10.1096/fj.202300873rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Intradermal adipocytes form dermal white adipose tissue (dWAT), a unique fat depot localized in the lower layer of the dermis. However, recognition of molecular factors regulating dWAT development, homeostasis, and bioactivity is limited. Using Foxn1-/- and Foxn1+/+ mice, we demonstrated that epidermally expressed Foxn1 regulates dWAT development and defines the adipogenic capacity of dermal fibroblasts. In intact and post-wounded skin, Foxn1 contributes to the initial stimulation of dWAT adipogenesis and participates in the modulation of lipid metabolism processes. Furthermore, Foxn1 activity strengthens adipogenic processes through Bmp2 and Igf2 signaling and regulates lipid metabolism in differentiated dermal fibroblasts. The results reveal the contribution of Foxn1 to dWAT metabolism, thus identifying possible targets for modulation and regulation of dWAT in physiological and pathological processes in the skin.
Collapse
Affiliation(s)
- Katarzyna Walendzik
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Marta Kopcewicz
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Joanna Wiśniewska
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Paulina Opyd
- Department of Animal Nutrition and Feed Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Sylwia Machcińska-Zielińska
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Barbara Gawrońska-Kozak
- Biological Function of Food, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
26
|
Olkowski C, Fernandes B, Griffiths GL, Lin F, Choyke PL. Preclinical Imaging of Prostate Cancer. Semin Nucl Med 2023; 53:644-662. [PMID: 36882335 PMCID: PMC10440231 DOI: 10.1053/j.semnuclmed.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 03/07/2023]
Abstract
Prostate cancer remains a major cause of mortality and morbidity, affecting millions of men, with a large percentage expected to develop the disease as they reach advanced ages. Treatment and management advances have been dramatic over the past 50 years or so, and one aspect of these improvements is reflected in the multiple advances in diagnostic imaging techniques. Much attention has been focused on molecular imaging techniques that offer high sensitivity and specificity and can now more accurately assess disease status and detect recurrence earlier. During development of molecular imaging probes, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) must be evaluated in preclinical models of the disease. If such agents are to be translated to the clinic, where patients undergoing these imaging modalities are injected with a molecular imaging probe, these agents must first be approved by the FDA and other regulatory agencies prior to their adoption in clinical practice. Scientists have worked assiduously to develop preclinical models of prostate cancer that are relevant to the human disease to enable testing of these probes and related targeted drugs. Challenges in developing reproducible and robust models of human disease in animals are beset with practical issues such as the lack of natural occurrence of prostate cancer in mature male animals, the difficulty of initiating disease in immune-competent animals and the sheer size differences between humans and conveniently smaller animals such as rodents. Thus, compromises in what is ideal and what can be achieved have had to be made. The workhorse of preclinical animal models has been, and remains, the investigation of human xenograft tumor models in athymic immunocompromised mice. Later models have used other immunocompromised models as they have been found and developed, including the use of directly derived patient tumor tissues, completely immunocompromised mice, orthotopic methods for inducing prostate cancer within the mouse prostate itself and metastatic models of advanced disease. These models have been developed in close parallel with advances in imaging agent chemistries, radionuclide developments, computer electronics advances, radiometric dosimetry, biotechnologies, organoid technologies, advances in in vitro diagnostics, and overall deeper understandings of disease initiation, development, immunology, and genetics. The combination of molecular models of prostatic disease with radiometric-based studies in small animals will always remain spatially limited due to the inherent resolution sensitivity limits of PET and SPECT decay processes, fundamentally set at around a 0.5 cm resolution limit. Nevertheless, it is central to researcher's efforts and to successful clinical translation that the best animal models are adopted, accepted, and scientifically verified as part of this truly interdisciplinary approach to addressing this important disease.
Collapse
Affiliation(s)
- Colleen Olkowski
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda MD
| | - Bruna Fernandes
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda MD
| | - Gary L Griffiths
- Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Frank Lin
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda MD
| | - Peter L Choyke
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, Bethesda MD.
| |
Collapse
|
27
|
Velayutham S, Seerattan R, Sultan M, Seal T, Danthurthy S, Chinnappan B, Landi J, Pearl K, Singh A, Smalley KSM, Zaias J, Choi JY, Minond D. Novel Anti-Melanoma Compounds Are Efficacious in A375 Cell Line Xenograft Melanoma Model in Nude Mice. Biomolecules 2023; 13:1276. [PMID: 37759675 PMCID: PMC10526148 DOI: 10.3390/biom13091276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Despite the successes of immunotherapy, melanoma remains one of the deadliest cancers, therefore, the need for innovation remains high. We previously reported anti-melanoma compounds that work by downregulating spliceosomal proteins hnRNPH1 and H2. In a separate study, we reported that these compounds were non-toxic to Balb/C mice at 50 mg/kg suggesting their utility in in vivo studies. In the present study, we aimed to assess the efficacy of these compounds by testing them in A375 cell-line xenograft in nude athymic mice. Animals were randomized into four groups (n = 12/group): 10 mg/kg vemurafenib, and 25 mg/kg 2155-14 and 2155-18 thrice a week for 15 days along with a control group. The results revealed that both 2155-14 and 2155-18 significantly decreased the growth of A375 tumors, which was comparable to vemurafenib. These results were confirmed by tumor volume, weight, and histopathological examination. In conclusion, these results demonstrate the therapeutic potential of targeting spliceosomal proteins hnRNPH1 and H2.
