1
|
Zhang X, Jiang A, An S, Guo C, You F, Huang Z, Feng S, Zhang Y, Chang X, Yang G, Meng X. Dietary resistant starch supplementation improves the fish growth, lipid metabolism and intestinal barrier in largemouth bass (Micropterus salmoides) fed high-fat diets. Int J Biol Macromol 2025; 306:141356. [PMID: 39988156 DOI: 10.1016/j.ijbiomac.2025.141356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/16/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Resistant starch (RS) is a novel type of prebiotic that exerts positive effects on lipid metabolism and intestinal flora. In this study, we investigated the effects of dietary RS on lipid metabolism and the intestinal barrier in largemouth bass (Micropterus salmoides). The experimental fish were fed either a control diet (C), a high-fat diet (H), or H diets supplemented with 0.5 %, 1.5 %, and 3 % RS (HRS0.5, HRS1.5, and HRS3.0). Dietary supplementation with 1.5 % and 3.0 % RS increased the final weight and feed utilization. Moreover, the hepatic crude protein content and the expression of genes related to lipid lipolysis were significantly higher in the HRS1.5 group compared to the H group, whereas hepatic crude lipid content and the expression of genes related to lipid synthesis were considerably lower in the HRS1.5 and HRS3.0 groups than in the H group. Additionally, hepatocyte vacuolation was alleviated in the HRS1.5 and HRS3.0 groups, and the number of liver lipid droplets was significantly decreased. Dietary supplementation with 1.5 % and 3.0 % RS downregulated the expression of pro-inflammatory factors while upregulating the expression of anti-inflammatory factors. Furthermore, analysis of gut microbiota composition revealed that RS supplementation increased the population of beneficial bacteria and short-chain fatty acid (SCFA) contents, decreased the abundance of pathogenic bacteria, and enhanced the diversity and richness of the intestinal flora. Non-targeted metabolomics analysis indicated that the levels of L-arginine and betaine were significantly higher in the HRS1.5 group, while levels of L-methionine and taurocholic acid were notably elevated in the HRS3.0 group. In conclusion, dietary supplementation with 1.5-3.0 % RS improved the balance of intestinal flora, promoted the growth of beneficial bacteria, adjusted the metabolites profile, and increased the SCFA levels. These results suggest that dietary supplementation with 1.5-3.0 % RS can restore the intestinal protective barrier, reduce hepatic lipid accumulation, and regulate lipid metabolism in largemouth bass.
Collapse
Affiliation(s)
- Xindang Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Aixia Jiang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Shuxia An
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chongchong Guo
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Fu You
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zhenyi Huang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Shikun Feng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, China; Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
2
|
Oluseyifunmi IW, Olukosi OA. Dietary inclusion of raw potato or high-amylose-corn resistant starches fed for different durations: impact on phenotypic responses and indicators of gut health of broiler chickens. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40302193 DOI: 10.1002/jsfa.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/21/2025] [Accepted: 04/13/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND This 21-day study evaluated the effects of feeding durations of graded levels (RSL) of raw potato starch (RPS) or high amylose corn starch (HCS) on growth performance, energy utilization and intestinal biochemical metrics in broiler chickens. In total, 300 male broiler chicks were randomly assigned to 10 treatments: three RSL (25 and 50 g kg-1 of RPS and 35 g kg-1 of HCS) and three feeding durations (RSD) (21, 14 or 7 days), plus a corn-soybean meal control diet. RESULTS There were significant effects (P < 0.05) of RSL on feed conversion ratio (FCR), apparent ileal digestible energy (AIDE) and nitrogen-corrected metabolizable energy (AMEn). Birds fed 25 g kg-1 RPS had greater FCR than those fed 35 g kg-1 HCS. The AIDE and AMEn were greater in birds fed 35 g kg-1 HCS, except AIDE at 50 g kg-1 RPS and control diets. The RSD × RSL interaction was significant (P < 0.05) for jejunal glucagon-like peptide-2 (GLP-2) and RSD for mucin-2 (MUC-2) expression. Birds fed 25 g kg-1 RPS for 21 and 14 days had higher GLP-2 expression than those fed for 7 days. MUC-2 expression was greater for 21 and 14 days of RS feeding than 7 days. CONCLUSION The RSL modulated growth performance and nutrient uptake, whereas gene expression was associated with RSD and RSL synergistic effects. © 2025 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
|
3
|
Qin S, Zhu Y, Tian G, Jensen MB, Zhang K, Ding X, Bai S, Wang J, Xuan Y, Zeng Q. Dietary resistant starch protects against post-antibiotic intestinal damage by restoring microbial homeostasis and preserving intestinal barrier function in meat duck. Poult Sci 2025; 104:105213. [PMID: 40294558 PMCID: PMC12059379 DOI: 10.1016/j.psj.2025.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/22/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025] Open
Abstract
Resistant starch (RS) is recognized as a nutritional strategy that supports gut and overall host health by modulating gut microbiota. To directly assess the effects of RS on gut microbiota and its role in improving intestinal barrier function in meat ducks, this study first established an antibiotic-induced microbial dysbiosis model, which was characterized by reduced gut microbial diversity, intestinal dysfunction, and an inflammatory outburst following antibiotic exposure. Whereafter, in addition to the control group, ducks treated with antibiotics for 7 consecutive days were further allocated to two groups and fed the basal diet and RS diet that derived from 12 % raw potato starch until 21 d. The results demonstrated that dietary RS supplementation reversed the antibiotic-induced reduction in microbial diversity and restored the Firmicutes-to-Bacteroidetes ratio. Additionally, RS inclusion enriched beneficial bacterial genera, including Coprobacter, Odoribacter, and Faecalibacterium (LDA score > 3). Post-antibiotic intervention led to a reduction in villus density and muscular thickness, accompanied by a significant downregulation (P < 0.05) of zonula occludens-1 and mucin-2 expression, along with increased serum pro-inflammatory cytokine levels (P < 0.05). Notably, dietary RS supplementation significantly enhanced (P < 0.05) the expression of glucagon-like peptide receptor and the anti-apoptotic factor Bcl-2, while suppressing caspase transcription. This resulted in increased villus height and muscular thickness in the ileum (P < 0.05). Furthermore, RS intervention remarkably reduced (P < 0.05) pro-inflammatory cytokine levels, particularly interleukin-1β and tumor necrosis factor-α, in both the ileum and serum. These effects were likely linked to alterations in cecal microbiota, including increased abundances of Barnesiella, Ruminiclostridium 9, Megamonas, Faecalitalea, Adlercreutzia, Coprobacter and Collinsella. In conclusion, dietary RS supplementation mitigated antibiotic-induced cecal microbial dysbiosis and restored intestinal structure by promoting enterocyte proliferation and reducing apoptosis. Consequently, RS supplementation helped alleviate systemic inflammation in meat ducks following antibiotic treatment.
