1
|
Silva AO, Ribeiro JM, Soares NP, Oliveira KCM, Espuri PF, Belo TCA, Reis LFCD, Aguiar DCD, Paula FBDA, Ruginsk SG, Almeida LAD, Marques MJ, José AR, Elias LLK, Torres LHL, Cau S, Ceron CS. Minocycline treatment attenuates high-refined carbohydrate diet-induced gut bacterial dysbiosis, anxiety-like behaviour, and cardiac damage in mice. Eur J Pharmacol 2025; 996:177552. [PMID: 40154569 DOI: 10.1016/j.ejphar.2025.177552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/12/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
The high-refined carbohydrate diet (HC diet) is linked to anxiety development and oxidative damage to heart tissue. However, little is known about how the gut microbiota profile is modulated in this diet model. Minocycline is an antibiotic with anti-inflammatory, antioxidant, and matrix metalloproteinases (MMPs) inhibitor properties. Therefore, we evaluated the effects of minocycline treatment on HC diet-induced cardiac damage, anxiety-like behaviour, and bacterial gut dysbiosis in mice. Male BALB/C mice were divided into two groups, which received standard diet or HC diet for 12 weeks. In the 10th week, both groups were subdivided and received water or minocycline (50 mg/kg) by gavage for 15 days. The gut bacterial populations, behavioural parameters, adiposity index, biochemical profile, cardiac oxidative stress indicators, MMPs, cardiac remodelling, and contractile analyses by Langendorff-perfused hearts were analysed. The HC diet induced bacterial gut dysbiosis and anxiety-like behaviour increased the adiposity index with changes in the lipid profile and creatine kinase fraction MB (CK-MB). In the heart, the HC diet increased tissue oxidative stress, MMP-2 and MMP-9 activity, collagen deposition, and altered cardiac performance. Minocycline treatment reversed diet-induced bacterial gut dysbiosis and anxiety-like behaviour, ameliorated the biochemical profile, diminished oxidative stress, MMP activity, cardiac collagen deposition, and improved cardiac performance. These findings suggest that minocycline treatment modulated the microbiota and attenuated behavioural changes and cardiac damage caused by the HC diet, suggesting an interplay between the gut-microbiota-brain axis and cardiac damage caused by the HC diet consumption.
Collapse
Affiliation(s)
- Alessandra Oliveira Silva
- Department of Food and Medicine, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Jéssyca Milene Ribeiro
- Department of Food and Medicine, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Nícia Pedreira Soares
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Patrícia Ferreira Espuri
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Thiago Caetano Andrade Belo
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Luis Felipe Cunha Dos Reis
- Department of Structural Biology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Daniele Cristina de Aguiar
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Borges de Araújo Paula
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Sílvia Graciela Ruginsk
- Department of Physiological Sciences, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Leonardo Augusto de Almeida
- Department of Microbiology and Immunology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Marcos José Marques
- Department of Pathology and Parasitology, Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Antunes-Rodrigues José
- Department of Physiology, Faculty of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Larissa Helena Lobo Torres
- Department of Food and Medicine, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Stefany Cau
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Carla Speroni Ceron
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, Ouro Preto, MG, Brazil.
| |
Collapse
|
2
|
Martinez-Tellez B, Xu H, Ortiz-Alvarez L, Rodríguez-García C, Schönke M, Jurado-Fasoli L, Osuna-Prieto FJ, Alcantara JMA, Acosta FM, Amaro-Gahete FJ, Folkerts G, Vilchez-Vargas R, Link A, Plaza-Diaz J, Gil A, Labayen I, Fernandez-Veledo S, Rensen PCN, Ruiz JR. Effect of a 24-week supervised concurrent exercise intervention on fecal microbiota diversity and composition in young sedentary adults: The ACTIBATE randomized controlled trial. Clin Nutr 2025; 49:128-137. [PMID: 40279809 DOI: 10.1016/j.clnu.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 03/12/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Numerous physiological responses to exercise are observed in humans, yet the effects of long-term exercise and varying intensities on the diversity and composition of human fecal microbiota remain unclear. We investigated the effect of a 24-week supervised concurrent exercise intervention, at moderate and vigorous intensities, on fecal microbiota diversity and composition in young adults. METHODS This ancillary study was based on data from the ACTIBATE randomized controlled trial (ClinicalTrials.gov ID: NCT02365129), and included adults (aged 18-25 years, 70 % female) that were randomized to (i) a control group (CON: no exercise, n = 20), (ii) a moderate-intensity exercise group (MOD-EX, n = 21), and (iii) a vigorous-intensity exercise group (VIG-EX, n = 20). Fecal samples were collected before and after the 24-week exercise intervention, and the diversity and composition of the fecal microbiota were analyzed by 16S rRNA sequencing. Inferential functional profiling of the fecal microbiota was performed and correlations between microbial changes and cardiometabolic outcomes were assessed. RESULTS Exercise did not modify beta or alpha diversities regardless of the intensity (all P ≥ 0.062). The relative abundance of the Erysipelotrichaceae family (Bacillota phylum) (-0.3 ± 1.2 %; P = 0.031) was however reduced in the VIG-EX group. Coprococcus was the only genus showed a significant difference between MOD-EX and VIG-EX after the intervention, with its relative abundance increasing in MOD-EX (+0.4 ± 0.6 %; P = 0.005). None of these changes were related to the exercise-induced cardiometabolic benefits (all P ≥ 0.05). CONCLUSIONS In young adults, a 24-week supervised concurrent exercise program, at moderate and vigorous intensities, resulted in minor changes in fecal microbiota composition, while neither alpha nor beta diversities were affected. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID: NCT02365129.
Collapse
Affiliation(s)
- Borja Martinez-Tellez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands; CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Department of Nursing, Physiotherapy and Medicine and SPORT Research Group, CIBIS Research Center, University of Almería, 04120, Almería, Spain.
| | - Huiwen Xu
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain
| | - Lourdes Ortiz-Alvarez
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain
| | - Carmen Rodríguez-García
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Milena Schönke
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Lucas Jurado-Fasoli
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Av. Conocimiento s/n, 18011, Granada, Spain
| | - Francisco J Osuna-Prieto
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Department of Analytical Chemistry, University of Granada, 18071, Granada, Spain
| | - Juan M A Alcantara
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Institute for Innovation & Sustainable Development in Food Chain Development (IS-FOOD), Department of Health Sciences, Public University of Navarra, Campus de Arrosadía, 31006, Pamplona, Spain
| | - Francisco M Acosta
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, 20520, Turku, Finland
| | - Francisco J Amaro-Gahete
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Department of Physiology, Faculty of Medicine, University of Granada, Av. Conocimiento s/n, 18011, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, 18012, Granada, Spain
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, the Netherlands
| | - Ramiro Vilchez-Vargas
- Medical Department II, University Hospital, Ludwig-Maximilians-Universität, 80336, Munich, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke-University Magdeburg, 39120, Magdeburg, Germany
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, 18012, Granada, Spain; School of Health Sciences, Universidad Internacional de La Rioja, Avenida de la Paz, 137, 26006, Logroño, Spain
| | - Angel Gil
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 1807, Granada, Spain; Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Center, Parque Tecnológico Ciencias de la Salud, University of Granada, Armilla, 18016, Granada, Spain
| | - Idoia Labayen
- CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Institute for Innovation & Sustainable Development in Food Chain Development (IS-FOOD), Department of Health Sciences, Public University of Navarra, Campus de Arrosadía, 31006, Pamplona, Spain
| | - Sonia Fernandez-Veledo
- Hospital Universitari Joan XXIII de Tarragona, Institut d'Investigació Sanitària Pere Virgili (IISPV), 43204, Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), 28029, Madrid, Spain; Universitat Rovira i Virgili, 43003, Tarragona, Spain
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, the Netherlands
| | - Jonatan R Ruiz
- Department of Physical Education and Sports, Faculty of Sports Science, Sport and Health University Research Institute (iMUDS), University of Granada, 18071, Granada, Spain; CIBEROBN, Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition, Carlos III Health Institute, 18100, Granada, Spain; Instituto de Investigación Biosanitaria, ibs.Granada, 18012, Granada, Spain.
| |
Collapse
|
3
|
Bergentall M, Tremaroli V, Sun C, Henricsson M, Khan MT, Mannerås Holm L, Olsson L, Bergh PO, Molinaro A, Mardinoglu A, Caesar R, Nieuwdorp M, Bäckhed F. Gut microbiota mediates SREBP-1c-driven hepatic lipogenesis and steatosis in response to zero-fat high-sucrose diet. Mol Metab 2025; 97:102162. [PMID: 40345386 DOI: 10.1016/j.molmet.2025.102162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/23/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
OBJECTIVES Sucrose-rich diets promote hepatic de novo lipogenesis (DNL) and steatosis through interactions with the gut microbiota. However, the role of sugar-microbiota dynamics in the absence of dietary fat remains unclear. This study aimed to investigate the effects of a high-sucrose, zero-fat diet (ZFD) on hepatic steatosis and host metabolism in conventionally raised (CONVR) and germ-free (GF) mice. METHODS CONVR and GF mice were fed a ZFD, and hepatic lipid accumulation, gene expression, and metabolite levels were analyzed. DNL activity was assessed by measuring malonyl-CoA levels, expression of key DNL enzymes, and activation of the transcription factor SREBP-1c. Metabolomic analyses of portal vein plasma identified microbiota-derived metabolites linked to hepatic steatosis. To further examine the role of SREBP-1c, its hepatic expression was knocked down using antisense oligonucleotides in CONVR ZFD-fed mice. RESULTS The gut microbiota was essential for sucrose-induced DNL and hepatic steatosis. In CONVR ZFD-fed mice, hepatic fat accumulation increased alongside elevated expression of genes encoding DNL enzymes, higher malonyl-CoA levels, and upregulation of SREBP-1c. Regardless of microbiota status, ZFD induced fatty acid elongase and desaturase gene expression and increased hepatic monounsaturated fatty acids. Metabolomic analyses identified microbiota-derived metabolites associated with hepatic steatosis. SREBP-1c knockdown in CONVR ZFD-fed mice reduced hepatic steatosis and suppressed fatty acid synthase expression. CONCLUSIONS Sucrose-microbiota interactions and SREBP-1c are required for DNL and hepatic steatosis in the absence of dietary fat. These findings provide new insights into the complex interplay between diet, gut microbiota, and metabolic regulation.
Collapse
Affiliation(s)
- Mattias Bergentall
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Valentina Tremaroli
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Chuqing Sun
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Marcus Henricsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Muhammad Tanweer Khan
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Louise Mannerås Holm
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Lisa Olsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Per-Olof Bergh
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden; Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| | - Robert Caesar
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden.
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine and Sahlgrenska Center for Cardiovascular and Metabolic Research, University of Gothenburg, Gothenburg, SE-413 45, Sweden; Department of Clinical Physiology Region Västra Götaland, Sahlgrenska University Hospital Gothenburg Sweden, Sweden.
| |
Collapse
|
4
|
Patra S, Everhart Nunn SL, Levent G, Chelikani PK. Prebiotics pectin and resistant starch-type 4 stimulate peptide YY and cholecystokinin to promote satiety, and improve gut microbiota composition. FASEB J 2025; 39:e70457. [PMID: 40085424 DOI: 10.1096/fj.202403239r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/08/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
Dietary prebiotics pectin and resistant starch type-4 (RS-4) promote satiety and alter gut microbiota; however, the underlying neurohormonal mechanisms of satiety remain poorly understood. We determined the effects of pectin, RS-4, and their combination on energy balance and gut microbiota composition, and assessed whether the gut hormones peptide YY (PYY) and cholecystokinin (CCK) play a role in fiber-induced satiety. High-fat diet -induced obese male rats (n = 7-8/group) were fed either control, pectin, RS-4, or a combination of pectin and RS-4 diet. We found that pectin, RS-4, and their combination decreased food intake. Pectin alone, or combined with RS-4, shifted substrate utilization towards fat and reduced gains in weight and adiposity. Pectin alone or combined with RS-4 enhanced the expression and plasma concentrations of PYY and CCK. Importantly, systemic blockade of PYY-Y2 and CCK-1 receptors attenuated the hypophagic effects of pectin, and CCK-1 receptor blockade partly attenuated the hypophagia from RS-4. The prebiotics significantly altered fecal β-diversity metrics, suggestive of improvements in gut microbiota composition. Pectin and RS-4 alone, or in combination, were associated with increased relative abundance of phylum Bacteroidota, decreased Firmicutes, and increased concentrations of amino acids and biogenic amines in feces. Collectively, these findings suggest that dietary pectin and RS-4 improved energy balance and gut microbiota composition, and importantly, demonstrated that the satiety effects of these diets were mediated, in part, via enhanced endogenous PYY and CCK signaling.
Collapse
Affiliation(s)
- Souvik Patra
- School of Veterinary Medicine, Texas Tech University, Amarillo, Texas, USA
| | - Savana L Everhart Nunn
- Department of Agricultural and Human Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Gizem Levent
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
5
|
Lee TY, Liao YC, Chang HT, Lin HC, Weng HM, Chang IJ, Young SL, Shen PC, Bhattarai BP, Lin JS, Lee JW. Inclusion of Multi-Strained Probiotics Improves the Fecal Microbiota and Carcass Quality of Pigs. Animals (Basel) 2025; 15:993. [PMID: 40218386 PMCID: PMC11987732 DOI: 10.3390/ani15070993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Limited studies have addressed the effects of multi-strain probiotics on gut microbiota and their influence on meat traits in pigs. Thus, this study investigated the impact of including a commercialized multi-strain probiotic product (SYN) (SYNLAC-LeanAd) into the dietary regimen of crossbred Landrace × Yorkshire × Duroc (LYD) pigs. The study spanned a duration of 22 weeks, from weaning until slaughtering, during which the carcass traits, meat quality, and fecal microbiota profile were compared to those of pigs fed diets with or without an antibiotic growth promoter (AGP). The results demonstrated that the inclusion of SYN significantly improved meat quality parameters, including marbling score, tenderness, and intramuscular fat (p < 0.05) in comparison to pigs fed with AGP. The analysis of fecal microbiota revealed that SYN inclusion increased the populations of Clostridiaceae, Coriobacteriaceae, and Erysipelotrichaceae compared to the control and AGP groups. Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis predicted that the amino acid and lipid metabolism pathways were facilitated in pigs from the SYN group. These findings suggest that the inclusion of SYNLAC-LeanAd has the potential to positively impact the fecal microbiota profile, which in turn may lead to improved carcass traits and meat quality in commercial crossbred pigs.