Collapse
Affiliation(s)
- Sadeeshkumar Velayutham
- College of Pharmacy, Nova Southeastern University, 3321 College Avenue, Fort Lauderdale, FL 33314, USA
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA;
| | - Ryan Seerattan
- Department of Chemistry and Biochemistry, Queens College, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | - Maab Sultan
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA;
| | - Trisha Seal
- Halmos College of Arts and Sciences, Nova Southeastern University, 3301 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Samaya Danthurthy
- Honors College, Nova Southeastern University, 8000 N Ocean Dr., Dania Beach, FL 33004, USA
| | - Baskaran Chinnappan
- College of Pharmacy, Nova Southeastern University, 3321 College Avenue, Fort Lauderdale, FL 33314, USA
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA;
| | - Jessica Landi
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3321 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Kaitlyn Pearl
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, 3321 College Avenue, Fort Lauderdale, FL 33314, USA
| | - Aveta Singh
- Department of Chemistry and Biochemistry, Queens College, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
| | - Keiran S. M. Smalley
- Department of Tumor Biology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA;
| | - Julia Zaias
- Division of Comparative Pathology, University of Miami, 1501 NW 10th Ave, Miami, FL 33136, USA;
| | - Jun Yong Choi
- Department of Chemistry and Biochemistry, Queens College, 65-30 Kissena Boulevard, Flushing, NY 11367, USA
- Ph.D. Programs in Chemistry and Biochemistry, The Graduate Center of the City University of New York, 365 5th Ave, New York, NY 10016, USA
| | - Dmitriy Minond
- College of Pharmacy, Nova Southeastern University, 3321 College Avenue, Fort Lauderdale, FL 33314, USA
- Rumbaugh-Goodwin Institute for Cancer Research, Nova Southeastern University, 3321 College Avenue, CCR r.605, Fort Lauderdale, FL 33314, USA;
| |
Collapse
|
28
|
Fernández-Santiago C, López-López R, Piñeiro R. Models to study CTCs and CTC culture methods. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:57-98. [PMID: 37739484 DOI: 10.1016/bs.ircmb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The vast majority of cancer-related deaths are due to the presence of disseminated disease. Understanding the metastatic process is key to achieving a reduction in cancer mortality. Particularly, there is a need to understand the molecular mechanisms that drive cancer metastasis, which will allow the identification of curative treatments for metastatic cancers. Liquid biopsies have arisen as a minimally invasive approach to gain insights into the biology of metastasis. Circulating tumour cells (CTCs), shed to the circulation from the primary tumour or metastatic lesions, are a key component of liquid biopsy. As metastatic precursors, CTCs hold the potential to unravel the mechanisms involved in metastasis formation as well as new therapeutic strategies for treating metastatic disease. However, the complex biology of CTCs together with their low frequency in circulation are factors hampering an in-depth mechanistic investigation of the metastatic process. To overcome these problems, CTC-derived models, including CTC-derived xenograft (CDX) and CTC-derived ex vivo cultures, in combination with more traditional in vivo models of metastasis, have emerged as powerful tools to investigate the biological features of CTCs facilitating cancer metastasis and uncover new therapeutic opportunities. In this chapter, we provide an up to date view of the diverse models used in different cancers to study the biology of CTCs, and of the methods developed for CTC culture and expansion, in vivo and ex vivo. We also report some of the main challenges and limitations that these models are facing.
Collapse
Affiliation(s)
- Cristóbal Fernández-Santiago
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; University Clinical Hospital of Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
29
|
Elias KM, Ng NW, Dam KU, Milne A, Disler ER, Gockley A, Holub N, Seshan ML, Church GM, Ginsburg ES, Anchan RM. Fertility restoration in mice with chemotherapy induced ovarian failure using differentiated iPSCs. EBioMedicine 2023; 94:104715. [PMID: 37482511 PMCID: PMC10435842 DOI: 10.1016/j.ebiom.2023.104715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Treatment options for premature ovarian insufficiency (POI) are limited to hormone replacement and donor oocytes. A novel induced pluripotent stem cell (iPSC) transplant paradigm in a mouse model has potential translational applications for management of POI. METHODS Mouse ovarian granulosa cell derived-iPSCS were labelled with green fluorescent protein (GFP) reporter and differentiated in vitro into oocytes. Differentiated cells were assayed for estradiol and progesterone secretion by enzyme-linked immunosorbent assays. After Fluorescence-Activated Cell Sorting (FACS) for the cell surface marker anti-Mullerian hormone receptor (AMHR2), enriched populations of differentiated cells were surgically transplanted into ovaries of mice that had POI secondary to gonadotoxic pre-treatment with alkylating agents. A total of 100 mice were used in these studies in five separate experiments with 56 animals receiving orthotopic ovarian injections of either FACS sorted or unsorted differentiated iPSCSs and the remaining animals receiving sham injections of PBS diluent. Following transplantation surgery, mice were stimulated with gonadotropins inducing oocyte development and underwent oocyte retrieval. Nine transplanted mice were cross bred with wild-type mice to assess fertility. Lineage tracing of resultant oocytes, F1 (30 pups), and F2 (42 pups) litters was interrogated by GFP expression and validation by short tandem repeat (STR) lineage tracing. FINDINGS [1] iPSCs differentiate into functional oocytes and steroidogenic ovarian cells which [2] express an ovarian (GJA1) and germ cell (ZP1) markers. [3] Endocrine function and fertility were restored in mice pretreated with gonadotoxic alkylating agents via orthotopic transplantation of differentiated iPSCS, thus generating viable, fertile mouse pups. INTERPRETATION iPSC-derived ovarian tissue can reverse endocrine and reproductive sequelae of POI. FUNDING Center for Infertility and Reproductive Surgery Research Award, Siezen Foundation award (RMA). Reproductive Scientist Development Program, Marriott Foundation, Saltonstall Foundation, Brigham Ovarian Cancer Research Fund (K.E).
