1
|
Honda M, Minato-Inokawa S, Matsuura K, Ito A, Nitta Y, Kimura D, Yoshikawa Y. The effects of waxy barley on defecation, sleep, mental health, and quality of life: a randomized double-blind parallel-group comparison study. J Physiol Anthropol 2025; 44:12. [PMID: 40336123 PMCID: PMC12057101 DOI: 10.1186/s40101-025-00393-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/16/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Dietary fiber (DF) is beneficial for preventing constipation, and the metabolites produced by gut microbiota fermentation are suggested to positively influence on depression and sleep. Additionally, constipation has been reported to affect mental health and health-related quality of life (HRQoL). This study aimed to increase DF intake and examined its effects on daily DF and β-G consumption using two types of waxy barley (WB), rich in DF with varying β-glucan (β-G) content. Additionally, this study examined the effects of WB consumption on defecation, sleep, mental health, and HRQoL. METHODS A randomized double-blind parallel-group comparison study was conducted on 68 young Japanese women, using Kirarimochi (Group K) as common WB cultivar and Fukumi Fiber (Group F) as high-β-G WB cultivar. Participants consumed WB rice for 4 weeks, targeting 3 g/day of β-G (48 g/day of WB). We estimated the intake of WB and DF including β-G from the daily records. Defecation was evaluated through daily records and Rome IV criteria-based surveys. Sleep, mental health, and HRQoL were evaluated using PSQI-J, J-PHQ-9, and SF-36, respectively. RESULTS Both groups consumed about 40 g/day of WB. DF and β-G intakes from barley were 6.3 g/2.5 g in Group K and 10.7 g/4.3 g in Group F. Regarding defecation, both groups showed increases defecation days, defecation frequency and stool amount, with no differences between groups. Regarding sleep, Group F showed a decrease (improvement) in the PSQI global score, with improvements noted between groups. Regarding mental health, both groups showed decreases (improvements) in the PHQ-9 score, with Group F showing improvement between groups. Regarding HRQoL, summary scores showed improvements: physical health in Group K and mental health in Group F. CONCLUSION To increase β-G intake, high-β-G WB cultivars are effective; however, WB cultivars overall can potentially serve as excellent sources of DF. Effects on defecation may be expected not only from high-β-G WB but also from common WB with β-G intake below the target of 3 g/day. Although high β-G WB may have more beneficial for sleep and mental health, additional studies are required.
Collapse
Affiliation(s)
- Mari Honda
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4 - 7- 2 Minatojima-Nakamachi, Chuo-Ku, Kobe City, Hyogo, 650 - 0046, Japan.
| | - Satomi Minato-Inokawa
- Laboratory of Community Health and Nutrition, Department of Bioscience, Graduate School of Agriculture, Ehime University, 10 - 1 Dogohimata, Matsuyama City, Ehime, 790 - 0825, Japan
| | - Kimie Matsuura
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4 - 7- 2 Minatojima-Nakamachi, Chuo-Ku, Kobe City, Hyogo, 650 - 0046, Japan
| | - Ayaka Ito
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4 - 7- 2 Minatojima-Nakamachi, Chuo-Ku, Kobe City, Hyogo, 650 - 0046, Japan
| | - Yuko Nitta
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4 - 7- 2 Minatojima-Nakamachi, Chuo-Ku, Kobe City, Hyogo, 650 - 0046, Japan
| | - Daisuke Kimura
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4 - 7- 2 Minatojima-Nakamachi, Chuo-Ku, Kobe City, Hyogo, 650 - 0046, Japan
| | - Yutaka Yoshikawa
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, 4 - 7- 2 Minatojima-Nakamachi, Chuo-Ku, Kobe City, Hyogo, 650 - 0046, Japan
| |
Collapse
|
2
|
Chen X, Guo Q, Yang X, Yuan M, Song J, Fu H, Zhang H, Xu P, Liao Y, Ali A, Du K, Wu X. Triple gene mutations boost amylose and resistant starch content in rice: insights from sbe2b/ sbe1/OE- Wxa mutants. FRONTIERS IN PLANT SCIENCE 2024; 15:1452520. [PMID: 39206035 PMCID: PMC11350245 DOI: 10.3389/fpls.2024.1452520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
Previous studies have modified rice's resistant starch (RS) content by mutating single and double genes. These mutations include knocking out or reducing the expression of sbe1 or sbe2b genes, as well as overexpressing Wxa . However, the impact of triple mutant sbe2b/sbe1/OE-Wxa on RS contents remained unknown. Here, we constructed a double mutant with sbe2b/RNAi-sbe1, based on IR36ae with sbe2b, and a triple mutant with sbe2b/RNAi-sbe1/OE-Wxa , based on the double mutant. The results showed that the amylose and RS contents gradually increased with an increase in the number of mutated genes. The triple mutant exhibited the highest amylose and RS contents, with 41.92% and 4.63%, respectively, which were 2- and 5-fold higher than those of the wild type, which had 22.19% and 0.86%, respectively. All three mutants altered chain length and starch composition compared to the wild type. However, there was minimal difference observed among the mutants. The Wxa gene contributed to the improvement of 1000-grain weight and seed-setting rate, in addition to the highest amylose and RS contents. Thus, our study offers valuable insight for breeding rice cultivars with a higher RS content and yields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Adamberg S, Adamberg K. Prevotella enterotype associates with diets supporting acidic faecal pH and production of propionic acid by microbiota. Heliyon 2024; 10:e31134. [PMID: 38779015 PMCID: PMC11109898 DOI: 10.1016/j.heliyon.2024.e31134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 03/21/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Metabolism of dietary fibres by colon microbiota plays an important role for human health. Personal data from a nutrition study (57 subjects) were analysed to elucidate quantitative associations between the diet, faecal microbiome, organic acid concentrations and pH. Ratios of the predominant acids acetate, butyrate and propionate ranged from 1:0.67:0.27 to 1:0.17:0.36. Pectin-rich diets resulted in higher faecal acetate concentrations. Negative correlation between faecal pH and BSS was observed. Higher faecal pH and lower acid concentrations were related to the higher abundance of amino acid degrading Clostridium, Odoribacter and Eubacterium coprostanoligenes, which are weak carbohydrate fermenting taxa. Propionic acid correlated especially to high abundance of Prevotella and low abundance of proteobacteria. The acetate to propionate ratio of the Prevotella enterotype was about half of that of the Bacteroides enterotype. Based on the results we suggest the measurement of faecal pH and organic acid composition for research and diagnostic purposes.
Collapse
Affiliation(s)
- Signe Adamberg
- Tallinn University of Technology, Department of Chemistry and Biotechnology, 12618, Tallinn, Estonia
| | - Kaarel Adamberg
- Tallinn University of Technology, Department of Chemistry and Biotechnology, 12618, Tallinn, Estonia
- Center of Food and Fermentation Technologies, 12618, Tallinn, Estonia
| |
Collapse
|
4
|
Kase BE, Liese AD, Zhang J, Murphy EA, Zhao L, Steck SE. The Development and Evaluation of a Literature-Based Dietary Index for Gut Microbiota. Nutrients 2024; 16:1045. [PMID: 38613077 PMCID: PMC11013161 DOI: 10.3390/nu16071045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The aim of the study was to develop and evaluate a novel dietary index for gut microbiota (DI-GM) that captures dietary composition related to gut microbiota profiles. We conducted a literature review of longitudinal studies on the association of diet with gut microbiota in adult populations and extracted those dietary components with evidence of beneficial or unfavorable effects. Dietary recall data from the National Health and Nutrition Examination Survey (NHANES, 2005-2010, n = 3812) were used to compute the DI-GM, and associations with biomarkers of gut microbiota diversity (urinary enterodiol and enterolactone) were examined using linear regression. From a review of 106 articles, 14 foods or nutrients were identified as components of the DI-GM, including fermented dairy, chickpeas, soybean, whole grains, fiber, cranberries, avocados, broccoli, coffee, and green tea as beneficial components, and red meat, processed meat, refined grains, and high-fat diet (≥40% of energy from fat) as unfavorable components. Each component was scored 0 or 1 based on sex-specific median intakes, and scores were summed to develop the overall DI-GM score. In the NHANES, DI-GM scores ranged from 0-13 with a mean of 4.8 (SE = 0.04). Positive associations between DI-GM and urinary enterodiol and enterolactone were observed. The association of the novel DI-GM with markers of gut microbiota diversity demonstrates the potential utility of this index for gut health-related studies.
Collapse
Affiliation(s)
- Bezawit E. Kase
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Angela D. Liese
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Jiajia Zhang
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Elizabeth Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine Columbia, University of South Carolina, Columbia, SC 29208, USA
| | - Longgang Zhao
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| | - Susan E. Steck
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Discovery 1, 915 Greene Street, Columbia, SC 29208, USA; (B.E.K.)
| |
Collapse
|
5
|
Wang Y, Wymond B, Tandon H, Belobrajdic DP. Swapping White for High-Fibre Bread Increases Faecal Abundance of Short-Chain Fatty Acid-Producing Bacteria and Microbiome Diversity: A Randomized, Controlled, Decentralized Trial. Nutrients 2024; 16:989. [PMID: 38613022 PMCID: PMC11013647 DOI: 10.3390/nu16070989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
A low-fibre diet leads to gut microbiota imbalance, characterized by low diversity and reduced ability to produce beneficial metabolites, such as short-chain fatty acids (SCFAs). This imbalance is associated with poor gastrointestinal and metabolic health. We aimed to determine whether one dietary change, substitution of white bread with high-fibre bread, improves gut microbiota diversity and SCFA-producing capability. Twenty-two healthy adults completed a two-phase randomized, cross-over trial. The participants consumed three slices of a high-fibre bread (Prebiotic Cape Seed Loaf with BARLEYmax®) or control white bread as part of their usual diet for 2 weeks, with the treatment periods separated by a 4-week washout. High-fibre bread consumption increased total dietary fibre intake to 40 g/d, which was double the amount of fibre consumed at baseline or during the white bread intervention. Compared to white bread, the high-fibre bread intervention resulted in higher faecal alpha diversity (Shannon, p = 0.014) and relative abundance of the Lachnospiracae ND3007 group (p < 0.001, FDR = 0.019) and tended to increase the butyrate-producing capability (p = 0.062). In conclusion, substituting white bread with a high-fibre bread improved the diversity of gut microbiota and specific microbes involved in SCFA production and may enhance the butyrate-producing capability of gut microbiota in healthy adults. These findings suggest that a single dietary change involving high-fibre bread provides a practical way for adults to exceed recommended dietary fibre intake levels that improve gut microbiota composition and support gastrointestinal and metabolic health.
