1
|
Blomdahl J, Åberg M, Fridén M, Ahlström H, Hockings P, Hulthe J, Eriksson N, Gabrysch K, Nasr P, Risérus U, Kechagias S, Rorsman F, Ekstedt M, Vessby J. Proteomic signatures for fibrosis in MASLD: a biopsy-proven dual-cohort study. Scand J Gastroenterol 2025; 60:597-605. [PMID: 40237197 DOI: 10.1080/00365521.2025.2490996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES Predicting disease progression in metabolic dysfunction-associated steatotic liver disease (MASLD) is challenging, and current non-invasive tests (NITs) lack the precision to replace liver biopsy. This study aimed to identify plasma biomarkers for different stages of fibrosis using affinity-based proteomics in two biopsy-proven cohorts. The primary objective was to identify biomarkers capable of distinguishing between low-to-no fibrosis (F0-1) and significant fibrosis (F2-4) in MASLD. MATERIALS AND METHODS Participants in the discovery cohort were recruited from Uppsala University Hospital and Swedish CArdioPulmonary bioImage Study (SCAPIS), while the validation cohort was included from Linköping University Hospital. All participants diagnosed with MASLD underwent liver biopsy and were categorized by fibrosis stage (F0-1 or F2-4). A total of 276 plasma proteins were analyzed using Olink® panels, with biomarkers identified through ordinal logistic regression, random forest (RF) analysis and the Boruta algorithm. RESULTS The discovery cohort included 60 participants, with 60% having fibrosis stage F0-1 and 40% having F2-4. The validation cohort had 59 participants, of whom 35 had fibrosis stage F0-1 (59.3%) and 24 had stage F2-4 (40.7%). Five biomarkers were significantly associated with fibrosis stage in the discovery cohort, with four confirmed in the validation cohort. A model combining angiotensin converting enzyme-2 (ACE2), hepatocyte growth factor (HGF) and insulin-like growth factor-binding protein-7 (IGFBP-7) demonstrated strong predictive performance for significant fibrosis (c-statistics 0.82-0.83), outperforming fibrosis-4 (FIB-4) (c-statistics 0.61-0.72). CONCLUSIONS A biomarker model including ACE2, HGF and IGFBP7 shows promise in distinguishing between low-stage and significant fibrosis.
Collapse
Affiliation(s)
- Julia Blomdahl
- Department of Medical Sciences, Gastroenterology Research Group, Uppsala University, Uppsala, Sweden
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Michael Fridén
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Section of Radiology, Uppsala University, Uppsala, Sweden
- Antaros Medical, Mölndal, Sweden
| | | | | | - Niclas Eriksson
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Katja Gabrysch
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Patrik Nasr
- Division of Gastroenterology and Hepatology, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
- Wallenberg Center for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Stergios Kechagias
- Division of Gastroenterology and Hepatology, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Fredrik Rorsman
- Department of Medical Sciences, Gastroenterology Research Group, Uppsala University, Uppsala, Sweden
| | - Mattias Ekstedt
- Division of Gastroenterology and Hepatology, Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Johan Vessby
- Department of Medical Sciences, Gastroenterology Research Group, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Soltani A, Aghakhani A, Dehghanbanadaki H, Majidi Z, Rezaei-Tavirani M, Shafiee G, Ostovar A, Mir Moeini SA, Bandarian F, Larijani B, Nabipour I, Fahimfar N, Razi F. Association between liver fibrosis and osteoporosis in adults aged 50 and older: insights from the Bushehr Elderly Health Program. J Diabetes Metab Disord 2025; 24:65. [PMID: 39927178 PMCID: PMC11803014 DOI: 10.1007/s40200-025-01574-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/26/2025] [Indexed: 02/11/2025]
Abstract
Objectives Both liver fibrosis and osteoporosis share inflammatory pathways, with liver fibrosis potentially contributing to decreased bone mineral density (BMD). The rising prevalence of non-alcoholic fatty liver disease (NAFLD) and associated liver fibrosis, especially in older populations, may increase the risk of osteoporosis, but evidence remains inconclusive. This study aims to investigate the relationship between liver fibrosis and osteoporosis in individuals over 50 years old. Methods This cross-sectional study used data from the Bushehr Elderly Health Program (BEHP), a cohort of 2,000 participants aged 50 and older, selected through multistage stratified random sampling. BMD and trabecular bone score (TBS) measurements were assessed. The Fibrosis-4 (FIB-4) index, a surrogate marker for liver fibrosis, was also calculated to examine its association with these bone health indicators. Multiple linear regression was applied to assess the relationship between FIB-4 and lumbar, hip, femoral neck BMD, and TBS scores, while logistic regression was used to evaluate osteoporosis as the dependent variable. Results A total of 1,959 participants with adequate data were included in our analysis. 538 participants had osteoporosis, 936 participants had osteopenia, and 485 participants had normal bone density. FIB-4 index was higher in osteoporotic groups (1.45 ± 0.90) than in osteopenic (1.26 ± 0.58, p < 0.001) and normal groups (1.17 ± 0.48, p < 0.001). After controlling for confounders, FIB-4 index was negatively associated with hip BMD (βmen=-0.0162; 95% CI: -0.0313, -0.0012 and βwomen=-0.0221; 95% CI: -0.0340, -0.0102), femoral neck BMD (βmen=-0.0216; 95% CI: -0.0356, -0.0076 and βwomen=-0.0233; 95% CI: -0.0342, 0.0124), and TBS (βmen=-0.0154; 95% CI: -0.0264, -0.0043 and βwomen=-0.0244; 95% CI: -0.0338, -0.0149) in both genders and with lumbar BMD in women (β=-0.0176; 95% CI: -0.0307, -0.0045). An increase in the FIB-4 index was associated with more than a twofold rise in the risk of developing osteoporosis in women (OR = 2.123; 95% CI: 1.503, 3.000; p < 0.001) and a 36% higher risk in men (OR = 1.366; 95% CI: 1.012, 1.844; p = 0.042). Conclusions Liver fibrosis is associated with decreased bone density and attenuated bone architecture. Elevated FIB-4 index has been identified as a risk factor for osteoporosis, indicating a potential link between liver fibrosis and deteriorating bone health.
Collapse
Affiliation(s)
- Azin Soltani
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Amirhossein Aghakhani
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hojat Dehghanbanadaki
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Majidi
- Department of Medical Laboratory Science, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gita Shafiee
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Afshin Ostovar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Bandarian
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Noushin Fahimfar
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Caussy C, Vergès B, Leleu D, Duvillard L, Subtil F, Abichou-Klich A, Hervieu V, Milot L, Ségrestin B, Bin S, Rouland A, Delaunay D, Morcel P, Hadjadj S, Primot C, Petit JM, Charrière S, Moulin P, Levrero M, Cariou B, Disse E. Screening for Metabolic Dysfunction-Associated Steatotic Liver Disease-Related Advanced Fibrosis in Diabetology: A Prospective Multicenter Study. Diabetes Care 2025; 48:877-886. [PMID: 39887699 DOI: 10.2337/dc24-2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/31/2024] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Screening for advanced fibrosis (AF) resulting from metabolic dysfunction-associated steatotic liver disease (MASLD) is recommended in diabetology. This study aimed to compare the performance of noninvasive tests (NITs) with that of two-step algorithms for detecting patients at high risk of AF requiring referral to hepatologists. RESEARCH DESIGN AND METHODS We conducted a planned interim analysis of a prospective multicenter study including participants with type 2 diabetes and/or obesity and MASLD with comprehensive liver assessment comprising blood-based NITs, vibration-controlled transient elastography (VCTE), and two-dimensional shear-wave elastography (2D-SWE). AF risk stratification was determined by a composite criterion of liver biopsy, magnetic resonance elastography, or VCTE ≥12 kPa depending on availability. RESULTS Of 654 patients (87% with type 2 diabetes, 56% male, 74% with obesity), 17.6% had an intermediate/high risk of AF, and 9.3% had a high risk of AF. The area under the empirical receiver operating characteristic curves of NITs for detection of high risk of AF were as follows: fibrosis-4 index (FIB-4) score, 0.78 (95% CI 0.72-0.84); FibroMeter, 0.74 (0.66-0.83); FibroTest, 0.78 (0.72-0.85); Enhanced Liver Fibrosis (ELF) test, 0.82 (0.76-0.87); and SWE, 0.84 (0.78-0.89). Algorithms with FIB-4 score/VCTE showed good diagnostic performance for referral of patients at intermediate/high risk of AF to specialized care in hepatology. An alternative FIB-4 score/ELF test strategy showed a high negative predictive value (NPV; 88-89%) and a lower positive predictive value (PPV; 39-46%) at a threshold of 9.8. The FIB-4 score/2D-SWE strategy had an NPV of 91% and a PPV of 58-62%. The age-adapted FIB-4 score threshold resulted in lower NPVs and PPVs in all algorithms. CONCLUSIONS The FIB-4 score/VCTE algorithm showed excellent diagnostic performance, demonstrating its applicability for routine screening in diabetology. The ELF test using an adapted low threshold at 9.8 may be used as an alternative to VCTE.
Collapse
Affiliation(s)
- Cyrielle Caussy
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
- CarMeN Laboratory, INSERM U1060, INRA U1397, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
- Institut d'Hépatologie de Lyon, Lyon, France
| | - Bruno Vergès
- Department of Endocrinology, Diabetes and Metabolic Disorders, INSERM Unit, Lipides, Nutrition, Cancer (LNC) UMR 1231, Dijon University Hospital, University of Burgundy, Dijon, France
| | - Damien Leleu
- Department of Biochemistry, INSERM Unit, LNC-UMR 1231, Dijon University Hospital, University of Burgundy, Dijon, France
| | - Laurence Duvillard
- Department of Biochemistry, INSERM Unit, LNC-UMR 1231, Dijon University Hospital, University of Burgundy, Dijon, France
| | - Fabien Subtil
- Hospices Civils de Lyon, Service de Biostatistique, Lyon, France
- UMR 5558, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Amna Abichou-Klich
- Hospices Civils de Lyon, Service de Biostatistique, Lyon, France
- UMR 5558, CNRS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Valérie Hervieu
- Biopathology of Tumors, Groupement Hospitalier Est (GHE) Hospital, Hospices Civils de Lyon, Bron, France
| | - Laurent Milot
- Service de Radiologie, Hôpital Edouard Herriot, Hospices Civils de Lyon, Lyon, France
| | - Bérénice Ségrestin
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Sylvie Bin
- Service Recherche et Epidémiologie Cliniques, Pôle de Santé Publique, Hospices Civils de Lyon, Lyon, France
| | - Alexia Rouland
- Department of Endocrinology, Diabetes and Metabolic Disorders, INSERM Unit, Lipides, Nutrition, Cancer (LNC) UMR 1231, Dijon University Hospital, University of Burgundy, Dijon, France
| | - Dominique Delaunay
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
| | - Pierre Morcel
- L'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes Université, Nantes, France
| | - Samy Hadjadj
- L'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes Université, Nantes, France
| | - Claire Primot
- L'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes Université, Nantes, France
| | - Jean-Michel Petit
- Department of Endocrinology, Diabetes and Metabolic Disorders, INSERM Unit, Lipides, Nutrition, Cancer (LNC) UMR 1231, Dijon University Hospital, University of Burgundy, Dijon, France
| | - Sybil Charrière
- CarMeN Laboratory, INSERM U1060, INRA U1397, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
- Fédération d'Endocrinologie, Diabète et Nutrition, Hôpital Cardiovasculaire, Hospices Civils de Lyon, Bron, France
| | - Philippe Moulin
- CarMeN Laboratory, INSERM U1060, INRA U1397, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
- Fédération d'Endocrinologie, Diabète et Nutrition, Hôpital Cardiovasculaire, Hospices Civils de Lyon, Bron, France
| | - Massimo Levrero
- Institut d'Hépatologie de Lyon, Lyon, France
- Service d'Hépatologie, Hôpital Croix-Rousse, Hospices Civils de Lyon, Lyon, France
- INSERM U1350, UMR PaThLiv, Université Claude Bernard Lyon 1, Lyon, France
| | - Bertrand Cariou
- L'Institut du Thorax, INSERM, CNRS, CHU Nantes, Nantes Université, Nantes, France
| | - Emmanuel Disse
- Département Endocrinologie, Diabète et Nutrition, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre-Bénite, France
- CarMeN Laboratory, INSERM U1060, INRA U1397, Institut National des Sciences Appliquées de Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| |
Collapse
|
4
|
de Jong VD, Alings M, Bruha R, Cortez-Pinto H, Dedoussis GV, Doukas M, Francque S, Fournier-Poizat C, Gastaldelli A, Hankemeier T, Holleboom AG, Miele L, Moreno C, Muris JWM, Ratziu V, Romero-Gomez M, Schattenberg JM, Serfaty L, Stefan DC, Tushuizen ME, Verheij J, Willemse J, Franco OH, Grobbee DE, Castro Cabezas M, GRIPonMASH consortium. Global research initiative for patient screening on MASH (GRIPonMASH) protocol: rationale and design of a prospective multicentre study. BMJ Open 2025; 15:e092731. [PMID: 40447415 PMCID: PMC12164639 DOI: 10.1136/bmjopen-2024-092731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 05/12/2025] [Indexed: 06/16/2025] Open
Abstract
INTRODUCTION The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) may be as high as 38% in the adult population with potential serious complications, multiple comorbidities and a high socioeconomic burden. However, there is a general lack of awareness and knowledge about MASLD and its progressive stages (metabolic dysfunction-associated steatohepatitis (MASH) and fibrosis). Therefore, MASLD is still far underdiagnosed. The 'Global Research Initiative for Patient Screening on MASH' (GRIPonMASH) consortium focuses on this unmet public health need. GRIPonMASH will help (primary) healthcare providers to implement a patient care pathway, as recommended by multiple scientific societies, to identify patients at risk of severe MASLD and to raise awareness. Furthermore, GRIPonMASH will contribute to a better understanding of the pathophysiology of MASLD and improved identification of diagnostic and prognostic markers to detect individuals at risk. METHODS This is a prospective multicentre observational study in which 10 000 high-risk patients (type 2 diabetes mellitus, obesity, metabolic syndrome or hypertension) will be screened in 10 European countries using at least two non-invasive tests (Fibrosis-4 index and FibroScan). Blood samples and liver biopsy material will be collected and biobanked, and multiomics analyses will be conducted. ETHICS AND DISSEMINATION The study will be conducted in compliance with this protocol and applicable national and international regulatory requirements. The study initiation package is submitted at the local level. The study protocol has been approved by local medical ethical committees in all 10 participating countries. Results will be made public and published in scientific, peer-reviewed, international journals and at international conferences. REGISTRATION DETAILS NCT05651724, registration date: 15 Dec 2022.