Collapse
Affiliation(s)
- Simeng Qin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China; College of Animal Science and Technology, Southwest University, Rongchang, Chongqing, China
| | - Yifeng Zhu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | | | - Keying Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yue Xuan
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, China.
| |
Collapse
|
4
|
Ye P, Liu W, Tang X, Liu M, Han J, Wang X, Zhu J, He X, Zhu X, Cao M, Zhao L, Ren Q. Effects of hydroxypropyl starch on intestinal health and transcriptome of geese. Sci Rep 2025; 15:12284. [PMID: 40210970 PMCID: PMC11986093 DOI: 10.1038/s41598-025-96020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/25/2025] [Indexed: 04/12/2025] Open
Abstract
In recent years, gout resulting from uric acid metabolism disorders has led to significant economic losses in goose production. The intestine is a vital organ crucial for uric acid metabolism. Hydroxypropyl starch (HPS) is a resistant starch modified from natural starch, which can enhance intestinal health as a dietary ingredient fiber. In this study, 240 30-day-old Yangzhou geese with similar body weights were divided into three groups: The control group (CG) received a basal diet + 5% corn starch; the hydroxypropyl starch group (HPS) and the sodium urate group (SU) were given a basal diet + 5% hydroxypropyl starch. The experiment lasted for 21 days, and the SU group was administered 30 mg of sodium urate per day during the last 4 days of the study. The results indicated that the level of uric acid in the HPS group was 56.6 µmol/L, significantly lower than that in the CG group (70.8 µmol/L) and the SU group (129.7 µmol/L). The morphological findings revealed that the ileum of the CG group and the SU group exhibited varying degrees of damage, while the HPS group maintained complete structure. The villus height and the ratio of villus height to crypt depth in the HPS group were significantly higher compared to those in the CG and SU groups, while the crypt depth was significantly lower than that in the SU group. A total of 1462 differentially expressed genes (DEGs) were identified at the transcriptome level. GO and KEGG functional enrichment analyses indicated that the DEGs were significantly enriched in the Brush border membrane, Brush border, PPAR signaling pathway, PI3K-Akt signaling pathway, and other related processes. Subsequent analysis revealed that HPS up-regulated the expression of genes associated with intestinal function (such as SLC5A12 and SLC5A8), structure (including NR5A2, IPMK), and uric acid metabolism (PDZK1). The accuracy and reliability of transcriptome sequencing data were confirmed by RT-qPCR. In this study, we systematically demonstrated that HPS can improve intestinal morphology and reduce serum uric acid levels, emphasizing its potential as a dietary supplement for geese.
Collapse
Affiliation(s)
- Pengfei Ye
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China.
| | - Wenquan Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Xiaotong Tang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Mengxue Liu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Jingfan Han
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Xiaoxue Wang
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Jie Zhu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Xiaorong He
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Xueqi Zhu
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China
| | - Mixia Cao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
| | - Lei Zhao
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China
| | - Qingchang Ren
- College of Animal Science, Anhui Science and Technology University, Chuzhou, 239000, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Chuzhou, 233100, China.
| |
Collapse
|
5
|
Ma L, Lyu W, Zeng T, Wang W, Chen Q, Zhao J, Zhang G, Lu L, Yang H, Xiao Y. Duck gut metagenome reveals the microbiome signatures linked to intestinal regional, temporal development, and rearing condition. IMETA 2024; 3:e198. [PMID: 39135685 PMCID: PMC11316934 DOI: 10.1002/imt2.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Guolong Zhang
- Department of Animal and Food SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
6
|
Madani AMA, Muhlisin M, Kurniawati A, Baskara AP, Anas MA. Dietary jack bean ( Canavalia ensiformis L.) supplementation enhanced intestinal health by modulating intestinal integrity and immune responses of broiler chickens. Heliyon 2024; 10:e34389. [PMID: 39130426 PMCID: PMC11315099 DOI: 10.1016/j.heliyon.2024.e34389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
This study investigated the influence of supplementing with jack beans on jejunal morphology, cecal short-chain fatty acids production, gene expression both of pro- and anti-inflammatory cytokines and tight junctions. Four treatment groups including 288 Indian River chicks that were one day old were randomized at random. While the treatment groups received jack bean supplementation at levels of 5 %, 10 %, and 15 %, the control group (0 %) was given a basal diet. For 11-35 days, each treatment consisted of 8 pens with 9 birds each. Supplementing with jack beans significantly enhanced butyrate production (P < 0.001), while at 10 % supplementation did not differ from control. Villus height (VH) and the ratio (VH:CD) were significantly (P < 0.001) increased by dietary treatments, while villus width (VW) and crypt depth (CD) were significantly (P < 0.05) decreased. TLR-3, TNF-a, and IL-6 were all significantly (P < 0.001) increased by dietary supplementation. However, at 15 %, TLR-3 and IL-6 were same with control. IL-18 was significantly (P < 0.05) decreased at 15 %. IL-10 decreased significantly (P < 0.001), but at 10 % same with control. At 5 and 10 %, IL-13 increased significantly (P < 0.001), whereas dietary treatments decreased at 15 % compared to control. Although ZO1 decreased significantly (P < 0.001) and OLCN increased significantly (P < 0.001), both ZO1 and OCLN were not significantly different from the control at 15 %. Dietary treatments significantly (P < 0.001) increased CLDN1 but did not differ from the control at 10 %. JAM2 decreased significantly (P < 0.001) with dietary treatments. In conclusion, jack bean supplementation may increase broiler chicken performance and intestinal health due to butyrate production. It may affect intestinal morphology and integrity by upregulating a tight junction protein gene. Jack beans also impacted jejunum immune responses and inflammatory cytokine gene expression.
Collapse
Affiliation(s)
- Abd Majid Ahmad Madani
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
| | - Muhlisin Muhlisin
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
| | - Asih Kurniawati
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
| | - Aji Praba Baskara
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
| | - Muhsin Al Anas
- Animal Nutrition and Feed Science Department, Faculty of Animal Science, Universitas Gadjah Mada, Indonesia
| |
Collapse
|
7
|
Colombino E, Gariglio M, Biasato I, Ferrocino I, Pozzo S, Fragola E, Battisti E, Zanet S, Ferroglio E, Capucchio MT, Schiavone A. Insect live larvae as a new nutritional model in duck: effects on gut health. Anim Microbiome 2024; 6:31. [PMID: 38812012 PMCID: PMC11137933 DOI: 10.1186/s42523-024-00316-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/13/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND This study aimed to evaluate the effects of Hermetia illucens (Black soldier fly-BSF) and Tenebrio molitor (Yellow mealworm-YMW) live larvae as a new nutritional model on duck's gut health, considering gut histomorphometry, mucin composition, cytokines transcription levels, and microbiota. A total of 126, 3-days-old, females Muscovy ducks were randomly allotted to three dietary treatments (6 replicates/treatment, 7 birds/pen): (i) C: basal diet; (ii) BSF: C + BSF live larvae; (iii) YMW: C + YMW live larvae. BSF and YMW live larvae were administered on top of the basal diet, based on the 5% of the expected daily feed intake. The live weight, average daily gain, average daily feed intake and feed conversion ratio were evaluated for the whole experimental period. On day 52, 12 ducks/treatment (2 birds/replicate) were slaughtered and samples of duodenum, jejunum, ileum, spleen, liver, thymus and bursa of Fabricius were collected for histomorphometry. Mucin composition was evaluated in the small intestine through histochemical staining while jejunal MUC-2 and cytokines transcription levels were evaluated by rt-qPCR. Cecal microbiota was also analyzed by means of 16 S rRNA gene sequencing. RESULTS Birds' growth performance and histomorphometry were not influenced by diet, with a proximo-distal decreasing gradient from duodenum to ileum (p < 0.001), respecting the physiological gut development. Mucin staining intensity and MUC-2 gene expression did not vary among dietary treatments, even though mucin intensity increased from duodenum to ileum, according to normal gut mucus physiology (p < 0.001). Regarding local immune response, IL-6 was higher in YMW group when compared to the other groups (p = 0.009). Insect live larvae did not affect cecal microbiota diversity, but BSF and YMW groups showed a higher presence of Helicobacter, Elusimicrobium, and Succinatimonas and a lower abundance of Coriobacteriaceae and Phascolarctobacterium compared to C birds (p < 0.05). CONCLUSIONS The use of BSF and YMW live larvae as new nutritional model did not impair gut development and mucin composition of Muscovy ducks, but slightly improved the intestinal immune status and the microbiota composition by enhancing regulatory cytokine IL-6 and by increasing minor Operational Taxonomic Units (OTUs) involved in short-chain fatty acids production.