Collapse
Affiliation(s)
- Yanan Wang
- CSIRO, Microbiomes for One Systems Health-Future Science Platform, Health and Biosecurity, Adelaide 5000, Australia;
| | - Brooke Wymond
- CSIRO Health and Biosecurity, Adelaide 5000, Australia; (B.W.); (H.T.)
| | - Himanshu Tandon
- CSIRO Health and Biosecurity, Adelaide 5000, Australia; (B.W.); (H.T.)
| | | |
Collapse
|
6
|
Procházková N, Venlet N, Hansen ML, Lieberoth CB, Dragsted LO, Bahl MI, Licht TR, Kleerebezem M, Lauritzen L, Roager HM. Effects of a wholegrain-rich diet on markers of colonic fermentation and bowel function and their associations with the gut microbiome: a randomised controlled cross-over trial. Front Nutr 2023; 10:1187165. [PMID: 37324737 PMCID: PMC10267323 DOI: 10.3389/fnut.2023.1187165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023] Open
Abstract
Background Diets rich in whole grains are associated with health benefits. Yet, it remains unclear whether the benefits are mediated by changes in gut function and fermentation. Objective We explored the effects of whole-grain vs. refined-grain diets on markers of colonic fermentation and bowel function, as well as their associations with the gut microbiome. Methods Fifty overweight individuals with increased metabolic risk and a high habitual intake of whole grains (~69 g/day) completed a randomised cross-over trial with two 8-week dietary intervention periods comprising a whole-grain diet (≥75 g/day) and a refined-grain diet (<10 g/day), separated by a washout period of ≥6 weeks. A range of markers of colonic fermentation and bowel function were assessed before and after each intervention. Results The whole-grain diet increased the levels of faecal butyrate (p = 0.015) and caproate (p = 0.013) compared to the refined-grain diet. No changes in other faecal SCFA, BCFA or urinary levels of microbial-derived proteolytic markers between the two interventions were observed. Similarly, faecal pH remained unchanged. Faecal pH did however increase (p = 0.030) after the refined-grain diet compared to the baseline. Stool frequency was lower at the end of the refined-grain period compared to the end of the whole-grain diet (p = 0.001). No difference in faecal water content was observed between the intervention periods, however, faecal water content increased following the whole-grain period compared to the baseline (p = 0.007). Dry stool energy density was unaffected by the dietary interventions. Nevertheless, it explained 4.7% of the gut microbiome variation at the end of the refined-grain diet, while faecal pH and colonic transit time explained 4.3 and 5%, respectively. Several butyrate-producers (e.g., Faecalibacterium, Roseburia, Butyriciococcus) were inversely associated with colonic transit time and/or faecal pH, while the mucin-degraders Akkermansia and Ruminococcaceae showed the opposite association. Conclusion Compared with the refined-grain diet, the whole-grain diet increased faecal butyrate and caproate concentrations as well as stool frequency, emphasising that differences between whole and refined grains affect both colonic fermentation and bowel habits.
Collapse
Affiliation(s)
- Nicola Procházková
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Naomi Venlet
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Mathias L. Hansen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Christian B. Lieberoth
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Martin I. Bahl
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tine Rask Licht
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michiel Kleerebezem
- Host-Microbe Interactomics, Wageningen University and Research, Wageningen, Netherlands
| | - Lotte Lauritzen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
7
|
Gill PA, Muir JG, Gibson PR, van Zelm MC. A Randomized Dietary Intervention to Increase Colonic and Peripheral Blood Short-Chain Fatty Acids Modulates the Blood B- and T-cell Compartments in Healthy Humans. Am J Clin Nutr 2022; 116:1354-1367. [PMID: 36084000 PMCID: PMC9630882 DOI: 10.1093/ajcn/nqac246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/15/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFA) have immune-modulating effects in animal models of disease. However, there is limited evidence that this may occur in humans. OBJECTIVES This study aimed to determine the effects of increased exposure to SCFA via dietary manipulation on colonic fermentation and adaptive immune cells. METHODS Twenty healthy, young adults (18-45 years of age) underwent a blinded, randomized, cross-over dietary intervention, consuming a high-SCFA producing diet and matched low-SCFA diet for 21 days with 21-day wash-out in between. SCFA were provided through resistant starch, inulin and apple cider vinegar. Blood and 3-day total fecal output were collected at baseline and at the end of each diet. Gas chromatography was used to measure fecal and plasma SCFA. Flow cytometry was used for peripheral blood immuno-phenotyping. RESULTS High-SCFA diet was associated with significantly (paired samples Wilcoxon test) higher median [IQR] fecal SCFA concentrations (86.6 [59.0] vs 75.4 [56.2] µmol/g, P = 0.02) and significantly lower median fecal ammonia concentrations (26.2 [14.7] vs 33.4 [18.5] µmol/g, P = 0.04) than the low-SCFA diet. Plasma propionate (9.87 [12.3] vs 4.72 [7.6] µmol/L, P = 0.049) and butyrate (2.85 [1.35] vs 2.02 [1.29] µmol/L, P = 0.03) were significantly higher after high-SCFA diet than after low-SCFA diet. Blood total B cells (184 [112] vs 199 [143] cells/µL, P = 0.04), naive B cells (83 [66] vs 95 [89] cells/µL, P = 0.02), Th1 cells (22 [19] vs 29 [16] cells/µL, P = 0.03) and mucosal-associated invariant T (MAIT) cells (62 [83] vs 69 [114] cells/µL, P = 0.02) were significantly lower after high-SCFA diet than low-SCFA diet. CONCLUSION Increasing colonic and peripheral blood SCFA has discrete effects on circulating immune cells in healthy humans following 3-week intervention. Further studies, e.g., in patients with inflammatory disease, are necessary to determine if these changes have immunomodulatory effects, whether these are therapeutically beneficial, and whether prolonged intake might be required. Clinical trial registry: Australian New Zealand Clinical trials registry: ACTRN12618001054202. <https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375342&isReview=true>.
Collapse
Affiliation(s)
| | - Jane G Muir
- Department of Gastroenterology and Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Australia
| | - Peter R Gibson
- Department of Gastroenterology and Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Australia
| | - Menno C van Zelm
- Department of Immunology and Pathology, Central Clinical School, Monash University and Alfred Hospital, Melbourne, Australia
| |
Collapse
|
8
|
Gondalia SV, Wymond B, Benassi-Evans B, Berbezy P, Bird AR, Belobrajdic DP. Substitution of Refined Conventional Wheat Flour with Wheat High in Resistant Starch Modulates the Intestinal Microbiota and Fecal Metabolites in Healthy Adults: A Randomized, Controlled Trial. J Nutr 2022; 152:1426-1437. [PMID: 35102419 DOI: 10.1093/jn/nxac021] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Resistant starch (RS) confers many health benefits, mostly through the microbial production of SCFAs, but foods containing appreciable RS are limited. High-amylose wheat (HAW) is high in RS and lowers the glycemic response of foods, but whether it can improve gastrointestinal health measures is unknown. OBJECTIVES The objective of this study was to determine whether daily consumption of HAW food products improved markers of gastrointestinal health in healthy men and women compared with similar foods made from conventional wheat. METHODS Eighty healthy adults (47 women and 33 men) were enrolled in a 4-arm parallel, randomized-controlled, double-blind trial. After a 2-wk low-dietary fiber run-in period, they were randomly allocated to 1 of 4 treatment groups: low-amylose wheat (LAW)-refined (LAW-R), LAW-wholemeal (LAW-W), HAW-refined (HAW-R), and HAW-wholemeal (HAW-W) and consumed the assigned test bread (160 g/d) and biscuits (75 g/d) for 4 wk. Fecal biochemical markers were measured at baseline and 4 wk. Microbial abundance and diversity were quantified using 16S ribosomal RNA sequencing and perceived gut comfort by a semiquantitative questionnaire completed at baseline, 2 wk, and 4 wk. RESULTS HAW showed similar effects on fecal output and excretion of total SCFA compared with LAW, but changes were observed in secondary measures for the refined treatment groups. At 4 wk, the HAW-R group had 38% higher fecal butyrate excretion than the LAW-R group (P < 0.05), and higher fecal SCFA-producing bacteria, Roseburia inulinivorans (P < 0.001), than at baseline. In comparison with baseline, LAW-R increased fecal p-cresol concentration, and fecal abundance of a p-cresol-producing bacterium, Clostridium from the Peptostreptococcaceae family, but both were reduced by HAW-R. Amylose level did not affect measures of fecal consistency or adversely affecting digestive comfort. CONCLUSIONS Increasing RS intake of healthy adults by substituting refined conventional wheat with refined HAW modulates fecal metabolites and microbes associated with gastrointestinal health.This trial was registered at anzctr.org.au as ACTRN12618001060235.
Collapse
Affiliation(s)
- Shakuntla V Gondalia
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Brooke Wymond
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Bianca Benassi-Evans
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | | | - Anthony R Bird
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - Damien P Belobrajdic
- Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| |
Collapse
|
9
|
Sobh M, Montroy J, Daham Z, Sibbald S, Lalu M, Stintzi A, Mack D, Fergusson DA. Tolerability and SCFA production after resistant starch supplementation in humans: a systematic review of randomized controlled studies. Am J Clin Nutr 2022; 115:608-618. [PMID: 34871343 DOI: 10.1093/ajcn/nqab402] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/06/2021] [Accepted: 11/29/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Resistant starches (RSs) have been advocated as a dietary supplement to address microbiota dysbiosis. They are postulated to act through the production of SCFAs. Their clinical tolerability and effect on SCFA production has not been systematically evaluated. OBJECTIVES We conducted a systematic review of RS supplementation as an intervention in adults (healthy individuals and persons with medical conditions) participating in randomized controlled trials. The primary outcome was tolerability of RS supplementation, the secondary outcome was SCFA production. METHODS MEDLINE, Embase, and the Cochrane Central Register were searched. Articles were screened, and data extracted, independently and in duplicate. RESULTS A total of 39 trials met eligibility criteria, including a total of 2263 patients. Twenty-seven (69%) studies evaluated the impact of RS supplementation in healthy subjects whereas 12 (31%) studies included individuals with an underlying medical condition (e.g., obesity, prediabetes). Type 2 RS was most frequently investigated (29 studies). Of 12 studies performed in subjects with health conditions, 11 reported on tolerability. All studies showed that RS supplementation was tolerated; 9 of these studies used type 2 RS with doses of 20-40 g/d for >4 wk. Of 27 studies performed in healthy subjects, 20 reported on tolerability. In 14 studies, RS supplementation was tolerated, and the majority used type 2 RS with a dose between 20 and 40 g/d. Twenty-one (78%) studies reporting SCFAs used type 2 RS with a dose of 20-40 g/d for 1-4 wk. In 16 of 23 studies (70%), SCFA production was increased, in 7 studies there was no change in SCFA concentration before and after RS supplementation, and in 1 study SCFA concentration decreased. CONCLUSIONS Available evidence suggests that RS supplementation is tolerated in both healthy subjects and in those with an underlying medical condition. In addition, SCFA production was increased in most of the studies.