Collapse
Affiliation(s)
- Ting-Yu Lee
- Synbio Tech Inc., Kaohsiung 821011, Taiwan; (T.-Y.L.); (Y.-C.L.); (H.-T.C.); (H.-C.L.); (H.-M.W.); (I.-J.C.); (S.-L.Y.)
| | - Yi-Chu Liao
- Synbio Tech Inc., Kaohsiung 821011, Taiwan; (T.-Y.L.); (Y.-C.L.); (H.-T.C.); (H.-C.L.); (H.-M.W.); (I.-J.C.); (S.-L.Y.)
| | - Hsiao-Tung Chang
- Synbio Tech Inc., Kaohsiung 821011, Taiwan; (T.-Y.L.); (Y.-C.L.); (H.-T.C.); (H.-C.L.); (H.-M.W.); (I.-J.C.); (S.-L.Y.)
| | - Hsiao-Ching Lin
- Synbio Tech Inc., Kaohsiung 821011, Taiwan; (T.-Y.L.); (Y.-C.L.); (H.-T.C.); (H.-C.L.); (H.-M.W.); (I.-J.C.); (S.-L.Y.)
| | - Hsiu-Ming Weng
- Synbio Tech Inc., Kaohsiung 821011, Taiwan; (T.-Y.L.); (Y.-C.L.); (H.-T.C.); (H.-C.L.); (H.-M.W.); (I.-J.C.); (S.-L.Y.)
| | - I-Ju Chang
- Synbio Tech Inc., Kaohsiung 821011, Taiwan; (T.-Y.L.); (Y.-C.L.); (H.-T.C.); (H.-C.L.); (H.-M.W.); (I.-J.C.); (S.-L.Y.)
| | - San-Land Young
- Synbio Tech Inc., Kaohsiung 821011, Taiwan; (T.-Y.L.); (Y.-C.L.); (H.-T.C.); (H.-C.L.); (H.-M.W.); (I.-J.C.); (S.-L.Y.)
| | - Perng-Chih Shen
- Department of Animal Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Bishnu Prasad Bhattarai
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Jin-Seng Lin
- Synbio Tech Inc., Kaohsiung 821011, Taiwan; (T.-Y.L.); (Y.-C.L.); (H.-T.C.); (H.-C.L.); (H.-M.W.); (I.-J.C.); (S.-L.Y.)
| | - Jai-Wei Lee
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| |
Collapse
|
6
|
Rondanelli M, Borromeo S, Cavioni A, Gasparri C, Gattone I, Genovese E, Lazzarotti A, Minonne L, Moroni A, Patelli Z, Razza C, Sivieri C, Valentini EM, Barrile GC. Therapeutic Strategies to Modulate Gut Microbial Health: Approaches for Chronic Metabolic Disorder Management. Metabolites 2025; 15:127. [PMID: 39997751 PMCID: PMC11857149 DOI: 10.3390/metabo15020127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/17/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Numerous recent studies have suggested that the composition of the intestinal microbiota can trigger metabolic disorders, such as diabetes, prediabetes, obesity, metabolic syndrome, sarcopenia, dyslipidemia, hyperhomocysteinemia, and non-alcoholic fatty liver disease. Since then, considerable effort has been made to understand the link between the composition of intestinal microbiota and metabolic disorders, as well as the role of probiotics in the modulation of the intestinal microbiota. The aim of this review was to summarize the reviews and individual articles on the state of the art regarding ideal therapy with probiotics and prebiotics in order to obtain the reversion of dysbiosis (alteration in microbiota) to eubiosis during metabolic diseases, such as diabetes, prediabetes, obesity, hyperhomocysteinemia, dyslipidemia, sarcopenia, and non-alcoholic fatty liver diseases. This review includes 245 eligible studies. In conclusion, a condition of dysbiosis, or in general, alteration of the intestinal microbiota, could be implicated in the development of metabolic disorders through different mechanisms, mainly linked to the release of pro-inflammatory factors. Several studies have already demonstrated the potential of using probiotics and prebiotics in the treatment of this condition, detecting significant improvements in the specific symptoms of metabolic diseases. These findings reinforce the hypothesis that a condition of dysbiosis can lead to a generalized inflammatory picture with negative consequences on different organs and systems. Moreover, this review confirms that the beneficial effects of probiotics on metabolic diseases are promising, but more research is needed to determine the optimal probiotic strains, doses, and administration forms for specific metabolic conditions.
Collapse
Affiliation(s)
- Mariangela Rondanelli
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Sara Borromeo
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Cavioni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Clara Gasparri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Ilaria Gattone
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Elisa Genovese
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessandro Lazzarotti
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Leonardo Minonne
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Alessia Moroni
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Zaira Patelli
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Razza
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Claudia Sivieri
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Eugenio Marzio Valentini
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| | - Gaetan Claude Barrile
- Endocrinology and Nutrition Unit, Azienda di Servizi alla Persona “Istituto Santa Margherita”, University of Pavia, 27100 Pavia, Italy; (S.B.); (A.C.); (C.G.); (I.G.); (E.G.); (A.L.); (L.M.); (A.M.); (Z.P.); (C.R.); (C.S.); (E.M.V.)
| |
Collapse
|
7
|
Ross FC, Patangia D, Grimaud G, Lavelle A, Dempsey EM, Ross RP, Stanton C. The interplay between diet and the gut microbiome: implications for health and disease. Nat Rev Microbiol 2024; 22:671-686. [PMID: 39009882 DOI: 10.1038/s41579-024-01068-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/17/2024]
Abstract
Diet has a pivotal role in shaping the composition, function and diversity of the gut microbiome, with various diets having a profound impact on the stability, functionality and diversity of the microbial community within our gut. Understanding the profound impact of varied diets on the microbiome is crucial, as it will enable us not only to make well-informed dietary decisions for better metabolic and intestinal health, but also to prevent and slow the onset of specific diet-related diseases that stem from suboptimal diets. In this Review, we explore how geographical location affects the gut microbiome and how different diets shape its composition and function. We examine the mechanisms by which whole dietary regimes, such as the Mediterranean diet, high-fibre diet, plant-based diet, high-protein diet, ketogenic diet and Western diet, influence the gut microbiome. Furthermore, we underscore the need for exhaustive studies to better understand the causal relationship between diet, host and microorganisms for the development of precision nutrition and microbiome-based therapies.
Collapse
Affiliation(s)
- Fiona C Ross
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Dhrati Patangia
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Ghjuvan Grimaud
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Moorepark Food Research Centre, Cork, Ireland
| | - Aonghus Lavelle
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Eugene M Dempsey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- INFANT Centre, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland.
| |
Collapse
|
8
|
Hasegawa-Ishii S, Komaki S, Asano H, Imai R, Osaki T. Chronic nasal inflammation early in life induces transient and long-term dysbiosis of gut microbiota in mice. Brain Behav Immun Health 2024; 41:100848. [PMID: 39280089 PMCID: PMC11402449 DOI: 10.1016/j.bbih.2024.100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 09/18/2024] Open
Abstract
The gut microbiota begins to colonize the host body following birth, develops during the suckling period and changes to the adult type after weaning. The early gut microbiota during the suckling period is thought to have profound effects on the host physiology throughout life but it is still unclear whether early dysbiosis is retained lifelong. Our previous study indicated that chronic nasal inflammation induces dysbiosis of gut microbiota in adult mice. In the present study, we addressed the question as to whether early exposure to chronic nasal inflammation induces dysbiosis, and if so, whether the dysbiosis is retained until adulthood and the sex differences in this effect. Male and female mice received repeated intranasal administration of lipopolysaccharide (LPS) or saline twice a week from P7 to P24 and were weaned at P24. The cecal contents were obtained for 16S rRNA analysis at 2 time points: at 4 weeks (wks), just after weaning, and at maturation to adulthood at 10 wks. The body weight did not differ between saline- and LPS-treated mice till around weaning, suggesting that the mothers' milk was given similarly to all mice. At 4 wks, the beta diversity was significantly different between saline- and LPS-treated male and female mice and the composition of the gut microbiota changed in LPS-treated mice. The abundance of phylum Bacteroidota tended to decrease and that of Firmicutes increased in LPS-treated male mice, while the abundance of Deferribacterota increased in LPS-treated female mice. At 10 wks, the beta diversity was not different between saline- and LPS-treated mice, but the abundance of family Lachnospiraceae significantly decreased in LPS-treated male and female mice by LEfSe analysis. Together, chronic nasal inflammation early in life caused transient and long-term dysbiosis of gut microbiota, which may contribute to the onset and progress of metabolic and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Suzuho Komaki
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Hinami Asano
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Ryuichi Imai
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka-shi, Tokyo, 181-8612, Japan
| | - Takako Osaki
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan
| |
Collapse
|
9
|
Ebert MBB, Mentzel CMJ, Brunse A, Krych L, Hansen CHF. Delayed Gut Colonization Changes Future Insulin Resistance and Hepatic Gene Expression but Not Adiposity in Obese Mice. J Obes 2024; 2024:5846674. [PMID: 39360185 PMCID: PMC11446614 DOI: 10.1155/2024/5846674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/14/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024] Open
Abstract
Objective The importance of early microbial dysbiosis in later development of obesity and metabolic disorders has been a subject of debate. Here we tested cause and effect in mice. Methods Germ-free male Swiss Webster mice were colonized in a specific-pathogen-free (SPF) facility at 1 week (1W) and 3 weeks (3W) of age. They were challenged with a high-fat diet and their responses were compared with SPF mice. Gut microbiota was analyzed by 16S rRNA gene sequencing. Moreover, RNA sequencing of the liver was performed on additional 3W and SPF mice on a regular chow diet. Results There were no significant differences in weight, food consumption, epididymal fat weight, HbA1c levels, and serum insulin and leptin, whereas the early germ-free period resulted in mice with impaired glucose tolerance. Both the 1W and 3W group peaked 56% (p < 0.05) and 66% (p < 0.01) higher in blood glucose than the SPF control group, respectively. This was accompanied by a 45% reduction in the level of the anti-inflammatory cytokine IL-10 in the 1W mice (p < 0.05). There were no differences in the gut microbiota between the groups, indicating that all mice colonized fully after the germ-free period. Marked effects on hepatic gene expression (728 differentially expressed genes with adjusted p < 0.05 and a fold change ± 1.5) suggested a potential predisposition to a higher risk of developing insulin resistance in the 3W group. Conclusions Lack of microbes early in life had no impact on adiposity but led to insulin resistance and altered liver gene expression related to glucose metabolism in mice. The study strongly supports the notion that microbial signaling to the liver in the beginning of life can alter the host's risk of developing metabolic disorder later in life.
Collapse
Affiliation(s)
- Maria B B Ebert
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| | - Caroline M J Mentzel
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| | - Anders Brunse
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| | - Lukasz Krych
- Department of Food Science Faculty of Science University of Copenhagen, Frederiksberg, Denmark
| | - Camilla H F Hansen
- Department of Veterinary and Animal Sciences Faculty of Health and Medical Sciences University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
10
|
Angelini G, Russo S, Mingrone G. Incretin hormones, obesity and gut microbiota. Peptides 2024; 178:171216. [PMID: 38636809 DOI: 10.1016/j.peptides.2024.171216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Over the past 40 years, the prevalence of obesity has risen dramatically, reaching epidemic proportions. By 2030 the number of people affected by obesity will reach 1.12 billion worldwide. Gastrointestinal hormones, namely incretins, play a vital role in the pathogenesis of obesity and its comorbidities. GIP (glucose-dependent insulinotropic polypeptide) and GLP-1 (glucagon-like peptide-1), which are secreted from the intestine after nutrient intake and stimulate insulin secretion from pancreatic β cells, influence lipid metabolism, gastric empting, appetite and body weight. The gut microbiota plays an important role in various metabolic conditions, including obesity and type 2 diabetes and influences host metabolism through the interaction with enteroendocrine cells that modulate incretins secretion. Gut microbiota metabolites, such as short-chain fatty acids (SCFAs) and indole, directly stimulate the release of incretins from colonic enteroendocrine cells influencing host satiety and food intake. Moreover, bariatric surgery and incretin-based therapies are associated with increase gut bacterial richness and diversity. Understanding the role of incretins, gut microbiota, and their metabolites in regulating metabolic processes is crucial to develop effective strategies for the management of obesity and its associated comorbidities.