Collapse
Affiliation(s)
- Elena Colombino
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy.
| | - Ilaria Biasato
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forestry and Food Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Sara Pozzo
- National Research Council, Institute of Agricultural Biology and Biotechnology (CNR-IBBA), Milano, 20133, MI, Italy
| | - Emma Fragola
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Elena Battisti
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Stefania Zanet
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Ezio Ferroglio
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
- National Research Council, Institute of Science of Food Production, Grugliasco, 10095, TO, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Grugliasco, 10095, TO, Italy
- National Research Council, Institute of Science of Food Production, Grugliasco, 10095, TO, Italy
| |
Collapse
|
8
|
Shen HR, Wang ZY, Shen Z, Liu TT, Guo YD, Gao TL, Guo HH, Han YX, Jiang JD. Bacterial butyrate mediates the anti-atherosclerotic effect of silybin. Biomed Pharmacother 2023; 169:115916. [PMID: 38000354 DOI: 10.1016/j.biopha.2023.115916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Silybin (SIL) is a versatile bioactive compound used for improving liver damage and lipid disorders and is also thought to be beneficial for atherosclerosis (AS). The goal of this study was to investigate the efficacy of SIL in the treatment of AS in ApoE-/-mice fed a high-fat diet and explore the mechanism underlying treatment outcomes. We found that SIL significantly alleviated AS-related parameters, including the extent of aortic plaque formation, hyperlipidemia, and adhesion molecule secretion in the vascular endothelium. 16 S rRNA gene sequencing analysis, together with the application of antibiotics, showed that intestinal butyrate-producing bacteria mediated the ameliorative effect of SIL on AS. Further analysis revealed that SIL facilitated butyrate production by increasing the level of butyryl-CoA: acetate CoA-transferase (BUT). The increased expression of monocarboxylic acid transporter-1 (MCT1) induced by butyrate and MCT4 induced by SIL in the apical and basolateral membranes of colonocytes, respectively, resulted in enhanced absorption of intestinal butyrate into the circulation, leading to the alleviation of arterial endothelium dysfunction. Moreover, the SIL-mediated increase in intestinal butyrate levels restored gut integrity by upregulating the expression of tight junction proteins and promoting gut immunity, thus inhibiting the AS-induced inflammatory response. This is the first study to show that SIL can alleviate AS by modulating the production of bacterial butyrate and its subsequent absorption.
Collapse
Affiliation(s)
- Hao-Ran Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhi-Yu Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen Shen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tong-Tong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yun-Dan Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tian-Le Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui-Hui Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yan-Xing Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
9
|
Xie Y, Li J, Liu D, Wu B, Zhao H, Liu G, Tian G, Cai J, Wu C, Tang J, Jia G. Dietary ethylenediamine dihydroiodide improves intestinal health in Cherry Valley ducks. Poult Sci 2023; 102:103022. [PMID: 37639753 PMCID: PMC10477681 DOI: 10.1016/j.psj.2023.103022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
This study investigated the effect of ethylenediamine dihydroiodide (EDDI) on the growth performance, thyroid function, immune function, intestinal development, intestinal permeability, intestinal barrier functions and microbial characteristics of Cherry Valley ducks. The results showed that the addition of EDDI significantly increased body weight, average daily gain, serum level of lymphocytes, basophils, triiodothyronine, thyroxine and thyrotropin, villus height, and villus height-to-crypt depth ratio, and significantly decreased crypt depth, diamine oxidase, serum D-Lactic acid of ducks (P < 0.05). EDDI also significantly up-regulated the mRNA expression of zonula occludens-1, zonula occludens-2, zonula occludens-3, mucin 2, secretory immunoglobulin A, interleukin-10 and avian β-defensin 2 in the jejunum and ileum (P < 0.05), and down-regulated the mRNA expression of occludin and interleukin-6 in the jejunum and ileum. Additionally, the addition of EDDI significantly increased cecal level of acetic acid, propionic acid, butyric acid (P < 0.05). Cecal microbiome analysis indicated that the addition of EDDI significantly increased the relative abundance of these microorganisms that can produce short-chain fatty acids, mainly including Actinobacteria, Verrucomicrobia, Clostridiales and Lactobacillales, and decreased the relative abundance of pathogenic bacteria Deferribactere. Interestingly, triiodothyronine and thyroxine levels were highly positively correlated with the relative abundance of Actinobacteria. These results revealed that the addition of EDDI could promote the growth and development of meat ducks by improving their thyroid function, immune function, intestinal development and intestinal barrier functions of ducks.
Collapse
Affiliation(s)
- Yueqin Xie
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Li
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Dongyun Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bing Wu
- Sichuan Jilongda Co., Ltd, Mianyang, Sichuan, 618000, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Caimei Wu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jiayong Tang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
10
|
Gui J, Azad MAK, Lin W, Meng C, Hu X, Cui Y, Lan W, He J, Kong X. Dietary supplementation with Chinese herb ultrafine powder improves intestinal morphology and physical barrier function by altering jejunal microbiota in laying hens. Front Microbiol 2023; 14:1185806. [PMID: 37260679 PMCID: PMC10227515 DOI: 10.3389/fmicb.2023.1185806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/24/2023] [Indexed: 06/02/2023] Open
Abstract
Introduction Chinese medicinal herbs play important roles in anti-inflammatory, antioxidant, and antibacterial activities. However, the effects of Chinese herb ultrafine powder (CHUP) on laying hens still need to be elucidated. Therefore, this study aimed to evaluate the effects of dietary CHUP supplementation on jejunal morphology, physical barrier function, and microbiota in laying hens. Methods A total of 576 Xinyang black-feather laying hens (300 days old) were randomly assigned into eight groups, with eight replicates per group and nine hens per replicate. The hens were fed a basal diet (control group) and a basal diet supplemented with 0.5% Leonuri herba (LH group), 0.25% Ligustri lucidi fructus (LF group), 0.25% Taraxaci herba (TH group), 0.5% LH + 0.25% LF (LH-LF group), 0.5% LH + 0.25% TH (LH-TH group), 0.25% LF + 0.25% TH (LF-TH group), and 0.5% LH + 0.25% LF + 0.25% TH (LH-LF-TH group), respectively, for 120 days. Results The results showed that dietary LH-LF and LH-LF-TH supplementation increased (p < 0.05) the jejunal villus height to crypt depth ratio of laying hens. Dietary LF-TH supplementation up-regulated jejunal claudin-5 expression, while LH supplementation up-regulated jejunal claudin-1 expression and increased the jejunal abundances of potentially beneficial bacteria related to short-chain fatty acids and bacteriocins production, such as Blautia, Carnobacterium, Clostridiales, and Erysipelotrichales (p < 0.05). In addition, dietary LH supplementation enriched (p < 0.05) the tetracycline biosynthesis, butirosin/neomycin biosynthesis, and D-arginine/D-ornithine metabolism, whereas steroid biosynthesis and limonene/pinene degradation were enriched (p < 0.05) in the LH-LF and LH-LF-TH groups. Moreover, Spearman's correlation analysis revealed the potential correlation between the abundance of the jejunal microbiota and jejunal morphology and the physical barrier function of laying hens. Discussion Collectively, these findings suggest that dietary CHUP supplementation could enhance the beneficial bacteria abundance, physical barrier function, and metabolic function associated with short-chain fatty acids and bacteriocins production. Moreover, combined supplementation of dietary CHUP showed better effects than the sole CHUP supplementation.