Collapse
Affiliation(s)
- Mohamad Sobh
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joshua Montroy
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Zeinab Daham
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine and Surgery, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Stephanie Sibbald
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Manoj Lalu
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Anesthesiology and Pain Medicine, The Ottawa Hospital, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Alain Stintzi
- Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - David Mack
- Inflammatory Bowel Disease Centre, Children's Hospital of Eastern Ontario, CHEO Research Institute, Ottawa, Ontario, Canada.,Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada
| | - Dean A Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Departments of Medicine and Surgery, School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Xu Y, Zhang C, Qi M, Huang W, Sui Z, Corke H. Chemical Characterization and In Vitro Anti-Cancer Activities of a Hot Water Soluble Polysaccharide from Hulless Barley Grass. Foods 2022; 11:foods11050677. [PMID: 35267310 PMCID: PMC8909257 DOI: 10.3390/foods11050677] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Hulless barley grass may confer many health benefits attributed to its bioactive functional components, such as polysaccharides. Here, a hot water soluble polysaccharide was extracted from hulless barley grass, and its chemical characterization and in vitro anti-cancer activities were investigated. The yield of hulless barley grass polysaccharide (HBGP) was 2.3%, and the purity reached 99.1% with a polydispersity index (PDI) of 1.11 after purification by a diethylaminoethyl cellulose (DE-32) column and an S-400 high resolution (HR) column. The molecular weight and number-average molecular weight of HBGP were 3.3 × 104 and 2.9 × 104 Da, respectively. The monosaccharide composition of HBGP included 35.1% galactose, 25.6% arabinose, 5.5% glucose, and 5.3% xylose. Based on infrared spectrum analysis, HBGP possessed pyranose and galactose residues. In addition, this water-soluble polysaccharide showed significant cell proliferation inhibitory effects against cancer cell lines HT29, Caco-2, 4T1, and CT26.WT in a dose-dependent manner, especially for HT29 (the half-inhibitory concentration IC50 value = 2.72 mg/mL). The results provide a basis for the development and utilization of hulless barley grass in functional foods to aid in preventing cancer.
Collapse
Affiliation(s)
- Yijuan Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.X.); (C.Z.); (M.Q.)
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.X.); (C.Z.); (M.Q.)
| | - Meng Qi
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.X.); (C.Z.); (M.Q.)
| | - Wuyang Huang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Correspondence: or (W.H.); or (Z.S.)
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.X.); (C.Z.); (M.Q.)
- Correspondence: or (W.H.); or (Z.S.)
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China;
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
11
|
geng L, Li M, Zhang G, Ye L. Barley: a potential cereal for producing healthy and functional foods. FOOD QUALITY AND SAFETY 2022. [DOI: 10.1093/fqsafe/fyac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Barley is the fourth largest cereal crop in the world. It is mainly used for feeding, beer production and food. Barley is receiving more attention from both agricultural and food scientists because of its special chemical composition and health benefits. In comparison with other cereal crops, including wheat, rice and maize, barley grains are rich in dietary fiber (such as β-glucan) and tocols, which are beneficial to human health. It is well proved that diets rich in those chemicals can provide protection against hypertension, cardiovascular disease, and diabetes. Barley has been widely recognized to be great potential as a healthy or functional food. In this review, we present the information about the studies on physical structure of barley grain and the distribution of main chemical components, nutrient and functional composition of barley grain and their health benefits, and the approaches of improving and utilizing the nutrient and functional chemicals in barley grain. With the development of processing technologies, functional components in barley grains, especially β-glucan, can be efficiently extracted and concentrated. Moreover, nutrient and functional components in barley grains can be efficiently improved by precise breeding and agronomic approaches. The review highlights the great potential of barley used as healthy and functional foods, and may be instructive for better utilization of barley in food processing.
Collapse
Affiliation(s)
- La geng
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Mengdi Li
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Guoping Zhang
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
| | - Lingzhen Ye
- Agronomy Department, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| |
Collapse
|
12
|
Garcia-Gimenez G, Jobling SA. Gene editing for barley grain quality improvement. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2021.103394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Hu X, Cheng L, Hong Y, Li Z, Li C, Gu Z. An extensive review: How starch and gluten impact dough machinability and resultant bread qualities. Crit Rev Food Sci Nutr 2021; 63:1930-1941. [PMID: 34423705 DOI: 10.1080/10408398.2021.1969535] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Wheat flour can form dough with a three-dimensional viscoelastic structure that is responsible for gas holding during fermentation and oven-rise, creating a typical fixed, open-cell foam structure of bread after baking. As the major components of dough, the continuous reticular skeleton formed by gluten proteins and the concentrated starch granules entrapped in gluten matrix predominantly determine dough rheological behaviors and bread qualities. This review surveys the latest literatures and draws out a conclusion from a plethora of information related to the filling effects of starch granules on gluten matrix and the cross-linking mechanisms between gluten proteins and starch granules, which is of great significance to provide sufficient scientific knowledge for development of bread with satisfactory attributes and quality control of end products.
Collapse
Affiliation(s)
- Xiaohui Hu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative innovation center of food safety and quality control in Jiangsu province, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Hong
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhaofeng Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Caiming Li
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhengbiao Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu Province, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Collaborative innovation center of food safety and quality control in Jiangsu province, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
14
|
Akagawa S, Akagawa Y, Nakai Y, Yamagishi M, Yamanouchi S, Kimata T, Chino K, Tamiya T, Hashiyada M, Akane A, Tsuji S, Kaneko K. Fiber-Rich Barley Increases Butyric Acid-Producing Bacteria in the Human Gut Microbiota. Metabolites 2021; 11:metabo11080559. [PMID: 34436500 PMCID: PMC8399161 DOI: 10.3390/metabo11080559] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/17/2022] Open
Abstract
Butyric acid produced in the intestine by butyric acid-producing bacteria (BAPB) is known to suppress excessive inflammatory response and may prevent chronic disease development. We evaluated whether fiber-rich barley intake increases BAPB in the gut and concomitantly butyric acid in feces. Eighteen healthy adults received granola containing functional barley (BARLEYmax®) once daily for four weeks. Fecal DNA before intake, after intake, and one month after intake was analyzed using 16S rRNA gene sequencing to assess microbial diversity, microbial composition at the order level, and the proportion of BAPB. Fecal butyric acid concentration was also measured. There were no significant differences in diversities and microbial composition between samples. The proportion of BAPB increased significantly after the intake (from 5.9% to 8.2%). However, one month after stopping the intake, the proportion of BAPB returned to the original value (5.4%). Fecal butyric acid concentration increased significantly from 0.99 mg/g feces before intake to 1.43 mg/g after intake (p = 0.028), which decreased significantly to 0.87 mg/g after stopping intake (p = 0.008). As BAPB produce butyric acid by degrading dietary fiber, functional barley may act as a prebiotic, increasing BAPB and consequently butyric acid in the intestine.
Collapse
Affiliation(s)
- Shohei Akagawa
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (S.A.); (Y.A.); (Y.N.); (M.Y.); (S.Y.); (T.K.); (S.T.)
| | - Yuko Akagawa
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (S.A.); (Y.A.); (Y.N.); (M.Y.); (S.Y.); (T.K.); (S.T.)
| | - Yoko Nakai
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (S.A.); (Y.A.); (Y.N.); (M.Y.); (S.Y.); (T.K.); (S.T.)
| | - Mitsuru Yamagishi
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (S.A.); (Y.A.); (Y.N.); (M.Y.); (S.Y.); (T.K.); (S.T.)
| | - Sohsaku Yamanouchi
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (S.A.); (Y.A.); (Y.N.); (M.Y.); (S.Y.); (T.K.); (S.T.)
| | - Takahisa Kimata
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (S.A.); (Y.A.); (Y.N.); (M.Y.); (S.Y.); (T.K.); (S.T.)
| | - Kazushige Chino
- Healthcare New Business Division, TEIJIN Limited, 3-2-1 Kasumigaseki, Tokyo 100-8585, Japan;
| | - Taiga Tamiya
- Bio Palette Co., Ltd., 1-1 Rokkodai-cho, Kobe 650-0047, Japan;
| | - Masaki Hashiyada
- Department of Legal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (M.H.); (A.A.)
| | - Atsushi Akane
- Department of Legal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (M.H.); (A.A.)
| | - Shoji Tsuji
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (S.A.); (Y.A.); (Y.N.); (M.Y.); (S.Y.); (T.K.); (S.T.)
| | - Kazunari Kaneko
- Department of Pediatrics, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; (S.A.); (Y.A.); (Y.N.); (M.Y.); (S.Y.); (T.K.); (S.T.)
- Correspondence: ; Tel.: +81-72-804-0101
| |
Collapse
|
15
|
Selvaraj R, Singh AK, Singh VK, Abbai R, Habde SV, Singh UM, Kumar A. Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality. Sci Rep 2021; 11:10082. [PMID: 33980871 PMCID: PMC8115083 DOI: 10.1038/s41598-021-87964-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/19/2021] [Indexed: 02/03/2023] Open
Abstract
Increasing trends in the occurrence of diabetes underline the need to develop low glycemic index (GI) rice with preferred grain quality. In the current study, a diverse set of 3 K sub-panel of rice consisting of 150 accessions was evaluated for resistant starch and predicted glycemic index, including nine other quality traits under transplanted situation. Significant variations were noticed among the accessions for the traits evaluated. Trait associations had shown that amylose content possess significant positive and negative association with resistant starch and predicted glycemic index. Genome-wide association studies with 500 K SNPs based on MLM model resulted in a total of 41 marker-trait associations (MTAs), which were further confirmed and validated with mrMLM multi-locus model. We have also determined the allelic effect of identified MTAs for 11 targeted traits and found favorable SNPs for 8 traits. A total of 11 genes were selected for haplo-pheno analysis to identify the superior haplotypes for the target traits where haplotypes ranges from 2 (Os10g0469000-GC) to 15 (Os06g18720-AC). Superior haplotypes for RS and PGI, the candidate gene Os06g11100 (H4-3.28% for high RS) and Os08g12590 (H13-62.52 as intermediate PGI). The identified superior donors possessing superior haplotype combinations may be utilized in Haplotype-based breeding to developing next-generation tailor-made high quality healthier rice varieties suiting consumer preference and market demand.
Collapse
Affiliation(s)
- Ramchander Selvaraj
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India
| | - Arun Kumar Singh
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India
| | - Vikas Kumar Singh
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India
| | - Ragavendran Abbai
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Sonali Vijay Habde
- South-Asia Regional Centre (SARC), International Rice Research Institute (IRRI), Varanasi, India
| | - Uma Maheshwar Singh
- South-Asia Regional Centre (SARC), International Rice Research Institute (IRRI), Varanasi, India
| | - Arvind Kumar
- IRRI South Asia Hub (IRRI-SAH), ICRISAT Campus, Patancheru, Hyderabad, India.