Collapse
Affiliation(s)
| | - Sara Russo
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Geltrude Mingrone
- Università Cattolica del Sacro Cuore, Rome, Italy; Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London, United Kingdom.
| |
Collapse
|
11
|
Pourafshar S, Sharma B, Allen J, Hoang M, Lee H, Dressman H, Tyson CC, Mallawaarachchi I, Kumar P, Ma JZ, Lin PH, Scialla JJ. Longitudinal Pilot Evaluation of the Gut Microbiota Comparing Patients With and Without Chronic Kidney Disease. J Ren Nutr 2024; 34:302-312. [PMID: 38286361 DOI: 10.1053/j.jrn.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 01/31/2024] Open
Abstract
OBJECTIVE The gut microbiota contributes to metabolic diseases, such as diabetes and hypertension, but is poorly characterized in chronic kidney disease (CKD). DESIGN AND METHODS We enrolled 24 adults within household pairs, in which at least one member had self-reported kidney disease, diabetes, or hypertension. CKD was classified based on estimated glomerular filtration rate < 60 mL/min/1.73 m2 or urine-albumin-to-creatinine ratio of ≥ 30 mg/g. Participants collected stool and dietary recalls seasonally over a year. Gut microbiota was characterized using 16s rRNA and metagenomic sequencing. RESULTS Ten participants had CKD (42%) with a median (interquartile range) estimated glomerular filtration rate of 49 (44, 54) mL/min/1.73 m2. By 16s rRNA sequencing, there was moderate to high intraclass correlation (ICC = 0.63) for seasonal alpha diversity (Shannon index) within individuals and modest differences by season (P < .01). ICC was lower with metagenomics, which has resolution at the species level (ICC = 0.26). There were no differences in alpha or beta diversity by CKD with either method. Among 79 genera, Frisingicoccus, Tuzzerella, Faecalitalea, and Lachnoclostridium had lower abundance in CKD, while Collinsella, Lachnospiraceae_ND3007, Veillonella, and Erysipelotrichaceae_UCG_003 were more abundant in CKD (each nominal P < .05) using 16s rRNA sequencing. Higher Collinsella and Veillonella and lower Lachnoclostridium in CKD were also identified by metagenomics. By metagenomics, Coprococcus catus and Bacteroides stercoris were more and less abundant in CKD, respectively, at false discovery rate corrected P = .02. CONCLUSIONS We identified candidate taxa in the gut microbiota associated with CKD. High ICC in individuals with modest seasonal impacts implies that follow-up studies may use less frequent sampling.
Collapse
Affiliation(s)
- Shirin Pourafshar
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Binu Sharma
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jenifer Allen
- Duke Clinical & Translational Science Institute, TransPop Group, Kannapolis, North Carolina
| | - Madeleine Hoang
- School of Engineering and Applied Sciences, University of Virginia, Charlottesville, Virginia
| | - Hannah Lee
- College of Arts and Sciences, University of Virginia, Charlottesville, Virginia
| | - Holly Dressman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina
| | - Crystal C Tyson
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Indika Mallawaarachchi
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pankaj Kumar
- Department of Biochemistry & Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Jennie Z Ma
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Pao-Hwa Lin
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Julia J Scialla
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia; Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
12
|
Huang P, Liu Q, Zhang T, Yang J. Gut microbiota influence acute pancreatitis through inflammatory proteins: a Mendelian randomization analysis. Front Cell Infect Microbiol 2024; 14:1380998. [PMID: 38881734 PMCID: PMC11176513 DOI: 10.3389/fcimb.2024.1380998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Background/Aim We employed Mendelian randomization (MR) analysis to investigate the causal relationship between the gut microbiota, acute pancreatitis, and potential inflammatory proteins. Methods The data for gut microbiota, acute pancreatitis, and inflammatory proteins are sourced from public databases. We conducted a bidirectional MR analysis to explore the causal relationship between gut microbiota and acute pancreatitis, and employed a two-step MR analysis to identify potential mediating inflammatory proteins. IVW is the primary analysis method, heterogeneity, pleiotropy, and sensitivity analyses were also conducted simultaneously. Results We identified five bacterial genera associated with the risk of acute pancreatitis, namely genus.Coprococcus3, genus.Eubacterium fissicatena group, genus.Erysipelotrichaceae UCG-003, genus.Fusicatenibacter, and genus.Ruminiclostridium6. Additionally, we have discovered three inflammatory proteins that are also associated with the occurrence of acute pancreatitis, namely interleukin-15 receptor subunit alpha (IL-15RA), monocyte chemoattractant protein-4 (CCL13), and tumor necrosis factor receptor superfamily member 9 (TNFRSF9). Following a two-step MR analysis, we ultimately identified IL-15RA as a potential intermediate factor, with a mediated effect of 0.018 (95% CI: 0.005 - 0.032). Conclusion Our results support the idea that genus.Coprococcus3 promotes the occurrence of acute pancreatitis through IL-15RA. Furthermore, there is a potential causal relationship between the gut microbiota, inflammatory proteins, and acute pancreatitis. These findings provide new insights for subsequent acute pancreatitis prevention.
Collapse
Affiliation(s)
- Peiyao Huang
- Department of Gastroenterology, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Qiang Liu
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| | - Tianlong Zhang
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Jianfeng Yang
- Department of Gastroenterology, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|
13
|
Moeckli B, Delaune V, Gilbert B, Peloso A, Oldani G, El Hajji S, Slits F, Ribeiro JR, Mercier R, Gleyzolle A, Rubbia-Brandt L, Gex Q, Lacotte S, Toso C. Maternal obesity increases the risk of hepatocellular carcinoma through the transmission of an altered gut microbiome. JHEP Rep 2024; 6:101056. [PMID: 38681863 PMCID: PMC11046215 DOI: 10.1016/j.jhepr.2024.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 05/01/2024] Open
Abstract
Background & Aims Emerging evidence suggests that maternal obesity negatively impacts the health of offspring. Additionally, obesity is a risk factor for hepatocellular carcinoma (HCC). Our study aims to investigate the impact of maternal obesity on the risk for HCC development in offspring and elucidate the underlying transmission mechanisms. Methods Female mice were fed either a high-fat diet (HFD) or a normal diet (ND). All offspring received a ND after weaning. We studied liver histology and tumor load in a N-diethylnitrosamine (DEN)-induced HCC mouse model. Results Maternal obesity induced a distinguishable shift in gut microbial composition. At 40 weeks, female offspring of HFD-fed mothers (HFD offspring) were more likely to develop steatosis (9.43% vs. 3.09%, p = 0.0023) and fibrosis (3.75% vs. 2.70%, p = 0.039), as well as exhibiting an increased number of inflammatory infiltrates (4.8 vs. 1.0, p = 0.018) and higher expression of genes involved in fibrosis and inflammation, compared to offspring of ND-fed mothers (ND offspring). A higher proportion of HFD offspring developed liver tumors after DEN induction (79.8% vs. 37.5%, p = 0.0084) with a higher mean tumor volume (234 vs. 3 μm3, p = 0.0041). HFD offspring had a significantly less diverse microbiota than ND offspring (Shannon index 2.56 vs. 2.92, p = 0.0089), which was rescued through co-housing. In the principal component analysis, the microbiota profile of co-housed animals clustered together, regardless of maternal diet. Co-housing of HFD offspring with ND offspring normalized their tumor load. Conclusions Maternal obesity increases female offspring's susceptibility to HCC. The transmission of an altered gut microbiome plays an important role in this predisposition. Impact and implications The worldwide incidence of obesity is constantly rising, with more and more children born to obese mothers. In this study, we investigate the impact of maternal diet on gut microbiome composition and its role in liver cancer development in offspring. We found that mice born to mothers with a high-fat diet inherited a less diverse gut microbiome, presented chronic liver injury and an increased risk of developing liver cancer. Co-housing offspring from normal diet- and high-fat diet-fed mothers restored the gut microbiome and, remarkably, normalized the risk of developing liver cancer. The implementation of microbial screening and restoration of microbial diversity holds promise in helping to identify and treat individuals at risk to prevent harm for future generations.
Collapse
Affiliation(s)
- Beat Moeckli
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Vaihere Delaune
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Benoît Gilbert
- Department of Medicine, Division of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland
- Geneva Centre for Inflammation Research (GCIR), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrea Peloso
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Graziano Oldani
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of General Surgery, The University of British Columbia, Vancouver, Canada
| | - Sofia El Hajji
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Florence Slits
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Joana Rodrigues Ribeiro
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Ruben Mercier
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Adrien Gleyzolle
- Department of Diagnostics, Division of Radiology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Department of Diagnostics Division of Clinical Pathology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Quentin Gex
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Stephanie Lacotte
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Christian Toso
- Hepatology and Transplantation Laboratory, Department of Surgery, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
- Department of Surgery, Division of Visceral Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
14
|
Hao P, Yang X, Yin W, Wang X, Ling Y, Zhu M, Yu Y, Chen S, Yuan Y, Quan X, Xu Z, Zhang J, Zhao W, Zhang Y, Song C, Xu Q, Qin S, Wu Y, Shu X, Wei K. A study on the treatment effects of Crataegus pinnatifida polysaccharide on non-alcoholic fatty liver in mice by modulating gut microbiota. Front Vet Sci 2024; 11:1383801. [PMID: 38601914 PMCID: PMC11006196 DOI: 10.3389/fvets.2024.1383801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/05/2024] [Indexed: 04/12/2024] Open
Abstract
The objective of this study was to investigate the protective effect of Crataegus pinnatifida polysaccharide (CPP) on non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice. The findings demonstrated that CPP improved free fatty acid (FFA)-induced lipid accumulation in HepG2 cells and effectively reduced liver steatosis and epididymal fat weight in NAFLD mice, as well as decreased serum levels of TG, TC, AST, ALT, and LDL-C. Furthermore, CPP exhibited inhibitory effects on the expression of fatty acid synthesis genes FASN and ACC while activating the expression of fatty acid oxidation genes CPT1A and PPARα. Additionally, CPP reversed disturbances in intestinal microbiota composition caused by HFD consumption. CPP decreased the firmicutes/Bacteroidetes ratio, increased Akkermansia abundance, and elevated levels of total short-chain fatty acid (SCFA) content specifically butyric acid and acetic acid. Our results concluded that CPP may intervene in the development of NAFLD by regulating of intes-tinal microbiota imbalance and SCFAs production. Our study highlights that CPP has a potential to modulate lipid-related pathways via alterations to gut microbiome composition thereby ex-erting inhibitory effects on obesity and NAFLD development.
Collapse
Affiliation(s)
- Ping Hao
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaonan Yang
- National Engineering Research Center for Southwest Endangered Medicinal Resources Development, Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Wen Yin
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xinyi Wang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yun Ling
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mengyao Zhu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yue Yu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shouhai Chen
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuan Yuan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Quan
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhiheng Xu
- College of Medicine (Institute of Translational Medicine), Yangzhou University, Yangzhou, China
| | - Jiahui Zhang
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wenjia Zhao
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ying Zhang
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Chunlian Song
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Qing Xu
- Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Shuangshuang Qin
- National Engineering Research Center for Southwest Endangered Medicinal Resources Development, Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yi Wu
- Ministry of Education (MOE) Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Xianghua Shu
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Kunhua Wei
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production and Development of Cantonese Medicinal Materials/Guangdong Engineering Research Center of Good Agricultural Practice and Comprehensive Development for Cantonese Medicinal Materials, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- National Engineering Research Center for Southwest Endangered Medicinal Resources Development, Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
15
|
Cani PD, Van Hul M. Gut microbiota in overweight and obesity: crosstalk with adipose tissue. Nat Rev Gastroenterol Hepatol 2024; 21:164-183. [PMID: 38066102 DOI: 10.1038/s41575-023-00867-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2023] [Indexed: 03/02/2024]
Abstract
Overweight and obesity are characterized by excessive fat mass accumulation produced when energy intake exceeds energy expenditure. One plausible way to control energy expenditure is to modulate thermogenic pathways in white adipose tissue (WAT) and/or brown adipose tissue (BAT). Among the different environmental factors capable of influencing host metabolism and energy balance, the gut microbiota is now considered a key player. Following pioneering studies showing that mice lacking gut microbes (that is, germ-free mice) or depleted of their gut microbiota (that is, using antibiotics) developed less adipose tissue, numerous studies have investigated the complex interactions existing between gut bacteria, some of their membrane components (that is, lipopolysaccharides), and their metabolites (that is, short-chain fatty acids, endocannabinoids, bile acids, aryl hydrocarbon receptor ligands and tryptophan derivatives) as well as their contribution to the browning and/or beiging of WAT and changes in BAT activity. In this Review, we discuss the general physiology of both WAT and BAT. Subsequently, we introduce how gut bacteria and different microbiota-derived metabolites, their receptors and signalling pathways can regulate the development of adipose tissue and its metabolic capacities. Finally, we describe the key challenges in moving from bench to bedside by presenting specific key examples.
Collapse
Affiliation(s)
- Patrice D Cani
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- Institute of Experimental and Clinical Research (IREC), UCLouvain, Université catholique de Louvain, Brussels, Belgium.
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group (MNUT), Louvain Drug Research Institute (LDRI), UCLouvain, Université catholique de Louvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium
| |
Collapse
|
16
|
Yoshimura E, Hamada Y, Hatamoto Y, Nakagata T, Nanri H, Nakayama Y, Hayashi T, Suzuki I, Ando T, Ishikawa-Takata K, Tanaka S, Ono R, Park J, Hosomi K, Mizuguchi K, Kunisawa J, Miyachi M. Effects of energy loads on energy and nutrient absorption rates and gut microbiome in humans: A randomized crossover trial. Obesity (Silver Spring) 2024; 32:262-272. [PMID: 37927202 DOI: 10.1002/oby.23935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE This study aimed to determine the effects of different energy loads on the gut microbiota composition and the rates of energy and nutrient excretion via feces and urine. METHODS A randomized crossover dietary intervention study was conducted with three dietary conditions: overfeeding (OF), control (CON), and underfeeding (UF). Ten healthy men were subjected to each condition for 8 days (4 days and 3 nights in nonlaboratory and laboratory settings each). The effects of dietary conditions on energy excretion rates via feces and urine were assessed using a bomb calorimeter. RESULTS Short-term energy loads dynamically altered the gut microbiota at the α-diversity (Shannon index), phylum, and genus levels (p < 0.05). Energy excretion rates via urine and urine plus feces decreased under OF more than under CON (urine -0.7%; p < 0.001, urine plus feces -1.9%; p = 0.049) and UF (urine -1.0%; p < 0.001, urine plus feces -2.1%; p = 0.031). However, energy excretion rates via feces did not differ between conditions. CONCLUSIONS Although short-term overfeeding dynamically altered the gut microbiota composition, the energy excretion rate via feces was unaffected. Energy excretion rates via urine and urine plus feces were lower under OF than under CON and UF conditions.