Collapse
Affiliation(s)
- Jue Gui
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Wenchao Lin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Chengwen Meng
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Xin Hu
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
11
|
Ouyang J, Li Y, Wu Y, Tang H, Zheng S, Xiong Y, Wang L, Wang C, Luo K, Gao Y, Yan X, Chen H. Microbial diversity and community composition of fecal microbiota in dual-purpose and egg type ducks. Front Microbiol 2023; 14:1092100. [PMID: 37065156 PMCID: PMC10102352 DOI: 10.3389/fmicb.2023.1092100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
IntroductionDucks are important agricultural animals, which can be divided into egg and dual-purpose type ducks according to economic use. The gut microbiota of ducks plays an important role in their metabolism, immune regulation, and health maintenance.MethodsHere, we use 16S rDNA V4 hypervariable amplicon sequencing to investigate the compositions and community structures of fecal microbiota between egg (five breeds, 96 individuals) and dual-purpose type ducks (four breeds, 73 individuals) that were reared under the same conditions.ResultsThe alpha diversity of fecal microflora in egg type ducks was significantly higher than that in dual-type ducks. In contrast, there is no significant difference in the fecal microbial community richness between the two groups. MetaStat analysis showed that the abundance of Peptostreptococcaceae, Streptococcaceae, Lactobacillus, Romboutsia, and Campylobacter were significantly different between the two groups. The biomarkers associated with the egg and dual-purpose type ducks were identified using LEfSe analysis and IndVal index. Function prediction of the gut microbiota indicated significant differences between the two groups. The functions of environmental information processing, carbohydrate metabolism, lipid metabolism, xenobiotic biodegradation and metabolism, and metabolism of terpenoids and polyketides were more abundant in egg type ducks. Conversely, the genetic information processing, nucleotide metabolism, biosynthesis of amino acids and secondary metabolites, glycan biosynthesis and metabolism, fatty acid elongation, and insulin resistance were significantly enriched in dual-purpose type ducks.DiscussionThis study explored the structure and diversity of the gut microbiota of ducks from different economic-use groups, and provides a reference for improving duck performance by using related probiotics in production.
Collapse
|
12
|
Qin S, Zhang K, Ding X, Bai S, Wang J, Tian G, Xuan Y, Su Z, Zeng Q. Microbiome-metabolomics analysis insight into the effects of dietary resistant starch on intestinal integrity. Food Chem 2023; 401:134148. [DOI: 10.1016/j.foodchem.2022.134148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2022] [Accepted: 09/04/2022] [Indexed: 01/06/2023]
|
13
|
Zhang Q, Li J, Wang J, Nie K, Luo Z, Xu S, Lin Y, Feng B, Zhuo Y, Hua L, Che L. Effects of lysophospholipids and multi-enzymes on growth performance, antioxidant capacity, intestinal health, and cecal microflora of male cherry valley ducks. J Anim Sci 2023; 101:skad361. [PMID: 37870076 PMCID: PMC10629945 DOI: 10.1093/jas/skad361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/21/2023] [Indexed: 10/24/2023] Open
Abstract
Improvement of nutrient utilization to promote growth performance is always pursued in poultry. In this study, a total of 360 1-d-old male ducklings was randomly assigned to 3 treatments in terms of diet treatment groups. Three treatments were as follows: basal diet (Con group) or basal diet supplemented with 300 mg/kg multi-enzymes (ENZ group) or 500 mg/kg lysophospholipids (LPL group). On day 42, ducks were slaughtered for samplings. The results revealed that supplementary LPL improved the body weight (BW) at day 14 and average daily gain (ADG) during days 1 to 14 and improved the feed conversion rate (FCR) for the overall period (P < 0.05) by improving nutrient utilization of dry matter and ether extract (P < 0.05) compared with the Con group. Dietary ENZ improved the FCR from days 15-42 and 1-42, and nitrogen utilization (P < 0.05) compared with the Con group. Jejunal villus height and villus height/crypt depth ratio were higher (P < 0.05) in the LPL group and tended to be higher (P < 0.1) in the ENZ group compared to the Con group. Supplementation with either LPL or ENZ reduced interleukin-1β concentration in jejunal mucus (P < 0.05). Both LPL and ENZ enhanced serum total superoxide dismutase activity (P < 0.05), whereas only supplementation with LPL elevated total antioxidant capacity (P < 0.05). In terms of cecal microbiota, microbial richness tended to be reduced by LPL, with low observed-OTUs and Chao1 (0.05 < P < 0.1). Supplementation with ENZ led to higher abundances of cellulolytic bacteria such as Fibrobacterota, [Eubacterium]_xylanophilum_group, and Bifidobacterium. Overall, both LPL and ENZ improved FCR, which may be relevant to ameliorative intestinal health, overall antioxidant ability, and cecal microbiome.
Collapse
Affiliation(s)
- Qianqian Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Department of Animal Resources and Science, Dankook University, Cheonan 31116, South Korea
| | - Jian Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Kangkang Nie
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | - Zheng Luo
- Kemin (China) Technologies Co., Ltd., Zhuhai, China
| | - Shengyu Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Yu H, Xie Y, Wu B, Zhao H, Chen X, Tian G, Liu G, Cai J, Jia G. Dietary supplementation of ferrous glycinate improves intestinal barrier function by modulating microbiota composition in Cherry Valley ducks. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:264-275. [PMID: 36263405 PMCID: PMC9556796 DOI: 10.1016/j.aninu.2022.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 06/02/2023]
Abstract
Ferrous glycinate (Fe-Gly) has been increasingly used as iron fortification in the diets of weaned piglets and broilers, but the effect of Fe-Gly on intestinal barrier function in meat ducks has not been well defined. This study therefore investigated the effect of Fe-Gly on apparent nutrient utilization, hematological indices, intestinal morphological parameters, intestinal barrier function and microbial composition in meat ducks. A total of 672 one-day-old Cherry Valley ducks were randomly divided into 6 treatments (8 replicates for each treatment and 14 ducks for each replicate) and fed diets with 0 (control), 30, 60, 90 and 120 mg/kg Fe-Gly or 120 mg/kg FeSO4 for 35 d. The results showed that diets supplemented with Fe-Gly significantly increased average daily gain (ADG), average daily feed intake (ADFI), hematocrit (HCT), mean cell volume (MCV), the apparent utilization of dry matter (DM) and metabolizable energy (ME), villus height (VH) and villus height-to-crypt depth ratio (V:C) (P < 0.05). Fe-Gly also significantly up-regulated barrier-related genes including zonula occludens-1 (ZO-1), zonula occludens-2 (ZO-2), mucin 2 (MUC2) and lysozyme (LYZ) (P < 0.05), and down-regulated the mRNA expression of claudin-2 (CLDN2) and occludin (OCLN) in the jejunum (P < 0.05). The 16S rRNA sequence analysis indicated that the diet with Fe-Gly had a higher relative abundance of Intestinimonas and Romboutsia (P < 0.05), which have an ability to produce short chain fatty acids (SCFAs), especially butyric acid. It also decreased the relative abundance of pathobiont, including Megamonas, Eubacterium_coprostanoligenes_group and Plebeius (P < 0.05). Additionally, diets supplemented with 120 mg/kg Fe-Gly significantly increased the apparent utilization of DM and ME (P < 0.05) and decreased the relative abundance of Megamonas_unclassified and Bacteroides_unclassified compared with those fed 120 mg/kg FeSO4 (P < 0.05). These results revealed that diets supplemented with Fe-Gly exerted a potent beneficial effect on physical, chemical, immune and microbial barriers, thereby improving the integrity of the intestinal structure, promoting the digestion and absorption of nutrients to a certain extent, and ultimately elevating the growth performance of ducks.