Collapse
Affiliation(s)
- Vivian D de Jong
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Julius Clinical BV, Zeist, The Netherlands
| | - Marco Alings
- Cardiology, Amphia Hospital, Breda, The Netherlands
| | - Radan Bruha
- General University Hospital and the First Faculty of Medicine, Charles University, Praha, Czech Republic
| | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - George V Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens, Greece
| | - Michail Doukas
- Pathology, Erasmus MC Universitair Medisch Centrum Rotterdam, Rotterdam, Zuid-Holland, The Netherlands
| | - Sven Francque
- Division of Gastroenterology and Hepatology, University Hospital Antwerp, Edegem, Belgium
| | | | - Amalia Gastaldelli
- Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Thomas Hankemeier
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, Zuid-Holland, The Netherlands
| | - Adriaan G Holleboom
- Department of Vascular Medicine and Internal Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Luca Miele
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore - Campus di Roma, Roma, Lazio, Italy
- Liver Transplant Unit and Steatotic Liver Disease Clinic, Digestive Disease Center CEMAD, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Lazio, Italy
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, Hopital Erasme, Bruxelles, Belgium
| | - Jean W M Muris
- Family Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vlad Ratziu
- ICAN - Institute for Cardiometabolism and Nutrition, Hôpital Pitié Salpêtrière, Sorbonne University, Paris, France
| | - Manuel Romero-Gomez
- UCM Digestive Diseases and SeLiver Group, Virgen del Rocio University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Sevilla, Andalucía, Spain
| | - Jörn M Schattenberg
- Department of Internal Medicine II, Saarland University Hospital, Homburg, Saarland, Germany
- Saarland University, Saarbrucken, Germany
| | | | | | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | | | | | - Oscar H Franco
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Diederick E Grobbee
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Julius Clinical BV, Zeist, The Netherlands
| | - Manuel Castro Cabezas
- Julius Clinical BV, Zeist, The Netherlands
- Department of Internal Medicine, Franciscus Gasthuis en Vlietland, Rotterdam, Zuid-Holland, The Netherlands
- Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
5
|
Poynard T, Deckmyn O, Pais R, Aron-Wisnewsky J, Peta V, Bedossa P, Charlotte F, Ponnaiah M, Siksik JM, Genser L, Clement K, Leanour G, Valla D. Three Neglected STARD Criteria Reduce the Uncertainty of the Liver Fibrosis Biomarker FibroTest-T2D in Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). Diagnostics (Basel) 2025; 15:1253. [PMID: 40428246 PMCID: PMC12110081 DOI: 10.3390/diagnostics15101253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Bariatric surgery (BS), drugs approved for type-2-diabetes (T2D), obesity, and liver fibrosis (resmetirom) announce the widespread use of fibrosis tests in patients with metabolic liver disease (MASLD). An unmet need is to reduce the uncertainty of biomarkers for the diagnosis of the early stage of clinically significant fibrosis (eF). This can be achieved if three essential but neglected STARD methods (3M) are used, which have a more sensitive histological score than the standard comparator (five-tiers), the weighted area under the characteristic curve (wAUROC) instead of the binary AUROC, and biopsy length. We applied 3M to FibroTest-T2D to demonstrate this reduction of uncertainty and constructed proxies predicting eF in large populations. Methods: For uncertainty, seven subsets were analyzed, four included biopsies (n = 1903), and to assess eF incidence, three MASLD-populations (n = 299,098). FibroTest-T2D classification rates after BS and in outpatients-T2D (n = 402) were compared with and without 3M. In MASLD, trajectories of proxies and incidence against confounding factors used hazard ratios. Results: After BS (110 biopsies), reversal of eF was observed in 16/29 patients (84%) using seven-tier scores vs. 3/20 patients (47%) using five-tier scores (p = 0.005). When the biopsy length was above the median, FibroTest-T2D wAUROC was 0.90 (SD = 0.01), and the wAUROC was 0.88 (SD = 0.1) when the length was below the median (p < 0.001). For the first time, obesity was associated with eF before T2D (p < 0.001), and perimenopausal age with apoA1 and haptoglobin increases (p < 0.0001). Conclusions: Validations of circulating biomarkers need to assess their uncertainty. FibroTest-T2D predicts fibrosis regression after BS. Applying 3M and adjustments could avoid misinterpretations in MASLD surveillance.
Collapse
Affiliation(s)
- Thierry Poynard
- Medical Faculty Pitié Salpêtrière, Sorbonne University, 75005 Paris, France; (R.P.); (J.A.-W.); (F.C.); (L.G.); (K.C.)
- BioPredictive, 75007 Paris, France; (O.D.); (V.P.)
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France;
- Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France;
- Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | | | - Raluca Pais
- Medical Faculty Pitié Salpêtrière, Sorbonne University, 75005 Paris, France; (R.P.); (J.A.-W.); (F.C.); (L.G.); (K.C.)
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France;
- Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France;
- Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Judith Aron-Wisnewsky
- Medical Faculty Pitié Salpêtrière, Sorbonne University, 75005 Paris, France; (R.P.); (J.A.-W.); (F.C.); (L.G.); (K.C.)
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France;
- Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France;
- Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 75013 Paris, France
- Centre de Recherche Saint Antoine, INSERM UMRS_938, 75012 Paris, France
| | | | - Pierre Bedossa
- UMR1149 (CRI), Inserm, Université Paris Cité, 75018 Paris, France; (P.B.)
- Liverpat, 75116 Paris, France
| | - Frederic Charlotte
- Medical Faculty Pitié Salpêtrière, Sorbonne University, 75005 Paris, France; (R.P.); (J.A.-W.); (F.C.); (L.G.); (K.C.)
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France;
| | - Maharajah Ponnaiah
- Institut National de la Santé et de la Recherche Médicale, 75013 Paris, France;
| | - Jean-Michel Siksik
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France;
| | - Laurent Genser
- Medical Faculty Pitié Salpêtrière, Sorbonne University, 75005 Paris, France; (R.P.); (J.A.-W.); (F.C.); (L.G.); (K.C.)
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France;
- Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Karine Clement
- Medical Faculty Pitié Salpêtrière, Sorbonne University, 75005 Paris, France; (R.P.); (J.A.-W.); (F.C.); (L.G.); (K.C.)
- Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, 75013 Paris, France;
- Nutrition Department, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, 75013 Paris, France
| | - Gilles Leanour
- CNRS UMR8507, Laboratoire Génie Électrique et Électronique de Paris (GeePs), Sorbonne Université, 75252 Paris, France;
| | - Dominique Valla
- UMR1149 (CRI), Inserm, Université Paris Cité, 75018 Paris, France; (P.B.)
- Service d’Hépatologie, AP-HP, Hôpital Beaujon, 92110 Clichy-la-Garenne, France
| |
Collapse
|
6
|
Allen AM, Lazarus JV, Alkhouri N, Noureddin M, Wong VWS, Tsochatzis EA, de Avila L, Racila A, Nader F, Mark HE, Henry L, Stepanova M, Castera L, Younossi ZM. Global patterns of utilization of noninvasive tests for the clinical management of metabolic dysfunction-associated steatotic liver disease. Hepatol Commun 2025; 9:e0678. [PMID: 40304566 PMCID: PMC12045536 DOI: 10.1097/hc9.0000000000000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/24/2024] [Indexed: 05/02/2025] Open
Abstract
BACKGROUND Noninvasive tests (NITs) are used to risk-stratify metabolic dysfunction-associated steatotic liver disease. The aim was to survey global patterns of real-world use of NITs. METHODS A 38-item survey was designed by the Global NASH Council. Providers were asked about risks for advanced fibrosis, which NITs (cutoff values) they use to risk-stratify liver disease, monitor progression, and which professional guidelines they follow. RESULTS A total of 321 participants from 43 countries completed the survey (54% hepatologists, 28% gastroenterologists, and 18% other). Of the respondents, 85% would risk-stratify patients with type 2 diabetes, obesity (82%), or abnormal liver enzymes (73%). Among NITs to rule out significant or advanced fibrosis, transient elastography (TE) and fibrosis-4 (FIB-4) were most used, followed by NAFLD Fibrosis Score, Enhanced Liver Fibrosis, and magnetic resonance elastography. The cutoffs for ruling out significant fibrosis varied considerably between practices and from guidelines, with only 50% using TE <8 kPa, 65% using FIB-4 <1.30 for age <65, and 41% using FIB-4 <2.00 for age ≥65. Similar variability was found for ruling in advanced fibrosis, where thresholds of FIB-4 ≥2.67 and TE ≥10 kPa were used by 20% and 17%, respectively. To establish advanced fibrosis, 48% would use 2 NITs while 23% would consider 1 NIT, and 17% would confirm with liver biopsy. TE was used by >75% to monitor, and 66% would monitor (intermediate or high risk) annually. Finally, 65% follow professional guideline recommendations regarding NITs. CONCLUSIONS In clinical practice, there is variability in NIT use and their thresholds. Additionally, there is suboptimal adherence to professional societies' guidelines.
Collapse
Affiliation(s)
- Alina M. Allen
- The Global NASH Council, Washington, District of Columbia, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey V. Lazarus
- The Global NASH Council, Washington, District of Columbia, USA
- CUNY Graduate School of Public Health and Health Policy, New York, New York, USA
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Naim Alkhouri
- The Global NASH Council, Washington, District of Columbia, USA
- Arizona Liver Health, Chandler, Arizona, USA
| | - Mazen Noureddin
- The Global NASH Council, Washington, District of Columbia, USA
- Houston Methodist Hospital, Houston, Texas, USA
| | - Vincent Wai-Sun Wong
- The Global NASH Council, Washington, District of Columbia, USA
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Emmanuel A. Tsochatzis
- The Global NASH Council, Washington, District of Columbia, USA
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Leyla de Avila
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Andrei Racila
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Fatema Nader
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Henry E. Mark
- The Global NASH Council, Washington, District of Columbia, USA
| | - Linda Henry
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Maria Stepanova
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
| | - Laurent Castera
- The Global NASH Council, Washington, District of Columbia, USA
- Department of Hepatology, Beaujon Hospital, Assistance Publique—Hôpitaux de Paris, Université Paris-Cité, Clichy, France
| | - Zobair M. Younossi
- The Global NASH Council, Washington, District of Columbia, USA
- Beatty Liver and Obesity Research Program, Inova Health System, Fairfax, Falls Church, Virginia, USA
- Center for Outcomes Research in Liver Disease, Washington, District of Columbia, USA
| |
Collapse
|
7
|
Wong SW, Yang YY, Chen H, Xie L, Shen XZ, Zhang NP, Wu J. New advances in novel pharmacotherapeutic candidates for the treatment of metabolic dysfunction-associated steatohepatitis (MASH) between 2022 and 2024. Acta Pharmacol Sin 2025; 46:1145-1155. [PMID: 39870846 PMCID: PMC12032127 DOI: 10.1038/s41401-024-01466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/18/2024] [Indexed: 01/29/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) covers a broad spectrum of profile from simple fatty liver, evolving to metabolic dysfunction-associated steatohepatitis (MASH), to hepatic fibrosis, further progressing to cirrhosis and hepatocellular carcinoma (HCC). MASLD has become a prevalent disease with 25% in average over the world. MASH is an active stage, and requires pharmacological intervention when there is necroptotic damage with fibrotic progression. Although there is an increased understanding of MASH pathogenesis and newly approved resmetirom, given its complexity and heterogeneous pathophysiology, there is a strong necessity to develop more drug candidates with better therapeutic efficacy and well-tolerated safety profile. With an increased list of pharmaceutical candidates in the pipeline, it is anticipated to witness successful approval of more potential candidates in this fast-evolving field, thereby offering different categories of medications for selective patient populations. In this review, we update the advances in MASH pharmacotherapeutics that have completed phase II or III clinical trials with potential application in clinical practice during the latest 2 years, focusing on effectiveness and safety issues. The overview of fast-evolving status of pharmacotherapeutic candidates for MASH treatment confers deep insights into the key issues, such as molecular targets, endpoint selection and validation, clinical trial design and execution, interaction with drug administration authority, real-world data feedback and further adjustment in clinical application.
Collapse
Affiliation(s)
- Shu Wei Wong
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Ning-Ping Zhang
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, 200032, China.