Collapse
Affiliation(s)
- Eiichi Yoshimura
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Yuka Hamada
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Yoichi Hatamoto
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Takashi Nakagata
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Hinako Nanri
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Yui Nakayama
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Takanori Hayashi
- Department of Clinical Nutrition, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Ippei Suzuki
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Takafumi Ando
- Information Technology and Human Factors, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | | | - Shigeho Tanaka
- Faculty of Nutrition, Kagawa Nutrition University, Saitama, Japan
- Institute of Nutrition Sciences, Kagawa Nutrition University, Saitama, Japan
| | - Rei Ono
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Koji Hosomi
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Jun Kunisawa
- Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
| | - Motohiko Miyachi
- Department of Nutrition and Metabolism, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Department of Physical Activity Research, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation, Health, and Nutrition, Osaka, Japan
- Faculty of Sport Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
17
|
Yang Z, Bao L, Song W, Zhao X, Liang H, Yu M, Qu M. Nicotinic acid changes rumen fermentation and apparent nutrient digestibility by regulating rumen microbiota in Xiangzhong black cattle. Anim Biosci 2024; 37:240-252. [PMID: 37905319 PMCID: PMC10766483 DOI: 10.5713/ab.23.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/25/2023] [Accepted: 09/06/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the impact of dietary nicotinic acid (NA) on apparent nutrient digestibility, rumen fermentation, and rumen microbiota in uncastrated Xiangzhong black cattle. METHODS Twenty-one uncastrated Xiangzhong black cattle (385.08±15.20 kg) aged 1.5 years were randomly assigned to the control group (CL, 0 mg/kg NA in concentrate diet), NA1 group (800 mg/kg NA in concentrate diet) and NA2 group (1,200 mg/kg NA in concentrate diet). All animals were fed a 60% concentrate diet and 40% dried rice straw for a 120-day feeding experiment. RESULTS Supplemental NA not only enhanced the apparent nutrient digestibility of acid detergent fiber (p<0.01), but also elevated the rumen acetate and total volatile fatty acid concentrations (p<0.05). 16S rRNA gene sequencing analysis of rumen microbiota revealed that dietary NA changed the diversity of rumen microbiota (p<0.05) and the abundance of bacterial taxa in the rumen. The relative abundances of eight Erysipelotrichales taxa, five Ruminococcaceae taxa, and five Sphaerochaetales taxa were decreased by dietary NA (p< 0.05). However, the relative abundances of two taxa belonging to Roseburia faecis were increased by supplemental 800 mg/kg NA, and the abundances of seven Prevotella taxa, three Paraprevotellaceae taxa, three Bifidobacteriaceae taxa, and two operational taxonomic units annotated to Fibrobacter succinogenes were increased by 1,200 mg/kg NA in diets. Furthermore, the correlation analysis found significant correlations between the concentrations of volatile fatty acids in the rumen and the abundances of bacterial taxa, especially Prevotella. CONCLUSION The results from this study suggest that dietary NA plays an important role in regulating apparent digestibility of acid detergent fiber, acetate, total volatile fatty acid concentrations, and the composition of rumen microbiota.
Collapse
Affiliation(s)
- Zhuqing Yang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045,
China
| | - Linbin Bao
- Animal Husbandry and Veterinary Bureau of Guangchang County, Fuzhou, Jiangxi, 344900,
China
| | - Wanming Song
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045,
China
| | - Xianghui Zhao
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, 330045,
China
| | - Huan Liang
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, 330045,
China
| | - Mingjin Yu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045,
China
| | - Mingren Qu
- Jiangxi Provincial Key Laboratory for Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang, 330045,
China
| |
Collapse
|
18
|
Yersin S, Garneau JR, Schneeberger PHH, Osman KA, Cercamondi CI, Muhummed AM, Tschopp R, Zinsstag J, Vonaesch P. Gut microbiomes of agropastoral children from the Adadle region of Ethiopia reflect their unique dietary habits. Sci Rep 2023; 13:21342. [PMID: 38049420 PMCID: PMC10696028 DOI: 10.1038/s41598-023-47748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/17/2023] [Indexed: 12/06/2023] Open
Abstract
The composition and function of the intestinal microbiota are major determinants of human health and are strongly influenced by diet, antibiotic treatment, lifestyle and geography. Nevertheless, we currently have only little data on microbiomes of non-westernized communities. We assess the stool microbiota composition in 59 children aged 2-5 years from the Adadle district of Ethiopia, Somali Regional State. Here, milk and starch-rich food are predominant components of the local diet, where the inhabitants live a remote, traditional agropastoral lifestyle. Microbiota composition, function and the resistome were characterized by both 16S rRNA gene amplicon and shotgun metagenomic sequencing and compared to 1471 publicly available datasets from children living in traditional, transitional, and industrial communities with different subsistence strategies. Samples from the Adadle district are low in Bacteroidaceae, and Prevotellaceae, the main bacterial representatives in the feces of children living in industrialized and non-industrialized communities, respectively. In contrast, they had a higher relative abundance in Streptococcaceae, Bifidobacteriaceae and Erysipelatoclostridiaceae. Further, genes involved in degradation pathways of lactose, D-galactose and simple carbohydrates were enriched. Overall, our study revealed a unique composition of the fecal microbiota of these agropastoral children, highlighting the need to further characterize the fecal bacterial composition of human populations living different lifestyles.
Collapse
Affiliation(s)
- Simon Yersin
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Pierre H H Schneeberger
- Helminth Drug Development Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | | | - Colin Ivano Cercamondi
- Department of Health Sciences and Technology, ETHZ, Rämistrasse 101, 8092, Zurich, Switzerland
| | - Abdifatah Muktar Muhummed
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Jigjiga University, Jigjiga, Ethiopia
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Rea Tschopp
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- Armauer Hansen Research Institute, Jimma Road, 1005, Addis Ababa, Ethiopia
| | - Jakob Zinsstag
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Human and Animal Health Unit, Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Pascale Vonaesch
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
19
|
Ahmad J, Khan I, Zengin G, Mahomoodally MF. The gut microbiome in the fight against obesity: The potential of dietary factors. FASEB J 2023; 37:e23258. [PMID: 37843880 DOI: 10.1096/fj.202300864rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023]
Abstract
Obesity as a global public health burden has experienced a drastic growing trend recently. The management of obesity is challenging because of its complex etiology, and various factors are involved in its development, such as genetic and environmental factors. Different approaches are available to treat and/or manage obesity, including diet, physical activity, lifestyle changes, medications, and surgery. However, some of these approaches have inherent limitations and are closely associated with adverse effects. Therefore, probing into a novel/safe approach to treat and/or manage obesity is of fundamental importance. One such approach gaining renewed interest is the potential role of gut microbiota in obesity and its effectiveness in treating this condition. However, there is a dearth of comprehensive compilation of data on the potential role of the gut microbiome in obesity, particularly regarding dietary factors as a therapeutic approach. Therefore, this review aims to provide an updated overview of the role of gut microbiota in obesity, further highlighting the importance of dietary factors, particularly diet, prebiotics, and probiotics, as potential complementary and/or alternative therapeutic options. Moreover, the association of gut microbiota with obese or lean individuals has also been discussed.
Collapse
Affiliation(s)
- Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Imran Khan
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Mohamad Fawzi Mahomoodally
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
20
|
Dalby MJ. Questioning the foundations of the gut microbiota and obesity. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220221. [PMID: 37661739 PMCID: PMC10475866 DOI: 10.1098/rstb.2022.0221] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/08/2023] [Indexed: 09/05/2023] Open
Abstract
The role of the gut microbiota in determining body fatness has been a prominent area of research and has received significant public attention. Based largely on animal studies, recent attempts to translate these findings into interventions in humans have not been successful. This review will outline the key mouse research that initiated this area of study, examine whether those results warranted the initial enthusiasm and progress into human studies, and examine whether later follow-up research supported earlier conclusions. It will look at whether the absence of a gut microbiota protects germ-free mice from obesity, whether microbiota can transfer obesity into germ-free mice, the evidence for the role of immune system activation as a causal mechanism linking the gut microbiota to body weight, and consider the evidence for effects of individual bacterial species. Finally, it will examine the outcomes of randomized controlled trials of microbiota transfer in human participants that have not shown effects on body weight. With a more critical reading, early studies did not show as large an effect as first appeared and later research, including human trials, has failed to support a role of the gut microbiota in shaping body weight. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part II)'.
Collapse
Affiliation(s)
- Matthew J. Dalby
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich NR4 7UQ, UK
| |
Collapse
|
21
|
Heeren FAN, Darcey VL, Deemer SE, Menon S, Tobias D, Cardel MI. Breaking down silos: the multifaceted nature of obesity and the future of weight management. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220215. [PMID: 37482785 PMCID: PMC10363700 DOI: 10.1098/rstb.2022.0215] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/04/2023] [Indexed: 07/25/2023] Open
Abstract
The continued global increase in the prevalence of obesity prompted a meeting at the Royal Society of London investigating causal mechanisms of the disease, 'Causes of obesity: theories, conjectures, and evidence' in October 2022. Evidence presented indicates areas of obesity science where there have been advancements, including an increased understanding of biological and physiological processes of weight gain and maintenance, yet it is clear there is still debate on the relative contribution of plausible causes of the modern obesity epidemic. Consensus was reached that obesity is not a reflection of diminished willpower, but rather the confluence of multiple, complex factors. As such, addressing obesity requires multifactorial prevention and treatment strategies. The accumulated evidence suggests that a continued focus primarily on individual-level contributors will be suboptimal in promoting weight management at the population level. Here, we consider individual biological and physiological processes within the broader context of sociodemographic and sociocultural exposures as well as environmental changes to optimize research priorities and public health efforts. This requires a consideration of a systems-level approach that efficiently addresses both systemic and group-specific environmental determinants, including psychosocial factors, that often serve as a barrier to otherwise efficacious prevention and treatment options. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.
Collapse
Affiliation(s)
- Faith Anne N. Heeren
- Department of Health Outcomes & Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL 32611-7011, USA
| | - Valerie L. Darcey
- Laboratory of Biological Modeling, Integrative Physiology Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Sarah E. Deemer
- Integrative Metabolism & Disease Prevention Research Group, Department of Kinesiology, Health Promotion & Recreation, University of North Texas, Denton, TX 76203, USA
| | - Sarada Menon
- Department of Health Outcomes & Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL 32611-7011, USA
| | - Deirdre Tobias
- Division of Preventive Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
- Nutrition Department, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Michelle I. Cardel
- Department of Health Outcomes & Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL 32611-7011, USA
- WW International Inc, New York, New York 10010, USA
| |
Collapse
|
22
|
Shi L, Tianqi F, Zhang C, Deng X, Zhou Y, Wang J, Wang L. High-protein compound yogurt with quinoa improved clinical features and metabolism of high-fat diet-induced nonalcoholic fatty liver disease in mice. J Dairy Sci 2023; 106:5309-5327. [PMID: 37474360 DOI: 10.3168/jds.2022-23045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/22/2023] [Indexed: 07/22/2023]
Abstract
Gut microbiota dysbiosis plays a crucial role in the occurrence and progression of nonalcoholic fatty liver disease (NAFLD), which may be influenced by nutritional supplementation. Quinoa, a type of pseudocereal, has gained prominence due to its high nutritional value and diverse applications. This study aimed to determine whether yogurt containing quinoa can ameliorate NAFLD and alleviate metabolic disorders by protecting against the divergence of gut microbiota. Our findings suggested that quinoa yogurt could significantly reduce the body weight gain and fat tissue weight of high-fat diet (HFD)-fed obese mice. In addition, quinoa yogurt significantly reduced liver steatosis and enhanced glucose homeostasis and insulin sensitivity. Additional research indicates that quinoa yogurt can reduce the levels of proinflammatory cytokines (i.e., tumor necrosis factor α, IL-1β, and IL-6) and inhibit endotoxemia and systemic inflammation. The characteristics of the gut microbiota were then determined by analyzing 16S rRNA. In addition, we discovered that the gut microbiota was disturbed by HFD consumption. Particularly, intestinal probiotics and beneficial intestinal secretions were increased, leading to the expression of glucagon-like peptide-1 in the colon, contributing to NAFLD. Furthermore, endotoxemia and systemic inflammation in HFD-fed mice were restored to the level of control mice when they were fed yogurt and quinoa. Therefore, yogurt containing quinoa can effectively alleviate NAFLD symptoms and may exert its effects via microbiome-gut-liver axis mechanisms. According to some research, the role of the enteric-liver axis may also influence metabolic disorders to reduce the development of NAFLD.