Collapse
Affiliation(s)
- Haihua Yu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yueqin Xie
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Bing Wu
- Chelota Group, Guanghan, 618300, China
| | - Hua Zhao
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jingyi Cai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Gang Jia
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| |
Collapse
|
15
|
Suther C, Devon L, Daddi L, Matson A, Panier H, Yuan H, Saar K, Bokoliya S, Dorsett Y, Sela DA, Beigelman A, Bacharier LB, Moore MD, Zhou Y. Dietary Indian frankincense (Boswellia serrata) ameliorates murine allergic asthma through modulation of the gut microbiome. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
16
|
Zhang H, Qin S, Zhang X, Du P, Zhu Y, Huang Y, Michiels J, Zeng Q, Chen W. Dietary resistant starch alleviates Escherichia coli-induced bone loss in meat ducks by promoting short-chain fatty acid production and inhibiting Malt1/NF-κB inflammasome activation. J Anim Sci Biotechnol 2022; 13:92. [PMID: 35927754 PMCID: PMC9354418 DOI: 10.1186/s40104-022-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background Escherichia coli (E. coli) infection in humans and animals usually comes with gut dysbiosis, which is potential culprit to skeletal health, it is still unclear to whether diet interfered gut microbiome changes can be a protective strategy to bone loss development. Here, the effects of resistant starch from raw potato starch (RPS), a type of prebiotic, on E. coli-induced bone loss and gut microbial composition in meat ducks were evaluated. Results The results showed that dietary 12% RPS treatment improved bone quality, depressed bone resorption, and attenuated the pro-inflammatory reaction in both ileum and bone marrow. Meanwhile, the 12% RPS diet also increased the abundance of Firmicutes in E. coli-treated birds, along with higher production of short-chain fatty acids (SCFAs) especially propionate and butyrate. Whereas addition of β-acid, an inhibitor of bacterial SCFAs production, to the drinking water of ducks fed 12% RPS diet significantly decreased SCFAs level in cecum content and eliminated RPS-induced tibial mass improvement. Further, treatment with MI-2 to abrogate mucosa-associated lymphoid tissue lymphoma translocation protein 1 (Malt1) activity replicated the protective role of dietary 12% RPS in E. coli-induced bone loss including reduced the inhibition on nuclear factor κB (NF-κB) inflammasome activation, decreased bone resorption, and improved bone quality, which were correlated with comparable and higher regulatory T cells (Treg) frequency in MI-2 and 12% RPS group, respectively. Conclusions These findings suggested that the diet with 12% RPS could alleviate E. coli-induced bone loss in meat ducks by changing the gut microbial composition and promoting concomitant SCFAs production, and consequently inhibiting Malt1/NF-κB inflammasome activation and Treg cells expansion. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00739-7.
Collapse
Affiliation(s)
- Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China.,Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| | - Simeng Qin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Pengfei Du
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yao Zhu
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, 9000, Ghent, Belgium
| | - Quifeng Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
17
|
Qin S, Bai W, Applegate TJ, Zhang K, Tian G, Ding X, Bai S, Wang J, Lv L, Peng H, Xuan Y, Zeng Q. Dietary resistant starch ameliorating lipopolysaccharide-induced inflammation in meat ducks associated with the alteration in gut microbiome and glucagon-like peptide 1 signaling. J Anim Sci Biotechnol 2022; 13:91. [PMID: 35836245 PMCID: PMC9284752 DOI: 10.1186/s40104-022-00735-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/15/2022] [Indexed: 01/03/2023] Open
Abstract
Background Consumption of resistant starch (RS) has been associated with various intestinal and systemic health benefits, but knowledge of its effects on intestinal health and inflammatory response in stressed birds is limited. Here, we examined how dietary RS supplementation from 12% raw potato starch (RPS) modulated inflammatory severity induced by lipopolysaccharide (LPS) in meat ducks. Results LPS administration at 14, 16, and 18 d (chronic challenge) decreased body weight (BW) and glucagon-like peptide 1 receptor (GLP-1R) level with higher intestinal permeability and inflammation, evident by higher pro-inflammatory cytokine levels. Dietary 12% RPS supplementation enhanced Claudin-1 and GLP-1R expression, along with lower levels of inflammatory factors in both ileum and serum. Microbiome analysis showed that RS treatment shifted microbial structure reflected by enriched the proportion of Firmicutes, Bifidobacterium, Ruminococcus, etc. Dietary RS addition also significantly increased the concentrations of propionate and butyrate during chronic LPS challenge. Furthermore, response to acute challenge, the ducks received 2 mg/kg BW LPS at 14 d had higher concentrations of serum endotoxins and inflammatory cytokines, as well as upregulated transcription of toll like receptor 4 (TLR4) in ileum when compared to control birds. Analogous to GLP-1 agonist liraglutide, dietary RS addition decreased endotoxins and inflammation cytokines, whereas it upregulated the GLP-1 synthesis related genes expression. Meanwhile, dietary RS supplementation suppressed the acute LPS challenge-induced TLR4 transcription. Conclusions These data suggest that dietary 12% RPS supplementation could attenuate the LPS-induced inflammation as well as intestinal injury of meat ducks, which might involve in the alteration in gut microbiota, SCFAs production and the signaling pathways of TLR4 and GLP-1/GLP-1R. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00735-x.
Collapse
Affiliation(s)
- Simeng Qin
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weiqiang Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Todd J Applegate
- Department of Poultry Science, University of Georgia, 110 Cedar St, Athens, GA, 30602, USA
| | - Keying Zhang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Tian
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiping Bai
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianping Wang
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Lv
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yue Xuan
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China
| | - Quifeng Zeng
- Institute of Animal Nutrition, Key Laboratory for Animal Disease-Resistance Nutrition of China, Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
18
|
Ali Q, Ma S, La S, Guo Z, Liu B, Gao Z, Farooq U, Wang Z, Zhu X, Cui Y, Li D, Shi Y. Microbial short-chain fatty acids: a bridge between dietary fibers and poultry gut health. Anim Biosci 2022; 35:1461-1478. [PMID: 35507857 PMCID: PMC9449382 DOI: 10.5713/ab.21.0562] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/18/2022] [Indexed: 11/27/2022] Open
Abstract
The maintenance of poultry gut health is complex depending on the intricate balance among diet, the commensal microbiota, and the mucosa, including the gut epithelium and the superimposing mucus layer. Changes in microflora composition and abundance can confer beneficial or detrimental effects on fowl. Antibiotics have devastating impacts on altering the landscape of gut microbiota, which further leads to antibiotic resistance or spread the pathogenic populations. By eliciting the landscape of gut microbiota, strategies should be made to break down the regulatory signals of pathogenic bacteria. The optional strategy of conferring dietary fibers (DFs) can be used to counterbalance the gut microbiota. DFs are the non-starch carbohydrates indigestible by host endogenous enzymes but can be fermented by symbiotic microbiota to produce short-chain fatty acids (SCFAs). This is one of the primary modes through which the gut microbiota interacts and communicate with the host. The majority of SCFAs are produced in the large intestine (particularly in the caecum), where they are taken up by the enterocytes or transported through portal vein circulation into the bloodstream. Recent shreds of evidence have elucidated that SCFAs affect the gut and modulate the tissues and organs either by activating G-protein-coupled receptors or affecting epigenetic modifications in the genome through inducing histone acetylase activities and inhibiting histone deacetylases. Thus, in this way, SCFAs vastly influence poultry health by promoting energy regulation, mucosal integrity, immune homeostasis, and immune maturation. In this review article, we will focus on DFs, which directly interact with gut microbes and lead to the production of SCFAs. Further, we will discuss the current molecular mechanisms of how SCFAs are generated, transported, and modulated the pro-and anti-inflammatory immune responses against pathogens and host physiology and gut health.
Collapse
|
19
|
Hao Y, Ji Z, Shen Z, Xue Y, Zhang B, Yu D, Liu T, Luo D, Xing G, Tang J, Hou S, Xie M. Increase Dietary Fiber Intake Ameliorates Cecal Morphology and Drives Cecal Species-Specific of Short-Chain Fatty Acids in White Pekin Ducks. Front Microbiol 2022; 13:853797. [PMID: 35464956 PMCID: PMC9021919 DOI: 10.3389/fmicb.2022.853797] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
The current study was to investigate the modulatory effects of total dietary fiber (TDF) levels on cecal morphology and the response of microbiota to maintain gut health for duck growth. A total of 192 14-day-old male white Pekin ducks were randomly allocated to three dietary groups and fed diets, containing 12.4, 14.7, and 16.2% TDF, respectively, until 35 days under the quantitative feed intake. Each dietary group consisted of eight replicate cages of eight birds. The results revealed that 14.7 and 16.2% TDF groups significantly promoted growth performance and improved villus height, the ratio of villus to crypt, muscle layer thickness, and goblet cells per villus of cecum in ducks. qPCR results showed that the transcriptional expression of Claudin-1, Muc2, IGF-1, and SLC16A1 was significantly upregulated in cecum in 14.7 and 16.2% TDF groups. Meanwhile, the concentration of IGF-1 in circulating was significantly increased in 14.7 and 16.2% TDF groups while that of DAO was significantly decreased in 16.2% TDF group. Furthermore, the concentrations of butyrate, isobutyrate, valerate, and isovalerate in cecum were conspicuously improved in 14.7 and 16.2% TDF groups while that of propionate was significantly decreased. In addition, the concentrations of butyrate, isobutyrate, valerate, and isovalerate in cecum presented negative correlations with the concentration of DAO in circulating. 16S rRNA gene sequencing results showed that the 14.7% TDF group importantly elevated the microbial richness. Simultaneously, butyrate-producing bacteria like the family Lachnospiraceae, Oscillospiraceae, and Erysipelatoclostridiaceae were enriched as biomarkers in the 16.2% TDF group. Correlation network analysis revealed that the associations between specific bacteria and short-chain fatty acids (SCFAs) induced by different TDF levels, and the correlations among bacteria were also witnessed. For example, the genus Monoglobus and CHKCI002 showed a positive correlation with butyrate, and there was a positively coexistent association between Monoglobus and CHKCI002. In summary, these data revealed that increasing the TDF level could enhance the cecal morphology and drive cecal species-specific of SCFAs in ducks.