- South-Asia Regional Centre (SARC), International Rice Research Institute (IRRI), Varanasi, India.
| |
Collapse
|
16
|
Kumar P, Parveen A, Sharma H, Rahim MS, Mishra A, Kumar P, Shah K, Rishi V, Roy J. Understanding the regulatory relationship of abscisic acid and bZIP transcription factors towards amylose biosynthesis in wheat. Mol Biol Rep 2021; 48:2473-2483. [PMID: 33834358 DOI: 10.1007/s11033-021-06282-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Starch is biosynthesized during seed development and this process is regulated by many bZIP proteins in bread wheat. Abscisic acid (ABA), an important phyto-hormone involved in various physiological processes mediated by bZIPs in plants including seed development. The 'Group A' TabZIP transcription factors play important roles in the ABA signaling pathway in Arabidopsis, rice and other cereal crops but their role in regulation of amylose biosynthesis in wheat is limited. In this study 83 'Group A' TabZIPs were characterized by gene expression analysis in wheat amylose mutants. A set of 17 TabZIPs was selected on the basis of differential expression (> 2 fold) in low and high amylose mutants from RNA-seq data and validated by qRT PCR. Based on qRT PCR and correlation analysis out of the 17 TabZIPs six differentially expressed candidate TabZIPs were identified, involving in high amylose biosynthesis. The TabZIP175.2, identified as upregulated in all high amylose lines and TabZIP90.2, TabZIP129.1, TabZIP132.2, TabZIP143 and TabZIP159.2 were found downregulated in all low amylose lines, after exogenous supply of ABA. Proximal promoter analysis of starch pathway genes revealed the presence of ABA-responsive elements (ABREs) that are putative binding sites for bZIPs. Collectively, these findings indicated the involvement of putative six candidate TabZIPs as transcriptional regulators of amylose related genes via an ABA-dependent pathway in wheat. This study could help the investigators to make an informed decision to edit wheat genome for high/low amylose content using gene-editing technologies.
Collapse
Affiliation(s)
- Pankaj Kumar
- National Agri-Food Biotechnology Institute, Knowledge City Sector-81, Mohali, Punjab, 140306, India
| | - Afsana Parveen
- National Agri-Food Biotechnology Institute, Knowledge City Sector-81, Mohali, Punjab, 140306, India.,Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Himanshu Sharma
- National Agri-Food Biotechnology Institute, Knowledge City Sector-81, Mohali, Punjab, 140306, India
| | - Mohammed Saba Rahim
- National Agri-Food Biotechnology Institute, Knowledge City Sector-81, Mohali, Punjab, 140306, India
| | - Ankita Mishra
- National Agri-Food Biotechnology Institute, Knowledge City Sector-81, Mohali, Punjab, 140306, India
| | - Prashant Kumar
- National Agri-Food Biotechnology Institute, Knowledge City Sector-81, Mohali, Punjab, 140306, India
| | - Koushik Shah
- National Agri-Food Biotechnology Institute, Knowledge City Sector-81, Mohali, Punjab, 140306, India
| | - Vikas Rishi
- National Agri-Food Biotechnology Institute, Knowledge City Sector-81, Mohali, Punjab, 140306, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute, Knowledge City Sector-81, Mohali, Punjab, 140306, India.
| |
Collapse
|
17
|
van Trijp MPH, Schutte S, Esser D, Wopereis S, Hoevenaars FPM, Hooiveld GJEJ, Afman LA. Minor Changes in the Composition and Function of the Gut Microbiota During a 12-Week Whole Grain Wheat or Refined Wheat Intervention Correlate with Liver Fat in Overweight and Obese Adults. J Nutr 2021; 151:491-502. [PMID: 33188417 PMCID: PMC7948209 DOI: 10.1093/jn/nxaa312] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/27/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Whole grain wheat (WGW) products are advocated as a healthy choice when compared with refined wheat (RW). One proposed mechanism for these health benefits is via the microbiota, because WGW contains multiple fibers. WGW consumption has been proposed to ameliorate nonalcoholic fatty liver disease, in which microbiota might play a role. OBJECTIVES We investigated the effect of WGW compared with RW intervention on the fecal microbiota composition and functionality, and correlated intervention-induced changes in bacteria with changes in liver health parameters in adults with overweight or obesity. METHODS We used data of a 12-wk double-blind, randomized, controlled, parallel trial to examine the effects of a WGW (98 g/d) or RW (98 g/d) intervention on the secondary outcomes fecal microbiota composition, predicted microbiota functionality, and stool consistency in 37 women and men (aged 45-70 y, BMI 25-35 kg/m2). The changes in microbiota composition, measured using 16S ribosomal RNA gene sequencing, after a 12-wk intervention were analyzed with nonparametric tests, and correlated with changes in liver fat and circulating concentrations of liver enzymes including alanine transaminase, aspartate transaminase, γ-glutamyltransferase, and serum amyloid A. RESULTS The WGW intervention increased the mean (± SD) relative abundances of Ruminococcaceae_UCG-014 (baseline: 2.2 ± 4.6%, differential change over time (Δ) 0.51 ± 4.2%), Ruminiclostridium_9 (baseline: 0.065 ± 0.11%, Δ 0.054 ± 0.14%), and Ruminococcaceae_NK4A214_group (baseline: 0.37 ± 0.56%, Δ 0.17 ± 0.83%), and also the predicted pathway acetyl-CoA fermentation to butyrate II (baseline: 0.23 ± 0.062%, Δ 0.035 ± 0.059%), compared with the RW intervention (P values <0.05). A change in Ruminococcaceae_NK4A214_group was positively correlated with the change in liver fat, in both the WGW (ρ = 0.54; P = 0.026) and RW (ρ = 0.67; P = 0.024) groups. CONCLUSIONS In middle-aged overweight and obese adults, a 12-wk WGW intervention increased the relative abundance of a number of bacterial taxa from the family Ruminococcaceae and increased predicted fermentation pathways when compared with an RW intervention. Potential protective health effects of replacement of RW by WGW on metabolic organs, such as the liver, via modulation of the microbiota, deserve further investigation.This trial was registered at clinicaltrials.gov as NCT02385149.
Collapse
Affiliation(s)
- Mara P H van Trijp
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sophie Schutte
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Diederik Esser
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Suzan Wopereis
- TNO, Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands
| | - Femke P M Hoevenaars
- TNO, Netherlands Organization for Applied Scientific Research, Zeist, The Netherlands
| | - Guido J E J Hooiveld
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Lydia A Afman
- Nutrition, Metabolism & Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
18
|
Seal CJ, Courtin CM, Venema K, de Vries J. Health benefits of whole grain: effects on dietary carbohydrate quality, the gut microbiome, and consequences of processing. Compr Rev Food Sci Food Saf 2021; 20:2742-2768. [PMID: 33682356 DOI: 10.1111/1541-4337.12728] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Grains are important sources of carbohydrates in global dietary patterns. The majority of these carbohydrates, especially in refined-grain products, are digestible. Most carbohydrate digestion takes place in the small intestine where monosaccharides (predominantly glucose) are absorbed, delivering energy to the body. However, a considerable part of the carbohydrates, especially in whole grains, is indigestible dietary fibers. These impact gut motility and transit and are useful substrates for the gut microbiota affecting its composition and quality. For the most part, the profile of digestible and indigestible carbohydrates and their complexity determine the nutritional quality of carbohydrates. Whole grains are more complex than refined grains and are promoted as part of a healthy and sustainable diet mainly because the contribution of indigestible carbohydrates, and their co-passenger nutrients, is significantly higher. Higher consumption of whole grain is recommended because it is associated with lower incidence of, and mortality from, CVD, type 2 diabetes, and some cancers. This may be due in part to effects on the gut microbiota. Although processing of cereals during milling and food manufacturing is necessary to make them edible, it also offers the opportunity to still further improve the nutritional quality of whole-grain flours and foods made from them. Changing the composition and availability of grain carbohydrates and phytochemicals during processing may positively affect the gut microbiota and improve health.
Collapse
Affiliation(s)
- Chris J Seal
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Christophe M Courtin
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation, Maastricht University-Campus Venlo, St Jansweg 20, 5928 RC, Venlo, The Netherlands
| | - Jan de Vries
- Nutrition Solutions, Reuvekamp 26, 7213CE, Gorssel, The Netherlands
| |
Collapse
|
19
|
Obadi M, Sun J, Xu B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res Int 2021; 140:110065. [DOI: 10.1016/j.foodres.2020.110065] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
|
20
|
Bain M, van de Meene A, Costa R, Doblin MS. Characterisation of Cellulose Synthase Like F6 ( CslF6) Mutants Shows Altered Carbon Metabolism in β-D-(1,3;1,4)-Glucan Deficient Grain in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2021; 11:602850. [PMID: 33505412 PMCID: PMC7829222 DOI: 10.3389/fpls.2020.602850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Brachypodium distachyon is a small, fast growing grass species in the Pooideae subfamily that has become established as a model for other temperate cereals of agricultural significance, such as barley (Hordeum vulgare) and wheat (Triticum aestivum). The unusually high content in whole grains of β-D-(1,3;1,4)-glucan or mixed linkage glucan (MLG), considered a valuable dietary fibre due to its increased solubility in water compared with cellulose, makes B. distachyon an attractive model for these polysaccharides. The carbohydrate composition of grain in B. distachyon is interesting not only in understanding the synthesis of MLG, but more broadly in the mechanism(s) of carbon partitioning in cereal grains. Several mutants in the major MLG synthase, cellulose synthase like (CSL) F6, were identified in a screen of a TILLING population that show a loss of function in vitro. Surprisingly, loss of cslf6 synthase capacity appears to have a severe impact on survival, growth, and development in B. distachyon in contrast to equivalent mutants in barley and rice. One mutant, A656T, which showed milder growth impacts in heterozygotes shows a 21% (w/w) reduction in average grain MLG and more than doubling of starch compared with wildtype. The endosperm architecture of grains with the A656T mutation is altered, with a reduction in wall thickness and increased deposition of starch in larger granules than typical of wildtype B. distachyon. Together these changes demonstrate an alteration in the carbon storage of cslf6 mutant grains in response to reduced MLG synthase capacity and a possible cross-regulation with starch synthesis which should be a focus in future work in composition of these grains. The consequences of these findings for the use of B. distachyon as a model species for understanding MLG synthesis, and more broadly the implications for improving the nutritional value of cereal grains through alteration of soluble dietary fibre content are discussed.