Collapse
Affiliation(s)
- Linlin Shi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Fang Tianqi
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Department of Food Quality and Safety, Jilin University, Changchun 130062, China
| | - Can Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yonglin Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
23
|
Kotsiliti E, Leone V, Schuehle S, Govaere O, Li H, Wolf MJ, Horvatic H, Bierwirth S, Hundertmark J, Inverso D, Zizmare L, Sarusi-Portuguez A, Gupta R, O'Connor T, Giannou AD, Shiri AM, Schlesinger Y, Beccaria MG, Rennert C, Pfister D, Öllinger R, Gadjalova I, Ramadori P, Rahbari M, Rahbari N, Healy ME, Fernández-Vaquero M, Yahoo N, Janzen J, Singh I, Fan C, Liu X, Rau M, Feuchtenberger M, Schwaneck E, Wallace SJ, Cockell S, Wilson-Kanamori J, Ramachandran P, Kho C, Kendall TJ, Leblond AL, Keppler SJ, Bielecki P, Steiger K, Hofmann M, Rippe K, Zitzelsberger H, Weber A, Malek N, Luedde T, Vucur M, Augustin HG, Flavell R, Parnas O, Rad R, Pabst O, Henderson NC, Huber S, Macpherson A, Knolle P, Claassen M, Geier A, Trautwein C, Unger K, Elinav E, Waisman A, Abdullah Z, Haller D, Tacke F, Anstee QM, Heikenwalder M. Intestinal B cells license metabolic T-cell activation in NASH microbiota/antigen-independently and contribute to fibrosis by IgA-FcR signalling. J Hepatol 2023; 79:296-313. [PMID: 37224925 PMCID: PMC10360918 DOI: 10.1016/j.jhep.2023.04.037] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND & AIMS The progression of non-alcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH-inducing diets or standard chow for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and μMT mice (containing B cells only in the gastrointestinal tract) were fed a choline-deficient high-fat diet, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with simple steatosis, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and single-cell RNA-sequencing analysis were performed in liver and gastrointestinal tissue to characterise immune cells in mice and humans. RESULTS Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B cells; additionally, we observed a positive correlation between IgA levels and activated FcRg+ hepatic myeloid cells, as well the extent of liver fibrosis. CONCLUSIONS Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for the treatment of NASH. IMPACT AND IMPLICATIONS There is currently no effective treatment for non-alcoholic steatohepatitis (NASH), which is associated with a substantial healthcare burden and is a growing risk factor for hepatocellular carcinoma (HCC). We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we show that the absence of B cells prevented HCC development. B cell-intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets for combinatorial NASH therapies against inflammation and fibrosis.
Collapse
Affiliation(s)
- Elena Kotsiliti
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Valentina Leone
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Research Unit of Radiation Cytogenetics (ZYTO), Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Oncology and Functional Genomics, Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar of the Technical University of Munich (TUM), Munich, Germany; Translational Pancreatic Cancer Research Center, Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar of the Technical University of Munich (TUM), Munich, Germany
| | - Svenja Schuehle
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - Hai Li
- Maurice Müller Laboratories (DBMR), University Department of Visceral Surgery and Medicine Inselspital, University of Bern, Bern, Switzerland
| | - Monika J Wolf
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Helena Horvatic
- Institute of Molecular Medicine and Experimental Immunology, University Hospital, Bonn, Germany
| | - Sandra Bierwirth
- Nutrition and Immunology, Technical University of Munich, Freising-Weihenstephan, Germany; ZIEL - Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Jana Hundertmark
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Donato Inverso
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany; European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Laimdota Zizmare
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center (WSIC), Tübingen University, Tübingen, Germany
| | - Avital Sarusi-Portuguez
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Revant Gupta
- Internal Medicine I, University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Tracy O'Connor
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; North Park University, Chicago, IL, USA
| | - Anastasios D Giannou
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ahmad Mustafa Shiri
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yehuda Schlesinger
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Maria Garcia Beccaria
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Charlotte Rennert
- Department of Medicine II, University Hospital Freiburg - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dominik Pfister
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar of the Technical University of Munich (TUM), Munich, Germany
| | - Iana Gadjalova
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Munich, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Mohammad Rahbari
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Nuh Rahbari
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Marc E Healy
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Mirian Fernández-Vaquero
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Neda Yahoo
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Jakob Janzen
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Indrabahadur Singh
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chaofan Fan
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany
| | - Xinyuan Liu
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Mainz, Germany; Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Monika Rau
- Division of Hepatology, University-Hospital Würzburg, Würzburg, Germany
| | - Martin Feuchtenberger
- Rheumatology/Clinical Immunology, Kreiskliniken Altötting-Burghausen, Burghausen, Germany
| | - Eva Schwaneck
- Rheumatology, Medical Clinic II, Julius-Maximilians-University Würzburg, Germany
| | - Sebastian J Wallace
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Simon Cockell
- School of Biomedical, Nutrition and Sports Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - John Wilson-Kanamori
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Prakash Ramachandran
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Celia Kho
- Institute of Molecular Medicine and Experimental Immunology, University Hospital, Bonn, Germany
| | - Timothy J Kendall
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Anne-Laure Leblond
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Selina J Keppler
- Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Munich, Germany
| | - Piotr Bielecki
- Department of Immunobiology, Yale University School of Medicine, New Haven, USA
| | - Katja Steiger
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany; Comparative Experimental Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Maike Hofmann
- Internal Medicine I, University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Karsten Rippe
- Division of Chromatin Networks, German Cancer Research Center (DKFZ) and Bioquant, Heidelberg, Germany
| | - Horst Zitzelsberger
- Research Unit of Radiation Cytogenetics (ZYTO), Helmholtz Zentrum München, Neuherberg, Germany
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University and University Hospital Zurich, Zurich, Switzerland
| | - Nisar Malek
- Department Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center Heidelberg (DKFZ-ZMBH Alliance), Heidelberg, Germany; European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Richard Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, USA
| | - Oren Parnas
- European Center of Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Clinic and Polyclinic for Internal Medicine II, Klinikum rechts der Isar of the Technical University of Munich (TUM), Munich, Germany; Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Munich, Germany
| | - Olivier Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew Macpherson
- Maurice Müller Laboratories (DBMR), University Department of Visceral Surgery and Medicine Inselspital, University of Bern, Bern, Switzerland
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Manfred Claassen
- Internal Medicine I, University Hospital Tübingen, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Department of Computer Science, University of Tübingen, Tübingen, Germany; Department Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - Andreas Geier
- Division of Hepatology, University-Hospital Würzburg, Würzburg, Germany
| | - Christoph Trautwein
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center (WSIC), Tübingen University, Tübingen, Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics (ZYTO), Helmholtz Zentrum München, Neuherberg, Germany
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel; Cancer-Microbiome Research Division, DKFZ, Heidelberg, Germany
| | - Ari Waisman
- Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University, Mainz, Germany; Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital, Bonn, Germany
| | - Dirk Haller
- Nutrition and Immunology, Technical University of Munich, Freising-Weihenstephan, Germany; ZIEL - Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK; Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center Heidelberg (DKFZ), Heidelberg, Germany; M3 Research Institute, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
24
|
Zhang X, Jia X, Wang S, Xin J, Sun N, Wang Y, Zhang X, Wan Z, Fan J, Li H, Bai Y, Ni X, Huang Y, Wang H, Ma H. Disrupted gut microbiota aggravates spatial memory dysfunction induced by high altitude exposure: A link between plateau environment and microbiome-gut-brain axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115035. [PMID: 37224779 DOI: 10.1016/j.ecoenv.2023.115035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/11/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Approximately 400 million people work and live in high-altitude areas and suffer from memory dysfunction worldwide. Until now, the role of the intestinal flora in plateau-induced brain damage has rarely been reported. To address this, we investigated the effect of intestinal flora on spatial memory impairment induced by high altitudes based on the microbiome-gut-brain axis theory. C57BL/6 mice were divided into three groups: control, high-altitude (HA), and high-altitude antibiotic treatment (HAA) group. The HA and HAA groups were exposed to a low-pressure oxygen chamber that simulated an altitude of 4000 m above sea level (m. a. s.l.) for 14 days, with the air pressure in the chamber set at 60-65 kPa. The results showed that spatial memory dysfunction induced by the high-altitude environment was aggravated by antibiotic treatment, manifesting as lowered escape latency and hippocampal memory-related proteins (BDNF and PSD-95). 16 S rRNA sequencing showed a remarkable separation of the ileal microbiota among the three groups. Antibiotic treatment exacerbated the reduced richness and diversity of the ileal microbiota in mice in the HA group. Lactobacillaceae were the main target bacteria and were significantly reduced in the HA group, which was exacerbated by antibiotic treatment. Meanwhile, reduced intestinal permeability and ileal immune function in mice exposed high-altitude environment was also aggravated by antibiotic treatment, as indicated by the lowered tight junction proteins and IL-1β and IFN-γ levels. Furthermore, indicator species analysis and Netshift co-analysis revealed that Lactobacillaceae (ASV11) and Corynebacteriaceae (ASV78, ASV25, and ASV47) play important roles in high-altitude exposure-induced memory dysfunction. Interestingly, ASV78 was negatively correlated with IL-1β and IFN-γ levels, indicating that ASV78 may be induced by reduced ileal immune function, which mediates high-altitude environment exposure-induced memory dysfunction. This study provides evidence that the intestinal flora is effective in preventing brain dysfunction caused by exposure to high-altitude environments, suggesting a relationship between the microbiome-gut-brain axis and altitude exposure.
Collapse
Affiliation(s)
- Xufei Zhang
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet, China
| | - Xianhao Jia
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet, China
| | - Shengnan Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinge Xin
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangzhou Beneco biotechnology Co. Ltd., Guangzhou, Guangdong, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yanyan Wang
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xingting Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhiqiang Wan
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jing Fan
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet, China
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet, China
| | - Yang Bai
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yongmei Huang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Hesong Wang
- Baiyun Branch, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Hailin Ma
- Plateau Brain Science Research Center, Tibet University, Lhasa, Tibet, China.
| |
Collapse
|
25
|
Lee Y, Cho JY, Cho KY. Serum, Urine, and Fecal Metabolome Alterations in the Gut Microbiota in Response to Lifestyle Interventions in Pediatric Obesity: A Non-Randomized Clinical Trial. Nutrients 2023; 15:2184. [PMID: 37432339 DOI: 10.3390/nu15092184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 07/12/2023] Open
Abstract
Pediatric obesity is associated with alterations in the gut microbiota and its metabolites. However, how they influence obesity and the effect of lifestyle interventions remains unknown.. In this non-randomized clinical trial, we analyzed metabolomes and microbial features to understand the associated metabolic pathways and the effect of lifestyle interventions on pediatric obesity. Anthropometric/biochemical data and fasting serum, urine, and fecal samples were collected at baseline and after an eight-week, weight-reduction lifestyle modification program. Post-intervention, children with obesity were classified into responder and non-responder groups based on changes in total body fat. At baseline, serum L-isoleucine and uric acid levels were significantly higher in children with obesity compared with those in normal-weight children and were positively correlated with obesogenic genera. Taurodeoxycholic and tauromuricholic α + β acid levels decreased significantly with obesity and were negatively correlated with obesogenic genera. Branched-chain amino acid and purine metabolisms were distinguished metabolic pathways in the obese group. Post-intervention, urinary myristic acid levels decreased significantly in the responder group, showing a significant positive correlation with Bacteroides. Fatty acid biosynthesis decreased significantly in the responder group. Thus, lifestyle intervention with weight loss is associated with changes in fatty acid biosynthesis, and myristic acid is a possible therapeutic target for pediatric obesity.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Chungbuk National University College of Medicine and Hospital, Cheongju-si 28644, Chungcheongbuk-do, Republic of Korea
- CBNUH Cheongju-Osong National Advanced Clinical Trial Center, 77, Osongsaengmyeong-ro, Osong-eup, Heungdeok-gu, Cheongju-si 28161, Chungcheongbuk-do, Republic of Korea
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ky Young Cho
- Department of Pediatrics, Hallym University Kangnam Sacred Heart Hospital, Seoul 07441, Republic of Korea
| |
Collapse
|
26
|
Peluso AA, Lundgaard AT, Babaei P, Mousovich-Neto F, Rocha AL, Damgaard MV, Bak EG, Gnanasekaran T, Dollerup OL, Trammell SAJ, Nielsen TS, Kern T, Abild CB, Sulek K, Ma T, Gerhart-Hines Z, Gillum MP, Arumugam M, Ørskov C, McCloskey D, Jessen N, Herrgård MJ, Mori MAS, Treebak JT. Oral supplementation of nicotinamide riboside alters intestinal microbial composition in rats and mice, but not humans. NPJ AGING 2023; 9:7. [PMID: 37012386 PMCID: PMC10070358 DOI: 10.1038/s41514-023-00106-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.
Collapse
Affiliation(s)
- A Augusto Peluso
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Agnete T Lundgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Parizad Babaei
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Felippe Mousovich-Neto
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Andréa L Rocha
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Mads V Damgaard
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Emilie G Bak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thiyagarajan Gnanasekaran
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole L Dollerup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Timo Kern
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline B Abild
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karolina Sulek
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev Hospital, Herlev, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Manimozhiyan Arumugam
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Douglas McCloskey
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- BioInnovation Institute, Copenhagen, Denmark
| | - Marcelo A S Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas, Campinas, SP, Brazil
- Experimental Medicine Research Cluster, University of Campinas, Campinas, SP, Brazil
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Hua Y, Huang W, Wang F, Jing Z, Li J, Wang Q, Zhao Y. Metabolites, gene expression, and gut microbiota profiles suggest the putative mechanisms via which dietary creatine increases the serum taurine and g-ABA contents in Megalobrama amblycephala. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:253-274. [PMID: 36897433 DOI: 10.1007/s10695-023-01177-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/01/2023] [Indexed: 05/04/2023]
Abstract
A 90-day experiment was conducted to explore the effects of creatine on growth performance, liver health status, metabolites, and gut microbiota in Megalobrama amblycephala. There were 6 treatments as follows: control (CD, 29.41% carbohydrates), high carbohydrate (HCD, 38.14% carbohydrates), betaine (BET, 1.2% betaine + 39.76% carbohydrates), creatine 1 (CRE1, 0.5% creatine + 1.2% betaine + 39.29% carbohydrates), creatine 2 (CRE2, 1% creatine + 1.2% betaine + 39.50% carbohydrates), and creatine 3 (CRE3, 2% creatine + 1.2% betaine + 39.44% carbohydrates). The results showed that supplementing creatine and betaine together reduced the feed conversion ratio significantly (P < 0.05, compared to CD and HCD) and improved liver health (compared to HCD). Compared with the BET group, dietary creatine significantly increased the abundances of Firmicutes, Bacteroidota, ZOR0006, and Bacteroides and decreased the abundances of Proteobacteria, Fusobacteriota, Vibrio, Crenobacter, and Shewanella in the CRE1 group. Dietary creatine increased the content of taurine, arginine, ornithine, γ-aminobutyric acid (g-ABA), and creatine (CRE1 vs. BET group) and the expression of creatine kinase (ck), sulfinoalanine decarboxylase (csad), guanidinoacetate N-methyltransferase (gamt), glycine amidinotransferase (gatm), agmatinase (agmat), diamine oxidase1 (aoc1), and glutamate decarboxylase (gad) in the CRE1 group. Overall, these results suggested that dietary supplementation of creatine (0.5-2%) did not affect the growth performance, but it altered the gut microbial composition at the phylum and genus levels, which might be beneficial to the gut health of M. amblycephala; dietary creatine also increased the serum content of taurine by enhancing the expressions of ck and csad and increased the serum content of g-ABA by enhancing the arginine content and the expressions of gatm, agmat, gad, and aoc1.