Collapse
Affiliation(s)
- Yongsheng Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanqing Ji
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongjian Shen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youjia Xue
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Daxin Yu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tong Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guangnan Xing
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Zhang H, Qin S, Zhu Y, Zhang X, Du P, Huang Y, Michiels J, Zeng Q, Chen W. Dietary Resistant Starch From Potato Regulates Bone Mass by Modulating Gut Microbiota and Concomitant Short-Chain Fatty Acids Production in Meat Ducks. Front Nutr 2022; 9:860086. [PMID: 35369099 PMCID: PMC8970273 DOI: 10.3389/fnut.2022.860086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 01/16/2023] Open
Abstract
Gut microbiota interfered with using prebiotics may improve bone mass and alleviate the onset of bone problems. This study aimed to investigate the beneficial effect of resistant starch from raw potato starch (RPS) on bone health in meat ducks. Response to the dietary graded level of RPS supplementation, both tibia strength and ash were taken out linear and quadratic increase and positively correlated with increased propionate and butyrate levels in cecal content. Moreover, further outcomes of gut microbiota and micro-CT analysis showed the beneficial effect of RPS on bone mass might be associated with higher Firmicutes proportion and the production of short-chain fatty acids (SCFAs) in the cecum. Consistent with improving bone mass, SCFAs promoted phosphorus absorption, decreased the digestive tract pH, and enhanced intestinal integrity, which decreased the expression of pro-inflammatory genes in both gut and bone marrow, and consequently depressed osteoclastic bone resorption mediated by inflammatory cytokines. These findings highlight the importance of the "gut-bone" axis and provide new insight into the effect of prebiotics on bone health.
Collapse
Affiliation(s)
- Huaiyong Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China.,Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Simeng Qin
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Yao Zhu
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Xiangli Zhang
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Pengfei Du
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Yanqun Huang
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| | - Joris Michiels
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Quifeng Zeng
- Key Laboratory for Animal Disease-Resistance Nutrition of China, Institute of Animal Nutrition, Ministry of Education, Sichuan Agricultural University, Chengdu, China
| | - Wen Chen
- Key Laboratory of Animal Biochemistry and Nutrition, College of Animal Science and Technology, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
21
|
Qi Y, Zhang K, Tian G, Bai S, Ding X, Wang J, Peng H, LV L, Xuan Y, Zeng Q. Effects of Dietary Corn Germ Meal Levels on Growth Performance, Serum Biochemical Parameters, Meat Quality, and Standardized Ileal Digestibility of Amino Acids in Pekin Ducks. Poult Sci 2022; 101:101779. [PMID: 35303687 PMCID: PMC8927822 DOI: 10.1016/j.psj.2022.101779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/18/2022] [Accepted: 01/29/2022] [Indexed: 12/15/2022] Open
Abstract
The study aimed to investigate the effects of dietary corn germ meal (CGM) levels on growth performance, carcass characteristic, serum biochemical indexes, meat physical and chemical quality, and standardized ileal digestibility of amino acids (SIDAA) in Pekin ducks from 10 to 42 d of age. A total of 420 ten-day-old Cherry Valley ducks were randomly allotted to 5 treatments with 6 replicate cages per treatment and 14 ducks per cages based on mean body weight. Five isonitrogenous and isocaloric experimental diets were formulated on a digestible amino acid basis to produce diets containing 0, 3, 6, 9, or 12% CGM. Results showed: 1) Compared with other groups, ducks fed 12% CGM significantly increased (P < 0.05) the feed to gain ratio. 2) Dietary CGM levels had no effect (P > 0.05) on the carcass traits and breast meat physical quality; but the content of crude protein presented a linear decrease (P < 0.05) in breast meat with increasing dietary CGM levels. 3) Serum biochemical indices (e.g., alanine aminotransferase, aspartate aminotransferase, glucose, high density lipoprotein cholesterol, total cholesterol, triglyceride, total protein, and urea) showed no significant differences among all groups (P > 0.05). 4) The levels of CGM had no significant effect on SIDAA of diets (P > 0.05), except for cysteine which showed a quadratic increase (P < 0.05). These results suggested that the optimal levels of CGM in diets for meat duck aged from 10 to 42 d should be below 9% based on feed to gain ratio and the content of crude protein in breast meat.
Collapse
|
22
|
Tan FPY, Beltranena E, Zijlstra RT. Resistant starch: Implications of dietary inclusion on gut health and growth in pigs: a review. J Anim Sci Biotechnol 2021; 12:124. [PMID: 34784962 PMCID: PMC8597317 DOI: 10.1186/s40104-021-00644-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/07/2021] [Indexed: 01/10/2023] Open
Abstract
Starch from cereal grains, pulse grains, and tubers is a major energy substrate in swine rations constituting up to 55% of the diet. In pigs, starch digestion is initiated by salivary and then pancreatic α-amylase, and has as final step the digestion of disaccharides by the brush-border enzymes in the small intestine that produce monosaccharides (glucose) for absorption. Resistant starch (RS) is the proportion of starch that escapes the enzymatic digestion and absorption in the small intestine. The undigested starch reaches the distal small intestine and hindgut for microbial fermentation, which produces short-chain fatty acids (SCFA) for absorption. SCFA in turn, influence microbial ecology and gut health of pigs. These fermentative metabolites exert their benefits on gut health through promoting growth and proliferation of enterocytes, maintenance of intestinal integrity and thus immunity, and modulation of the microbial community in part by suppressing the growth of pathogenic bacteria while selectively enhancing beneficial microbes. Thus, RS has the potential to confer prebiotic effects and may contribute to the improvement of intestinal health in pigs during the post-weaning period. Despite these benefits to the well-being of pigs, RS has a contradictory effect due to lower energetic efficiency of fermented vs. digested starch absorption products. The varying amount and type of RS interact differently with the digestion process along the gastrointestinal tract affecting its energy efficiency and host physiological responses including feed intake, energy metabolism, and feed efficiency. Results of research indicate that the use of RS as prebiotic may improve gut health and thereby, reduce the incidence of post-weaning diarrhea (PWD) and associated mortality. This review summarizes our current knowledge on the effects of RS on microbial ecology, gut health and growth performance in pigs.