Collapse
Affiliation(s)
- Melissa Bain
- Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls, The School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Allison van de Meene
- Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls, The School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Rafael Costa
- Institute of Plant Sciences Paris-Saclay (IPS2), Centre National de la Recherche Scientifique (CNRS), L’Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Univ Evry, Université Paris-Saclay, Orsay, France
- Centre National de la Recherche Scientifique (CNRS), L’Institut National de Recherche pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, Orsay, France
| | - Monika S. Doblin
- Australian Research Council (ARC) Centre of Excellence in Plant Cell Walls, The School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
- Department of Animal Plant and Soil Sciences, La Trobe Institute for Agriculture and Food (LIAF), La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
21
|
Williams GM, Tapsell LC, O'Brien CL, Tosh SM, Barrett EM, Beck EJ. Gut microbiome responses to dietary intake of grain-based fibers with the potential to modulate markers of metabolic disease: a systematic literature review. Nutr Rev 2020; 79:1274-1292. [PMID: 33369654 DOI: 10.1093/nutrit/nuaa128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CONTEXT Cereal fiber modulates the gut microbiome and benefits metabolic health. The potential link between these effects is of interest.0. OBJECTIVE The aim for this systematic review was to assess evidence surrounding the influence of cereal fiber intake on microbiome composition, microbiome diversity, short-chain fatty acid production, and risk factors for metabolic syndrome. DATA SOURCES AND EXTRACTION The MEDLINE, PubMed, CINAHL, and Cochrane Library databases were searched systematically, and quality of studies was assessed using the Cochrane Risk of Bias 2.0 tool. Evidence relating to study design, dietary data collection, and outcomes was qualitatively synthesized on the basis of fiber type. DATA ANALYSIS Forty-six primary publications and 2 secondary analyses were included. Cereal fiber modulated the microbiome in most studies; however, taxonomic changes indicated high heterogeneity. Short-chain fatty acid production, microbiome diversity, and metabolic-related outcomes varied and did not always occur in parallel with microbiome changes. Poor dietary data were a further limitation. CONCLUSIONS Cereal fiber may modulate the gut microbiome; however, evidence of the link between this and metabolic outcomes is limited. Additional research is required with a focus on robust and consistent methodology. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42018107117.
Collapse
Affiliation(s)
- Georgina M Williams
- School of Medicine, Science, Medicine and Health, University of Wollongong, and the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Linda C Tapsell
- School of Medicine, Science, Medicine and Health, University of Wollongong, and the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Claire L O'Brien
- Australian National University, Canberra, Australian Capital Territory, Australia
| | - Susan M Tosh
- Faculty of Health Sciences, University of Ottawa, Ottawa, Canada
| | - Eden M Barrett
- School of Medicine, Science, Medicine and Health, University of Wollongong, and the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Eleanor J Beck
- School of Medicine, Science, Medicine and Health, University of Wollongong, and the Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
22
|
Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3836172. [PMID: 32318238 PMCID: PMC7149453 DOI: 10.1155/2020/3836172] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Barley plays an important role in health and civilization of human migration from Africa to Asia, later to Eurasia. We demonstrated the systematic mechanism of functional ingredients in barley to combat chronic diseases, based on PubMed, CNKI, and ISI Web of Science databases from 2004 to 2020. Barley and its extracts are rich in 30 ingredients to combat more than 20 chronic diseases, which include the 14 similar and 9 different chronic diseases between grains and grass, due to the major molecular mechanism of six functional ingredients of barley grass (GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan) and grains (β-glucans, polyphenols, arabinoxylan, phytosterols, tocols, and resistant starch). The antioxidant activity of barley grass and grain has the same and different functional components. These results support findings that barley grain and its grass are the best functional food, promoting ancient Babylonian and Egyptian civilizations, and further show the depending functional ingredients for diet from Pliocene hominids in Africa and Neanderthals in Europe to modern humans in the world. This review paper not only reveals the formation and action mechanism of barley diet overcoming human chronic diseases, but also provides scientific basis for the development of health products and drugs for the prevention and treatment of human chronic diseases.
Collapse
|
23
|
Koecher KJ, McKeown NM, Sawicki CM, Menon RS, Slavin JL. Effect of whole-grain consumption on changes in fecal microbiota: a review of human intervention trials. Nutr Rev 2020; 77:487-497. [PMID: 31086952 DOI: 10.1093/nutrit/nuz008] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Whole-grain (WG) consumption is known to have beneficial effects on human health. However, the influence of WGs on the microbiota is not well understood. To evaluate how WG intake modulates the gut microbiota composition, a literature review of human intervention studies was conducted. Whole grain, whether a mixed WG food or diet (n = 5) or specific WG intervention (WG wheat [n = 5], barley [n = 2], rye [n = 2] or rice, corn, or oats [n = 1 for each]), generally modified microbiota composition but did so inconsistently across measurements of microbial diversity and taxa. Interventions used both parallel and crossover designs and varied from single product substitutions to fully controlled diets with WG exposures of 3-12 weeks. The effect of amount of WG was difficult to capture due to variable reporting of WG. Methods used to measure microbiota varied in ability to resolve changes at different taxonomic levels, and comparisons of interventions using similar methods was lacking. Because many dietary components besides WGs alter gut microbiota, further research is needed, particularly in linking microbiota changes to health outcomes, and study design recommendations for future research on WGs and microbiota are warranted.
Collapse
Affiliation(s)
| | - Nicola M McKeown
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Caleigh M Sawicki
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | - Ravi S Menon
- General Mills, Inc., Minneapolis, Minnesota, USA
| | - Joanne L Slavin
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
24
|
Aoe S, Yamanaka C, Fuwa M, Tamiya T, Nakayama Y, Miyoshi T, Kitazono E. Effects of BARLEYmax and high-β-glucan barley line on short-chain fatty acids production and microbiota from the cecum to the distal colon in rats. PLoS One 2019; 14:e0218118. [PMID: 31185060 PMCID: PMC6559638 DOI: 10.1371/journal.pone.0218118] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/27/2019] [Indexed: 11/18/2022] Open
Abstract
We investigated whether supplementation with the barley line BARLEYmax (Tantangara; BM), which contains three fermentable fibers (fructan, β-glucan, and resistant starch), modifies the microbiota in cecal and distal colonic digesta in addition to short-chain fatty acids (SCFAs) production more favorably than supplementation with a high-β-glucan barley line (BG012; BG). Male Sprague-Dawley rats were randomly divided into 3 groups that were fed an AIN-93G-based diet that contained 5% fiber provided by cellulose (control), BM or BG. Four weeks after starting the respective diets, the animals were sacrificed and digesta from the cecum, proximal colon and distal colon were collected and the SCFA concentrations were quantified. Microbiota in the cecal and distal colonic digesta were analyzed by 16S rRNA sequencing. The concentrations of acetate and n-butyrate in cecal digesta were significantly higher in the BM and BG groups than in the control group, whereas the concentration of total SCFAs in cecal digesta was significantly higher only in the BM group than in the control group. The concentrations of acetate and total SCFAs in the distal colonic digesta were significantly higher only in the BM group than in the control group. The abundance of Bacteroidetes in cecal digesta was significantly higher in the BM group than in the control group. In contrast, the abundance of Firmicutes in cecal digesta was significantly lower in the BM and BG groups than in the control group. These results indicated that BM increased the concentration of total SCFAs in the distal colonic digesta. These changes might have been caused by fructan and resistant starch in addition to β-glucan. In conclusion, fermentable fibers in BM reached the distal colon and modified the microbiota, leading to an increase in the concentration of total SCFAs in the distal colonic digesta, more effectively compared with the high-β-glucan barley line (BG).
Collapse
Affiliation(s)
- Seiichiro Aoe
- Studies in Human Life Sciences, Graduate School of Studies in Human Culture, Otsuma Women’s University, Chiyoda-ku, Tokyo, Japan
- The Institute of Human Culture Studies, Otsuma Women’s University Chiyoda-ku, Tokyo, Japan
- * E-mail:
| | - Chiemi Yamanaka
- The Institute of Human Culture Studies, Otsuma Women’s University Chiyoda-ku, Tokyo, Japan
| | - Miki Fuwa
- Studies in Human Life Sciences, Graduate School of Studies in Human Culture, Otsuma Women’s University, Chiyoda-ku, Tokyo, Japan
| | | | | | | | | |
Collapse
|
25
|
Veverka M, Dubaj T, Veverková E, Šimon P. Natural oil emulsions stabilized by β-glucan gel. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
McCann TH, Homer SH, Øiseth SK, Day L, Newberry M, Regina A, Lundin L. High amylose wheat starch increases the resistance to deformation of wheat flour dough. J Cereal Sci 2018. [DOI: 10.1016/j.jcs.2017.12.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Panhwar RB, Akbar A, Ali MF, Yang Q, Feng B. Phytochemical Components of Some Minor Cereals Associated with Diabetes Prevention and Management. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jbm.2018.62002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Zeng L, Chen C. Simultaneous estimation of amylose, resistant, and digestible starch in pea flour by visible and near-infrared reflectance spectroscopy. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1485027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Lingjie Zeng
- College of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Eastern Agricultural Research Center, Montana State University, Sidney, MT, USA
| | - Chengci Chen
- Eastern Agricultural Research Center, Montana State University, Sidney, MT, USA
| |
Collapse
|
29
|
Primec M, Mičetić-Turk D, Langerholc T. Analysis of short-chain fatty acids in human feces: A scoping review. Anal Biochem 2017; 526:9-21. [PMID: 28300535 DOI: 10.1016/j.ab.2017.03.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/18/2017] [Accepted: 03/07/2017] [Indexed: 02/07/2023]
Abstract
Short-chain fatty acids (SCFAs) play a crucial role in maintaining homeostasis in humans, therefore the importance of a good and reliable SCFAs analytical detection has raised a lot in the past few years. The aim of this scoping review is to show the trends in the development of different methods of SCFAs analysis in feces, based on the literature published in the last eleven years in all major indexing databases. The search criteria included analytical quantification techniques of SCFAs in different human clinical and in vivo studies. SCFAs analysis is still predominantly performed using gas chromatography (GC), followed by high performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR) and capillary electrophoresis (CE). Performances, drawbacks and advantages of these methods are discussed, especially in the light of choosing a proper pretreatment, as feces is a complex biological material. Further optimization to develop a simple, cost effective and robust method for routine use is needed.
Collapse
Affiliation(s)
- Maša Primec
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia.
| | - Dušanka Mičetić-Turk
- Department of Pediatrics, Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Sciences, University of Maribor, Pivola 10, 2311 Hoče, Slovenia
| |
Collapse
|
30
|
Pojić M, Dapčević Hadnađev T, Hadnađev M, Rakita S, Torbica A. Optimization of additive content and their combination to improve the quality of pure barley bread. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:579-590. [PMID: 28298671 PMCID: PMC5334214 DOI: 10.1007/s13197-016-2435-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/07/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022]
Abstract
The objective of this study was to model the influence of pregelatinized OSA starch (OSA), wheat gluten (Gl) and xylanase (Xyl) on breadmaking potential of barley flour by using response surface methodology. Addition of these ingredients had significant effect on specific bread volume, crust and crumb lightness, crumb texture, average cell size and crumb density. OSA showed the most pronounced effect on specific bread volume, average cell size, crumb density and hardness. Interaction between OSA and Gl, as well as Gl and Xyl, respectively, increased and decreased the specific bread volume and crumb chewiness, while the interaction between OSA and Xyl decreased the specific volume decrease and increased crumb chewiness. An optimal barley bread formulation appeared to be the one containing 9.68% OSA, 2.0% Gl and 4.51 g/100 kg Xyl. This optimal barley bread formulation predicted an increment of 14-28% in volume and a decrease of 105-217% in crumb chewiness in comparison to formulations containing medium amounts of improvers (1% Gl, 5% OSA, 2.5 g/100 kg Xyl).