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, 200032, China.
| |
Collapse
|
8
|
Huang Q, Qadri SF, Bian H, Yi X, Lin C, Yang X, Zhu X, Lin H, Yan H, Chang X, Sun X, Ma S, Wu Q, Zeng H, Hu X, Zheng Y, Yki-Järvinen H, Gao X, Tang H, Xia M. A metabolome-derived score predicts metabolic dysfunction-associated steatohepatitis and mortality from liver disease. J Hepatol 2025; 82:781-793. [PMID: 39423864 DOI: 10.1016/j.jhep.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/11/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is associated with a >10-fold increase in liver-related mortality. However, biomarkers predicting both MASH and mortality in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) are missing. We developed a metabolome-derived prediction score for MASH and examined whether it predicts mortality in Chinese and European cohorts. METHODS The MASH prediction score was developed using a multi-step machine learning strategy, based on 44 clinical parameters and 250 serum metabolites measured by proton nuclear magnetic resonance in 311 Chinese adults undergoing a liver biopsy. External validation was conducted in a Finnish liver biopsy cohort (n = 305). We investigated associations of the score with all-cause and cause-specific mortality in the population-based Shanghai Changfeng study (n = 5,893) and the UK biobank (n = 111,673). RESULTS A total of 24 clinical parameters and 194 serum metabolites were significantly associated with MASH in the Chinese liver biopsy cohort. The final MASH score included BMI, aspartate aminotransferase, tyrosine, and the phospholipid-to-total lipid ratio in VLDL. The score identified patients with MASH with AUROCs of 0.87 (95% CI 0.83-0.91) and 0.81 (95% CI 0.75-0.88) in the Chinese and Finnish cohorts, with high negative predictive values. Participants with a high or intermediate risk of MASH based on the score had a markedly higher risk of MASLD-related mortality than those with a low risk in Chinese (hazard ratio 23.19; 95% CI 4.80-111.97) and European (hazard ratio 20.15; 95% CI 10.95-37.11) individuals after 7.2 and 12.6 years of follow-up, respectively. The MASH prediction score was superior to the Fibrosis-4 index and the NAFLD fibrosis score in predicting MASLD-related mortality. CONCLUSION The metabolome-derived MASH prediction score accurately predicts risk of MASH and MASLD-related mortality in both Chinese and European individuals. IMPACT AND IMPLICATIONS Metabolic dysfunction-associated steatohepatitis (MASH) is associated with more than a 10-fold increase in liver-related death. However, biomarkers predicting not only MASH, but also death due to liver disease, are missing. We established a MASH prediction score based on 44 clinical parameters and 250 serum metabolites using a machine learning strategy. This metabolome-derived MASH prediction score could accurately identify patients with MASH among both Chinese and Finnish individuals, and it was superior to the Fibrosis-4 index and the NAFLD fibrosis score in predicting MASLD-related death in the general population. Thus, the new MASH prediction score is a useful tool for identifying individuals with a markedly increased risk of serious liver-related outcomes among at-risk and general populations.
Collapse
Affiliation(s)
- Qingxia Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Sami F Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Hua Bian
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaoxuan Yi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Chenhao Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Xinyu Yang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Hongmei Yan
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xinxia Chang
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiaoyang Sun
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Shuai Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Qi Wu
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Xiqi Hu
- Department of Pathology, Medical College, Fudan University, Shanghai, China
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai 200438, China.
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital and Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
9
|
Boeckmans J, Hagström H, Cryer DR, Schattenberg JM. The importance of patient engagement in the multimodal treatment of MASLD. COMMUNICATIONS MEDICINE 2025; 5:148. [PMID: 40312453 PMCID: PMC12046057 DOI: 10.1038/s43856-025-00871-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/16/2025] [Indexed: 05/03/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is often regarded in society as a disease caused by personal lifestyle and dietary choices. Healthcare providers who have empathy and are able to explain the disease trajectory can better engage with people with MASLD and actively work with them to improve their metabolic health on a sustainable basis. Non-invasive tests can assist in this process, but healthcare providers must ensure they explain their advantages and limitations. Discussing and setting lifestyle goals are priorities before initiating specific pharmacological treatment, since living a healthy lifestyle will remain the backbone of the multimodal management of MASLD. In this review, we discuss challenges and opportunities to actively engage with people living with MASLD in a multimodal treatment framework as a healthcare provider.
Collapse
Affiliation(s)
- Joost Boeckmans
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- In Vitro Liver Disease Modelling Team, Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden
| | | | - Jörn M Schattenberg
- Department of Medicine II, University Medical Center Homburg, Homburg and Saarland University, Saarbrücken, Germany.
- PharmaScienceHub (PSH) Saarland University, Saarbrücken, Germany.
- Centrum für geschlechtsspezifische Biologie und Medizin (CGBM), Saarland University, Saarbrücken, Germany.
| |
Collapse
|
10
|
Pecani M, Andreozzi P, Cangemi R, Corica B, Miglionico M, Romiti GF, Stefanini L, Raparelli V, Basili S. Metabolic Syndrome and Liver Disease: Re-Appraisal of Screening, Diagnosis, and Treatment Through the Paradigm Shift from NAFLD to MASLD. J Clin Med 2025; 14:2750. [PMID: 40283580 PMCID: PMC12028215 DOI: 10.3390/jcm14082750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/11/2025] [Accepted: 04/12/2025] [Indexed: 04/29/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), encompasses a spectrum of liver diseases characterized by hepatic steatosis, the presence of at least one cardiometabolic risk factor, and no other apparent cause. Metabolic syndrome (MetS) is a cluster of clinical conditions associated with increased risk of cardiovascular disease, type 2 diabetes, and overall morbidity and mortality. This narrative review summarizes the changes in the management of people with MetS and NAFLD/MASLD from screening to therapeutic strategies that have occurred in the last decades. Specifically, we underline the clinical importance of considering the different impacts of simple steatosis and advanced fibrosis and provide an up-to-date overview on non-invasive diagnostic tests (i.e., imaging and serum biomarkers), which now offer acceptable accuracy and are globally more accessible. Early detection of MetS and MASLD is a top priority as it allows for timely interventions, primarily through lifestyle modification. The liver and cardiovascular benefits of a global and multidimensional approach are not negligible. Therefore, a holistic approach to both conditions, MetS and related chronic liver disease, should be applied to improve overall health and longevity.
Collapse
Affiliation(s)
- Marin Pecani
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Paola Andreozzi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Roberto Cangemi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Bernadette Corica
- Cardiology Division, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Polyclinic of Modena, 41121 Modena, Italy
| | - Marzia Miglionico
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Giulio Francesco Romiti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Lucia Stefanini
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Valeria Raparelli
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Stefania Basili
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Romero-Gómez M, Escalada J, Noguerol M, Pérez A, Carretero J, Crespo J, Mascort JJ, Aguilar I, Tinahones F, Cañones P, Gómez-Huelgas R, de Luis D, Genúa Trullos I, Aller R, Rubio MA. Multidisciplinary clinical practice guideline on the management of metabolic hepatic steatosis. GASTROENTEROLOGIA Y HEPATOLOGIA 2025:502442. [PMID: 40221023 DOI: 10.1016/j.gastrohep.2025.502442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/26/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Metabolic hepatic steatosis (MetHS) is a clinically heterogeneous, multisystemic, dynamic, and complex disease, whose progression is one of the main causes of cirrhosis and hepatocarcinoma. This clinical practice guideline aims to respond to its main challenges, both in terms of disease burden and complexity. To this end, recommendations have been proposed to experts through the Delphi method. The consensus was optimal in recommendations regarding type 2 diabetes as a risk factor (1.5.1, 4.5.1), in which cases early detection of MetHS should be carried out (4.5.2). Its results also emphasize the importance of the use of non-invasive tests (FIB-4, NFS, HFS) for the exclusion of significant fibrosis in patients with suspected MetHS (2.3.1, 2.3.3). Diagnosis should be carried out through the sequential combination of non-invasive indices and transient elastography by FibroScan® for its risk stratification (2.3.3). A nearly unanimous consensus was reached regarding the role of early prevention in the impact on the quality of life and survival of patients (5.1.2), as well as on the effectiveness of the Mediterranean diet and physical exercise in relation to the improvement of steatosis, steatohepatitis and fibrosis in MetHS patients (5.2.2) and on the positive results offered by resmiterom and semaglutide in promoting fibrosis regression (5.4.1). Finally, a great consensus has been reached regarding the importance of multidisciplinary management in MetHS, for which it is essential to agree on multidisciplinary protocols for referral between levels in each health area (6.2.1), as well as ensuring that referrals to Hepatology/Digestive and Endocrinology or Internal Medicine services are effective and beneficial to prevent the risk of disease progression (6.2.3, 6.3.1).
Collapse
Affiliation(s)
- Manuel Romero-Gómez
- UGC Aparato Digestivo, Hospital Universitario Virgen del Rocío, Sevilla, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Instituto de Biomedicina de Sevilla (HUVR/CSIC/US), Departamento de Medicina, Universidad de Sevilla, Sevilla, España; Asociación España para el Estudio del Hígado, España.
| | - Javier Escalada
- Clínica Universidad de Navarra, Pamplona, España; Sociedad Española de Endocrinología y Nutrición, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, España; Instituto de Investigación en la Salud de Navarra (IdiSNA), Pamplona, España.
| | - Mar Noguerol
- Centro de Salud Universitario Cuzco de Fuenlabrada, Madrid, España; Sociedad Española de Medicina de Familia y Comunitaria, España
| | - Antonio Pérez
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, Barcelona, España; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), España; Sociedad Española de Diabetes, España
| | - Juana Carretero
- Hospital Universitario de Badajoz, Badajoz, España; Sociedad Española de Medicina Interna (SEMI), España
| | - Javier Crespo
- Hospital Universitario Marqués de Valdecilla, Santander, España; Sociedad Española de Patología Digestiva, España; Grupo de Investigación Clínica y Traslacional en Enfermedades Digestivas, España; Instituto de Investigación Valdecilla (IDIVAL), Santander, España
| | - Juan J Mascort
- Sociedad Española de Medicina de Familia y Comunitaria, España; Centro de Salud Florida Sud, Institut Català de la Salut, Hospitalet de Llobregat, España
| | - Ignacio Aguilar
- Clínica Universidad de Navarra, Pamplona, España; Sociedad Española de Endocrinología y Nutrición, España; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, España; Instituto de Investigación en la Salud de Navarra (IdiSNA), Pamplona, España
| | - Francisco Tinahones
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, España; Departamento de Endocrinología y Nutrición, Hospital Virgen de la Victoria, Málaga, España; Sociedad Española de Obesidad, España; Instituto de Investigación Biomédica de Málaga (IBIMA)-Plataforma Bionard, Universidad de Málaga, Málaga, España
| | - Pedro Cañones
- Sociedad Española de Médicos Generales y de Familia, España
| | - Ricardo Gómez-Huelgas
- Sociedad Española de Medicina Interna (SEMI), España; Servicio de Medicina Interna, Hospital Regional Universitario de Málaga, Málaga, España; Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga (UMA), Málaga, España
| | - Daniel de Luis
- Sociedad Española de Endocrinología y Nutrición, España; Servicio de Endocrinología y Nutrición, Hospital Clínico Universitario de Valladolid, Valladolid, España; Centro de Investigación de Endocrinología y Nutrición, Universidad de Valladolidad, Valladolid, España
| | - Idoia Genúa Trullos
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, Barcelona, España; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), España; Sociedad Española de Diabetes, España
| | - Rocío Aller
- Servicio de Endocrinología y Nutrición, Hospital de la Santa Creu i Sant Pau, Barcelona, España; CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM), España; Sociedad Española de Diabetes, España; Servicio de Aparato Digestivo, Hospital Clínico Universitario de Valladolid, Universidad de Valladolid, Valladolid, España; Ciber Enfermedades infecciosas (CIBERINFEC), España
| | - Miguel A Rubio
- Sociedad Española de Endocrinología y Nutrición, España; Hospital Clínico San Carlos, Madrid, España
| |
Collapse
|
12
|
Eslam M, Fan JG, Yu ML, Wong VWS, Cua IH, Liu CJ, Tanwandee T, Gani R, Seto WK, Alam S, Young DY, Hamid S, Zheng MH, Kawaguchi T, Chan WK, Payawal D, Tan SS, Goh GBB, Strasser SI, Viet HD, Kao JH, Kim W, Kim SU, Keating SE, Yilmaz Y, Kamani L, Wang CC, Fouad Y, Abbas Z, Treeprasertsuk S, Thanapirom K, Al Mahtab M, Lkhagvaa U, Baatarkhuu O, Choudhury AK, Stedman CAM, Chowdhury A, Dokmeci AK, Wang FS, Lin HC, Huang JF, Howell J, Jia J, Alboraie M, Roberts SK, Yoneda M, Ghazinian H, Mirijanyan A, Nan Y, Lesmana CRA, Adams LA, Shiha G, Kumar M, Örmeci N, Wei L, Lau G, Omata M, Sarin SK, George J. The Asian Pacific association for the study of the liver clinical practice guidelines for the diagnosis and management of metabolic dysfunction-associated fatty liver disease. Hepatol Int 2025; 19:261-301. [PMID: 40016576 DOI: 10.1007/s12072-024-10774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/28/2024] [Indexed: 03/01/2025]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) affects over one-fourth of the global adult population and is the leading cause of liver disease worldwide. To address this, the Asian Pacific Association for the Study of the Liver (APASL) has created clinical practice guidelines focused on MAFLD. The guidelines cover various aspects of the disease, such as its epidemiology, diagnosis, screening, assessment, and treatment. The guidelines aim to advance clinical practice, knowledge, and research on MAFLD, particularly in special groups. The guidelines are designed to advance clinical practice, to provide evidence-based recommendations to assist healthcare stakeholders in decision-making and to improve patient care and disease awareness. The guidelines take into account the burden of clinical management for the healthcare sector.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia.