Collapse
Affiliation(s)
- Yizhuo Hua
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Wangwang Huang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Fan Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Zhao Jing
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Juntao Li
- Institute of Tropical Bioscience and Biotechnology, Haikou, 570102, China
| | - Qingchao Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China
| | - Yuhua Zhao
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, China.
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Wuhan, 430070, China.
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
28
|
Changes in the Microbiota and their Roles in Patients with Type 2 Diabetes Mellitus. Curr Microbiol 2023; 80:132. [PMID: 36894807 DOI: 10.1007/s00284-023-03219-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/10/2023] [Indexed: 03/11/2023]
Abstract
An association between type 2 diabetes mellitus (T2DM) and gut microbiota is well established, but the results of related studies are inconsistent. The purpose of this investigation is to elucidate the characteristics of the gut microbiota in T2DM and non-diabetic subjects. Forty-five subjects were recruited for this study, including 29 T2DM patients and 16 non-diabetic subjects. Biochemical parameters, including body mass index (BMI), fasting plasma glucose (FPG), serum total cholesterol (TC), triglycerides (TG), high-density lipoprotein (HDL), and hemoglobin A1c (HbA1c), were analyzed and correlated with the gut microbiota. Bacterial community composition and diversity were detected in fecal samples using direct smear, sequencing, and real-time polymerase chain reaction (PCR). In this study, it was observed that indicators such as BMI, FPG, HbA1c, TC, and TG in T2DM patients were on the rise, concurrent with dysbiosis of the microbiota. We observed an increase in Enterococci and a decrease in Bacteroides, Bifidobacteria, and Lactobacilli in patients with T2DM. Meanwhile, total short-chain fatty acids (SCFAs) and D-lactate concentrations were decreased in the T2DM group. In addition, FPG was positively correlated with Enterococcus and negatively correlated with Bifidobacteria, Bacteroides, and Lactobacilli. This study reveals that microbiota dysbiosis is associated with disease severity in patients with T2DM. The limitation of this study is that only common bacteria were noted in this study, and more in-depth related studies are urgently needed.
Collapse
|
29
|
Capparelli R, Cuomo P, Gentile A, Iannelli D. Microbiota-Liver Diseases Interactions. Int J Mol Sci 2023; 24:3883. [PMID: 36835291 PMCID: PMC9959879 DOI: 10.3390/ijms24043883] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Gut microbiota regulates essential processes of host metabolism and physiology: synthesis of vitamins, digestion of foods non-digestible by the host (such as fibers), and-most important-protects the digestive tract from pathogens. In this study, we focus on the CRISPR/Cas9 technology, which is extensively used to correct multiple diseases, including liver diseases. Then, we discuss the non-alcoholic fatty liver disease (NAFLD), affecting more than 25% of the global population; colorectal cancer (CRC) is second in mortality. We give space to rarely discussed topics, such as pathobionts and multiple mutations. Pathobionts help to understand the origin and complexity of the microbiota. Since several types of cancers have as target the gut, it is vital extending the research of multiple mutations to the type of cancers affecting the gut-liver axis.
Collapse
Affiliation(s)
| | | | | | - Domenico Iannelli
- Department of Agriculture Sciences, University of Naples Federico II, 80055 Naples, Italy
| |
Collapse
|
30
|
Tannock GW. Gnotobiotic experimentation helps define symbiogenesis in vertebrate evolution. NEW ZEALAND JOURNAL OF ZOOLOGY 2023. [DOI: 10.1080/03014223.2023.2169943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
31
|
Wang Z, Liang Y, Lu J, Wei Z, Bao Y, Yao X, Fan Y, Wang F, Wang D, Zhang Y. Dietary spirulina supplementation modifies rumen development, fermentation and bacteria composition in Hu sheep when consuming high-fat dietary. Front Vet Sci 2023; 10:1001621. [PMID: 36798143 PMCID: PMC9926970 DOI: 10.3389/fvets.2023.1001621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
Introduction This study aims to investigate the long-term effects of spirulina supplementation in a high-fat diet (HFD) on rumen morphology, rumen fermentation, and the composition of rumen microbiota in lambs. Spirulina is a blue-green microalgae that has been shown to have high nutritional value for livestock. Methods Fifty-four lambs were randomly divided into three groups: a normal chow diet (NCD) group, a high-fat diet (HFD) group, and a high-fat diet supplemented with 3% spirulina (HFD+S) group. Rumen morphology, rumen fermentation, and rumen microbiota were analyzed at the end of the study. Results Spirulina supplementation improved the concentration of volatile fatty acids and rumen papilla length. Additionally, there was a tendency for an increase in rumen weight and an upregulation of the genes Claudin-1, Claudin-4, and Occludin in the HFD+S group. Pyrosequencing of the 16S ribosomal RNA gene also showed that spirulina supplementation significantly changed the rumen microbiota composition in the HFD group, with a decrease in richness and diversity. Specifically, the relative abundance of Prevotella 9 and Megasphaera was significantly increased in the HFD group compared to the NCD group, while spirulina supplementation reversed these changes. Discussion This study suggests that 3% spirulina supplementation can improve rumen development and fermentation, and effectively relieve rumen microbe disorders in lambs caused by a high-fat diet. However, further research is needed to confirm the findings and to examine the long-term effects of spirulina supplementation in different types of livestock and under different dietary conditions.
Collapse
Affiliation(s)
- Zhibo Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yaxu Liang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiawei Lu
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zongyou Wei
- Agricultural and Rural Science & Technology Service Center, and Enterprise Graduate Workstation, Taicang, China
| | - Yongjin Bao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaolei Yao
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yixuan Fan
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Feng Wang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Daxiang Wang
- Jiangsu Qianbao Animal Husbandry Co., Ltd, Yancheng, Jiangsu, China
| | - Yanli Zhang
- Institute of Goats and Sheep Science, Nanjing Agricultural University, Nanjing, Jiangsu, China,*Correspondence: Yanli Zhang ✉
| |
Collapse
|
32
|
Um CY, Peters BA, Choi HS, Oberstein P, Beggs DB, Usyk M, Wu F, Hayes RB, Gapstur SM, McCullough ML, Ahn J. Grain, Gluten, and Dietary Fiber Intake Influence Gut Microbial Diversity: Data from the Food and Microbiome Longitudinal Investigation. CANCER RESEARCH COMMUNICATIONS 2023; 3:43-53. [PMID: 36968219 PMCID: PMC10035461 DOI: 10.1158/2767-9764.crc-22-0154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/17/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
Although short-term feeding studies demonstrated effects of grains, fiber, and gluten on gut microbiome composition, the impact of habitual intake of these dietary factors is poorly understood. We examined whether habitual intakes of whole and refined grains, fiber, and gluten are associated with gut microbiota in a cross-sectional study. This study included 779 participants from the multi-ethnic Food and Microbiome Longitudinal Investigation study. Bacterial 16SV4 rRNA gene from baseline stool was amplified and sequenced using Illumina MiSeq. Read clustering and taxonomic assignment was performed using QIIME2. Usual dietary intake was assessed by a 137-item food frequency questionnaire. Association of diet with gut microbiota was assessed with respect to overall composition and specific taxon abundances. Whole grain intake was associated with overall composition, as measured by the Jensen-Shannon divergence (multivariable-adjusted P trend for quartiles = 0.03). The highest intake quartile was associated with higher abundance of Bacteroides plebeius, Faecalibacterium prausnitzii, Blautia producta, and Erysipelotrichaceae and lower abundance of Bacteroides uniformis. These bacteria also varied by dietary fiber intake. Higher refined grain and gluten intake was associated with lower Shannon diversity (P trend < 0.05). These findings suggest that whole grain and dietary fiber are associated with overall gut microbiome structure, largely fiber-fermenting microbiota. Higher refined grain and gluten intakes may be associated with lower microbial diversity. Significance Regular consumption of whole grains and dietary fiber was associated with greater abundance of gut bacteria that may lower risk of colorectal cancer. Further research on the association of refined grains and gluten with gut microbial composition is needed to understand their roles in health and disease.
Collapse
Affiliation(s)
- Caroline Y. Um
- Department of Population Science, American Cancer Society, Atlanta, Georgia
| | - Brandilyn A. Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York
| | - Hee Sun Choi
- Department of Population Health, New York University School of Medicine, New York, New York
- New York University Perlmutter Cancer Center, New York, New York
| | - Paul Oberstein
- New York University Perlmutter Cancer Center, New York, New York
| | - Dia B. Beggs
- Department of Population Health, New York University School of Medicine, New York, New York
- New York University Perlmutter Cancer Center, New York, New York
| | - Mykhaylo Usyk
- Department of Population Health, New York University School of Medicine, New York, New York
- New York University Perlmutter Cancer Center, New York, New York
| | - Feng Wu
- Department of Population Health, New York University School of Medicine, New York, New York
- New York University Perlmutter Cancer Center, New York, New York
| | - Richard B. Hayes
- Department of Population Health, New York University School of Medicine, New York, New York
- New York University Perlmutter Cancer Center, New York, New York
| | | | | | - Jiyoung Ahn
- Department of Population Health, New York University School of Medicine, New York, New York
- New York University Perlmutter Cancer Center, New York, New York
| |
Collapse
|
33
|
Castillo-Ruiz A, Gars A, Sturgeon H, Ronczkowski NM, Pyaram DN, Dauriat CJG, Chassaing B, Forger NG. Brain effects of gestating germ-free persist in mouse neonates despite acquisition of a microbiota at birth. Front Neurosci 2023; 17:1130347. [PMID: 37207179 PMCID: PMC10188942 DOI: 10.3389/fnins.2023.1130347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
At birth, mammals experience a massive colonization by microorganisms. We previously reported that newborn mice gestated and born germ-free (GF) have increased microglial labeling and alterations in developmental neuronal cell death in the hippocampus and hypothalamus, as well as greater forebrain volume and body weight when compared to conventionally colonized (CC) mice. To test whether these effects are solely due to differences in postnatal microbial exposure, or instead may be programmed in utero, we cross-fostered GF newborns immediately after birth to CC dams (GF→CC) and compared them to offspring fostered within the same microbiota status (CC→CC, GF→GF). Because key developmental events (including microglial colonization and neuronal cell death) shape the brain during the first postnatal week, we collected brains on postnatal day (P) 7. To track gut bacterial colonization, colonic content was also collected and subjected to 16S rRNA qPCR and Illumina sequencing. In the brains of GF→GF mice, we replicated most of the effects seen previously in GF mice. Interestingly, the GF brain phenotype persisted in GF→CC offspring for almost all measures. In contrast, total bacterial load did not differ between the CC→CC and GF→CC groups on P7, and bacterial community composition was also very similar, with a few exceptions. Thus, GF→CC offspring had altered brain development during at least the first 7 days after birth despite a largely normal microbiota. This suggests that prenatal influences of gestating in an altered microbial environment programs neonatal brain development.
Collapse
Affiliation(s)
- Alexandra Castillo-Ruiz
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
- *Correspondence: Alexandra Castillo-Ruiz,
| | - Aviva Gars
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Hannah Sturgeon
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | - Dhanya N. Pyaram
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | - Charlène J. G. Dauriat
- INSERM U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases,” Université Paris Cité, Paris, France
| | - Benoit Chassaing
- INSERM U1016, Team “Mucosal Microbiota in Chronic Inflammatory Diseases,” Université Paris Cité, Paris, France
| | - Nancy G. Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
34
|
Potential Efficacy of Bacillus coagulans BACO-17 to Modulate Gut Microbiota in Rats Fed High-Fat Diet. Processes (Basel) 2022. [DOI: 10.3390/pr10122692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to evaluate the potential efficacy of Bacillus coagulans BACO-17 in ameliorating body fat accumulation as well as gut microbiota dysbiosis in animals, which were given a high-fat diet to mimic the adverse effect of an unhealthy dietary pattern. Compared with normal control, high-fat consumption resulted in significant (p < 0.05) elevations in weight gain (168%), feed efficiency (176%), visceral fat accumulation (228%), and a lesser total fecal short-chain fatty acids (SCFAs) (−27.5%). A significant shift of fecal Fimicutes:Bacteroidetes ratio from 1.13 to 3.14 was also observed. After 12 weeks of experiment, a supplementation of B. coagulans BACO-17 at high dose (9 log CFU/day) along with a high-fat diet could exert an apparent fat reduction ability by decreasing weight gain (by 23.7%) and visceral fat mass (by 24.0%). It was found that B. coagulans BACO-17 was able to increase fecal SCFA concentrations and revert Fimicutes:Bacteroidetes ratio back to the level comparable with the normal control. It could play a probiotic effect by increasing and decreasing the abundance of Muribaculaceae and Allobaculum, respectively. Therefore, a supplementation of adequate amount of B. coagulans BACO-17 might confer a concreted amelioration of deteriorated bacteria profiles and body fat accumulation due to high-fat consumption.