Collapse
Affiliation(s)
- Milica Pojić
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, 21000 Serbia
| | - Tamara Dapčević Hadnađev
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, 21000 Serbia
| | - Miroslav Hadnađev
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, 21000 Serbia
| | - Slađana Rakita
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, 21000 Serbia
| | - Aleksandra Torbica
- Institute of Food Technology, University of Novi Sad, Bulevar cara Lazara 1, Novi Sad, 21000 Serbia
| |
Collapse
|
31
|
Cooper DN, Kable ME, Marco ML, De Leon A, Rust B, Baker JE, Horn W, Burnett D, Keim NL. The Effects of Moderate Whole Grain Consumption on Fasting Glucose and Lipids, Gastrointestinal Symptoms, and Microbiota. Nutrients 2017; 9:nu9020173. [PMID: 28230784 PMCID: PMC5331604 DOI: 10.3390/nu9020173] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/01/2017] [Accepted: 02/16/2017] [Indexed: 01/18/2023] Open
Abstract
This study was designed to determine if providing wheat, corn, and rice as whole (WG) or refined grains (RG) under free-living conditions will change parameters of health over a six-week intervention in healthy, habitual non-WG consumers. Measurements of body composition, fecal microbiota, fasting blood glucose, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), and triglycerides were made at baseline and post intervention. Subjects were given adequate servings of either WG or RG products based on their caloric need and asked to keep records of grain consumption, bowel movements, and GI symptoms weekly. After six weeks, subjects repeated baseline testing. Significant decreases in total, LDL, and non-HDL cholesterol were seen after the WG treatments but were not observed in the RG treatment. During Week 6, bowel movement frequency increased with increased WG consumption. No significant differences in microbiota were seen between baseline and post intervention, although, abundance of order Erysipelotrichales increased in RG subjects who ate more than 50% of the RG market basket products. Increasing consumption of WGs can alter parameters of health, but more research is needed to better elucidate the relationship between the amount consumed and the health-related outcome.
Collapse
Affiliation(s)
- Danielle N Cooper
- Department of Nutrition, University of California at Davis, 1 Shields Ave, Davis, CA 95616, USA.
| | - Mary E Kable
- Western Human Nutrition Research Center, USDA-ARS, 430 West Health Sciences Drive, Davis, CA 95616, USA.
| | - Maria L Marco
- Food Science and Technology, University of California at Davis, 1 Shields Ave, Davis, CA 95616, USA.
| | - Angela De Leon
- Department of Nutrition, University of California at Davis, 1 Shields Ave, Davis, CA 95616, USA.
| | - Bret Rust
- Department of Nutrition, University of California at Davis, 1 Shields Ave, Davis, CA 95616, USA.
- Western Human Nutrition Research Center, USDA-ARS, 430 West Health Sciences Drive, Davis, CA 95616, USA.
| | - Julita E Baker
- Department of Nutrition, University of California at Davis, 1 Shields Ave, Davis, CA 95616, USA.
| | - William Horn
- Western Human Nutrition Research Center, USDA-ARS, 430 West Health Sciences Drive, Davis, CA 95616, USA.
| | - Dustin Burnett
- Western Human Nutrition Research Center, USDA-ARS, 430 West Health Sciences Drive, Davis, CA 95616, USA.
| | - Nancy L Keim
- Department of Nutrition, University of California at Davis, 1 Shields Ave, Davis, CA 95616, USA.
- Western Human Nutrition Research Center, USDA-ARS, 430 West Health Sciences Drive, Davis, CA 95616, USA.
| |
Collapse
|
32
|
|
33
|
Nutrient Intake Is Associated with Longevity Characterization by Metabolites and Element Profiles of Healthy Centenarians. Nutrients 2016; 8:nu8090564. [PMID: 27657115 PMCID: PMC5037549 DOI: 10.3390/nu8090564] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022] Open
Abstract
The relationships between diet and metabolites as well as element profiles in healthy centenarians are important but remain inconclusive. Therefore, to test the interesting hypothesis that there would be distinctive features of metabolites and element profiles in healthy centenarians, and that these would be associated with nutrient intake; the short chain fatty acids (SCFAs), total bile acids and ammonia in feces, phenol, p-cresol, uric acid, urea, creatinine and ammonia in urine, and element profiles in fingernails were determined in 90 healthy elderly people, including centenarians from Bama county (China)—a famous longevous region—and elderly people aged 80–99 from the longevous region and a non-longevous region. The partial least squares-discriminant analysis was used for pattern recognition. As a result, the centenarians showed a distinct metabolic pattern. Seven characteristic components closely related to the centenarians were identified, including acetic acid, total SCFA, Mn, Co, propionic acid, butyric acid and valeric acid. Their concentrations were significantly higher in the centenarians group (p < 0.05). Additionally, the dietary fiber intake was positively associated with butyric acid contents in feces (r = 0.896, p < 0.01), and negatively associated with phenol in urine (r = −0.326, p < 0.01). The results suggest that the specific metabolic pattern of centenarians may have an important and positive influence on the formation of the longevity phenomenon. Elevated dietary fiber intake should be a path toward health and longevity.
Collapse
|
34
|
Shen D, Bai H, Li Z, Yu Y, Zhang H, Chen L. Positive effects of resistant starch supplementation on bowel function in healthy adults: a systematic review and meta-analysis of randomized controlled trials. Int J Food Sci Nutr 2016; 68:149-157. [PMID: 27593182 DOI: 10.1080/09637486.2016.1226275] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Animal experimental studies have found that resistant starch can significantly improve bowel function, but the outcomes are mixed while conducting human studies. Thus, we conducted a systematic review and meta-analysis of randomized controlled trials to evaluate the relationship between resistant starch supplementation and large intestinal function. Three electronic databases (PubMed, Embase, Scopus) were searched to identify eligible studies. The standardized mean difference (SMD) or weighted mean difference (WMD) was calculated using a fixed-effects model or a random-effects model. The pooled findings revealed that resistant starch significantly increased fecal wet weight (WMD 35.51 g/d, 95% CI 1.21, 69.82) and butyrate concentration (SMD 0.61, 95% CI 0.32, 0.89). Also, it significantly reduced fecal PH (WMD -0.19, 95% CI -0.35, -0.03), but the increment of defecation frequency were not statistically significant (WMD 0.04stools/g, 95% CI -0.08, 0.16). To conclude, our study found that resistant starch elicited a beneficial effect on the function of large bowel in healthy adults.[Formula: see text].
Collapse
Affiliation(s)
- Deqiang Shen
- a Department of Nutrition and Food Hygiene , School of Public health, Shandong University , Jinan , China
| | - Hao Bai
- a Department of Nutrition and Food Hygiene , School of Public health, Shandong University , Jinan , China
| | - Zhaoping Li
- b Department of Nutrition , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Yue Yu
- a Department of Nutrition and Food Hygiene , School of Public health, Shandong University , Jinan , China
| | - Huanhuan Zhang
- a Department of Nutrition and Food Hygiene , School of Public health, Shandong University , Jinan , China
| | - Liyong Chen
- b Department of Nutrition , Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| |
Collapse
|
35
|
Yang R, Bai J, Fang J, Wang Y, Lee G, Piao Z. A single amino acid mutation of OsSBEIIb contributes to resistant starch accumulation in rice. BREEDING SCIENCE 2016; 66:481-489. [PMID: 27795673 PMCID: PMC5010312 DOI: 10.1270/jsbbs.16037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/18/2016] [Indexed: 05/07/2023]
Abstract
Foods rich in resistant starch can help prevent various diseases, including diabetes, colon cancers, diarrhea, and chronic renal and hepatic diseases. Variations in starch biosynthesis enzymes could contribute to the high content of resistant starch in some cultivars of rice (Oryza sativa L.). Our previously published work indicated that the sbe3-rs gene in the rice mutant line, 'Jiangtangdao1' was a putative allele of the rice starch branching enzyme gene SBEIIb (previously known as SBE3); sbe3-rs might control the biosynthesis of the high resistant starch content in the rice line. Biomolecular analysis showed that the activity of SBEs was significantly lower in soluble extracts of immature seeds harvested from 'Jiangtangdao1' 15 days after flowering than in the extracts of the wild-type rice line 'Huaqingdao'. We performed gene complementation assays by introducing the wild-type OsSBEIIb into the sbe3-rs mutant 'Jiangtangdao1'. The genetically complemented lines demonstrated restored seed-related traits. The structures of endosperm amylopectin and the morphological and physicochemical properties of the starch granules in the transformants recovered to wild-type levels. This study provides evidence that sbe3-rs is a novel allele of OsSBEIIb, responsible for biosynthesis of high resistant starch in 'Jiangtangdao1'.
Collapse
Affiliation(s)
- Ruifang Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Jianjiang Bai
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Jun Fang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Ying Wang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| | - Gangseob Lee
- National Academy of Agricultural Science (South Korea),
Suwon City,
Korea 441-857
| | - Zhongze Piao
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences,
1000 Jingqi Road, Fengxian District, Shanghai 201403,
China
| |
Collapse
|
36
|
Albarracín M, Weisstaub AR, Zuleta A, Drago SR. Extruded whole grain diets based on brown, soaked and germinated rice. Effects on cecum health, calcium absorption and bone parameters of growing Wistar rats. Part I. Food Funct 2016; 7:2722-8. [DOI: 10.1039/c6fo00441e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of diets with whole rice processed ingredients on cecum health, calcium absorption and bone parameters was studied using an animal model.
Collapse
Affiliation(s)
- Micaela Albarracín
- Instituto de Tecnología de Alimentos
- Facultad de Ingeniería Química
- UNL
- Santa Fe
- Argentina
| | - Adriana R. Weisstaub
- Departamento de Bromatología y Nutrición
- Facultad de Farmacia y Bioquímica
- UBA
- Buenos Aires
- Argentina
| | - Angela Zuleta
- Departamento de Bromatología y Nutrición
- Facultad de Farmacia y Bioquímica
- UBA
- Buenos Aires
- Argentina
| | - Silvina R. Drago
- Instituto de Tecnología de Alimentos
- Facultad de Ingeniería Química
- UNL
- Santa Fe
- Argentina
| |
Collapse
|
37
|
Soluble arabinoxylan enhances large intestinal microbial health biomarkers in pigs fed a red meat-containing diet. Nutrition 2015; 32:491-7. [PMID: 26740253 DOI: 10.1016/j.nut.2015.10.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 01/01/2023]
Abstract
OBJECTIVES The aim of this study was to investigate how moderately increased dietary red meat combined with a soluble fiber (wheat arabinoxylan [AX]) alters the large intestinal microbiota in terms of fermentative end products and microbial community profiles in pigs. METHODS Four groups of 10 pigs were fed Western-type diets containing two amounts of red meat, with or without a solubilized wheat AX-rich fraction for 4 wk. After euthanasia, fermentative end products (short-chain fatty acids, ammonia) of digesta from four sections of large intestine were measured. Di-amino-pimelic acid was a measure of total microbial biomass, and bacterial profiles were determined using a phylogenetic microarray. A factorial model determined effects of AX and meat content. RESULTS Arabinoxylan was highly fermentable in the cecum, as indicated by increased concentrations of short-chain fatty acids (particularly propionate). Protein fermentation end products were decreased, as indicated by the reduced ammonia and branched-chain ratio although this effect was less prominent distally. Microbial profiles in the distal large intestine differed in the presence of AX (including promotion of Faecalibacterium prausnitzii), consistent with an increase in carbohydrate versus protein fermentation. Increased di-amino-pimelic acid (P < 0.0001) suggested increased microbial biomass for animals fed AX. CONCLUSIONS Solubilized wheat AX has the potential to counteract the effects of dietary red meat by reducing protein fermentation and its resultant toxic end products such as ammonia, as well as leading to a positive shift in fermentation end products and microbial profiles in the large intestine.