Collapse
Affiliation(s)
- Kevin M Elias
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nicholas W Ng
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Kh U Dam
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Ankrish Milne
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Emily R Disler
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Alison Gockley
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Nicole Holub
- Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Maya L Seshan
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Elizabeth S Ginsburg
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA
| | - Raymond M Anchan
- Division of Reproductive Endocrinology and Infertility, Center for Infertility and Reproductive Surgery, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St., Boston, MA 02115, USA.
| |
Collapse
|
30
|
Kutle I, Dittrich A, Wirth D. Mouse Models for Human Herpesviruses. Pathogens 2023; 12:953. [PMID: 37513800 PMCID: PMC10384569 DOI: 10.3390/pathogens12070953] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
More than one hundred herpesviruses have been isolated from different species so far, with nine infecting humans. Infections with herpesviruses are characterized by life-long latency and represent a significant challenge for human health. To investigate the consequences of infections and identify novel treatment options, in vivo models are of particular relevance. The mouse has emerged as an economical small animal model to investigate herpesvirus infections. However, except for herpes simplex viruses (HSV-1, HSV-2), human herpesviruses cannot infect mice. Three natural herpesviruses have been identified in mice: mouse-derived cytomegalovirus (MCMV), mouse herpesvirus 68 (MHV-68), and mouse roseolovirus (MRV). These orthologues are broadly used to investigate herpesvirus infections within the natural host. In the last few decades, immunocompromised mouse models have been developed, allowing the functional engraftment of various human cells and tissues. These xenograft mice represent valuable model systems to investigate human-restricted viruses, making them particularly relevant for herpesvirus research. In this review, we describe the various mouse models used to study human herpesviruses, thereby highlighting their potential and limitations. Emphasis is laid on xenograft mouse models, covering the development and refinement of immune-compromised mice and their application in herpesvirus research.
Collapse
Affiliation(s)
- Ivana Kutle
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Dittrich
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
31
|
Parodi M, Astigiano S, Carrega P, Pietra G, Vitale C, Damele L, Grottoli M, Guevara Lopez MDLL, Ferracini R, Bertolini G, Roato I, Vitale M, Orecchia P. Murine models to study human NK cells in human solid tumors. Front Immunol 2023; 14:1209237. [PMID: 37388731 PMCID: PMC10301748 DOI: 10.3389/fimmu.2023.1209237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023] Open
Abstract
Since the first studies, the mouse models have provided crucial support for the most important discoveries on NK cells, on their development, function, and circulation within normal and tumor tissues. Murine tumor models were initially set to study murine NK cells, then, ever more sophisticated human-in-mice models have been developed to investigate the behavior of human NK cells and minimize the interferences from the murine environment. This review presents an overview of the models that have been used along time to study NK cells, focusing on the most popular NOG and NSG models, which work as recipients for the preparation of human-in-mice tumor models, the study of transferred human NK cells, and the evaluation of various enhancers of human NK cell function, including cytokines and chimeric molecules. Finally, an overview of the next generation humanized mice is also provided along with a discussion on how traditional and innovative in-vivo and in-vitro approaches could be integrated to optimize effective pre-clinical studies.
Collapse
Affiliation(s)
- Monica Parodi
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Simonetta Astigiano
- Animal Facility, IRCCS Ospedale Policlinico San Martino Genova, Genova, Italy
| | - Paolo Carrega
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Gabriella Pietra
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Chiara Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Laura Damele
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Melania Grottoli
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | | | - Riccardo Ferracini
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
- Department of Surgical Sciences (DISC), University of Genoa, Genoa, Italy
| | - Giulia Bertolini
- “Epigenomics and Biomarkers of Solid Tumors”, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Ilaria Roato
- Department of Surgical Sciences, Bone and Dental Bioengineering Laboratory, C.I.R Dental School, University of Turin, Turin, Italy
| | - Massimo Vitale
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Paola Orecchia
- Unità Operativa UO Patologia e Immunologia Sperimentale, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
32
|
Mendoza G, Cheleuitte-Nieves C, Lertpiriyapong K, Wipf JRK, Ricart Arbona RJ, Miranda IC, Lipman NS. Establishing the Median Infectious Dose and Characterizing the Clinical Manifestations of Mouse, Rat, Cow, and Human Corynebacterium bovis Isolates in Select Immunocompromised Mouse Strains. Comp Med 2023; 73:200-215. [PMID: 37277182 PMCID: PMC10290488 DOI: 10.30802/aalas-cm-22-000115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/12/2022] [Accepted: 12/20/2022] [Indexed: 06/07/2023]
Abstract
Corynebacterium bovis (Cb), the cause of hyperkeratotic dermatitis in various immunocompromised mouse strains, significantly impacts research outcomes if infected mice are used. Although Cb has been isolated from a variety of species, including mice, rats, cows, and humans, little is known about the differences in the infectivity and clinical disease that are associated with specific Cb isolates. The infectious dose that colonized 50% of the exposed population (ID50 ) and any associated clinical disease was determined in athymic nude mice (Hsd:Athymic Nude-Foxn1 nu ) inoculated with Cb isolates collected from mice (n = 5), rat (n = 1), cow (n = 1), and humans (n = 2) The same parameters were also determined for 2 of the mouse isolates in 2 furred immunocompromised mouse strains (NSG [NOD. Cg-Prkdcscid Il2rgtm1Wjl /Sz] and NSG-S [NOD. Cg-Prkdcscid Il2rgtm1Wjl Tg(CMV-IL3, CSF2, KITLG)1Eav/MloySzJ]). To determine the ID 50, mice (n= 6/dose; 3 of each sex) were inoculated topically in 10-fold increments ranging from 1 to 10 8 bacteria. Mice were scored daily for 14 days for the severity of clinical signs. On days 7 and 14 after inoculation, buccal and dorsal skin swabs were evaluated by aerobic culture to determine infection status. The mouse isolates yielded lower ID50values (58 to 1000 bacteria) than did the bovine (6460 to 7498 bacteria) and rat (10,000 bacteria) isolates. Human isolates did not colonize mice or cause disease. Mouse isolates produced clinical disease of vary- ing severity in nude mice. Despite significant immunodeficiency, furred NSG and NSG-S mice required a 1000- to 3000-fold higher inoculum for colonization than did athymic nude mice. Once colonized, clinically detectable hyperkeratosis did not develop in the haired strains until 18 to 22 d after inoculation, whereas athymic nude mice that developed clinically detect- able disease showed hyperkeratosis between 6 and 14 d after inoculation. In conclusion, there are significant differences in Cb's ID 50, disease course, and severity of clinical signs between Cb isolates and among immunodeficient mouse strains.