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal MedicineCollege of Medicine and Center for Liquid Biopsy and Cohort ResearchFaculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of MedicineSchool of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, Kaohsiung Medical University, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
| | - Ian Homer Cua
- Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Global City, Philippines
| | - Chun-Jen Liu
- Division of Gastroenterology and Hepatology, Department of Internal MedicineHepatitis Research CenterGraduate Institute of Clinical Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tawesak Tanwandee
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rino Gani
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Pangeran Diponegoro Road No. 71St, Central Jakarta, 10430, Indonesia
| | - Wai-Kay Seto
- Department of Medicine, School of Clinical Medicine, State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Dan Yock Young
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Saeed Hamid
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Diana Payawal
- Department of Medicine, Cardinal Santos Medical Center, Mandaluyong, Philippines
| | - Soek-Siam Tan
- Department of Hepatology, Selayang Hospital, Batu Caves, Malaysia
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
- Medicine Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore
| | - Simone I Strasser
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Hang Dao Viet
- Internal Medicine Faculty, Hanoi Medical University, Hanoi, Vietnam
| | - Jia-Horng Kao
- Graduate Institute of Clinical MedicineDepartment of Internal MedicineHepatitis Research CenterDepartment of Medical Research, National Taiwan University College of Medicine, National Taiwan University, National Taiwan University Hospital, 1 Chang-Te Street, 10002, Taipei, Taiwan
| | - Won Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, Republic of Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Severance Hospital, 50-1, Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Shelley E Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | | | - Chia-Chi Wang
- Buddhist Tzu Chi Medical Foundation and School of Medicine, Taipei Tzu Chi Hospital, Tzu Chi University, Taipei, Taiwan
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Cairo, Egypt
| | - Zaigham Abbas
- Department of Hepatogastroenterology, Dr.Ziauddin University Hospital, Clifton, Karachi, Pakistan
| | | | | | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Undram Lkhagvaa
- Department of Health Policy, School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Oidov Baatarkhuu
- Department of Infectious Diseases, School of Medicine, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Ashok Kumar Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, 110070, India
| | | | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - A Kadir Dokmeci
- Department of Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, 100039, China
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Institute of Clinical Medicine, School of Medicine, Taipei Veterans General Hospital, National Yang-Ming Chiao Tung University, No. 201, Section 2, Shipai RdNo. 155, Section 2, Linong St, Beitou District, Taipei City, 112, Taiwan
| | - Jee-Fu Huang
- Hepatobiliary Division, Department of Internal MedicineCollege of Medicine and Center for Liquid Biopsy and Cohort ResearchFaculty of Internal Medicine and Hepatitis Research Center, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jess Howell
- Burnet Institute, Melbourne, VIC, 3004, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, 3008, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, 3050, Australia
- Department of Gastroenterology, St Vincent's Hospital Melbourne, Melbourne, VIC, 3165, Australia
| | - Jidong Jia
- Liver Research Center, Beijing Key Laboratory of Translational Medicine On Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Stuart K Roberts
- Department of Gastroenterology and Hepatology, Central Clinical School, The Alfred, Monash University, Melbourne, Australia
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, 236-0004, Japan
| | - Hasmik Ghazinian
- Gastroenterology and Hepatology Department, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Aram Mirijanyan
- Gastroenterology and Hepatology Department, Yerevan Medical Scientific Center, Yerevan, Armenia
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | | | - Leon A Adams
- Medical School, Faculty of Medicine and Health Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Gamal Shiha
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Necati Örmeci
- Department of Gastroenterohepatology, Istanbul Health and Technology University, Istanbul, Turkey
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - George Lau
- Humanity and Health Medical Group, Humanity and Health Clinical Trial Center, Hong Kong SAR, China
- The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| |
Collapse
|
13
|
Li YT, Shao WQ, Chen ZM, Ma XC, Yi CH, Tao BR, Zhang B, Ma Y, Zhang G, Zhang R, Geng Y, Lin J, Chen JH. GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers. Clin Mol Hepatol 2025; 31:409-425. [PMID: 39657752 PMCID: PMC12016653 DOI: 10.3350/cmh.2024.0657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND/AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation. METHODS The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation. RESULTS MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs. CONCLUSION In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
Collapse
Affiliation(s)
- Yi-Tong Li
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Wei-Qing Shao
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen-Mei Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Chen Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen-He Yi
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bao-Rui Tao
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Bo Zhang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yue Ma
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Guo Zhang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Rui Zhang
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Geng
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Lin
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jin-Hong Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Fichez J, Mouillot T, Vonghia L, Costentin C, Moreau C, Roux M, Delamarre A, Francque S, Zheng MH, Boursier J. Non-invasive tests for fibrotic MASH for reducing screen failure in therapeutic trials. JHEP Rep 2025; 7:101351. [PMID: 40212791 PMCID: PMC11985113 DOI: 10.1016/j.jhepr.2025.101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND & AIMS Therapeutic trials in metabolic dysfunction-associated steatohepatitis (MASH) are hampered by a high 70-80% screen failure rate mostly because of the absence of fibrotic MASH on baseline liver biopsies, underscoring the need for better selection of candidates. We compared the performance of eight non-invasive tests, designed or not for the diagnosis of fibrotic MASH. METHODS A total of 1,005 patients with histologically proven MASLD were included in five tertiary care centers. Three non-invasive tests developed for fibrotic MASH were evaluated: the simple blood test Fibrotic NASH Index (FNI), the specialized blood test MACK-3, and the elastography-based test FAST. Five non-invasive tests recommended for advanced fibrosis were evaluated as well: the simple blood test FIB-4, the specialized blood tests FibroTest and Enhanced Liver Fibrosis test (ELF™), and the elastography-based tests FibroScan and Agile3+. Fibrotic MASH was defined as MASH with MASLD activity score ≥4 and fibrosis score F ≥2. RESULTS Among simple blood tests (n = 1,005), FNI had a significantly higher area under the receiver operating characteristic (AUROC) for fibrotic MASH than FIB-4 (0.709 [0.677-0.741] vs. 0.662 [0.628-0.695], p = 0.019). Among elastography-based tests (n = 817), FAST had a significantly higher AUROC (0.774 [0.743-0.806]) than FibroScan (0.728 [0.694-0.763], p = 0.013) and Agile3+ (0.708 [0.672-0.744], p = 0.004). Among specialized blood tests (n = 545), MACK-3 had a significantly higher AUROC (0.772 [0.734-0.811]) than FibroTest (0.615 [0.568-0.663], p <0.001) and ELF (0.700 [0.656-0.744], p = 0.028). Sequential combination (FAST then Agile3+; MACK-3 then ELF) identified a subset including one-third of patients in whom the false-positive rate was only 30%. CONCLUSIONS Sequential combinations using first-line tests designed for fibrotic MASH improves the identification of candidates for MASH therapeutic trials. IMPACT AND IMPLICATIONS Drug development in metabolic dysfunction-associated steatohepatitis (MASH) is hampered by a high screen failure rate, one of the main reasons being the absence of MASH and significant fibrosis (fibrotic MASH) on the baseline liver biopsy, a key inclusion criterion in MASH therapeutic trials. Non-invasive tests represent an attractive opportunity to better select candidates for these trials, but most of them have been developed for advanced fibrosis and the new tests designed for the diagnosis of fibrotic MASH remain poorly validated. In this work, we demonstrate that the tests specifically designed for fibrotic MASH are more accurate for this diagnostic target than the tests currently recommended and initially developed for advanced fibrosis. We propose sequential combinations that will facilitate the identification of patients with fibrotic MASH in need of treatment, and their inclusion in MASH therapeutic trials.
Collapse
Affiliation(s)
- Jeanne Fichez
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - Thomas Mouillot
- Hepato-Gastroenterology and Digestive Oncology Department, Dijon University Hospital, Dijon, France
| | - Luisa Vonghia
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - Charlotte Costentin
- Grenoble Alpes University/Hepato-Gastroenterology and Digestive Oncology Department, Grenoble Alpes University Hospital, Grenoble, France
- Grenoble Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, Grenoble Alpes University, Grenoble, France
| | - Clémence Moreau
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
- Department of Methodology and Biostatistics, Angers University Hospital, Angers, France
| | - Marine Roux
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - Adèle Delamarre
- Hepatology Unit, Haut Leveque Hospital, Bordeaux University Hospital, Bordeaux, France
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, Antwerp, Belgium
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jérôme Boursier
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
- HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| |
Collapse
|
15
|
Zhou XQ, Huang S, Shi XM, Liu S, Zhang W, Shi L, Lv MH, Tang XW. Global trends in artificial intelligence applications in liver disease over seventeen years. World J Hepatol 2025; 17:101721. [PMID: 40177211 PMCID: PMC11959664 DOI: 10.4254/wjh.v17.i3.101721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/01/2025] [Accepted: 02/10/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND In recent years, the utilization of artificial intelligence (AI) technology has gained prominence in the field of liver disease. AIM To analyzes AI research in the field of liver disease, summarizes the current research status and identifies hot spots. METHODS We searched the Web of Science Core Collection database for all articles and reviews on hepatopathy and AI. The time spans from January 2007 to August 2023. We included 4051 studies for further collection of information, including authors, countries, institutions, publication years, keywords and references. VOS viewer, CiteSpace, R 4.3.1 and Scimago Graphica were used to visualize the results. RESULTS A total of 4051 articles were analyzed. China was the leading contributor, with 1568 publications, while the United States had the most international collaborations. The most productive institutions and journals were the Chinese Academy of Sciences and Frontiers in Oncology. Keywords co-occurrence analysis can be roughly summarized into four clusters: Risk prediction, diagnosis, treatment and prognosis of liver diseases. "Machine learning", "deep learning", "convolutional neural network", "CT", and "microvascular infiltration" have been popular research topics in recent years. CONCLUSION AI is widely applied in the risk assessment, diagnosis, treatment, and prognosis of liver diseases, with a shift from invasive to noninvasive treatment approaches.
Collapse
Affiliation(s)
- Xue-Qin Zhou
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| | - Shu Huang
- Department of Gastroenterology, Lianshui People' Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian 223499, Jiangsu Province, China
| | - Xia-Min Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| | - Sha Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| | - Wei Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| | - Lei Shi
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| | - Mu-Han Lv
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China
| | - Xiao-Wei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou 646099, Sichuan Province, China.
| |
Collapse
|
16
|
Alkhouri N, Cheuk-Fung Yip T, Castera L, Takawy M, Adams LA, Verma N, Arab JP, Jafri SM, Zhong B, Dubourg J, Chen VL, Singal AK, Díaz LA, Dunn N, Nadeem R, Wai-Sun Wong V, Abdelmalek MF, Wang Z, Duseja A, Almahanna Y, Omeish HA, Ye J, Harrison SA, Cristiu J, Arrese M, Robert S, Lai-Hung Wong G, Bajunayd A, Shao C, Kubina M, Dunn W. ALADDIN: A Machine Learning Approach to Enhance the Prediction of Significant Fibrosis or Higher in Metabolic Dysfunction-Associated Steatotic Liver Disease. Am J Gastroenterol 2025:00000434-990000000-01660. [PMID: 40146016 DOI: 10.14309/ajg.0000000000003432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/27/2025] [Indexed: 03/28/2025]
Abstract
INTRODUCTION The recent US Food and Drug Administration approval of resmetirom for treating metabolic dysfunction-associated steatohepatitis in patients necessitates patient selection for significant fibrosis or higher (≥F2). No existing vibration-controlled transient elastography (VCTE) algorithm targets ≥F2. METHODS The mAchine Learning ADvanceD fibrosis and rIsk metabolic dysfunction-associated steatohepatitis Novel predictor (ALADDIN) study addressed this gap by introducing a machine-learning-based web calculator that estimates the likelihood of significant fibrosis using routine laboratory parameters with and without VCTE. Our study included a training set of 827 patients, a testing set of 504 patients with biopsy-confirmed metabolic dysfunction-associated steatotic liver disease from 6 centers, and an external validation set of 1,299 patients from 9 centers. Five algorithms were compared using area under the curve (AUC) in the test set: ElasticNet, random forest, gradient boosting machines, XGBoost, and neural networks. The top 3 (random forest, gradient boosting machines, and XGBoost) formed an ensemble model. RESULTS In the external validation set, the ALADDIN-F2-VCTE model, using routine laboratory parameters with VCTE (AUC 0.791, 95% confidence interval [CI]: 0.764-0.819), outperformed VCTE alone (0.745, 95% CI 0.717-0.772, P < 0.0001), FibroScan-aspartate aminotransferase (0.710, 0.679-0.748, P < 0.0001), and Agile-3 model (0.740, 0.710-0.770, P < 0.0001) regarding the AUC, decision curve analysis, and calibration. The ALADDIN-F2-Lab model, using routine laboratory parameters without VCTE, achieved an AUC of 0.706 (95% CI: 0.668-0.749) and outperformed Fibrosis-4, steatosis-associated fibrosis estimator, and LiverRisk scores. DISCUSSION Along with the steatosis-associated fibrosis estimator model developed to target significant fibrosis or higher, ALADDIN-F2-VCTE ( https://aihepatology.shinyapps.io/ALADDIN1 ) uniquely supports a refined noninvasive approach to patient selection for resmetirom without the need for liver biopsy. In addition, ALADDIN-F2-Lab ( https://aihepatology.shinyapps.io/ALADDIN2 ) offers an effective alternative when VCTE is unavailable.