Collapse
|
35
|
Gu BH, Rim CY, Lee S, Kim TY, Joo SS, Lee SJ, Park HK, Kim M. Alteration of Gut Immunity and Microbiome in Mixed Granulocytic Asthma. Biomedicines 2022; 10:biomedicines10112946. [PMID: 36428515 PMCID: PMC9687559 DOI: 10.3390/biomedicines10112946] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
Abstract
Growing evidence suggests that there is an essential link between the gut and lungs. Asthma is a common chronic inflammatory disease and is considered a heterogeneous disease. While it has been documented that eosinophilic asthma affects gut immunity and the microbiome, the effect of other types of asthma on the gut environment has not been examined. In this study, we utilized an OVA/poly I:C-induced mixed granulocytic asthma model and found increased Tregs without significant changes in other inflammatory cells in the colon. Interestingly, an altered gut microbiome has been observed in a mixed granulocytic asthma model. We observed an increase in the relative abundance of the Faecalibaculum genus and Erysipelotrichaceae family, with a concomitant decrease in the relative abundance of the genera Candidatus arthromitus and Streptococcus. The altered gut microbiome leads to changes in the abundance of genes associated with microbial metabolism, such as glycolysis. We found that mixed granulocytic asthma mainly affects the gut microbial composition and metabolism, which may have important implications in the severity and development of asthma and gut immune homeostasis. This suggests that altered gut microbial metabolism may be a potential therapeutic target for patients with mixed granulocytic asthma.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Chae-Yun Rim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Sangjin Lee
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Yong Kim
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Sang-Seok Joo
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Sang-Jin Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Han-Ki Park
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Republic of Korea
- Correspondence: (H.-K.P.); (M.K.); Tel.: +82-53-200-2617 (H.-K.P.); +82-51-350-5516 (M.K.); Fax: +82-53-200-2029 (H.-K.P.); +82-51-350-5519 (M.K.)
| | - Myunghoo Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Correspondence: (H.-K.P.); (M.K.); Tel.: +82-53-200-2617 (H.-K.P.); +82-51-350-5516 (M.K.); Fax: +82-53-200-2029 (H.-K.P.); +82-51-350-5519 (M.K.)
| |
Collapse
|
36
|
Kumar S, Raj VS, Ahmad A, Saini V. Amoxicillin modulates gut microbiota to improve short-term high-fat diet induced pathophysiology in mice. Gut Pathog 2022; 14:40. [PMID: 36229889 PMCID: PMC9563906 DOI: 10.1186/s13099-022-00513-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND A high-fat diet (HFD) induced perturbation of gut microbiota is a major contributory factor to promote the pathophysiology of HFD-associated metabolic syndrome. The HFD could also increase the susceptibility to the microbial infections warranting the use of antibiotics which are independently capable of impacting both gut microbiota and metabolic syndrome. Further, the usage of antibiotics in individuals consuming HFD can impact mitochondrial function that can be associated with an elevated risk of chronic conditions like inflammatory bowel disease (IBD). Despite this high propensity to infections in individuals on HFD, the link between duration of HFD and antibiotic treatment, and its impact on diversity of the gut microbiome and features of metabolic syndrome is not well established. In this study, we have addressed these knowledge gaps by examining how the gut microbiota profile changes in HFD-fed mice receiving antibiotic intervention in the form of amoxicillin. We also determine whether antibiotic treatment in HFD-fed mice may adversely impact the ability of immune cells to clear microbial infections. METHODS AND RESULTS We have subjected mice to HFD and chow diet (CD) for 3 weeks, and a subset of these mice on both diets received antibiotic intervention in the form of amoxicillin in the 3rd week. Body weight and food intake were recorded for 3 weeks. After 21 days, all animals were weighted and sacrificed. Subsequently, these animals were evaluated for basic haemato-biochemical and histopathological attributes. We used 16S rRNA sequencing followed by bioinformatics analysis to determine changes in gut microbiota in these mice. We observed that a HFD, even for a short-duration, could successfully induce the partial pathophysiology typical of a metabolic syndrome, and substantially modulated the gut microbiota in mice. The short course of amoxicillin treatment to HFD-fed mice resulted in beneficial effects by significantly reducing fasting blood glucose and skewing the number of thrombocytes towards a normal range. Remarkably, we observed a significant remodelling of gut microbiota in amoxicillin-treated HFD-fed mice. Importantly, some gut microbes associated with improved insulin sensitivity and recovery from metabolic syndrome only appeared in amoxicillin-treated HFD-fed mice reinforcing the beneficial effects of antibiotic treatment in the HFD-associated metabolic syndrome. Moreover, we also observed the presence of gut-microbiota unique to amoxicillin-treated HFD-fed mice that are also known to improve the pathophysiology associated with metabolic syndrome. However, both CD-fed as well as HFD-fed mice receiving antibiotics showed an increase in intestinal pathogens as is typically observed for antibiotic treatment. Importantly though, infection studies with S. aureus and A. baumannii, revealed that macrophages isolated from amoxicillin-treated HFD-fed mice are comparable to those isolated from mice receiving only HFD or CD in terms of susceptibility, and progression of microbial infection. This finding clearly indicated that amoxicillin treatment does not introduce any additional deficits in the ability of macrophages to combat microbial infections. CONCLUSIONS Our results showed that amoxicillin treatment in HFD-fed mice exert a beneficial influence on the pathophysiological attributes of metabolic syndrome which correlates with a significant remodelling of gut microbiota. A novel observation was the increase in microbes known to improve insulin sensitivity following amoxicillin treatment during short-term intake of HFD. Even though there is a minor increase in gut-resistant intestinal pathogens in amoxicillin-treated groups, there is no adverse impact on macrophages with respect to their susceptibility and ability to control infections. Taken together, this study provides a proof of principle for the exploration of amoxicillin treatment as a potential therapy in the people affected with metabolic syndrome.
Collapse
Affiliation(s)
- Suresh Kumar
- National Institute of Biologicals, Ministry of Health & Family Welfare, Govt. of India, Noida, 201309, India.
| | - V Samuel Raj
- Center for Drug, Design, Discovery and Development (C4D), SRM University, Delhi-NCR, 131029, Sonepat, Haryana, India
| | - Ayaan Ahmad
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram Saini
- Laboratory of Infection Biology and Translational Research, Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India.
- Biosafety Laboratory-3, Centralized Core Research Facility (CCRF), All India Institute of Medical Sciences (AIIMS), New Delhi, India.
| |
Collapse
|
37
|
Gut Microbiota Restores Central Neuropeptide Deficits in Germ-Free Mice. Int J Mol Sci 2022; 23:ijms231911756. [PMID: 36233056 PMCID: PMC9570469 DOI: 10.3390/ijms231911756] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022] Open
Abstract
Recent work has demonstrated the ability of the gut microbiota (GM) to alter the expression and release of gut peptides that control appetite and regulate energy homeostasis. However, little is known about the neuronal response of these hormones in germ-free (GF) animals, especially leptin, which is strikingly low in these animals. Therefore, we aimed to determine the response to exogenous leptin in GF mice as compared to conventionally raised (CONV-R) mice. Specifically, we injected and measured serum leptin in both GF and CONV-R mice and measured expression of orexigenic and anorexigenic peptides NPY, AgRP, POMC, and CART in the hypothalamus and hindbrain to examine whether the GM has an impact on central nervous system regulation of energy homeostasis. We found that GF mice had a significant increase in hypothalamic NPY and AgRP mRNA expression and a decrease in hindbrain NPY and AgRP mRNA, while mRNA expression of POMC and CART remained unchanged. Administration of leptin normalized circulating levels of leptin, GLP-1, PYY, and ghrelin, all of which were significantly decreased in GF mice. Finally, brief conventionalization of GF mice for 10 days restored the deficits in hypothalamic and hindbrain neuropeptides present in GF animals. Taken together, these results show that the GM regulates hypothalamic and hindbrain orexigenic/anorexigenic neuropeptide expression. This is in line with the role of gut microbiota in lipid metabolism and fat deposition that may contribute to excess fat in conventionalized animals under high feeding condition.
Collapse
|
38
|
Enhanced cultured diversity of the mouse gut microbiota enables custom-made synthetic communities. Cell Host Microbe 2022; 30:1630-1645.e25. [DOI: 10.1016/j.chom.2022.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 12/26/2022]
|
39
|
Ling CJ, Chen XF, Xu JY, Wang GP, Wang Y, Sun Y, Li YL, Wan ZX, Tong X, Hidayat K, Zhu WZ, Qin LQ, Yang J. Whey protein hydrolysates alleviated weight gain and improved muscle in middle-aged obese mice induced by a high-fat diet. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
40
|
Abstract
We are host to an assembly of microorganisms that vary in structure and function along the length of the gut and from the lumen to the mucosa. This ecosystem is collectively known as the gut microbiota and significant efforts have been spent during the past 2 decades to catalog and functionally describe the normal gut microbiota and how it varies during a wide spectrum of disease states. The gut microbiota is altered in several cardiometabolic diseases and recent work has established microbial signatures that may advance disease. However, most research has focused on identifying associations between the gut microbiota and human diseases states and to investigate causality and potential mechanisms using cells and animals. Since the gut microbiota functions on the intersection between diet and host metabolism, and can contribute to inflammation, several microbially produced metabolites and molecules may modulate cardiometabolic diseases. Here we discuss how the gut bacterial composition is altered in, and can contribute to, cardiometabolic disease, as well as how the gut bacteria can be targeted to treat and prevent metabolic diseases.
Collapse
Affiliation(s)
- Louise E Olofsson
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden
| | - Fredrik Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Sweden.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Denmark.,Region Västra Götaland, Sahlgrenska University Hospital, Department of Clinical Physiology, Gothenburg, Sweden
| |
Collapse
|
41
|
Metabolic reconstitution of germ-free mice by a gnotobiotic microbiota varies over the circadian cycle. PLoS Biol 2022; 20:e3001743. [PMID: 36126044 PMCID: PMC9488797 DOI: 10.1371/journal.pbio.3001743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/06/2022] [Indexed: 12/17/2022] Open
Abstract
The capacity of the intestinal microbiota to degrade otherwise indigestible diet components is known to greatly improve the recovery of energy from food. This has led to the hypothesis that increased digestive efficiency may underlie the contribution of the microbiota to obesity. OligoMM12-colonized gnotobiotic mice have a consistently higher fat mass than germ-free (GF) or fully colonized counterparts. We therefore investigated their food intake, digestion efficiency, energy expenditure, and respiratory quotient using a novel isolator-housed metabolic cage system, which allows long-term measurements without contamination risk. This demonstrated that microbiota-released calories are perfectly balanced by decreased food intake in fully colonized versus gnotobiotic OligoMM12 and GF mice fed a standard chow diet, i.e., microbiota-released calories can in fact be well integrated into appetite control. We also observed no significant difference in energy expenditure after normalization by lean mass between the different microbiota groups, suggesting that cumulative small differences in energy balance, or altered energy storage, must underlie fat accumulation in OligoMM12 mice. Consistent with altered energy storage, major differences were observed in the type of respiratory substrates used in metabolism over the circadian cycle: In GF mice, the respiratory exchange ratio (RER) was consistently lower than that of fully colonized mice at all times of day, indicative of more reliance on fat and less on glucose metabolism. Intriguingly, the RER of OligoMM12-colonized gnotobiotic mice phenocopied fully colonized mice during the dark (active/eating) phase but phenocopied GF mice during the light (fasting/resting) phase. Further, OligoMM12-colonized mice showed a GF-like drop in liver glycogen storage during the light phase and both liver and plasma metabolomes of OligoMM12 mice clustered closely with GF mice. This implies the existence of microbiota functions that are required to maintain normal host metabolism during the resting/fasting phase of circadian cycle and which are absent in the OligoMM12 consortium.
Collapse
|
42
|
Kang JY, Lee B, Kim CH, Choi JH, Kim MS. Enhancing the prebiotic and antioxidant effects of exopolysaccharides derived from Cordyceps militaris by enzyme-digestion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Yu Z, Yu XF, Kerem G, Ren PG. Perturbation on gut microbiota impedes the onset of obesity in high fat diet-induced mice. Front Endocrinol (Lausanne) 2022; 13:795371. [PMID: 36017311 PMCID: PMC9395671 DOI: 10.3389/fendo.2022.795371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
High-calorie intake has become one of the most common causes of dietary obesity, which eventually develops into type 2 diabetes mellitus (T2DM). Microbiota, along with the length of the gastrointestinal tract, is related to metabolic disorders, but its shifts and following impact on metabolic disorders due to external perturbation are still unclear. To evaluate shifts of microbiota from the proximal to the distal intestine and their impact on metabolic disorders, we profiled jejunal and colonic microbiota with the perturbation using high salt (HS) and antibiotic-induced microbiota depletion (AIMD) in diet-induced obesity (DIO) mice and analyzed the association with parameters of both obesity and blood glucose. After ten weeks of feeding DIO mice with HS intake and AIMD, they failed to develop obesity. The DIO mice with HS intake had T2DM symptoms, whereas the AIMD DIO mice showed no significant difference in blood glucose parameters. We observed that the jejunal and colonic microbiota had shifted due to settled perturbation, and jejunal microbiota within a group were more dispersed than colonic microbiota. After further analyzing jejunal microbiota using quantified amplicon sequencing, we found that the absolute abundance of Colidextribacter (R = 0.695, p = 0.001) and Faecalibaculum (R = 0.631, p = 0.005) in the jejunum was positively correlated with the changes in BW and FBG levels. The predicted pathway of glucose and metabolism of other substances significantly changed between groups (p <0.05). We demonstrated that the onset of obesity and T2DM in DIO mice is impeded when the gut microbiota is perturbed; thus, this pathogenesis depends on the gut microbiota.