Collapse
Affiliation(s)
- Gerardo Mendoza
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, and
| | - Christopher Cheleuitte-Nieves
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, and
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Kvin Lertpiriyapong
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, and
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Juliette RK Wipf
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, and
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Rodolfo J Ricart Arbona
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, and
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Ileana C Miranda
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, and
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| | - Neil S Lipman
- Tri-Institutional Training Program in Laboratory Animal Medicine and Science, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, and The Rockefeller University, New York, New York, and
- Center of Comparative Medicine and Pathology, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, New York
| |
Collapse
|
33
|
Chen A, Neuwirth I, Herndler-Brandstetter D. Modeling the Tumor Microenvironment and Cancer Immunotherapy in Next-Generation Humanized Mice. Cancers (Basel) 2023; 15:2989. [PMID: 37296949 PMCID: PMC10251926 DOI: 10.3390/cancers15112989] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer immunotherapy has brought significant clinical benefits to numerous patients with malignant disease. However, only a fraction of patients experiences complete and durable responses to currently available immunotherapies. This highlights the need for more effective immunotherapies, combination treatments and predictive biomarkers. The molecular properties of a tumor, intratumor heterogeneity and the tumor immune microenvironment decisively shape tumor evolution, metastasis and therapy resistance and are therefore key targets for precision cancer medicine. Humanized mice that support the engraftment of patient-derived tumors and recapitulate the human tumor immune microenvironment of patients represent a promising preclinical model to address fundamental questions in precision immuno-oncology and cancer immunotherapy. In this review, we provide an overview of next-generation humanized mouse models suitable for the establishment and study of patient-derived tumors. Furthermore, we discuss the opportunities and challenges of modeling the tumor immune microenvironment and testing a variety of immunotherapeutic approaches using human immune system mouse models.
Collapse
Affiliation(s)
| | | | - Dietmar Herndler-Brandstetter
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090 Vienna, Austria; (A.C.); (I.N.)
| |
Collapse
|
34
|
Singhal SS, Garg R, Mohanty A, Garg P, Ramisetty SK, Mirzapoiazova T, Soldi R, Sharma S, Kulkarni P, Salgia R. Recent Advancement in Breast Cancer Research: Insights from Model Organisms-Mouse Models to Zebrafish. Cancers (Basel) 2023; 15:cancers15112961. [PMID: 37296923 DOI: 10.3390/cancers15112961] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Animal models have been utilized for decades to investigate the causes of human diseases and provide platforms for testing novel therapies. Indeed, breakthrough advances in genetically engineered mouse (GEM) models and xenograft transplantation technologies have dramatically benefited in elucidating the mechanisms underlying the pathogenesis of multiple diseases, including cancer. The currently available GEM models have been employed to assess specific genetic changes that underlay many features of carcinogenesis, including variations in tumor cell proliferation, apoptosis, invasion, metastasis, angiogenesis, and drug resistance. In addition, mice models render it easier to locate tumor biomarkers for the recognition, prognosis, and surveillance of cancer progression and recurrence. Furthermore, the patient-derived xenograft (PDX) model, which involves the direct surgical transfer of fresh human tumor samples to immunodeficient mice, has contributed significantly to advancing the field of drug discovery and therapeutics. Here, we provide a synopsis of mouse and zebrafish models used in cancer research as well as an interdisciplinary 'Team Medicine' approach that has not only accelerated our understanding of varied aspects of carcinogenesis but has also been instrumental in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Sharad S Singhal
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Rachana Garg
- Department of Surgery, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Sravani Keerthi Ramisetty
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Raffaella Soldi
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Sunil Sharma
- Translational Genomics Research Institute, Phoenix, AZ 85338, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutic Research, Beckman Research Institute, City of Hope Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
35
|
Ding T, Yu Y, Pan X, Chen H. Establishment of humanized mice and its application progress in cancer immunotherapy. Immunotherapy 2023; 15:679-697. [PMID: 37096919 DOI: 10.2217/imt-2022-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
The current high prevalence of malignant tumors has attracted considerable attention, and treating advanced malignancies is becoming increasingly difficult. Although immunotherapy is a hopeful alternative, it is effective in only a few people. Thus, development of preclinical animal models is needed. Humanized xenotransplantation mouse models can help with selecting treatment protocols, evaluating curative effects and assessing prognosis. This review discusses the establishment of humanized mouse models and their application prospects in cancer immunotherapy to identify tailored therapies for individual patients.
Collapse
Affiliation(s)
- Tianlong Ding
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| | - Yang Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, 730030, PR China
| | - Xiaoyuan Pan
- Department of Vision Rehabilitation, Gansu Province Hospital Rehabilitation Center, Lanzhou, 730030, PR China
| | - Hao Chen
- Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
- Key Laboratory of Digestive System Tumors, Lanzhou University Second Hospital, Lanzhou, 730030, PR China
| |
Collapse
|
36
|
Anticancer polypyrrole-polyethylenimine drug-free nanozyme for precise B-cell lymphoma therapy. Biomed Pharmacother 2023; 160:114397. [PMID: 36796279 DOI: 10.1016/j.biopha.2023.114397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
As an alternative strategy for cancer treatment, the combination of cancer nanomedicine and immunotherapy is promising with regard to efficacy and safety; however, precise modulation of the activation of antitumor immunity remains challenging. Therefore, the aim of the present study was to describe an intelligent nanocomposite polymer immunomodulator, drug-free polypyrrole-polyethyleneimine nanozyme (PPY-PEI NZ), which responds to the B-cell lymphoma tumor microenvironment, for precision cancer immunotherapy. Earlier engulfment of PPY-PEI NZs in an endocytosis-dependent manner resulted in rapid binding in four different types of B-cell lymphoma cells. The PPY-PEI NZ effectively suppressed B cell colony-like growth in vitro accompanied by cytotoxicity via apoptosis induction. During PPY-PEI NZ-induced cell death, mitochondrial swelling, loss of mitochondrial transmembrane potential (MTP), downregulation of antiapoptotic proteins, and caspase-dependent apoptosis were observed. Deregulated AKT and ERK signaling contributed to glycogen synthase kinase-3-regulated cell apoptosis following deregulation of Mcl-1 and MTP loss. Additionally, PPY-PEI NZs induced lysosomal membrane permeabilization while inhibiting endosomal acidification, partly protecting cells from lysosomal apoptosis. PPY-PEI NZs selectively bound and eliminated exogenous malignant B cells in a mixed culture system with healthy leukocytes ex vivo. While PPY-PEI NZs showed no cytotoxicity in wild-type mice, they provided long-term and efficient inhibition of the growth of B-cell lymphoma-driven nodules in a subcutaneous xenograft model. This study explores a potential PPY-PEI NZ-based anticancer agent against B-cell lymphoma.