Collapse
|
38
|
de Vries J, Miller PE, Verbeke K. Effects of cereal fiber on bowel function: A systematic review of intervention trials. World J Gastroenterol 2015; 21:8952-63. [PMID: 26269686 PMCID: PMC4528039 DOI: 10.3748/wjg.v21.i29.8952] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/15/2015] [Accepted: 06/10/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To comprehensively review and quantitatively summarize results from intervention studies that examined the effects of intact cereal dietary fiber on parameters of bowel function. METHODS A systematic literature search was conducted using PubMed and EMBASE. Supplementary literature searches included screening reference lists from relevant studies and reviews. Eligible outcomes were stool wet and dry weight, percentage water in stools, stool frequency and consistency, and total transit time. Weighted regression analyses generated mean change (± SD) in these measures per g/d of dietary fiber. RESULTS Sixty-five intervention studies among generally healthy populations were identified. A quantitative examination of the effects of non-wheat sources of intact cereal dietary fibers was not possible due to an insufficient number of studies. Weighted regression analyses demonstrated that each extra g/d of wheat fiber increased total stool weight by 3.7 ± 0.09 g/d (P < 0.0001; 95%CI: 3.50-3.84), dry stool weight by 0.75 ± 0.03 g/d (P < 0.0001; 95%CI: 0.69-0.82), and stool frequency by 0.004 ± 0.002 times/d (P = 0.0346; 95%CI: 0.0003-0.0078). Transit time decreased by 0.78 ± 0.13 h per additional g/d (P < 0.0001; 95%CI: 0.53-1.04) of wheat fiber among those with an initial transit time greater than 48 h. CONCLUSION Wheat dietary fiber, and predominately wheat bran dietary fiber, improves measures of bowel function.
Collapse
|
39
|
Hogg AC, Martin JM, Manthey FA, Giroux MJ. Nutritional and Quality Traits of Pasta Made from SSIIa Null High-Amylose Durum Wheat. Cereal Chem 2015. [DOI: 10.1094/cchem-12-14-0246-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Andrew C. Hogg
- Department of Plant Sciences and Plant Pathology, 119 Plant Bioscience Building, Montana State University, Bozeman, MT 59717-3150, U.S.A
| | - John M. Martin
- Department of Plant Sciences and Plant Pathology, 119 Plant Bioscience Building, Montana State University, Bozeman, MT 59717-3150, U.S.A
| | - Frank A. Manthey
- Department of Plant Sciences, 166 Loftsgard Hall, North Dakota State University, Fargo, ND 58108-6050, U.S.A
| | - Michael J. Giroux
- Department of Plant Sciences and Plant Pathology, 119 Plant Bioscience Building, Montana State University, Bozeman, MT 59717-3150, U.S.A
| |
Collapse
|
40
|
Ji J, Zhang C, Luo X, Wang L, Zhang R, Wang Z, Fan D, Yang H, Deng J. Effect of Stay-Green Wheat, a Novel Variety of Wheat in China, on Glucose and Lipid Metabolism in High-Fat Diet Induced Type 2 Diabetic Rats. Nutrients 2015; 7:5143-55. [PMID: 26132991 PMCID: PMC4516991 DOI: 10.3390/nu7075143] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 01/19/2023] Open
Abstract
The use of natural hypoglycemic compounds is important in preventing and managing Type 2 diabetes mellitus (T2DM). Forty male Sprague-Dawley rats weighing 150–180 g were divided into four groups to investigate the effects of the compounds in stay-green wheat (SGW), a novel variety of wheat in China, on T2DM rats. The control group (NDC) was fed with a standard diet, while T2DM was induced in the rats belonging to the other three groups by a high-fat diet followed by a streptozotocin (STZ) injection. The T2DM rats were further divided into a T2DM control group (DC), which was fed with the normal diet containing 50% common wheat flour, a high dose SGW group (HGW) fed with a diet containing 50% SGW flour, and a low dose SGW group (LGW) fed with a diet containing 25% SGW flour and 25% common wheat flour. Our results showed that SGW contained cereal antioxidants, particularly high in flavonoids and anthocyanins (46.14 ± 1.80 mg GAE/100 g DW and 1.73 ± 0.14 mg CGE/100 g DW, respectively). Furthermore, SGW exhibited a strong antioxidant activity in vitro (30.33 ± 2.66 μg TE/g DW, p < 0.01). Administration of the SGW at a high and low dose showed significant down-regulatory effects on fasting blood glucose (decreasing by 11.3% and 7.0%, respectively), insulin levels (decreasing by 12.3% and 9.7%, respectively), and lipid status (decreasing by 9.1% and 7.5%, respectively) in T2DM rats (p < 0.01). In addition, the T2DM groups treated with SGW at a high and low dose showed a significant increase in the blood superoxide dismutase (1.17 fold and 1.15 fold, respectively) and glutathione peroxidase activities (1.37 fold and 1.30 fold, respectively) compared with the DC group (p < 0.01). The normalized impaired antioxidant status of the pancreatic islet and of the liver compared with the DC group was also significantly increased. Our results indicated that SGW components exerting a glycemic control and a serum lipid regulation effect may be due to their free radical scavenging capacities to reduce the risk of T2DM in experimental diabetic rats.
Collapse
Affiliation(s)
- Jinshan Ji
- Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Department of Public Health, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China.
- Medical College, Yan'an University, Yan'an 716000, China.
| | - Chao Zhang
- Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Department of Public Health, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Xiaoqin Luo
- Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Department of Public Health, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Li Wang
- Medical College, Yan'an University, Yan'an 716000, China.
| | - Ruijuan Zhang
- Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Department of Public Health, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Zhenlin Wang
- Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Department of Public Health, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Daidi Fan
- Shaanxi Key laboratory of Degradable Biomedical Materials, Department of Food Science and Engineering, College of Chemical Engineering, Northwest University, Xi'an 710069, China.
| | - Haixia Yang
- Nutrition and Food Safety Engineering Research Center of Shaanxi Province, Department of Public Health, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China.
- Cardiovascular Research Center, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jianjun Deng
- Shaanxi Key laboratory of Degradable Biomedical Materials, Department of Food Science and Engineering, College of Chemical Engineering, Northwest University, Xi'an 710069, China.
| |
Collapse
|
41
|
Humphreys KJ, Conlon MA, Young GP, Topping DL, Hu Y, Winter JM, Bird AR, Cobiac L, Kennedy NA, Michael MZ, Le Leu RK. Dietary manipulation of oncogenic microRNA expression in human rectal mucosa: a randomized trial. Cancer Prev Res (Phila) 2015; 7:786-95. [PMID: 25092886 DOI: 10.1158/1940-6207.capr-14-0053] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High red meat (HRM) intake is associated with increased colorectal cancer risk, while resistant starch is probably protective. Resistant starch fermentation produces butyrate, which can alter microRNA (miRNA) levels in colorectal cancer cells in vitro; effects of red meat and resistant starch on miRNA expression in vivo were unknown. This study examined whether a HRM diet altered miRNA expression in rectal mucosa tissue of healthy volunteers, and if supplementation with butyrylated resistant starch (HRM+HAMSB) modified this response. In a randomized cross-over design, 23 volunteers undertook four 4-week dietary interventions; an HRM diet (300 g/day lean red meat) and an HRM+HAMSB diet (HRM with 40 g/day butyrylated high amylose maize starch), preceded by an entry diet and separated by a washout. Fecal butyrate increased with the HRM+HAMSB diet. Levels of oncogenic mature miRNAs, including miR17-92 cluster miRNAs and miR21, increased in the rectal mucosa with the HRM diet, whereas the HRM+HAMSB diet restored miR17-92 miRNAs, but not miR21, to baseline levels. Elevated miR17-92 and miR21 in the HRM diet corresponded with increased cell proliferation, and a decrease in miR17-92 target gene transcript levels, including CDKN1A. The oncogenic miR17-92 cluster is differentially regulated by dietary factors that increase or decrease risk for colorectal cancer, and this may explain, at least in part, the respective risk profiles of HRM and resistant starch. These findings support increased resistant starch consumption as a means of reducing risk associated with an HRM diet.
Collapse
Affiliation(s)
- Karen J Humphreys
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia.
| | - Michael A Conlon
- Preventative Health National Research Flagship, CSIRO, and CSIRO Animal, Food and Health Sciences, Adelaide, South Australia, Australia
| | - Graeme P Young
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - David L Topping
- Preventative Health National Research Flagship, CSIRO, and CSIRO Animal, Food and Health Sciences, Adelaide, South Australia, Australia
| | - Ying Hu
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Jean M Winter
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Anthony R Bird
- Preventative Health National Research Flagship, CSIRO, and CSIRO Animal, Food and Health Sciences, Adelaide, South Australia, Australia
| | - Lynne Cobiac
- Preventative Health National Research Flagship, CSIRO, and CSIRO Animal, Food and Health Sciences, Adelaide, South Australia, Australia
| | - Nicholas A Kennedy
- Department of Gastroenterology, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Flinders Medical Centre, Adelaide, South Australia, Australia
| | - Richard K Le Leu
- Preventative Health National Research Flagship, CSIRO, and CSIRO Animal, Food and Health Sciences, Adelaide, South Australia, Australia.
| |
Collapse
|
42
|
Sparla F, Falini G, Botticella E, Pirone C, Talamè V, Bovina R, Salvi S, Tuberosa R, Sestili F, Trost P. New starch phenotypes produced by TILLING in barley. PLoS One 2014; 9:e107779. [PMID: 25271438 PMCID: PMC4182681 DOI: 10.1371/journal.pone.0107779] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/15/2014] [Indexed: 01/08/2023] Open
Abstract
Barley grain starch is formed by amylose and amylopectin in a 1∶3 ratio, and is packed into granules of different dimensions. The distribution of granule dimension is bimodal, with a majority of small spherical B-granules and a smaller amount of large discoidal A-granules containing the majority of the starch. Starch granules are semi-crystalline structures with characteristic X-ray diffraction patterns. Distinct features of starch granules are controlled by different enzymes and are relevant for nutritional value or industrial applications. Here, the Targeting-Induced Local Lesions IN Genomes (TILLING) approach was applied on the barley TILLMore TILLING population to identify 29 new alleles in five genes related to starch metabolism known to be expressed in the endosperm during grain filling: BMY1 (Beta-amylase 1), GBSSI (Granule Bound Starch Synthase I), LDA1 (Limit Dextrinase 1), SSI (Starch Synthase I), SSIIa (Starch Synthase IIa). Reserve starch of nine M3 mutant lines carrying missense or nonsense mutations was analysed for granule size, crystallinity and amylose/amylopectin content. Seven mutant lines presented starches with different features in respect to the wild-type: (i) a mutant line with a missense mutation in GBSSI showed a 4-fold reduced amylose/amylopectin ratio; (ii) a missense mutations in SSI resulted in 2-fold increase in A:B granule ratio; (iii) a nonsense mutation in SSIIa was associated with shrunken seeds with a 2-fold increased amylose/amylopectin ratio and different type of crystal packing in the granule; (iv) the remaining four missense mutations suggested a role of LDA1 in granule initiation, and of SSIIa in determining the size of A-granules. We demonstrate the feasibility of the TILLING approach to identify new alleles in genes related to starch metabolism in barley. Based on their novel physicochemical properties, some of the identified new mutations may have nutritional and/or industrial applications.