Collapse
Affiliation(s)
- Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, Arizona, USA
| | - Terry Cheuk-Fung Yip
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Laurent Castera
- Université Paris-Cité, Department of Hepatology, Hospital Beaujon, AP-HP, Inserm UMR 1149, Clichy, France
| | - Marina Takawy
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Washington, Australia
| | - Nipun Verma
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Juan Pablo Arab
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Syed-Mohammed Jafri
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Bihui Zhong
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Vincent L Chen
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Ashwani K Singal
- Department of Gastroenterology and Hepatology, University of Louisville, Louisville, Kentucky, USA
| | - Luis Antonio Díaz
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, California, USA
| | | | - Rida Nadeem
- Department of Hepatology, Arizona Liver Health, Chandler, Arizona, USA
| | - Vincent Wai-Sun Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Zhengyi Wang
- Medical School, University of Western Australia, Perth, Washington, Australia
| | - Ajay Duseja
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Yousef Almahanna
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Haya A Omeish
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, Michigan, USA
| | - Junzhao Ye
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Jessica Cristiu
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sage Robert
- Department of Gastroenterology, University of Kansas Medical Center, Kansas, USA
| | - Grace Lai-Hung Wong
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Amani Bajunayd
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Congxiang Shao
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Matthew Kubina
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, Michigan, USA
| | - Winston Dunn
- Department of Gastroenterology, University of Kansas Medical Center, Kansas, USA
| |
Collapse
|
17
|
Wu Y, Han Y, Zheng L, Liu L, Li W, Zhang F. Validation of the diagnostic accuracy of the acFibroMASH index for at-risk MASH in patients with metabolic dysfunction-associated steatotic liver disease. BMC Gastroenterol 2025; 25:196. [PMID: 40128689 PMCID: PMC11931867 DOI: 10.1186/s12876-025-03781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/12/2025] [Indexed: 03/26/2025] Open
Abstract
OBJECTIVE The objective of this study was to validate the diagnostic accuracy of the acFibroMASH index in a population of metabolic dysfunction-associated steatotic liver disease (MASLD) patients with at-risk metabolic dysfunction-associated steatohepatitis (MASH) and to compare it with other scoring systems. METHODS 394 patients with biopsy-proven MASLD were retrospectively enrolled. The patients were divided into the at-risk MASH (NAFLD activity score ≥ 4 and significant fibrosis) group (n = 103) and the non-at-risk MASH group (n = 291). The diagnostic performance of the acFibroMASH index was compared to that of fibroScan-aspartate aminotransferase (FAST) and other noninvasive fibrosis scores by plotting the receiver operating characteristic curve (ROC), including the area under the curve (AUC), sensitivity, and specificity. Cut-offs of the acFibroMASH index for sensitivity (≥ 0.90) and specificity (≥ 0.90) were obtained in our cohort. RESULTS The AUC of the acFibroMASH index in assessing at-risk MASH was 0.780, while the AUC of FAST was 0.770. The comparison of acFibroMASH with FAST showed no significant difference (P = 0.542). When the cut-off value for acFibroMASH was < 0.15, 95.5% of at-risk MASH patients could be excluded in 89 patients correctly. Conversely, when the cut-off value was set at > 0.39, 49.3% of at-risk MASH patients could be diagnosed in 140 patients correctly. When the NPV was set at 0.900, the critical value for exclusion was determined to be 0.23, with a sensitivity of 0.835 and a specificity of 0.526. CONCLUSION This study validated the efficacy of the acFibroMASH index in predicting at-risk MASH in a population of MASLD patients, demonstrating comparable performance to that of the FAST. The acFibroMASH index may provide a valuable clinical basis for screening and identifying at-risk MASH in primary care settings.
Collapse
Affiliation(s)
- Yunfei Wu
- Department of Pathology, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Yan Han
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Liming Zheng
- Clinical Laboratory, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Longgen Liu
- Department of Liver Diseases, Changzhou Third People's Hospital, Changzhou, 213001, China
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213001, China.
| | - Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou, 213001, China.
- Changzhou Medical Center, Nanjing Medical University, Changzhou, 213001, China.
| |
Collapse
|
18
|
Long L, Wu Y, Tang H, Xiao Y, Wang M, Shen L, Shi Y, Feng S, Li C, Lin J, Tang S, Wu C. Development and validation of a scoring system to predict MASLD patients with significant hepatic fibrosis. Sci Rep 2025; 15:9639. [PMID: 40113920 PMCID: PMC11926222 DOI: 10.1038/s41598-025-91013-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
To address the need for a simple model to predict ≥ F2 fibrosis in metabolic dysfunction-associated steatotic liver disease (MASLD) patients, a study utilized data from 791 biopsy-proven MASLD patients from the NASH Clinical Research Network and Jinan University First Affiliated Hospital. The data were divided into training and internal testing sets through randomized stratified sampling. A multivariable logistic regression model using key categorical variables was developed to identify ≥ F2 fibrosis. External validation was performed using data from the FLINT trial and multiple centers in China. The DA-GAG score, incorporating diabetes, age, GGT, aspartate aminotransferase/ platelet ratio, and globulin/ total protein ratio, demonstrated superior performance in distinguishing ≥ F2 fibrosis with an area under the receiver operating characteristic curve of 0.79 in training and over 0.80 in testing datasets. The DA-GAG score efficiently identifies MASLD patients with ≥ F2 fibrosis, significantly reducing the medical burden.
Collapse
Affiliation(s)
- Linjing Long
- Department of Gastroenterology, the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong, 510700, People's Republic of China
| | - Yue Wu
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangdong, 510440, People's Republic of China
| | - Huijun Tang
- Department of Gastroenterology, Shenzhen Integrated Traditional Chinese and Western Medicine Hospital, Shenzhen, 518104, People's Republic of China
| | - Yanhua Xiao
- Department of Pathology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangdong, 510440, People's Republic of China
| | - Min Wang
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Lianli Shen
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Ying Shi
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Shufen Feng
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Chujing Li
- Department of Hepatology, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangdong, 510440, People's Republic of China
| | - Jiaheng Lin
- Department of Gastrointestinal Surgery, He Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong, 510700, People's Republic of China
| | - Shaohui Tang
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.
| | - Chutian Wu
- Department of Gastroenterology, the Fifth Affiliated Hospital, Guangzhou Medical University, Guangdong, 510700, People's Republic of China.
- Department of Gastroenterology, the First Affiliated Hospital, Jinan University, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
19
|
Sun Z, Zhang J, Duan J, Wang Q, Yun Z, Lin J, Yang Y, Zuo W, Wang Z, Xiong X, Yao K. Cross-sectional study on the association between the fibrosis-4 index and co-occurring myocardial infarction in Chinese patients with type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2025; 16:1551472. [PMID: 40144298 PMCID: PMC11936788 DOI: 10.3389/fendo.2025.1551472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Background Previous studies indicated that the Fibrosis-4 Index (FIB-4), an evaluation metric for liver fibrosis, is associated with adverse outcomes in coronary artery disease. However, the correlation between FIB-4 and myocardial infarction (MI) in Chinese patients with Type 2 Diabetes Mellitus (T2DM) has not been well-defined. Thus, this study aims to elucidate the association between FIB-4 and MI in Chinese T2DM patients. Methods Cross-sectional data were collected from T2DM patients at two hospitals in China, designated as the discovery and validation centers. The exposure variable, FIB-4 index, was derived from patient age, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and platelet count. This index was stratified into four distinct clusters via k-means clustering analysis. The primary outcome was defined as the incidence of co-occurring MI. Logistic and restricted cubic spline regression was conducted to assess the association between the FIB-4 index and MI in Chinese T2DM patients. Results In the discovery phase, data were analyzed from 2,980 T2DM patients, including 1,114 females (37.38%), with 58 years average age (SD: 10.4). Among them, 190 were also MI patients. Based on the fully adjusted logistic regression analysis, the odds ratio (OR) for the second cluster was 1.00 (95% CI, 0.60-1.40); for the third cluster, it was 1.94 (95% CI, 1.32-2.57), and for the poorest controlled cluster it was 16.18 (95% CI, 14.97-17.39) in comparison to the best-controlled cluster of FIB-4. Restricted cubic spline regression revealed a linear relationship between the FIB-4 index and MI risk. Subgroup analysis demonstrated that this association was significant in elderly adults, females with high BMI, and those with comorbidities such as hypertension, coronary artery disease, and chronic heart failure. These findings yield consistent results in the validation set (n = 224). Conclusions Among Chinese patients with T2DM, elevated FIB-4 levels have been independently associated with MI, particularly among females and individuals with concomitant hypertension. Consequently, the FIB-4 index is anticipated to serve as a promising tool for early detection and risk stratification in this population.
Collapse
Affiliation(s)
- Ziyi Sun
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jin Zhang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jinlong Duan
- Department of Andrology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingqing Wang
- Department of Internal Medicine, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhangjun Yun
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jianguo Lin
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuhan Yang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - WenXi Zuo
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zeqi Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kuiwu Yao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Academic Administration Office, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
20
|
de Zawadzki A, Leeming DJ, Sanyal AJ, Anstee QM, Schattenberg JM, Friedman SL, Schuppan D, Karsdal MA. Hot and cold fibrosis: The role of serum biomarkers to assess immune mechanisms and ECM-cell interactions in human fibrosis. J Hepatol 2025:S0168-8278(25)00148-5. [PMID: 40056933 DOI: 10.1016/j.jhep.2025.02.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/18/2025] [Accepted: 02/23/2025] [Indexed: 05/24/2025]
Abstract
Fibrosis is a pathological condition characterised by excessive accumulation of extracellular matrix (ECM) components, particularly collagens, leading to tissue scarring and organ dysfunction. In fibrosis, an imbalance between collagen synthesis (fibrogenesis) and degradation (fibrolysis) results in the deposition of fibrillar collagens disrupting the structural integrity of the ECM and, consequently, tissue architecture. Fibrosis is associated with a wide range of chronic diseases, including cirrhosis, kidney fibrosis, pulmonary fibrosis, and autoimmune diseases. Recently, the concept of "hot" and "cold" fibrosis has emerged, referring to the immune status within fibrotic tissues and the nature of fibrogenic signalling. Hot fibrosis is characterised by active immune cell infiltration and inflammation, while cold fibrosis is associated with auto- and paracrine myofibroblast activation, immune cell exclusion and quiescence. In this article, we explore the relationship between hot and cold fibrosis, the role of various types of collagens and their biologically active fragments in modulating the immune system, and how serological ECM biomarkers can help improve our understanding of the disease-relevant interactions between immune and mesenchymal cells in fibrotic tissues. Additionally, we draw lessons from immuno-oncology research in solid tumours to shed light on potential strategies for fibrosis treatment and highlight the advantage of having a "hot fibrotic environment" to treat fibrosis by enhancing collagen degradation through modulation of the immune system.
Collapse
Affiliation(s)
| | - Diana J Leeming
- Nordic Bioscience A/S, Biomarkers & Research, Herlev, Denmark
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health and Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Jörn M Schattenberg
- Department of Internal Medicine II, Saarland University Medical Centre, Homburg, Germany
| | - Scott L Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, Harvard Medical School, MA, USA
| | | |
Collapse
|
21
|
Huang DQ, Wong VWS, Rinella ME, Boursier J, Lazarus JV, Yki-Järvinen H, Loomba R. Metabolic dysfunction-associated steatotic liver disease in adults. Nat Rev Dis Primers 2025; 11:14. [PMID: 40050362 DOI: 10.1038/s41572-025-00599-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the umbrella term that comprises metabolic dysfunction-associated steatotic liver, or isolated hepatic steatosis, through to metabolic dysfunction-associated steatohepatitis, the progressive necroinflammatory disease form that can progress to fibrosis, cirrhosis and hepatocellular carcinoma. MASLD is estimated to affect more than one-third of adults worldwide. MASLD is closely associated with insulin resistance, obesity, gut microbial dysbiosis and genetic risk factors. The obesity epidemic and the growing prevalence of type 2 diabetes mellitus greatly contribute to the increasing burden of MASLD. The treatment and prevention of major metabolic comorbidities such as type 2 diabetes mellitus and obesity will probably slow the growth of MASLD. In 2023, the field decided on a new nomenclature and agreed on a set of research and action priorities, and in 2024, the US FDA approved the first drug, resmetirom, for the treatment of non-cirrhotic metabolic dysfunction-associated steatohepatitis with moderate to advanced fibrosis. Reliable, validated biomarkers that can replace histology for patient selection and primary end points in MASH trials will greatly accelerate the drug development process. Additionally, noninvasive tests that can reliably determine treatment response or predict response to therapy are warranted. Sustained efforts are required to combat the burden of MASLD by tackling metabolic risk factors, improving risk stratification and linkage to care, and increasing access to therapeutic agents and non-pharmaceutical interventions.
Collapse
Affiliation(s)
- Daniel Q Huang
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore
| | - Vincent W S Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Mary E Rinella
- University of Chicago Pritzker School of Medicine, Chicago, IL, USA
| | - Jerome Boursier
- Service d'Hépato-Gastroentérologie et Oncologie Digestive, Centre Hospitalier Universitaire d'Angers, Angers, France
- Laboratoire HIFIH, SFR ICAT 4208, Université d'Angers, Angers, France
| | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic, University of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California at San Diego, San Diego, CA, USA.
- Division of Epidemiology, Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA.
| |
Collapse
|
22
|
Boel F, Akimov V, Teuchler M, Terkelsen MK, Wernberg CW, Larsen FT, Hallenborg P, Lauridsen MM, Krag A, Mandrup S, Ravnskjær K, Blagoev B. Deep proteome profiling of metabolic dysfunction-associated steatotic liver disease. COMMUNICATIONS MEDICINE 2025; 5:56. [PMID: 40032974 PMCID: PMC11876662 DOI: 10.1038/s43856-025-00780-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) affects roughly 1 in 3 adults and is a leading cause of liver transplants and liver related mortality. A deeper understanding of disease pathogenesis is essential to assist in developing blood-based biomarkers. METHODS Here, we use data-independent acquisition mass spectrometry to assess disease-state associated protein profiles in human liver, blood plasma, and white adipose tissue (WAT). RESULTS In liver, we find that MASLD is associated with an increased abundance of proteins involved in immune response and extracellular matrix (ECM) and a decrease in proteins involved in metabolism. Cell type deconvolution of the proteome indicates liver endothelial and hepatic stellate cells are the main source of ECM rearrangements, and hepatocytes are the major contributor to the changes in liver metabolism. In the blood, profiles of several MASLD-associated proteins correlate with expression in WAT rather than liver and so could serve as suitable liver disease predictors in a multi-protein panel marker. Moreover, our proteomics-based logistic regression models perform better than existing methods for predicting MASLD and liver fibrosis from human blood samples. CONCLUSIONS Our comprehensive proteomic analysis deepens the understanding of liver function and MASLD pathology by elucidating key cellular mechanisms and multi-organ interactions, and demonstrates the robustness of a proteomics-based biomarker panel to enhance diagnosis of MASLD and significant fibrosis.
Collapse
Affiliation(s)
- Felix Boel
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
| | - Vyacheslav Akimov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
| | - Mathias Teuchler
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
| | - Mike Krogh Terkelsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
| | - Charlotte Wilhelmina Wernberg
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
- Department of Gastroenterology and Hepatology, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Frederik Tibert Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
| | - Philip Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
| | - Mette Munk Lauridsen
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
- Department of Gastroenterology and Hepatology, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Aleksander Krag
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense M, Denmark
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
| | - Kim Ravnskjær
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense M, Denmark.
- Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark, Odense M, Denmark.
| |
Collapse
|
23
|
Thiele M, Johansen S, Israelsen M, Trebicka J, Abraldes JG, Gines P, Krag A. Noninvasive assessment of hepatic decompensation. Hepatology 2025; 81:1019-1037. [PMID: 37801593 PMCID: PMC11825506 DOI: 10.1097/hep.0000000000000618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/19/2023] [Indexed: 10/08/2023]
Abstract
Noninvasive tests (NITs) are used in all aspects of liver disease management. Their most prominent break-through since the millennium has been in advancing early detection of liver fibrosis, but their use is not limited to this. In contrast to the symptom-driven assessment of decompensation in patients with cirrhosis, NITs provide not only opportunities for earlier diagnoses but also accurate prognostication, targeted treatment decisions, and a means of monitoring disease. NITs can inform disease management and decision-making based on validated cutoffs and standardized interpretations as a valuable supplement to clinical acumen. The Baveno VI and VII consensus meetings resulted in tangible improvements to pathways of care for patients with compensated and decompensated advanced chronic liver disease, including the combination of platelet count and transient elastography to diagnose clinically significant portal hypertension. Furthermore, circulating NITs will play increasingly important roles in assessing the response to interventions against ascites, variceal bleeding, HE, acute kidney injury, and infections. However, due to NITs' wide availability, there is a risk of inaccurate use, leading to a waste of resources and flawed decisions. In this review, we describe the uses and pitfalls of NITs for hepatic decompensation, from risk stratification in primary care to treatment decisions in outpatient clinics, as well as for the in-hospital management of patients with acute-on-chronic liver failure. We summarize which NITs to use when, for what indications, and how to maximize the potential of NITs for improved patient management.
Collapse
Affiliation(s)
- Maja Thiele
- Department of Gastroenterology and Hepatology, Fibrosis, Fatty Liver and Steatohepatitis Research Center Odense (FLASH), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Stine Johansen
- Department of Gastroenterology and Hepatology, Fibrosis, Fatty Liver and Steatohepatitis Research Center Odense (FLASH), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mads Israelsen
- Department of Gastroenterology and Hepatology, Fibrosis, Fatty Liver and Steatohepatitis Research Center Odense (FLASH), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Jonel Trebicka
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Internal Medicine B, University of Münster, Münster, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Juan G. Abraldes
- Division of Gastroenterology, University of Alberta, Edmonton, Canada
| | - Pere Gines
- Liver Unit, Hospital Clínic of Barcelona, Barcelona, Spain
- Faculty of Medicine and Health Sciences, University of Barcelona, Spain
- Institute of Biomedical Investigation August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEReHD), Barcelona, Spain
| | - Aleksander Krag
- Department of Gastroenterology and Hepatology, Fibrosis, Fatty Liver and Steatohepatitis Research Center Odense (FLASH), Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
24
|
Okubo S, Takaki A, Sato I, Adachi T, Takeuchi Y, Sue M, Miyake N, Onishi H, Hirohata S, Otsuka M. Clinical Variables that Predict Liver-related Events in Steatotic Liver Disease Diagnosed by a Liver Biopsy. Intern Med 2025:4770-24. [PMID: 39924239 DOI: 10.2169/internalmedicine.4770-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
Objective Identifying patients at high risk of steatotic liver disease (SLD) is crucial. The liver fibrosis stage is the most reliable marker of liver-related mortality. However, noninvasive risk stratification methods remain controversial. Therefore, we analyzed the risk of liver-related events in patients who underwent a liver biopsy for metabolic dysfunction-associated steatotic liver disease (MASLD) or cryptogenic SLD at our hospital. Methods We retrospectively reviewed the clinical course of the patients to identify the occurrence of liver-related events. Patients This study included 146 patients diagnosed with SLD through a liver biopsy. Results Liver-related events occurred in 20 patients and were more frequent in those with advanced fibrosis than in those without advanced fibrosis. However, patients with advanced steatosis exhibit reduced disease progression. Patients with obesity and/or diabetes complications had a lower stage of fibrosis and better prognosis than the others. The non-invasive fibrosis-4 (FIB-4) index and non-alcoholic fatty liver disease (NAFLD) prognosis-related "NAFLD outcomes score (NOS)" effectively differentiated patients with disease progression. Standard laboratory data analyses revealed that high total bilirubin and low albumin levels were risk factors. A multivariate analysis with significant factors other than NOS score revealed that the absence of obesity and/or diabetes complications, a high FIB-4 index, and a high total bilirubin level were independent factors for liver-related events. Conclusion A high NOS score, absence of obesity and/or diabetes complications, a high FIB-4 index, and high total bilirubin levels are risk factors for disease progression. Patients with lean phenotypes or non-diabetic SLD should also be assessed using noninvasive markers to determine their risks and potential outcomes.
Collapse
Affiliation(s)
- Shinnosuke Okubo
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Ikumi Sato
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Yasuto Takeuchi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Masahiko Sue
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Nozomi Miyake
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Hideki Onishi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | - Satoshi Hirohata
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| |
Collapse
|
25
|
Wang Y, Song SJ, Jiang Y, Lai JCT, Wong GLH, Wong VWS, Yip TCF. Role of noninvasive tests in the prognostication of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2025; 31:S51-S75. [PMID: 38934108 PMCID: PMC11925434 DOI: 10.3350/cmh.2024.0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024] Open
Abstract
In managing metabolic dysfunction-associated steatotic liver disease, which affects over 30% of the general population, effective noninvasive biomarkers for assessing disease severity, monitoring disease progression, predicting the development of liver-related complications, and assessing treatment response are crucial. The advantage of simple fibrosis scores lies in their widespread accessibility through routinely performed blood tests and extensive validation in different clinical settings. They have shown reasonable accuracy in diagnosing advanced fibrosis and good performance in excluding the majority of patients with a low risk of liver-related complications. Among patients with elevated serum fibrosis scores, a more specific fibrosis and imaging biomarker has proved useful to accurately identify patients at risk of liver-related complications. Among specific fibrosis blood biomarkers, enhanced liver fibrosis is the most widely utilized and has been approved in the United States as a prognostic biomarker. For imaging biomarkers, the availability of vibration-controlled transient elastography has been largely improved over the past years, enabling the use of liver stiffness measurement (LSM) for accurate assessment of significant and advanced fibrosis, and cirrhosis. Combining LSM with other routinely available blood tests enhances the ability to diagnose at-risk metabolic dysfunction-associated steatohepatitis and predict liver-related complications, some reaching an accuracy comparable to that of liver biopsy. Magnetic resonance imaging-based modalities provide the most accurate quantification of liver fibrosis, though the current utilization is limited to research settings. Expanding their future use in clinical practice depends on factors such as cost and facility availability.
Collapse
Affiliation(s)
- Yue Wang
- Medical Data Analytic Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Sherlot Juan Song
- Medical Data Analytic Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Yichong Jiang
- Medical Data Analytic Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jimmy Che-To Lai
- Medical Data Analytic Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Grace Lai-Hung Wong
- Medical Data Analytic Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Vincent Wai-Sun Wong
- Medical Data Analytic Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Terry Cheuk-Fung Yip
- Medical Data Analytic Center, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Vali Y, van Dijk A, Lee J, Boursier J, Ratziu V, Yunis C, Schattenberg JM, Valenti L, Gomez MR, Schuppan D, Petta S, Allison M, Hartman ML, Porthan K, Dufour J, Bugianesi E, Gastadelli A, Derdak Z, Fournier‐Poizat C, Shumbayawonda E, Kalutkiewicz M, Yki‐Jarvinen H, Ekstedt M, Geier A, Trylesinski A, Francque S, Brass C, Pavlides M, Holleboom AG, Nieuwdorp M, Anstee QM, Bossuyt PM, the LITMUS investigators. Precision in Liver Diagnosis: Varied Accuracy Across Subgroups and the Need for Variable Thresholds in Diagnosis of MASLD. Liver Int 2025; 45:e16240. [PMID: 39865358 PMCID: PMC11771619 DOI: 10.1111/liv.16240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 12/28/2024] [Indexed: 01/28/2025]
Abstract
BACKGROUND AND AIMS The performance of non-invasive liver tests (NITs) is known to vary across settings and subgroups. We systematically evaluated whether the performance of three NITs in detecting advanced fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) varies with age, sex, body mass index (BMI), type 2 diabetes mellitus (T2DM) status or liver enzymes. METHODS Data from 586 adult LITMUS Metacohort participants with histologically characterised MASLD were included. The diagnostic performance of the Fibrosis-4 Index (FIB-4), enhanced liver fibrosis (ELF) and vibration-controlled transient elastography liver stiffness measurement (VCTE LSM) was evaluated. Performance was expressed as the area under the receiver operating characteristics curve (AUC). Thresholds for detecting advanced fibrosis (≥F3) were calculated for each NIT for fixed (high) sensitivity, specificity and predictive values. RESULTS Differences in AUC between all subgroups were small and statistically not significant, indicating comparable performance in detecting ≥F3, irrespective of these clinical factors. However, different thresholds were needed to achieve the same level of accuracy with each test. For example, for a fixed sensitivity and specificity, the thresholds for all three NITs were higher in patients with T2DM. Effects for sex, age and liver enzymes were less pronounced. CONCLUSIONS Performance of the selected NITs in detecting advanced liver fibrosis does not vary substantially with clinical characteristics. However, different thresholds have to be selected to achieve the same sensitivity, specificity and predictive values in the respective subgroups. Large prospective studies are called for to study NIT accuracy considering multiple patient characteristics.
Collapse
Affiliation(s)
- Yasaman Vali
- Department of Epidemiology and Data ScienceAmsterdam University Medical CentresAmsterdamThe Netherlands
| | - Anne‐Marieke van Dijk
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Institute, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
- Department of Internal and Vascular MedicineAmsterdam University Medical CentresAmsterdamThe Netherlands
| | - Jenny Lee
- Department of Epidemiology and Data ScienceAmsterdam University Medical CentresAmsterdamThe Netherlands
| | - Jerome Boursier
- Laboratoire HIFIH, UPRES EA 3859, SFR ICAT 4208Université d'AngersAngersFrance
- Service d'Hépato‐Gastroentérologie et Oncologie DigestiveCentre Hospitalier Universitaire d'AngersAngersFrance
| | - Vlad Ratziu
- Assistance Publique‐Hôpitaux de Paris, Hôpital Pitié SalpêtrièreICAN (Institute of Cardiometabolism and Nutrition), Sorbonne UniversityParisFrance
| | - Carla Yunis
- Pfizer Research and Development, Pfizer IncLake MaryFloridaUSA
| | - Jörn M. Schattenberg
- Department of Internal Medine IISaarland University Medical CenterHomburgGermany
- Saarland UniversitySaarbrückenGermany
| | - Luca Valenti
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanoItaly
- Precision MedicineBiological Resource Center Unit, Fondazione IRCCS Ca' Granda PoliclinicoMilanoItaly
| | - Manuel Romero Gomez
- Digestive Diseases UnitHospital Universitario Virgen del RocíoSevillaSpain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd)Instituto de Biomedicina de SevillaSevillaSpain
- Universidad de SevillaSevillaSpain
| | - Detlef Schuppan
- Department of Internal Medine IISaarland University Medical CenterHomburgGermany
- Institute of Translational ImmunologyUniversity Medical Center MainzMainzGermany
- Division of GastroenterologyBeth Israel Deaconess Medical CenterBostonMassachusettsUSA
| | - Salvatore Petta
- Sezione di Gastroenterologia e Epatologia, PROMONISE DepartmentUniversità di PalermoPalermoItaly
| | - Mike Allison
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research CentreCambridge University NHS Foundation TrustCambridgeUK
| | - Mark L. Hartman
- Lilly Research LaboratoriesEli Lilly and CompanyIndianapolisIndianaUSA
| | - Kimmo Porthan
- Department of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | | | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro‐Hepatology, A.O. Città della Salute e della Scienza di TorinoUniversity of TurinTurinItaly
| | | | - Zoltan Derdak
- GI DDU, Takeda Pharmaceuticals Company Ltd.CambridgeMassachusettsUSA
| | | | | | | | - Hannele Yki‐Jarvinen
- Department of MedicineUniversity of Helsinki and Helsinki University HospitalHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Mattias Ekstedt
- Department of Health, Medicine and Caring SciencesLinköping UniversityLinköpingSweden
| | - Andreas Geier
- Division of Hepatology, Department Medicine IIWurzburg University HospitalWurzburgGermany
| | | | - Sven Francque
- Department of Gastroenterology Hepatology, and Laboratory of Experimental Medicine and Paediatrics, Antwerp University HospitalUniversity of AntwerpAntwerpBelgium
| | - Clifford Brass
- Novartis Pharmaceuticals CorporationEast HanoverNew JerseyUSA
| | - Michael Pavlides
- Radcliffe Department of Medicine and Oxford NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| | - Adriaan G. Holleboom
- Department of Internal and Vascular MedicineAmsterdam University Medical CentresAmsterdamThe Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular MedicineAmsterdam University Medical CentresAmsterdamThe Netherlands
| | - Quentin M. Anstee
- Translational and Clinical Research Institute, Faculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUK
- Newcastle NIHR Biomedical Research CentreNewcastle upon Tyne Hospitals NHS TrustNewcastle upon TyneUK
| | - Patrick M. Bossuyt
- Department of Epidemiology and Data ScienceAmsterdam University Medical CentresAmsterdamThe Netherlands
| | | |
Collapse
|
27
|
Yip TCF, Lee HW, Lin H, Tsochatzis E, Petta S, Bugianesi E, Yoneda M, Zheng MH, Hagström H, Boursier J, Calleja JL, Goh GBB, Chan WK, Gallego-Durán R, Sanyal AJ, de Lédinghen V, Newsome PN, Fan JG, Castéra L, Lai M, Fournier-Poizat C, Wong GLH, Pennisi G, Armandi A, Nakajima A, Liu WY, Shang Y, de Saint-Loup M, Llop E, Teh KKJ, Lara-Romero C, Asgharpour A, Mahgoub S, Chan MSW, Canivet CM, Romero-Gomez M, Kim SU, Wong VWS. Prognostic performance of the two-step clinical care pathway in metabolic dysfunction-associated steatotic liver disease. J Hepatol 2025:S0168-8278(25)00021-2. [PMID: 39863175 DOI: 10.1016/j.jhep.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/12/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND & AIMS Current guidelines recommend a two-step approach for risk stratification in patients with metabolic dysfunction-associated steatotic liver disease (MASLD) involving Fibrosis-4 index (FIB-4) followed by liver stiffness measurement (LSM) by vibration-controlled transient elastography (VCTE) or similar second-line tests. This study aimed to examine the prognostic performance of this approach. METHODS The VCTE-Prognosis study was a longitudinal study of patients with MASLD who had undergone VCTE examinations at 16 centres from the US, Europe and Asia with subsequent follow-up for clinical events. The primary endpoint was incident liver-related events (LREs), defined as hepatic decompensation and/or hepatocellular carcinoma. RESULTS Of 12,950 patients (mean age 52 years, 41% female, 12.1% LSM >12 kPa), baseline FIB-4, at cut-offs of 1.3 (or 2.0 for age ≥65) and 2.67, classified 66.3% as low-risk and 9.8% as high-risk, leaving 23.9% in the intermediate-risk zone. After classifying intermediate FIB-4 patients as low-risk if LSM was <8.0 kPa and high-risk if LSM was >12.0 kPa, 81.5%, 4.6%, and 13.9% of the full cohort were classified as low-, intermediate-, and high-risk, respectively. At a median (IQR) follow-up of 47 (23-72) months, 248 (1.9%) patients developed LREs. The 5-year cumulative incidence of LREs was 0.5%, 1.0% and 10.8% in the low-, intermediate- and high-risk groups, respectively. Replacing LSM with Agile 3+, Agile 4, and FAST did not reduce the intermediate-risk zone or improve event prediction. Classifying intermediate FIB-4 patients by LSM <10 kPa (low-risk) and >15 kPa (high-risk) reduced the intermediate-risk zone while maintaining predictive performance. CONCLUSIONS The non-invasive two-step approach of FIB-4 followed by LSM is effective in classifying patients at different risks of LREs. IMPACT AND IMPLICATIONS Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as one of the leading causes of cirrhosis and hepatocellular carcinoma worldwide, but only a minority of patients will develop these complications. Therefore, it is necessary to use non-invasive tests instead of liver biopsy for risk stratification. Additionally, as most patients with MASLD are seen in primary care instead of specialist settings, cost and availability of the tests should be taken into consideration. In this multicentre study, the use of the Fibrosis-4 index followed by liver stiffness measurement by vibration-controlled transient elastography effectively identified patients who would later develop liver-related events. The results support current recommendations by various regional guidelines on a clinical care pathway based on non-invasive tests to diagnose advanced liver fibrosis.