Collapse
|
37
|
Zhou Y, Xia J, Xu S, She T, Zhang Y, Sun Y, Wen M, Jiang T, Xiong Y, Lei J. Experimental mouse models for translational human cancer research. Front Immunol 2023; 14:1095388. [PMID: 36969176 PMCID: PMC10036357 DOI: 10.3389/fimmu.2023.1095388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The development and growth of tumors remains an important and ongoing threat to human life around the world. While advanced therapeutic strategies such as immune checkpoint therapy and CAR-T have achieved astonishing progress in the treatment of both solid and hematological malignancies, the malignant initiation and progression of cancer remains a controversial issue, and further research is urgently required. The experimental animal model not only has great advantages in simulating the occurrence, development, and malignant transformation mechanisms of tumors, but also can be used to evaluate the therapeutic effects of a diverse array of clinical interventions, gradually becoming an indispensable method for cancer research. In this paper, we have reviewed recent research progress in relation to mouse and rat models, focusing on spontaneous, induced, transgenic, and transplantable tumor models, to help guide the future study of malignant mechanisms and tumor prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tao Jiang
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| | - Yanlu Xiong
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| | - Jie Lei
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| |
Collapse
|
38
|
Kumah E, Bibee K. Modelling cutaneous squamous cell carcinoma for laboratory research. Exp Dermatol 2023; 32:117-125. [PMID: 36373888 DOI: 10.1111/exd.14706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) leads to significant morbidity for patients with progression and metastases. However, the molecular underpinnings of these tumors are still poorly understood. Dissecting human cSCC pathogenesis amplifies the exigence for preclinical models that mimic invasion and nodal spread. This review discusses the currently available models, including two- and three-dimensional tissue cultures, syngeneic and transgenic mice, and cell line-derived and patient-derived xenografts. We further highlight studies that have utilized the different models, considering how they recapitulate specific hallmarks of cSCC. Finally, we discuss the advantages, limitations and future research directions.
Collapse
Affiliation(s)
- Edwin Kumah
- Department of Biochemistry and Molecular Biology, Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristin Bibee
- Transplant Dermatology, Micrographic Surgery and Dermatology Oncology, Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
39
|
Liu W, Cui Y, Zheng X, Yu K, Sun G. Application status and future prospects of the PDX model in lung cancer. Front Oncol 2023; 13:1098581. [PMID: 37035154 PMCID: PMC10080030 DOI: 10.3389/fonc.2023.1098581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Lung cancer is one of the most prevalent, fatal, and highly heterogeneous diseases that, seriously threaten human health. Lung cancer is primarily caused by the aberrant expression of multiple genes in the cells. Lung cancer treatment options include surgery, radiation, chemotherapy, targeted therapy, and immunotherapy. In recent decades, significant progress has been made in developing therapeutic agents for lung cancer as well as a biomarker for its early diagnosis. Nonetheless, the alternative applications of traditional pre-clinical models (cell line models) for diagnosis and prognosis prediction are constrained by several factors, including the lack of microenvironment components necessary to affect cancer biology and drug response, and the differences between laboratory and clinical results. The leading reason is that substantial shifts accrued to cell biological behaviors, such as cell proliferative, metastatic, invasive, and gene expression capabilities of different cancer cells after decades of growing indefinitely in vitro. Moreover, the introduction of individualized treatment has prompted the development of appropriate experimental models. In recent years, preclinical research on lung cancer has primarily relied on the patient-derived tumor xenograft (PDX) model. The PDX provides stable models with recapitulate characteristics of the parental tumor such as the histopathology and genetic blueprint. Additionally, PDXs offer valuable models for efficacy screening of new cancer drugs, thus, advancing the understanding of tumor biology. Concurrently, with the heightened interest in the PDX models, potential shortcomings have gradually emerged. This review summarizes the significant advantages of PDXs over the previous models, their benefits, potential future uses and interrogating open issues.
Collapse
|
40
|
Song H, Zhao XB, Chu QS, Zhang J, Gao L, Liao XH. Expression dynamics of lymphoid enhancer-binding factor 1 in terminal Schwann cells, dermal papilla, and interfollicular epidermis. Dev Dyn 2022; 252:527-535. [PMID: 36576725 DOI: 10.1002/dvdy.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Transcription factor lymphoid enhancer-binding factor 1 (LEF1) is a downstream mediator of the Wnt/β-catenin signaling pathway. It is expressed in dermal papilla and surrounding cells in the hair follicle, promoting cell proliferation, and differentiation. RESULTS Here, we report that LEF1 is also expressed all through the hair cycle in the terminal Schwann cells (TSCs), a component of the lanceolate complex located at the isthmus. The timing of LEF1 appearance at the isthmus coincides with that of hair follicle innervation. LEF1 is not found at the isthmus in the aberrant hair follicles in nude mice. Instead, LEF1 in TSCs is found in the de novo hair follicles reconstituted on nude mice by stem cells chamber graft assay. Cutaneous denervation experiment demonstrates that the LEF1 expression in TSCs is independent of nerve endings. At last, LEF1 expression in the interfollicular epidermis during the early stage of skin development is significantly suppressed in transgenic mice with T-cell factor 3 (TCF3) overexpression. CONCLUSION We reveal the expression dynamics of LEF1 in skin during development and hair cycle. LEF1 expression in TSCs indicates that the LEF1/Wnt signal might help to establish a niche at the isthmus region for the lanceolate complex, the bulge stem cells and other neighboring cells.