Collapse
Affiliation(s)
- Francesca Sparla
- Department of Pharmacy and Biotechnology FABIT, University of Bologna, Bologna, Italy
| | - Giuseppe Falini
- Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy
| | - Ermelinda Botticella
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Viterbo, Italy
| | - Claudia Pirone
- Department of Pharmacy and Biotechnology FABIT, University of Bologna, Bologna, Italy
| | - Valentina Talamè
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Riccardo Bovina
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Silvio Salvi
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Roberto Tuberosa
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Francesco Sestili
- Department of Agriculture, Forestry, Nature & Energy, University of Tuscia, Viterbo, Italy
| | - Paolo Trost
- Department of Pharmacy and Biotechnology FABIT, University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
43
|
Zhou Z, Zhang Y, Chen X, Zhang M, Wang Z. Multi-scale structural and digestion properties of wheat starches with different amylose contents. Int J Food Sci Technol 2014. [DOI: 10.1111/ijfs.12593] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Yan Zhang
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Xiaoshan Chen
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Min Zhang
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Zhiwei Wang
- Key Laboratory of Food Nutrition and Safety; Ministry of Education; Tianjin University of Science and Technology; Tianjin 300457 China
| |
Collapse
|
44
|
Albarracín M, Weisstaub AR, Zuleta Á, Mandalunis P, González RJ, Drago SR. Effects of extruded whole maize, polydextrose and cellulose as sources of fibre on calcium bioavailability and metabolic parameters of growing Wistar rats. Food Funct 2014; 5:804-10. [DOI: 10.1039/c3fo60424a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Birt DF, Boylston T, Hendrich S, Jane JL, Hollis J, Li L, McClelland J, Moore S, Phillips GJ, Rowling M, Schalinske K, Scott MP, Whitley EM. Resistant starch: promise for improving human health. Adv Nutr 2013; 4:587-601. [PMID: 24228189 PMCID: PMC3823506 DOI: 10.3945/an.113.004325] [Citation(s) in RCA: 506] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ongoing research to develop digestion-resistant starch for human health promotion integrates the disciplines of starch chemistry, agronomy, analytical chemistry, food science, nutrition, pathology, and microbiology. The objectives of this research include identifying components of starch structure that confer digestion resistance, developing novel plants and starches, and modifying foods to incorporate these starches. Furthermore, recent and ongoing studies address the impact of digestion-resistant starches on the prevention and control of chronic human diseases, including diabetes, colon cancer, and obesity. This review provides a transdisciplinary overview of this field, including a description of types of resistant starches; factors in plants that affect digestion resistance; methods for starch analysis; challenges in developing food products with resistant starches; mammalian intestinal and gut bacterial metabolism; potential effects on gut microbiota; and impacts and mechanisms for the prevention and control of colon cancer, diabetes, and obesity. Although this has been an active area of research and considerable progress has been made, many questions regarding how to best use digestion-resistant starches in human diets for disease prevention must be answered before the full potential of resistant starches can be realized.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Li
- Department of Food Science and Human Nutrition
| | | | | | | | | | | | - M. Paul Scott
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA
| | | |
Collapse
|
46
|
Pol K, Christensen R, Bartels EM, Raben A, Tetens I, Kristensen M. Whole grain and body weight changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr 2013; 98:872-84. [PMID: 23945718 DOI: 10.3945/ajcn.113.064659] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Whole grains have received increased attention for their potential role in weight regulation. A high intake has been associated with smaller weight gain in prospective cohort studies, whereas the evidence from randomized controlled studies has been less consistent. OBJECTIVE We assessed the effects of whole-grain compared with non-whole-grain foods on changes in body weight, percentage of body fat, and waist circumference by using a meta-analytic approach. DESIGN We conducted a systematic literature search in selected databases. Studies were included in the review if they were randomized controlled studies of whole-grain compared with a non-whole-grain control in adults. A total of 2516 articles were screened for eligibility, and relevant data were extracted from 26 studies. Weighted mean differences were calculated, and a metaregression analysis was performed by using the whole-grain dose (g/d). RESULTS Data from 2060 participants were included. Whole-grain intake did not show any effect on body weight (weighted difference: 0.06 kg; 95% CI: -0.09, 0.20 kg; P = 0.45), but a small effect on the percentage of body fat was seen (weighted difference: -0.48%; 95% CI: -0.95%, -0.01%; P = 0.04) compared with that for a control. An examination of the impact of daily whole-grain intake could predict differences between groups, but there was no significant association (β = -0.0013 kg × g/d; 95% CI: -0.011, 0.009 kg × g/d). CONCLUSIONS Whole-grain consumption does not decrease body weight compared with control consumption, but a small beneficial effect on body fat may be present. The relatively short duration of intervention studies (≤16 wk) may explain the lack of difference in body weight and fat. Discrepancies between studies may be caused by differences in study design.
Collapse
Affiliation(s)
- Korrie Pol
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | | | | | | | | | | |
Collapse
|
47
|
Belobrajdic DP, Bird AR. The potential role of phytochemicals in wholegrain cereals for the prevention of type-2 diabetes. Nutr J 2013; 12:62. [PMID: 23679924 PMCID: PMC3658901 DOI: 10.1186/1475-2891-12-62] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/24/2013] [Indexed: 01/18/2023] Open
Abstract
Diets high in wholegrains are associated with a 20-30% reduction in risk of developing type-2 diabetes (T2D), which is attributed to a variety of wholegrain components, notably dietary fibre, vitamins, minerals and phytochemicals. Most phytochemicals function as antioxidants in vitro and have the potential to mitigate oxidative stress and inflammation which are implicated in the pathogenesis of T2D. In this review we compare the content and bioavailability of phytochemicals in wheat, barley, rice, rye and oat varieties and critically evaluate the evidence for wholegrain cereals and cereal fractions increasing plasma phytochemical concentrations and reducing oxidative stress and inflammation in humans. Phytochemical content varies considerably within and among the major cereal varieties. Differences in genetics and agro-climatic conditions explain much of the variation. For a number of the major phytochemicals, such as phenolics and flavanoids, their content in grains may be high but because these compounds are tightly bound to the cell wall matrix, their bioavailability is often limited. Clinical trials show that postprandial plasma phenolic concentrations are increased after consumption of wholegrain wheat or wheat bran however the magnitude of the response is usually modest and transient. Whether this is sufficient to bolster antioxidant defences and translates into improved health outcomes is still uncertain. Increased phytochemical bioavailability may be achieved through bio-processing of grains but the improvements so far are small and have not yet led to changes in clinical or physiological markers associated with reduced risk of T2D. Furthermore, the effect of wholegrain cereals and cereal fractions on biomarkers of oxidative stress or strengthening antioxidant defence in healthy individuals is generally small or nonexistent, whereas biomarkers of systemic inflammation tend to be reduced in people consuming high intakes of wholegrains. Future dietary intervention studies seeking to establish a direct role of phytochemicals in mediating the metabolic health benefits of wholegrains, and their potential for mitigating disease progression, should consider using varieties that deliver the highest possible levels of bioavailable phytochemicals in the context of whole foods and diets. Both postprandial and prolonged responses in systemic phytochemical concentrations and markers of inflammation and oxidative stress should be assessed along with changes related to health outcomes in healthy individuals as well as those with metabolic disease.
Collapse
Affiliation(s)
- Damien P Belobrajdic
- Commonwealth Scientific & Industrial Research Organisation-CSIRO, Food Futures National Flagship, GPO BOX 10041, Adelaide, SA 5000, Australia.
| | | |
Collapse
|
48
|
|
49
|
Zijlstra RT, Jha R, Woodward AD, Fouhse J, van Kempen TATG. Starch and fiber properties affect their kinetics of digestion and thereby digestive physiology in pigs. J Anim Sci 2012; 90 Suppl 4:49-58. [PMID: 23365281 DOI: 10.2527/jas.53718] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Traditionally in swine nutrition, analyses of starch and fiber have focused on assessing quantity; however, both have a wide range of functional properties making them underappreciated nutrients. Starch ranging from low to high amylose changes from rapidly digestible in the upper gut to poorly digestible but fermentable in the lower gut thereby changing from a source of glucose to VFA source. Likewise, fibers ranging from low to high viscosity affect digesta flow and from slowly to rapidly fermentable alter production of VFA serving as energy for the gut or whole body. Our hypothesis is that total extent, kinetics, and site of digestion or fermentation of starch and fiber are important for whole body nutrient use and intestinal health. To elucidate their effects, we developed in vitro, lab-based methodologies to describe kinetics of digestion and fermentation and linked these with in vivo models including i) ileum cannulation to collect digesta, ii) portal-vein catheterization to sequentially sample blood, iii) slaughter method to collect site-specific intestinal tissue and digesta, and iv) indirect calorimetry. Using these methods, kinetics of nutrient absorption was associated with pancreatic and intestinal hormones released into the portal vein, intestinal microbiota, and gene expression in intestinal tissue and microbiota. These studies confirmed that slowly digestible starch is partially degraded in the distal small and large intestine and fermented into VFA including butyrate (10-fold increase in net portal appearance), which reduces insulin responses by 60% and whole body energy use. Starch entering the distal intestine altered mRNA abundance of nutrient transporters and was bifidogenic. Extremely viscous purified fiber dampened glycemic responses and reduced digesta passage rate by 50% thereby increasing ileal digestion of dietary nutrients whereas increased fiber in feed grains reduced nutrient digestibility. Fermentable fiber increased butyrate and insulin production. These methods will therefore support elucidation of mechanisms that link starch and fiber properties to whole body nutrient use and intestinal health.
Collapse
|
50
|
Knudsen A, van Zanten GC, Jensen SL, Forssten SD, Saarinen M, Lahtinen SJ, Bandsholm O, Svensson B, Jespersen L, Blennow A. Comparative fermentation of insoluble carbohydrates in an in vitro human feces model spiked withLactobacillus acidophilusNCFM. STARCH-STARKE 2012. [DOI: 10.1002/star.201200091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|