Collapse
Affiliation(s)
- Terry Cheuk-Fung Yip
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Hye Won Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Huapeng Lin
- Department of Gastroenterology and Hepatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Emmanuel Tsochatzis
- University College London Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, United Kingdom
| | - Salvatore Petta
- Section of Gastroenterology, PROMISE, University of Palermo, Italy
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hannes Hagström
- Department of Medicine, Huddinge, Karolinska Institutet, Sweden; Division of Hepatology, Department of Upper GI Diseases, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Jérôme Boursier
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France; HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - José Luis Calleja
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro, Universidad Autonoma de Madrid, Spain
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rocio Gallego-Durán
- UCM Digestive Diseases, Virgen del Rocio University Hospital, SeLiver Group, Institute of Biomedicine of Seville, Ciberehd, Department of Medicine, University of Seville, Seville, Spain
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | - Philip N Newsome
- Roger Williams Institute of Liver Studies, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Foundation for Liver Research and King's College Hospital, London, United Kingdom
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Laurent Castéra
- Université Paris Cité, UMR1149 (CRI), INSERM, Paris, France, Service d'Hépatologie, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP), Clichy, France
| | - Michelle Lai
- Division of Gastroenterology & Hepatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Grace Lai-Hung Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Grazia Pennisi
- Section of Gastroenterology, PROMISE, University of Palermo, Italy
| | - Angelo Armandi
- Department of Medical Sciences, Division of Gastroenterology, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Wen-Yue Liu
- Department of Endocrinology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying Shang
- Department of Medicine, Huddinge, Karolinska Institutet, Sweden
| | - Marc de Saint-Loup
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France
| | - Elba Llop
- Department of Gastroenterology and Hepatology, Hospital Universitario Puerta de Hierro, Universidad Autonoma de Madrid, Spain
| | - Kevin Kim Jun Teh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore
| | - Carmen Lara-Romero
- UCM Digestive Diseases, Virgen del Rocio University Hospital, SeLiver Group, Institute of Biomedicine of Seville, Ciberehd, Department of Medicine, University of Seville, Seville, Spain
| | - Amon Asgharpour
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Sara Mahgoub
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, United Kingdom
| | | | - Clemence M Canivet
- Hepato-Gastroenterology and Digestive Oncology Department, Angers University Hospital, Angers, France; HIFIH Laboratory, SFR ICAT 4208, Angers University, Angers, France
| | - Manuel Romero-Gomez
- UCM Digestive Diseases, Virgen del Rocio University Hospital, SeLiver Group, Institute of Biomedicine of Seville, Ciberehd, Department of Medicine, University of Seville, Seville, Spain
| | - Seung Up Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
28
|
Huang Z, Chen J, Liu S, Xiang X, Long Y, Tan P, Fu W. MAP17 is a Novel NASH Progression Biomarker Associated with Macrophage Infiltration, Immunotherapy Response, and Oxidative Stress. J Inflamm Res 2025; 18:601-619. [PMID: 39839187 PMCID: PMC11747966 DOI: 10.2147/jir.s497737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) has recently garnered increased attention due to immune infiltration. However, the role of membrane-associated protein 17 (MAP17) in NASH remains unclear, which prompted this study to explore its relationship with immune infiltration and its regulatory mechanisms. Methods We employed weighted correlation network analysis (WGCNA) to construct a gene co-expression network aimed at identifying key genes associated with NASH progression. Our further analyses included differential expression evaluation, protein-protein interaction (PPI) network analysis, and Venn diagram analysis to discover novel targets. The CIBERSORT algorithm assessed the correlation between MAP17 and immune cell infiltration within the tumor microenvironment (TME), while the TIDE algorithm predicted responses to immunotherapy. Additionally, we conducted gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analysis (GSEA) to elucidate the mechanisms by which MAP17 operates. The expression of MAP17 was validated using liver tissues obtained from NASH patients and mice with diet-induced NASH or CCl4-induced liver fibrosis. Results Our findings identified MAP17 as a novel target in the progression of NASH. Correlation analyses demonstrated a positive association between MAP17 and M1 macrophage infiltration, as well as a negative association with M2 infiltration. TIDE results positioned MAP17 as a potential biomarker for predicting responses to immune checkpoint blockade. Mechanistic studies revealed that MAP17 induced oxidative stress, which subsequently activated the p53, PI3K-AKT, and Wnt signaling pathways. Validation analyses confirmed that MAP17 levels significantly increased in liver tissues of mice with diet-induced NASH or CCl4-induced liver fibrosis, as well as in NASH patients. Conclusion MAP17 is a novel biomarker linked to macrophage infiltration and immunotherapy responses in NASH patients. The oxidative stress induced by MAP17 activates the p53, PI3K-AKT, and Wnt pathways, all of which contribute to the progression of NASH.
Collapse
Affiliation(s)
- Zhiwei Huang
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiatong Chen
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Shenglu Liu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xin Xiang
- Department of General Surgery, The First People’s Hospital of Neijiang, Neijiang, 641000, People’s Republic of China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Peng Tan
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Wenguang Fu
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Metabolic Hepatobiliary and Pancreatic Diseases Key Laboratory of Luzhou City, Academician (Expert) Workstation of Sichuan Province, Department of General Surgery (Hepatopancreatobiliary surgery), The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| |
Collapse
|
29
|
Zhang X, Zheng MH, Liu D, Lin Y, Song SJ, Chu ESH, Liu D, Singh S, Berman M, Lau HCH, Gou H, Wong GLH, Zhang N, Yuan HY, Loomba R, Wong VWS, Yu J. A blood-based biomarker panel for non-invasive diagnosis of metabolic dysfunction-associated steatohepatitis. Cell Metab 2025; 37:59-68.e3. [PMID: 39500327 DOI: 10.1016/j.cmet.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/08/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025]
Abstract
The current diagnosis of metabolic dysfunction-associated steatotic liver disease (MASLD) and its severe form, metabolic dysfunction-associated steatohepatitis (MASH), is suboptimal. Here, we recruited 700 individuals, including 184 from Hong Kong as a discovery cohort and 516 from San Diego, Wenzhou, and Hong Kong as three validation cohorts. A panel of 3 parameters (C-X-C motif chemokine ligand 10 [CXCL10], cytokeratin 18 fragments M30 [CK-18], and adjusted body mass index [BMI]) was formulated (termed N3-MASH), which discriminated patients with MASLD from healthy controls with an area under the receiver operating characteristic (AUROC) of 0.954. Among patients with MASLD, N3-MASH could identify patients with MASH with an AUROC of 0.823, achieving 90.0% specificity, 62.9% sensitivity, and 88.6% positive predictive value. The diagnostic performance of N3-MASH was confirmed in three validation cohorts with AUROC of 0.802, 0.805, and 0.823, respectively. Additionally, N3-MASH identifies patients with MASH improvement with an AUROC of 0.857. In summary, we developed a robust blood-based panel for the non-invasive diagnosis of MASH, which might help clinicians reduce unnecessary liver biopsies.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dehua Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Yufeng Lin
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Sherlot Juan Song
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Eagle Siu-Hong Chu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Dabin Liu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Seema Singh
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, San Diego, CA, USA
| | - Michael Berman
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, San Diego, CA, USA
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Grace Lai-Hung Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China
| | - Ni Zhang
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hai-Yang Yuan
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, San Diego, CA, USA.
| | - Vincent Wai-Sun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shenzhen Research Institute, Hong Kong SAR, China.
| |
Collapse
|
30
|
Le P, Tatar M, Dasarathy S, Alkhouri N, Herman WH, Taksler GB, Deshpande A, Ye W, Adekunle OA, McCullough A, Rothberg MB. Estimated Burden of Metabolic Dysfunction-Associated Steatotic Liver Disease in US Adults, 2020 to 2050. JAMA Netw Open 2025; 8:e2454707. [PMID: 39821400 PMCID: PMC11742522 DOI: 10.1001/jamanetworkopen.2024.54707] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/03/2024] [Indexed: 01/19/2025] Open
Abstract
Importance Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common cause of chronic liver disease and is projected to become the leading indication for liver transplant (LT) in the US. Understanding its clinical burden can help to identify opportunities for prevention and treatment. Objective To project the burden of MASLD in US adults from 2020 to 2050. Design, Setting, and Participants This decision analytical modeling study used an agent-based state transition model that simulates the natural history of MASLD progression among adults 18 years of age or older. Primary data sources for model inputs were the published literature. Exposure Natural history of MASLD. Main Outcomes and Measures Cases of MASLD, metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, hepatocellular carcinoma (HCC), LT, and liver-related death. Results The model simulated 2 821 624 individuals (mean age. 35.8 years; 50.9% female). The model predicted a steady increase in the prevalence of MASLD from 33.7% (86.3 million people) in 2020 to 41.4% (121.9 million people) by 2050. Cases of MASH would increase from 14.9 million (5.8% of US adults) in 2020 to 23.2 million (7.9% of US adults) by 2050. The number of cases of MASH and clinically significant fibrosis (ie, F≥F2, centrilobular and periportal fibrosis or more severe disease) were estimated to increase from 6.7 million to 11.7 million. By 2046 to 2050, MASLD would cause 22 440 new cases of HCC and 6720 new cases of LT per year compared with 11 483 new cases of HCC and 1717 new cases of LT in 2020 to 2025. Liver-related mortality was estimated to increase from 30 500 deaths (1.0% of all-cause deaths in adults) in 2020 to 95 300 deaths (2.4%) in 2050. Conclusions and Relevance In this decision analytical modeling study, the model forecast a substantial increase in clinical burden of MASLD over the next 3 decades in the absence of effective treatments. These results suggest that health systems should plan for large increases in the number of HCC cases and in the need for LT.