Collapse
Affiliation(s)
- Hongzhi Song
- School of Medicine, Shanghai University, Shanghai, China.,School of Life Sciences, Shanghai University, Shanghai, China.,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Xu-Bo Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Qing-Song Chu
- School of Life Sciences, Shanghai University, Shanghai, China.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Jianyu Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Lipeng Gao
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xin-Hua Liao
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
41
|
Obara K, Reynoso J, Hamada Y, Aoki Y, Kubota Y, Masaki N, Amoh Y, Hoffman RM. Hair follicle associated pluripotent (HAP) stem cells jump from transplanted whiskers to pelage follicles and stimulate hair growth. Sci Rep 2022; 12:21174. [PMID: 36476963 PMCID: PMC9729176 DOI: 10.1038/s41598-022-25383-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Stimulation of hair growth in hair loss has been a difficult goal to achieve. Hair follicle-associated pluripotent (HAP) stem cells express nestin and have been shown to differentiate to multiple cell types including keratinocytes, neurons, beating cardiac muscles and numerous other cell types. HAP stem cells originate in the bulge area of the hair follicle and have been shown to migrate within and outside the hair follicle. In the present study, the upper part of vibrissa follicles from nestin-driven green-fluorescent protein (GFP) transgenic mice, containing GFP-expressing HAP stem cells, were transplanted in the dorsal area of athymic nude mice. Fluorescence microscopy and immunostaining showed the transplanted HAP stem cells jumped and targeted the bulge and hair bulb and other areas of the resident nude mouse pelage follicles where they differentiated to keratinocytes. These results indicate that transplanted nestin-GFP expressing HAP stem cells jumped from the upper part of the whisker follicles and targeted nude-mouse hair follicles, which are genetically deficient to grow normal hair shafts, and differentiated to keratinocytes to produce normal mature hair shafts. The resident nude-mouse pelage follicles targeted by jumping whisker HAP stem cells produced long hair shafts from numerous hair follicles for least 2 hair cycles during 36 days, demonstrations that HAP stem cells can stimulate hair growth. The present results for hair loss therapy are discussed.
Collapse
Affiliation(s)
- Koya Obara
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA.
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA.
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Jose Reynoso
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA
| | - Yuko Hamada
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, Kanagawa, 252-0374, Japan
| | - Yusuke Aoki
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Yutaro Kubota
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Noriyuki Masaki
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA
| | - Yasuyuki Amoh
- Department of Dermatology, Kitasato University School of Medicine, Minami Ward, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Robert M Hoffman
- AntiCancer, Inc., 7917 Ostrow Street, San Diego, CA, 92111, USA.
- Department of Surgery, University of California San Diego, San Diego, CA, 92103, USA.
| |
Collapse
|
42
|
Wang X, Wu C, Wei H. Humanized Germ-Free Mice for Investigating the Intervention Effect of Commensal Microbiome on Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1291-1302. [PMID: 35403435 DOI: 10.1089/ars.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Significance: A growing body of evidence has demonstrated that the commensal microbiome is deeply involved in the host immune response, accounting for significantly divergent clinical outcomes among cancer patients receiving immunotherapy. Therefore, precise screening and evaluating of functional bacterial strains as novel targets for cancer immunotherapy have attracted great enthusiasm from both academia and industry, which calls for the construction and application of advanced animal models to support translational research in this field. Recent Advances: Significant progress has been made to elucidate the intervention effect of commensal microbiome on immunotherapy based on animal experiments. Especially, correlation between gut microbiota and host response to immunotherapy has been continuously discovered in a variety of cancer types, laying the foundation for causality establishment and mechanism research. Critical Issues: In oncology research, it is particularly not uncommon to see that a promising preclinical result fails to translate into clinical success. The use of conventional murine models in immunotherapy-associated microbiome research is very likely to bring discredit on the preclinical findings. We emphasize the value of germ-free (GF) mice and humanized mice as advanced models in this field. Future Directions: Integrating rederivation and humanization to generate humanized GF mice as preclinical models would make it possible to clarify the role of specific bacterial strains in immunotherapy as well as obtain preclinical findings that are more predictive for humans, leading to novel microbiome-based strategies for cancer immunotherapy. Antioxid. Redox Signal. 37, 1291-1302.
Collapse
Affiliation(s)
- Xinning Wang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengwei Wu
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Recent advances in the development of transplanted colorectal cancer mouse models. Transl Res 2022; 249:128-143. [PMID: 35850446 DOI: 10.1016/j.trsl.2022.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022]
Abstract
Despite progress in prevention and treatment, colorectal cancer (CRC) remains the third most common malignancy worldwide and the second most common cause of cancer death in 2020. To evaluate various characteristics of human CRC, a variety of mouse models have been established. Transplant mouse models have distinct advantages in studying the clinical behavior and therapeutic progress of CRC. Host, xenograft, and transplantation routes are the basis of transplant mouse models. As the effects of the tumor microenvironment and the systemic environment on cancer cells are gradually revealed, 3 key elements of transplanted CRC mouse models have been revolutionized. This has led to the development of humanized mice, patient-derived xenografts, and orthotopic transplants that reflect the human systemic environment, patient's tumor of origin, and tumor growth microenvironments in immunodeficient mice, respectively. These milestone events have allowed for great progress in tumor biology and the treatment of CRC. This article reviews the evolution of these events and points out their strengths and weaknesses as innovative and useful preclinical tools to study CRC progression and metastasis and to exploit novel treatment schedules by establishing a testing platform. This review article depicts the optimal transplanted CRC mouse models and emphasizes the significance of surgical models in the study of CRC behavior and treatment response.