Collapse
Affiliation(s)
- Zhongjia Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiang-Fang Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Goher Kerem
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Pei-Gen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
44
|
Dwaib HS, AlZaim I, Ajouz G, Eid AH, El-Yazbi A. Sex Differences in Cardiovascular Impact of Early Metabolic Impairment: Interplay between Dysbiosis and Adipose Inflammation. Mol Pharmacol 2022; 102:481-500. [PMID: 34732528 DOI: 10.1124/molpharm.121.000338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/23/2021] [Indexed: 11/22/2022] Open
Abstract
The evolving view of gut microbiota has shifted toward describing the colonic flora as a dynamic organ in continuous interaction with systemic physiologic processes. Alterations of the normal gut bacterial profile, known as dysbiosis, has been linked to a wide array of pathologies. Of particular interest is the cardiovascular-metabolic disease continuum originating from positive energy intake and high-fat diets. Accumulating evidence suggests a role for sex hormones in modulating the gut microbiome community. Such a role provides an additional layer of modulation of the early inflammatory changes culminating in negative metabolic and cardiovascular outcomes. In this review, we will shed the light on the role of sex hormones in cardiovascular dysfunction mediated by high-fat diet-induced dysbiosis, together with the possible involvement of insulin resistance and adipose tissue inflammation. Insights into novel therapeutic interventions will be discussed as well. SIGNIFICANCE STATEMENT: Increasing evidence implicates a role for dysbiosis in the cardiovascular complications of metabolic dysfunction. This minireview summarizes the available data on the sex-based differences in gut microbiota alterations associated with dietary patterns leading to metabolic impairment. A role for a differential impact of adipose tissue inflammation across sexes in mediating the cardiovascular detrimental phenotype following diet-induced dysbiosis is proposed. Better understanding of this pathway will help introduce early approaches to mitigate cardiovascular deterioration in metabolic disease.
Collapse
Affiliation(s)
- Haneen S Dwaib
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ibrahim AlZaim
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ghina Ajouz
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, Faculty of Medicine (H.S.D., I.A., G.A., A.E.-Y.), Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences (H.S.D.), American University of Beirut, Beirut, Lebanon; Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon (I.A.); Department of Basic Medical Sciences, College of Medicine (A.H.E.), Biomedical and Pharmaceutical Research Unit, QU Health (A.H.E.), Qatar University, Doha, Qatar; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.E.-Y.); and Faculty of Pharmacy, Alalamein International University, Alalamein, Egypt (A.E.-Y.)
| |
Collapse
|
45
|
Hua Y, Shen J, Fan R, Xiao R, Ma W. High-fat diets containing different types of fatty acids modulate gut-brain axis in obese mice. Nutr Metab (Lond) 2022; 19:40. [PMID: 35739547 PMCID: PMC9219185 DOI: 10.1186/s12986-022-00675-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/17/2022] [Indexed: 11/10/2022] Open
Abstract
Background Excessive consumption of high-fat diets is associated with disordered metabolic responses, which may lead to chronic diseases. High-fat diets containing different types of fatty acids lead to distinct alterations in metabolic responses of gut-brain axis. Methods In our study, normal male C57BL/6J mice were fed to multiple high fatty acid diets (long-chain and medium-chain saturated fatty acid, LCSFA and MCSFA group; n-3 and n-6 polyunsaturated fatty acid, n-3 and n-6 PUFA group; monounsaturated fatty acid, MUFA group; trans fatty acid, TFA group) and a basic diet (control, CON group) for 19 weeks. To investigate the effects of high-fat diets on metabolic responses of gut-brain axis in obese mice, blood lipids were detected by fast gas chromatography, and related proteins in brain and intestine were detected using Western blotting, ELISA, and immunochemistry analysis. Results All high-fat diets regardless of their fatty acid composition induced obesity, lipid disorders, intestinal barrier dysfunction, and changes in gut-brain axis related factors except basal diet in mice. For example, the protein expression of zonula occludens-1 (ZO-1) in ileum in the n-3 PUFA group was higher than that in the MCSFA group (P < 0.05). The expressions of insulin in hippocampus and leptin in ileum in the MCSFA group significantly increased, compared with other groups (all Ps < 0.05). Conclusion The high MCSFA diet had the most effect on metabolic disorders in gut-brain axis, but the high n-3 PUFA diet had the least effect on changes in metabolism.
Collapse
Affiliation(s)
- Yinan Hua
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China
| | - Jingyi Shen
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China
| | - Rong Fan
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China
| | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China.
| | - Weiwei Ma
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, No.10 Xitoutiao, You An Men Wai, Beijing, 100069, People's Republic of China.
| |
Collapse
|
46
|
Palmas V, Pisanu S, Madau V, Casula E, Deledda A, Cusano R, Uva P, Loviselli A, Velluzzi F, Manzin A. Gut Microbiota Markers and Dietary Habits Associated with Extreme Longevity in Healthy Sardinian Centenarians. Nutrients 2022; 14:nu14122436. [PMID: 35745166 PMCID: PMC9227524 DOI: 10.3390/nu14122436] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
This study was aimed at characterizing the gut microbiota (GM) and its functional profile in two groups of Sardinian subjects with a long healthy life expectancy, overall named Long-Lived Subjects (LLS) [17 centenarians (CENT) and 29 nonagenarians (NON)] by comparing them to 46 healthy younger controls (CTLs). In addition, the contribution of genetics and environmental factors to the GM phenotype was assessed by comparing a subgroup of seven centenarian parents (CPAR) with a paired cohort of centenarians’ offspring (COFF). The analysis was performed through Next Generation Sequencing (NGS) of the V3 and V4 hypervariable region of the 16S rRNA gene on the MiSeq Illumina platform. The Verrucomicrobia phylum was identified as the main biomarker in CENT, together with its members Verrucomicrobiaceae, Akkermansia and Akkermansia muciniphila. In NON, the strongest associations concern Actinobacteria phylum, Bifidobacteriaceae and Bifidobacterium, while in CTLs were related to the Bacteroidetes phylum, Bacteroidaceae, Bacteroides and Bacteroides spp. Intestinal microbiota of CPAR and COFF did not differ significantly from each other. Significant correlations between bacterial taxa and clinical and lifestyle data, especially with Mediterranean diet adherence, were observed. We observed a harmonically balanced intestinal community structure in which the increase in taxa associated with intestinal health would limit and counteract the action of potentially pathogenic bacterial species in centenarians. The GM of long-lived individuals showed an intrinsic ability to adapt to changing environmental conditions, as confirmed by functional analysis. The GM analysis of centenarians’ offspring suggest that genetics and environmental factors act synergistically as a multifactorial cause in the modulation of GM towards a phenotype similar to that of centenarians, although these findings need to be confirmed by larger study cohorts and by prospective studies.
Collapse
Affiliation(s)
- Vanessa Palmas
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (S.P.); (V.M.); (E.C.)
| | - Silvia Pisanu
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (S.P.); (V.M.); (E.C.)
| | - Veronica Madau
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (S.P.); (V.M.); (E.C.)
| | - Emanuela Casula
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (S.P.); (V.M.); (E.C.)
| | - Andrea Deledda
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (A.L.); (F.V.)
| | - Roberto Cusano
- Interdisciplinary Center for Advanced Studies, Research and Development in Sardinia (CRS4), Science and Technology Park Polaris, Piscina Manna, 09134 Pula, Italy;
| | - Paolo Uva
- Clinical Bioinformatics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Andrea Loviselli
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (A.L.); (F.V.)
| | - Fernanda Velluzzi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy; (A.D.); (A.L.); (F.V.)
| | - Aldo Manzin
- Department of Biomedical Sciences, Microbiology and Virology Unit, University of Cagliari, 09042 Monserrato, Italy; (V.P.); (S.P.); (V.M.); (E.C.)
- Correspondence:
| |
Collapse
|
47
|
Georgiou K, Belev NA, Koutouratsas T, Katifelis H, Gazouli M. Gut microbiome: Linking together obesity, bariatric surgery and associated clinical outcomes under a single focus. World J Gastrointest Pathophysiol 2022; 13:59-72. [PMID: 35720165 PMCID: PMC9157685 DOI: 10.4291/wjgp.v13.i3.59] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is increasingly prevalent in the post-industrial era, with increased mortality rates. The gut microbiota has a central role in immunological, nutritional and metabolism mediated functions, and due to its multiplexity, it is considered an independent organ. Modern high-throughput sequencing techniques have allowed phylogenetic exploration and quantitative analyses of gut microbiome and improved our current understanding of the gut microbiota in health and disease. Its role in obesity and its changes following bariatric surgery have been highlighted in several studies. According to current literature, obesity is linked to a particular microbiota profile that grants the host an augmented potential for calorie release, while limited diversity of gut microbiome has also been observed. Moreover, bariatric surgery procedures represent effective interventions for sustained weight loss and restore a healthier microbiota, contributing to the observed fat mass reduction and lean mass increase. However, newer evidence has shown that gut microbiota is only partially recovered following bariatric surgery. Moreover, several targets including FGF15/19 (a gut-derived peptide), could be responsible for the favorable metabolic changes of bariatric surgery. More randomized controlled trials and larger prospective studies that include well-defined cohorts are required to better identify associations between gut microbiota, obesity, and bariatric surgery.
Collapse
Affiliation(s)
- Konstantinos Georgiou
- The First Propaedeutic Surgical Unit, Hippocrateion Athens General Hospital, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Nikolay A Belev
- Medical Simulation Training Center, Research Institute of Medical University of Plovdiv, and UMPHAT “Eurohospital”, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Tilemachos Koutouratsas
- Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Hector Katifelis
- Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Maria Gazouli
- Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
48
|
Aguanno D, Metwaly A, Coleman OI, Haller D. Modeling microbiota-associated human diseases: from minimal models to complex systems. MICROBIOME RESEARCH REPORTS 2022; 1:17. [PMID: 38046357 PMCID: PMC10688821 DOI: 10.20517/mrr.2022.01] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/24/2022] [Indexed: 12/05/2023]
Abstract
Alterations in the intestinal microbiota are associated with various human diseases of the digestive system, including obesity and its associated metabolic diseases, inflammatory bowel diseases (IBD), and colorectal cancer (CRC). All three diseases are characterized by modifications of the richness, composition, and metabolic functions of the human intestinal microbiota. Despite being multi-factorial diseases, studies in germ-free animal models have unarguably identified the intestinal microbiota as a causal driver of disease pathogenesis. However, for an increased mechanistic understanding of microbial signatures in human diseases, models require detailed refinement to closely mimic the human microbiota and reflect the complexity and range of dysbiosis observed in patients. The transplantation of human fecal microbiota into animal models represents a powerful tool for studying the causal and functional role of the dysbiotic human microbiome in a pathological context. While human microbiota-associated models were initially employed to study obesity, an increasing number of studies have applied this approach in the context of IBD and CRC over the past decade. In this review, we discuss different approaches that allow the functional validation of the bacterial contribution to human diseases, with emphasis on obesity and its associated metabolic diseases, IBD, and CRC. We discuss the utility of simple models, such as in vitro fermentation systems of the human microbiota and ex vivo intestinal organoids, as well as more complex whole organism models. Our focus here lies on human microbiota-associated mouse models in the context of all three diseases, as well as highlighting the advantages and limitations of this approach.
Collapse
Affiliation(s)
- Doriane Aguanno
- Chair of Nutrition and Immunology, Technical University of Munich, Freising 85354, Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology, Technical University of Munich, Freising 85354, Germany
| | - Olivia I. Coleman
- Chair of Nutrition and Immunology, Technical University of Munich, Freising 85354, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Freising 85354, Germany
- ZIEL Institute for Food & Health, Technical University of Munich, Freising 85354, Germany
| |
Collapse
|
49
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
50
|
Bihan DG, Rydzak T, Wyss M, Pittman K, McCoy KD, Lewis IA. Method for absolute quantification of short chain fatty acids via reverse phase chromatography mass spectrometry. PLoS One 2022; 17:e0267093. [PMID: 35443015 PMCID: PMC9020710 DOI: 10.1371/journal.pone.0267093] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 04/01/2022] [Indexed: 12/27/2022] Open
Abstract
Short chain fatty acids (SCFAs; including acetate, propionate, and butyrate) are an important class of biological molecules that play a major role in modulating host-microbiome interactions. Despite significant research into SCFA-mediated biological mechanisms, absolute quantification of these molecules in their native form by liquid chromatography mass spectrometry is challenging due to their relatively poor chromatographic properties. Herein, we introduce SQUAD, an isotope-based strategy for absolute quantification of SCFAs in complex biological samples. SQUAD uses aniline derivatization in conjunction with isotope dilution and analysis by reverse-phase liquid chromatography mass spectrometry. We show that SQUAD enables absolute quantification of biologically relevant SCFAs in complex biological samples with a lower limit of detection of 40 nM and a lower limit of quantification ranging from 160 nM to 310 nM. We observed an intra- and inter-day precision under 3% (relative standard deviation) and errors in intra- and inter-day accuracy under 10%. To demonstrate this quantification strategy, we analyzed SCFAs in the caecal contents of germ free versus conventionally raised specific pathogen free (SPF) mice. We showed that acetate was the most abundant SCFA in both types of mice and was present at 200-fold higher concentration in the SPF mice. We also illustrated the use of our quantification strategy in in vitro microbial cultures from five different species of bacteria grown in Mueller Hinton media. This study illustrates the diverse SCFA production rates across microbial taxa with acetate production serving as one of the key differentiating factors across the species. In summary, we introduce an isotope dilution strategy for absolute quantification of aniline-dativized SCFAs and illustrate the utility of this approach for microbiome research.
Collapse
Affiliation(s)
- Dominique G. Bihan
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Thomas Rydzak
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Madeleine Wyss
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keir Pittman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kathy D. McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|