Collapse
Affiliation(s)
- Felina P Y Tan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Eduardo Beltranena
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Ruurd T Zijlstra
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada.
| |
Collapse
|
23
|
Hu C, Gu L, Li M, Ji F, Sun W, Wang D, Peng W, Lin D, Liu Q, Dai H, Zhou H, Xu T. Dietary Supplementation With Didancao ( Elephantopus scaber L.) Improves Meat Quality and Intestinal Development in Jiaji Ducks. Front Vet Sci 2021; 8:753546. [PMID: 34722710 PMCID: PMC8548424 DOI: 10.3389/fvets.2021.753546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/07/2021] [Indexed: 12/02/2022] Open
Abstract
Didancao (Elephantopus scaber L.) has been used as a traditional herbal medicine and has exhibited a beneficial role in animal health. This study aimed to investigate the effects of dietary supplementation with E. scaber on growth performance, meat quality, intestinal morphology, and microbiota composition in ducks. A total of 480 Jiaji ducks (42 days old, male:female ratio = 1:1) were randomly assigned to one of four treatments. There were six replicates per treatment, with 20 ducks per replicate. The ducks in the control group (Con) were fed a basal diet; the three experimental groups were fed a basal diet supplementation with 30 (T1), 80 (T2), and 130 mg/kg (T3) of E. scaber. After a 48-day period of supplementation, growth performance, meat quality, intestinal morphology, and microbiota composition were evaluated. The results showed that no differences were observed in the final body weight, average daily feed intake, and average daily gain among the four groups. Compared with that in the Con group, the feed conversion in the T1 and T2 groups was increased significantly; the T2 group was shown to decrease the concentration of alanine aminotransferase in serum; the T3 group was lower than the Con group in the concentration of aspartate aminotransferase and was higher than the Con group in the concentration of high-density lipoprotein-cholesterol. The highest concentration of creatinine was observed in the T1 group. The T2 group was higher than the Con group in the contents of Phe, Ala, Gly, Glu, Arg, Lys, Tyr, Leu, Ser, Thr, Asp, and total amino acids in the breast muscle. Moreover, the T2 group was higher than the Con group in the contents of meat C18:2n−6 and polyunsaturated fatty acid. The concentration of inosinic acid in the T1, T2, and T3 groups was significantly higher than that in the Con group. However, the Con group was higher than the T2 or T3 group in the Zn content. The T2 group was lower than the Con group in the jejunal crypt depth. The T3 group was higher than the Con group in the ileal villus height and the ratio of villus height to crypt depth. In addition, the T3 group had a trend to significantly increase the abundance of Fusobacteria. Compared with the Con group, the T1 and T2 groups displayed a higher abundance of Subdoligranulum. Collectively, dietary supplementation with 80 mg/kg of E. scaber improves meat quality and intestinal development in ducks.
Collapse
Affiliation(s)
- Chengjun Hu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lihong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Mao Li
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Fengjie Ji
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiping Sun
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dingfa Wang
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Weiqi Peng
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dajie Lin
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Quanwei Liu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, China
| | - Haofu Dai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hanlin Zhou
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Tieshan Xu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
24
|
Xia B, Wu W, Zhang L, Wen X, Xie J, Zhang H. Gut microbiota mediates the effects of inulin on enhancing sulfomucin production and mucosal barrier function in a pig model. Food Funct 2021; 12:10967-10982. [PMID: 34651635 DOI: 10.1039/d1fo02582a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dietary fibers (DFs) have many beneficial effects on intestinal health by ameliorating intestinal inflammation and modulating the microbial community composition, thereby affecting the barrier function. This study aims to characterize the gut microbiota of pigs fed with DFs, revealing a link between the intestinal microbiota and mucin chemotypes. Pigs (six per group) were randomly allotted to consume one of the following diets: control (CON) or a diet supplemented with 5% microcrystalline cellulose (MCC) or inulin (INU) for 72 days. We found that INU but not MCC enhanced the colonic barrier function by promoting the expression of ZO-1, Occludin and MUC2 and reducing the colonic crypt depth. INU increased sulfomucin production and mRNA levels of sulfotransferases Gal3ST1 and Gal3ST2. Goblet cells in the ileum were found to contain predominantly sialomucins while colonic goblet cells were dominated by sulfomucins with sialomucins absent. DF consumption increased the concentrations of short-chain fatty acids (SCFAs) of the ileum and colon compared to the CON diet. Moreover, the results of 16S rRNA gene sequencing analysis revealed that DFs significantly altered the composition of ileal and colonic mucosal microbiota. Network analysis indicated that INU-induced changes in bacterial genera and SCFAs, such as Akkermansia and butyrate, were significantly related with sulfomucins and the mucosal barrier function-gene in pigs. Collectively, these findings suggest that the intestinal mucosal microbiota and SCFAs induced by INU play a crucial role in modulating the chemotypes of mucin and the barrier function.
Collapse
Affiliation(s)
- Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China. .,College of Animal Science and Technology, Northwest A&F University, Yangling District 712100, China
| | - Weida Wu
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xiaobin Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
25
|
Hao Y, Ji Z, Shen Z, Wu Y, Zhang B, Tang J, Hou S, Xie M. Effects of Total Dietary Fiber on Cecal Microbial Community and Intestinal Morphology of Growing White Pekin Duck. Front Microbiol 2021; 12:727200. [PMID: 34539618 PMCID: PMC8440899 DOI: 10.3389/fmicb.2021.727200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
The current study was to investigate the effects of total dietary fiber (TDF) on growth performance, cecal structure, cecal microbial community, and short-chain fatty acids (SCFAs) profiles in the cecum of growing White Pekin ducks. A total of 108 male Pekin ducks of 14-days-old were randomly allocated and fed diets containing 12.4, 14.7, and 16.2% TDF for 35 days. Each dietary treatment consisted of six replicates with six birds each. The results showed that 14.7 and 16.2% TDF treatments promoted growth performance relative to 12.4% TDF treatments (P < 0.05). A total of 14.7 and 16.2% TDF treatments significantly elevated villus height, the ratio of villus height to crypt depth and muscle layer thickness of cecum, and lowered crypt depth compared with 12.4% TDF treatment (P < 0.05). Simultaneously, 14.7 and 16.2% TDF treatments up-regulated Claudin-1 mRNA expression of barrier genes in the cecum compared with 12.4% TDF (P < 0.05). Butyrate-producing bacteria like Oscillopiraceae affiliating to the phyla Firmicutes were observed as a biomarker in the 16.2% TDF. Higher concentration of butyrate in the cecum was obtained in the 14.7% TDF compared with 12.4 and 16.2% TDF (P < 0.05). The concentrations of isobutyrate, valerate, and isovalerate in the cecum were significantly increased in the 16.2% TDF compared with 12.4 and 14.7% TDF (P < 0.05). Meanwhile, the abundance of genus UCG-005 and Enterococcus was positive correlations with isobutyrate and valerate (P < 0.05). However, the concentration of propionate in the cecum significantly decreased in 14.7 and 16.2% TDF treatments relative to 12.4% TDF treatments (P < 0.05). In summary, increasing TDF levels improved growth performance, cecal histomorphology, and barrier function of meat ducks and it might be mediated by the changes of microbiota communities, especially bloom of SCFAs-producing bacteria, which facilitated the interaction between intestinal mucosa and microbiota.