Collapse
|
44
|
Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF, Pan Q. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol 2022; 13:1007579. [PMID: 36341323 PMCID: PMC9626807 DOI: 10.3389/fimmu.2022.1007579] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Animal models play an indispensable role in the study of human diseases. However, animal models of different diseases do not fully mimic the complex internal environment of humans. Immunodeficient mice are deficient in certain genes and do not express these or show reduced expression in some of their cells, facilitating the establishment of humanized mice and simulation of the human environment in vivo. Here, we summarize the developments in immunodeficient mice, from the initial nude mice lacking T lymphocytes to NOD/SCID rgnull mice lacking T, B, and NK cell populations. We describe existing humanized immune system mouse models based on immunodeficient mice in which human cells or tissues have been transplanted to establish a human immune system, including humanized-peripheral blood mononuclear cells (Hu-PBMCs), humanized hematopoietic stem cells (Hu-HSCs), and humanized bone marrow, liver, thymus (Hu-BLT) mouse models. The different methods for their development involve varying levels of complexity and humanization. Humanized mice are widely used in the study of various diseases to provide a transitional stage for clinical research. However, several challenges persist, including improving the efficiency of reconstructing the human B cell immune response, extending lifespan, improving the survival rate of mice to extend the observation period, and improving the development of standardized commercialized models and as well as their use. Overall, there are many opportunities and challenges in the development of humanized immune system mouse models which can provide novel strategies for understanding the mechanisms and treatments of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qingjun Pan
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
45
|
Qin T, Fan J, Lu F, Zhang L, Liu C, Xiong Q, Zhao Y, Chen G, Sun C. Harnessing preclinical models for the interrogation of ovarian cancer. J Exp Clin Cancer Res 2022; 41:277. [PMID: 36114548 PMCID: PMC9479310 DOI: 10.1186/s13046-022-02486-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is a heterogeneous malignancy with various etiology, histopathology, and biological feature. Despite accumulating understanding of OC in the post-genomic era, the preclinical knowledge still undergoes limited translation from bench to beside, and the prognosis of ovarian cancer has remained dismal over the past 30 years. Henceforth, reliable preclinical model systems are warranted to bridge the gap between laboratory experiments and clinical practice. In this review, we discuss the status quo of ovarian cancer preclinical models which includes conventional cell line models, patient-derived xenografts (PDXs), patient-derived organoids (PDOs), patient-derived explants (PDEs), and genetically engineered mouse models (GEMMs). Each model has its own strengths and drawbacks. We focus on the potentials and challenges of using these valuable tools, either alone or in combination, to interrogate critical issues with OC.
Collapse
|
46
|
Kraemer MB, Silva KC, Kraemer CCF, Pereira JS, dos Reis IGM, Priolli DG, Messias LHD. Validity of the peak velocity to detect physical training improvements in athymic mice. Front Physiol 2022; 13:943498. [PMID: 36091383 PMCID: PMC9451039 DOI: 10.3389/fphys.2022.943498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/22/2022] [Indexed: 11/18/2022] Open
Abstract
This study comprises two complementary experiments with athymic Balb/c (Nu/Nu) mice. In experiment 1, the aim was to verify the reproducibility of the peak velocity (VPeak) determined from the incremental test. The second experiment aimed to assess the VPeak sensitivity to prescribe and detect modulations of the physical training in athymic nude mice. Sixteen mice were submitted to two incremental treadmill tests separated by 48-h (Experiment 1). The test consisted of an initial warm-up of 5 minutes. Subsequently, animals initiated the tests at 8 m min−1 with increments of 2 m min−1 every 3 minutes. The VPeak was determined as the highest velocity attained during the protocol. In experiment 2, these animals were randomly allocated to an exercise group (EG) or a control group (CG). The training protocol consisted of 30-min of treadmill running at 70% of the VPeak five times a week for 4 weeks. High indexes of reproducibility were obtained for VPeak (Test = 19.7 ± 3.6 m min−1; Retest = 19.2 ± 3.4 m min−1; p = 0.171; effect size = 0.142; r = 0.90). Animals from the EG had a significant increase of VPeak (Before = 18.4 ± 2.7 m min−1; After = 24.2 ± 6.0 m min−1; p = 0.023). Conversely, a significant decrease was observed for the CG (Before = 21.1 ± 3.9 m min−1; After = 15.9 ± 2.7 m min−1; p = 0.038). The VPeak is a valid parameter for exercise prescription in studies involving athymic nude mice.
Collapse
Affiliation(s)
- Maurício Beitia Kraemer
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Karen Christine Silva
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Camila Cunha França Kraemer
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Juliana Silva Pereira
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Ivan Gustavo Masseli dos Reis
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
| | - Denise Gonçalves Priolli
- Coloproctology Service of the Federal University of São Paulo, São Paulo and Faculty of Health Sciences Pitágoras de Codó, São Paulo, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology (GTAFE), Laboratory of Multidisciplinary Research, São Francisco University, Bragança Paulista, Brazil
- *Correspondence: Leonardo Henrique Dalcheco Messias,
| |
Collapse
|
47
|
Pala F, Notarangelo LD, Bosticardo M. Inborn errors of immunity associated with defects of thymic development. Pediatr Allergy Immunol 2022; 33:e13832. [PMID: 36003043 PMCID: PMC11077434 DOI: 10.1111/pai.13832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 12/18/2022]
Abstract
The main function of the thymus is to support the establishment of a wide repertoire of T lymphocytes capable of eliminating foreign pathogens, yet tolerant to self-antigens. Thymocyte development in the thymus is dependent on the interaction with thymic stromal cells, a complex mixture of cells comprising thymic epithelial cells (TEC), mesenchymal and endothelial cells. The exchange of signals between stromal cells and thymocytes is referred to as "thymic cross-talk". Genetic defects affecting either side of this interaction result in defects in thymic development that ultimately lead to a decreased output of T lymphocytes to the periphery. In the present review, we aim at providing a summary of inborn errors of immunity (IEI) characterized by T-cell lymphopenia due to defects of the thymic stroma, or to hematopoietic-intrinsic defects of T-cell development, with a special focus on recently discovered disorders. Additionally, we review the novel diagnostic tools developed to discover and study new genetic causes of IEI due to defects in thymic development. Finally, we discuss therapeutic approaches to correct thymic defects that are currently available, in addition to potential novel therapies that could be applied in the future.