Collapse
Affiliation(s)
- Yongsheng Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhanqing Ji
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhongjian Shen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongbao Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ming Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Xu HM, Zhang KY, Bai SP, Ding XM, Wang JP, Peng HW, Xuan Y, Su ZW, Gang T, Zeng QF. Dietary resistant potato starch improves growth performance and feather development in Pekin ducks fed a low phosphorus diet. Poult Sci 2021; 100:100947. [PMID: 33518311 PMCID: PMC7936172 DOI: 10.1016/j.psj.2020.12.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/10/2020] [Accepted: 12/15/2020] [Indexed: 11/28/2022] Open
Abstract
This study investigated whether dietary resistant potato starch (RPS) inclusion could ameliorate the negative impact of a low nonphytate phosphorus (nPP) diet on growth performance, feather growth, feather follicles (FF) development, and carcass traits by improving nutrient utilization and cecal microbiome fermentation capacity in Pekin ducks. The experiment was performed with a 2 × 2 randomized block design with 2 levels of RPS (0 or 12%) and 2 levels of nPP (low or normal, low: 0.22% at 1–14 d and 0.18% at 15–35 d of age; normal: 0.40% at 1–14 d and 0.35% at 15–35 d of age) for a total of 4 treatments, each with 8 replicate pens per treatment of 12 birds per pen. As regards growth performance and carcass traits, RPS inclusion markedly increased (P < 0.05) BW of 14 and 35 d, BWG and FI of 1–14 d, 15–35 d, and 1–35 d as well as abdominal fat and breast meat percentage of 35 d in ducks fed low nPP diets; moreover, RSP inclusion significantly reduced (P < 0.05) mortality in ducks fed low nPP diets. As regards feather growth and follicles development of 35 d, RPS inclusion significantly increased (P < 0.05) the fourth primary feather length, absolute feather weight, and the density of primary FF in the back skin in ducks fed low nPP diets. In regard to nutrition utilization, RPS supplementation significantly increased (P < 0.05) the availability of DM, CP, and energy, as well as dietary AME at 35 d of age in ducks fed low nPP diets. However, RPS supplementation had no effect (P > 0.05) on the concentration of cecal short-chain fatty acids and the activities of cecal phytase and cellulase in ducks fed low nPP diets. These results indicate that RPS can improve nutrient availability to ameliorate the negative effects on performance and feather development caused by a low nPP diet in Pekin ducks.
Collapse
Affiliation(s)
- H M Xu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - K Y Zhang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - S P Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - X M Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - J P Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - H W Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - Y Xuan
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - Z W Su
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - T Gang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130
| | - Q F Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of, Ministry of Education, Ministry of Agriculture and Rural Affaires, Sichuan Province, China, 611130.
| |
Collapse
|
27
|
Astaxanthin Alleviates Ochratoxin A-Induced Cecum Injury and Inflammation in Mice by Regulating the Diversity of Cecal Microbiota and TLR4/MyD88/NF- κB Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8894491. [PMID: 33505592 PMCID: PMC7806395 DOI: 10.1155/2021/8894491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/10/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022]
Abstract
Ochratoxin A (OTA) is a common environmental pollutant found in a variety of foods and grains, and excessive OTA consumption causes serious global health effects on animals and humans. Astaxanthin (AST) is a natural carotenoid that has anti-inflammatory, antiapoptotic, immunomodulatory, antitumor, antidiabetes, and other biological activities. The present study is aimed at investigating the effects of AST on OTA-induced cecum injury and its mechanism of action. Eighty C57 mice were randomly divided into four groups, including the control group, OTA group (5 mg/kg body weight), AST group (100 mg/kg body weight), and AST intervention group (100 mg/kg body weight AST+5 mg/kg body weight OTA). It was found that AST decreased the endotoxin content, effectively prevented the shortening of mouse cecum villi, and increased the expression levels of tight junction (TJ) proteins, consisting of occludin, claudin-1, and zonula occludens-1 (ZO-1). AST increased the number of goblet cells, the contents of mucin-2 (MUC2), and defensins (Defa5 and β-pD2) significantly, while the expression of mucin-1 (MUC1) decreased significantly. The 16S rRNA sequencing showed that AST affected the richness and diversity of cecum flora, decreased the proportion of lactobacillus, and also decreased the contents of short-chain fatty acids (SCFAs) (acetate and butyrate). In addition, AST significantly decreased the expression of TLR4, MyD88, and p-p65, while increasing the expression of p65. Meanwhile, the expression of inflammatory factors including TNF-α and INF-γ decreased, while the expression of IL-10 increased. In conclusion, AST reduced OTA-induced cecum injury by regulating the cecum barrier function and TLR4/MyD88/NF-κB signaling pathway.
Collapse
|
28
|
Xu H, Zhang K, Bai S, Ding X, Wang J, Peng H, Xuan Y, Su Z, Zeng Q. Effects of dietary resistant potato starch inclusion and stocking density on growth performance, feather condition, and skin inflammatory cytokine gene expression in Pekin ducks. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Zhang H, Chen F, Liang Z, Wu Y, Pi J, Wang L, Du J, Shen J, Pan A, Pu Y. Analysis of miRNAs and their target genes associated with mucosal damage caused by transport stress in the mallard duck intestine. PLoS One 2020; 15:e0237699. [PMID: 32810175 PMCID: PMC7437463 DOI: 10.1371/journal.pone.0237699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Bowel health is an important factor for duck rearing that has been linked to feed uptake and growth and death rates. Because the regulatory networks associated with acute stress-mediated injury in the duck gastrointestinal tract have not clearly elucidated, we aimed to explore potential miRNA-mRNA pairs and their regulatory roles in oxidative stress injury caused by transport stress. Here, 1-day-old mallard ducklings from the same breeder flock were collected and transported for 8 h, whereas the control group was not being transported. Various parameters reflecting oxidative stress and the tissue appearance of the intestine were assessed. The data showed that the plasma T-AOC and SOD concentrations were decreased in the transported ducklings. The intestine of the transported ducklings also displayed significant damage. High-throughput sequencing of the intestine revealed 44 differentially expressed miRNAs and 75 differentially expressed genes, which constituted 344 miRNA-mRNA pairs. KEGG pathway analysis revealed that the metabolic, FoxO signaling, influenza A and TGF-β signaling pathways were mainly involved in the mechanism underlying the induction of intestinal damage induced by simulated transport stress in ducks. A miRNA-mRNA pair, miR-217-5p/CHRDL1, was selected to validate the miRNA-mRNA negative relationship, and the results showed that miR-217-5p could influence CHRDL1 expression. This study provides new useful information for future research on the regulatory network associated with mucosal damage in the duck intestine.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Fang Chen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Zhenhua Liang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Yan Wu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Jinsong Pi
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Lixia Wang
- Institute of Animal Husbandry and Veterinary Sciences, Wuhan Academy of Agricultural Sciences, Wuhan, PR China
| | - Jinping Du
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Jie Shen
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Ailuan Pan
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| | - Yuejin Pu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Wuhan, PR China
| |
Collapse
|
30
|
Zhang Y, Liu Y, Li J, Xing T, Jiang Y, Zhang L, Gao F. Dietary corn resistant starch regulates intestinal morphology and barrier functions by activating the Notch signaling pathway of broilers. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:2008-2020. [PMID: 32164060 PMCID: PMC7649406 DOI: 10.5713/ajas.19.0967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022]
Abstract
Objective This study was conducted to investigate the effects of dietary corn resistant starch (RS) on the intestinal morphology and barrier functions of broilers. Methods A total of 320 one-day-old broilers were randomly allocated to 5 dietary treatments: one normal corn–soybean (NC) diet, one corn–soybean–based diet supplementation with 20% corn starch (CS), and 3 corn–soybean–based diets supplementation with 4%, 8%, and 12% corn resistant starch (RS) (identified as 4% RS, 8% RS, and 12% RS, respectively). Each group had eight replicates with eight broilers per replicate. After 21 days feeding, one bird with a body weight (BW) close to the average BW of their replicate was selected and slaughtered. The samples of duodenum, jejunum, ileum, caecum digesta, and blood were collected. Results Birds fed 4% RS, 8% RS and 12% RS diets showed lower feed intake, BW gain, jejunal villus height (VH), duodenal crypt depth (CD), jejunal VH/CD ratio, duodenal goblet cell density as well as mucin1 mRNA expressions compared to the NC group, but showed higher concentrations of cecal acetic acid and butyric acid, percentage of jejunal proliferating cell nuclear antigen-positive cells and delta like canonical Notch ligand 4 (Dll4), and hes family bHLH transcription factor 1 mRNA expressions. However, there were no differences on the plasma diamine oxidase activity and D-lactic acid concentration among all groups. Conclusion These findings suggested that RS could suppress intestinal morphology and barrier functions by activating Notch pathway and inhibiting the development of goblet cells, resulting in decreased mucins and tight junction mRNA expression.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingsen Liu
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaolong Li
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yun Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Joint International Research Laboratory of Animal Health and Food Safety, National Experimental Teaching Demonstration Center of Animal Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|