Collapse
Affiliation(s)
- Francesca Pala
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
48
|
Aalam SMM, Viringipurampeer IA, Walb MC, Tryggestad EJ, Emperumal CP, Song J, Xu X, Saini R, Lombaert IMA, Sarkaria JN, Garcia J, Janus JR, Kannan N. Characterization of Transgenic NSG-SGM3 Mouse Model of Precision Radiation-Induced Chronic Hyposalivation. Radiat Res 2022; 198:243-254. [PMID: 35820185 DOI: 10.1667/rade-21-00237.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/06/2022] [Indexed: 11/03/2022]
Abstract
Regenerative medicine holds promise to cure radiation-induced salivary hypofunction, a chronic side effect in patients with head and neck cancers, therefore reliable preclinical models for salivary regenerative outcome will promote progress towards therapies. In this study, our objective was to develop a cone beam computed tomography-guided precision ionizing radiation-induced preclinical model of chronic hyposalivation using immunodeficient NSG-SGM3 mice. Using a Schirmer's test based sialagogue-stimulated saliva flow kinetic measurement method, we demonstrated significant differences in hyposalivation specific to age, sex, precision-radiation dose over a chronic (6 months) timeline. NSG-SMG3 mice tolerated doses from 2.5 Gy up to 7.5 Gy. Interestingly, 5-7.5 Gy had similar effects on stimulated-saliva flow (∼50% reduction in young female at 6 months after precision irradiation over sham-treated controls), however, >5 Gy led to chronic alopecia. Different groups demonstrated characteristic saliva fluctuations early on, but after 5 months all groups nearly stabilized stimulated-saliva flow with low-inter-mouse variation within each group. Further characterization revealed precision-radiation-induced glandular shrinkage, hypocellularization, gland-specific loss of functional acinar and glandular cells in all major salivary glands replicating features of human salivary hypofunction. This model will aid investigation of human cell-based salivary regenerative therapies.
Collapse
Affiliation(s)
| | | | - Matthew C Walb
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | | | - Chitra P Emperumal
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jianning Song
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Xuewen Xu
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rajan Saini
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Isabelle M A Lombaert
- Biointerfaces Institute, School of Dentistry, Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, Michigan
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Joaquin Garcia
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey R Janus
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota.,Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Jacksonville, Florida.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota
| | - Nagarajan Kannan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.,Center for Regenerative Medicine, Mayo Clinic, Rochester, Minnesota.,Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
49
|
Aparici Herraiz I, Caires HR, Castillo-Fernández Ó, Sima N, Méndez-Mora L, Risueño RM, Sattabongkot J, Roobsoong W, Hernández-Machado A, Fernandez-Becerra C, Barrias CC, del Portillo HA. Advancing Key Gaps in the Knowledge of Plasmodium vivax Cryptic Infections Using Humanized Mouse Models and Organs-on-Chips. Front Cell Infect Microbiol 2022; 12:920204. [PMID: 35873153 PMCID: PMC9302440 DOI: 10.3389/fcimb.2022.920204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human malaria parasite representing 36.3% of disease burden in the South-East Asia region and the most predominant species in the region of the Americas. Recent estimates indicate that 3.3 billion of people are under risk of infection with circa 7 million clinical cases reported each year. This burden is certainly underestimated as the vast majority of chronic infections are asymptomatic. For centuries, it has been widely accepted that the only source of cryptic parasites is the liver dormant stages known as hypnozoites. However, recent evidence indicates that niches outside the liver, in particular in the spleen and the bone marrow, can represent a major source of cryptic chronic erythrocytic infections. The origin of such chronic infections is highly controversial as many key knowledge gaps remain unanswered. Yet, as parasites in these niches seem to be sheltered from immune response and antimalarial drugs, research on this area should be reinforced if elimination of malaria is to be achieved. Due to ethical and technical considerations, working with the liver, bone marrow and spleen from natural infections is very difficult. Recent advances in the development of humanized mouse models and organs-on-a-chip models, offer novel technological frontiers to study human diseases, vaccine validation and drug discovery. Here, we review current data of these frontier technologies in malaria, highlighting major challenges ahead to study P. vivax cryptic niches, which perpetuate transmission and burden.
Collapse
Affiliation(s)
- Iris Aparici Herraiz
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Hugo R. Caires
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Óscar Castillo-Fernández
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
| | - Núria Sima
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Lourdes Méndez-Mora
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
| | - Ruth M. Risueño
- Josep Carreras Leukaemia Research Institute (IJC), Barcelona, Spain
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aurora Hernández-Machado
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona (UB), Barcelona, Spain
- Centre de Recerca Matemàtica (CRM), Barcelona, Spain
| | - Carmen Fernandez-Becerra
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
| | - Cristina C. Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Hernando A. del Portillo
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- *Correspondence: Hernando A. del Portillo,
| |
Collapse
|
50
|
GREM1 is required to maintain cellular heterogeneity in pancreatic cancer. Nature 2022; 607:163-168. [PMID: 35768509 DOI: 10.1038/s41586-022-04888-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/20/2022] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) shows pronounced epithelial and mesenchymal cancer cell populations1-4. Cellular heterogeneity in PDAC is an important feature in disease subtype specification3-5, but how distinct PDAC subpopulations interact, and the molecular mechanisms that underlie PDAC cell fate decisions, are incompletely understood. Here we identify the BMP inhibitor GREM16,7 as a key regulator of cellular heterogeneity in pancreatic cancer in human and mouse. Grem1 inactivation in established PDAC in mice resulted in a direct conversion of epithelial into mesenchymal PDAC cells within days, suggesting that persistent GREM1 activity is required to maintain the epithelial PDAC subpopulations. By contrast, Grem1 overexpression caused an almost complete 'epithelialization' of highly mesenchymal PDAC, indicating that high GREM1 activity is sufficient to revert the mesenchymal fate of PDAC cells. Mechanistically, Grem1 was highly expressed in mesenchymal PDAC cells and inhibited the expression of the epithelial-mesenchymal transition transcription factors Snai1 (also known as Snail) and Snai2 (also known as Slug) in the epithelial cell compartment, therefore restricting epithelial-mesenchymal plasticity. Thus, constant suppression of BMP activity is essential to maintain epithelial PDAC cells, indicating that the maintenance of the cellular heterogeneity of pancreatic cancer requires continuous paracrine signalling elicited by a single soluble factor.
Collapse
|