Collapse
Affiliation(s)
- Phuc Le
- Center for Value-Based Care Research, Cleveland Clinic, Cleveland, Ohio
| | - Moosa Tatar
- Center for Value-Based Care Research, Cleveland Clinic, Cleveland, Ohio
- University of Houston School of Pharmacy, Houston, Texas
| | - Srinivasan Dasarathy
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | - Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Tucson
| | - William H. Herman
- University of Michigan School of Public Health, Ann Arbor
- University of Michigan School of Medicine, Ann Arbor
| | - Glen B. Taksler
- Center for Value-Based Care Research, Cleveland Clinic, Cleveland, Ohio
| | | | - Wen Ye
- University of Michigan School of Public Health, Ann Arbor
| | | | - Arthur McCullough
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, Ohio
| | | |
Collapse
|
31
|
Patel K, Asrani SK, Fiel MI, Levine D, Leung DH, Duarte-Rojo A, Dranoff JA, Nayfeh T, Hasan B, Taddei TH, Alsawaf Y, Saadi S, Majzoub AM, Manolopoulos A, Alzuabi M, Ding J, Sofiyeva N, Murad MH, Alsawas M, Rockey DC, Sterling RK. Accuracy of blood-based biomarkers for staging liver fibrosis in chronic liver disease: A systematic review supporting the AASLD Practice Guideline. Hepatology 2025; 81:358-379. [PMID: 38489517 DOI: 10.1097/hep.0000000000000842] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND AND AIMS Blood-based biomarkers have been proposed as an alternative to liver biopsy for noninvasive liver disease assessment in chronic liver disease. Our aims for this systematic review were to evaluate the diagnostic utility of selected blood-based tests either alone, or in combination, for identifying significant fibrosis (F2-4), advanced fibrosis (F3-4), and cirrhosis (F4), as compared to biopsy in chronic liver disease. APPROACH AND RESULTS We included a comprehensive search of databases including Ovid MEDLINE(R), EMBASE, Cochrane Database, and Scopus through to April 2022. Two independent reviewers selected 286 studies with 103,162 patients. The most frequently identified studies included the simple aspartate aminotransferase-to-platelet ratio index and fibrosis (FIB)-4 markers (with low-to-moderate risk of bias) in HBV and HCV, HIV-HCV/HBV coinfection, and NAFLD. Positive (LR+) and negative (LR-) likelihood ratios across direct and indirect biomarker tests for HCV and HBV for F2-4, F3-4, or F4 were 1.66-6.25 and 0.23-0.80, 1.89-5.24 and 0.12-0.64, and 1.32-7.15 and 0.15-0.86, respectively; LR+ and LR- for NAFLD F2-4, F3-4, and F4 were 2.65-3.37 and 0.37-0.39, 2.25-6.76 and 0.07-0.87, and 3.90 and 0.15, respectively. Overall, the proportional odds ratio indicated FIB-4 <1.45 was better than aspartate aminotransferase-to-platelet ratio index <0.5 for F2-4. FIB-4 >3.25 was also better than aspartate aminotransferase-to-platelet ratio index >1.5 for F3-4 and F4. There was limited data for combined tests. CONCLUSIONS Blood-based biomarkers are associated with small-to-moderate change in pretest probability for diagnosing F2-4, F3-4, and F4 in viral hepatitis, HIV-HCV coinfection, and NAFLD, with limited comparative or combination studies for other chronic liver diseases.
Collapse
Affiliation(s)
- Keyur Patel
- Department of Medcine, Division of Gastroenterology and Hepatology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Sumeet K Asrani
- Department of Medicine, Division of Hepatology, Baylor University Medical Center, Dallas, Texas, USA
| | - Maria Isabel Fiel
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Deborah Levine
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel H Leung
- Department of Pediatrics, Baylor College of Medicine and Division of Gastroenterology, Hepatology and Nutrition, Texas Children's Hospital, Houston, Texas, USA
| | - Andres Duarte-Rojo
- Division of Gastroenterology and Hepatology, Northwestern Medicine and Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jonathan A Dranoff
- Yale School of Medicine, Department of Internal Medicine, Section of Digestive Diseases, New Haven, Connecticut, USA
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Tarek Nayfeh
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Bashar Hasan
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamar H Taddei
- Yale School of Medicine, Department of Internal Medicine, Section of Digestive Diseases, New Haven, Connecticut, USA
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Yahya Alsawaf
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Samer Saadi
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Muayad Alzuabi
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Jingyi Ding
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Nigar Sofiyeva
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Mohammad H Murad
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Mouaz Alsawas
- Mayo Clinic Evidence-based Practice Center, Mayo Clinic, Rochester, Minnesota, USA
- Department of Medicine, Section of Hepatology, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Don C Rockey
- Department of Medicine, Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Richard K Sterling
- Department of Medicine, Section of Hepatology, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
32
|
Shah N, Sanyal AJ. A Pragmatic Management Approach for Metabolic Dysfunction-Associated Steatosis and Steatohepatitis. Am J Gastroenterol 2025; 120:75-82. [PMID: 39569874 DOI: 10.14309/ajg.0000000000003215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Obesity and associated insulin resistance induce a chronic metaboinflammatory state that lead to injury and dysfunction of multiple organs resulting in a cluster of noncommunicable diseases such as type 2 diabetes mellitus, hypertension, cardiovascular disease, chronic kidney disease, and metabolic dysfunction-associated steatotic liver disease (MASLD). Metabolic dysfunction-associated steatohepatitis (MASH) is a histologically active form of MASLD and characterized by greater injury and inflammation and progresses to cirrhosis with greater certainty than steatosis alone. The progression to cirrhosis is characterized by increasing fibrosis. The goal of treatment of MASLD/MASH was to improve the metaboinflammatory state i.e., the root cause of the liver disease and to prevent fibrosis progression to cirrhosis whereas in those who already have cirrhosis need additional care to prevent portal hypertension-related outcomes. Fibrosis regression is thus a key objective of treatment. The recent approval of resmetirom for MASH with fibrosis and the use of glucagon-like peptide-1 receptor agonists for obesity and type 2 diabetes has increased awareness of these NCDs and resulted in the growing demand for liver assessment and care in obese individuals. Patients with MASLD also have multiple metabolic comorbidities which represent competing threats to life, and the care of the patient requires both assessment of the totality of the risk and a more holistic approach integrating the care of all of the threats to life. Here, we provide a pragmatic and easily implementable risk-based approach to the evaluation and management of MASLD.
Collapse
Affiliation(s)
- Neha Shah
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
33
|
Giraudi PJ, Pascut D, Banfi C, Ghilardi S, Tiribelli C, Bondesan A, Caroli D, Minocci A, Sartorio A. Serum proteome signatures associated with liver steatosis in adolescents with obesity. J Endocrinol Invest 2025; 48:213-225. [PMID: 39017916 PMCID: PMC11729140 DOI: 10.1007/s40618-024-02419-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Childhood obesity, a pressing global health issue, significantly increases the risk of metabolic complications, including metabolic dysfunction associated with steatotic liver disease (MASLD). Accurate non-invasive tests for early detection and screening of steatosis are crucial. In this study, we explored the serum proteome, identifying proteins as potential biomarkers for inclusion in non-invasive steatosis diagnosis tests. METHODS Fifty-nine obese adolescents underwent ultrasonography to assess steatosis. Serum samples were collected and analyzed by targeted proteomics with the Proximity Extension Assay technology. Clinical and biochemical parameters were evaluated, and correlations among them, the individuated markers, and steatosis were performed. Receiver operating characteristic (ROC) curves were used to determine the steatosis diagnostic performance of the identified candidates, the fatty liver index (FLI), and their combination in a logistic regression model. RESULTS Significant differences were observed between subjects with and without steatosis in various clinical and biochemical parameters. Gender-related differences in the serum proteome were also noted. Five circulating proteins, including Cathepsin O (CTSO), Cadherin 2 (CDH2), and Prolyl endopeptidase (FAP), were identified as biomarkers for steatosis. CDH2, CTSO, Leukocyte Immunoglobulin Like Receptor A5 (LILRA5), BMI, waist circumference, HOMA-IR, and FLI, among others, significantly correlated with the steatosis degree. CDH2, FAP, and LDL combined in a logit model achieved a diagnostic performance with an AUC of 0.91 (95% CI 0.75-0.97, 100% sensitivity, 84% specificity). CONCLUSIONS CDH2 and FAP combined with other clinical parameters, represent useful tools for accurate diagnosis of fatty liver, emphasizing the importance of integrating novel markers into diagnostic algorithms for MASLD.
Collapse
Affiliation(s)
- P J Giraudi
- Metabolic Liver Disease Unit, Fondazione Italiana Fegato-ONLUS, Trieste, Italy.
| | - D Pascut
- Liver Cancer Unit, Fondazione Italiana Fegato-ONLUS, Trieste, Italy
| | - C Banfi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - S Ghilardi
- Unit of Functional Proteomics, Metabolomics, and Network Analysis, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - C Tiribelli
- Metabolic Liver Disease Unit, Fondazione Italiana Fegato-ONLUS, Trieste, Italy
- Liver Cancer Unit, Fondazione Italiana Fegato-ONLUS, Trieste, Italy
| | - A Bondesan
- Istituto Auxologico Italiano IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - D Caroli
- Istituto Auxologico Italiano IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
| | - A Minocci
- Division of Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Piancavallo-Verbania, Italy
| | - A Sartorio
- Istituto Auxologico Italiano IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Piancavallo-Verbania, Italy
- Istituto Auxologico Italiano IRCCS, Experimental Laboratory for Auxo-endocrinological Research, Milan, Italy
| |
Collapse
|
34
|
Righetti R, Cinque F, Patel K, Sebastiani G. The role of noninvasive biomarkers for monitoring cell injury in advanced liver fibrosis. Expert Rev Gastroenterol Hepatol 2025; 19:65-80. [PMID: 39772945 DOI: 10.1080/17474124.2025.2450717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
INTRODUCTION Accurate and reliable diagnosis and monitoring of hepatic fibrosis is increasingly important given the variable natural history in chronic liver disease (CLD) and expanding antifibrotic therapeutic options targeting reversibility of early-stage cirrhosis. This highlights the need to develop more refined and effective noninvasive techniques for the dynamic assessment of fibrogenesis and fibrolysis. AREAS COVERED We conducted a literature review on PubMed, from 1 December 1970, to 1 November 2024, to evaluate and compare available blood-based and imaging-based noninvasive tools for hepatic fibrosis diagnosis and monitoring. Simple scores such as FIB-4 and NAFLD fibrosis score are suitable for excluding significant or advanced fibrosis, while tertiary centers should adopt complex scores and liver stiffness measurement as part of a secondary diagnostic and more comprehensive evaluation. Moreover, the advent of multiomics for high-resolution molecular profiling, and integration of artificial intelligence for noninvasive diagnostics holds promise for revolutionizing fibrosis monitoring and treatment through novel biomarker discovery and predictive omics-based algorithms. EXPERT OPINION The increased shift toward noninvasive diagnostics for liver fibrosis needs to align with personalized medicine, enabling more effective, tailored management strategies for patients with liver disease in the future.
Collapse
Affiliation(s)
- Riccardo Righetti
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University Health Centre, Montreal, Canada
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, Azienda Ospedaliero-Universitaria Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Felice Cinque
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Canada
- SC Medicina Indirizzo Metabolico, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico di Milano, Milan, Italy
- Department of Pathophysiology, Transplantation University of Milan, Milan, Italy
| | - Keyur Patel
- University Health Network Division of Gastroenterology and Hepatology, University of Toronto, Toronto, Canada
| | - Giada Sebastiani
- Chronic Viral Illness Service, Division of Infectious Diseases, Department of Medicine, McGill University Health Centre, Montreal, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
35
|
Zhang F, Han Y, Wu Y, Bao Z, Zheng G, Liu J, Li W. Association between triglyceride glucose-body mass index and the staging of non-alcoholic steatohepatitis and fibrosis in patients with non-alcoholic fatty liver disease. Ann Med 2024; 56:2409342. [PMID: 39348274 PMCID: PMC11443541 DOI: 10.1080/07853890.2024.2409342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/21/2024] [Accepted: 08/08/2024] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVE The objective of this study was to thoroughly investigate the clinical value of triglyceride glucose-body mass index (TyG-BMI) in patients diagnosed with non-alcoholic fatty liver disease (NAFLD). Specifically, we aimed to determine its association with non-alcoholic steatohepatitis (NASH) and the progression of liver fibrosis. METHODS The study included 393 patients diagnosed with NAFLD after liver biopsy. The patients were divided into two distinct cohorts: a training cohort (N = 320) and a validation cohort (N = 73). The training cohort was further divided into four groups based on TyG-BMI quartiles. The clinical characteristics of the patients in each group were compared in detail, and the association between TyG-BMI and NASH, NAFLD Activity Score (NAS) ≥ 4, at-risk NASH, significant fibrosis, advanced fibrosis, and cirrhosis was analyzed using multiple models. Additionally, we generated receiver operating characteristic (ROC) curves to evaluate the predictive ability of TyG-BMI for NASH and fibrosis staging in patients with NAFLD. RESULTS Patients with higher TyG-BMI values had a significantly higher prevalence of NASH, NAS ≥ 4, at-risk NASH, significant fibrosis, advanced fibrosis, and cirrhosis (all p < .05). TyG-BMI was an independent predictor of these diseases in both unadjusted and adjusted models (all p < .05). ROC curve analysis further revealed the excellent performance of TyG-BMI in predicting NASH, NAS ≥ 4, at-risk NASH, significant fibrosis, advanced fibrosis, and cirrhosis. The validation cohort yielded analogous results. Furthermore, we constructed three multivariate models of TyG-BMI in conjunction with elastography metrics, which demonstrated elevated diagnostic AUC values of 0.782, 0.792, 0.794, 0.785, 0.834, and 0.845, respectively. CONCLUSION This study confirms a significant association between insulin resistance and NAFLD, including at-risk NASH and fibrosis staging, as assessed using the TyG-BMI index. TyG-BMI and its associated multivariate models can be valuable noninvasive indicators for NAFLD diagnosis, risk stratification, and disease course monitoring.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yan Han
- Department of Endocrinology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
- Department of Clinical Nutrition, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Yunfei Wu
- Department of Pathology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Zuowei Bao
- Department of Ultrasonography, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Guojun Zheng
- Clinical Laboratory, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Jianhong Liu
- Department of Pathology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wenjian Li
- Department of Urology, Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| |
Collapse
|
36
|
Lai M, Dillon ST, Gu X, Morhardt TL, Xu Y, Chan NY, Xiong B, Can H, Ngo LH, Jin L, Zhang X, Moreira CC, Leite NC, Villela-Nogueira CA, Otu HH, Schattenberg JM, Schuppan D, Afdhal NH, Libermann TA. Serum protein risk stratification score for diagnostic evaluation of metabolic dysfunction-associated steatohepatitis. Hepatol Commun 2024; 8:e0586. [PMID: 39621304 PMCID: PMC11608748 DOI: 10.1097/hc9.0000000000000586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/08/2024] [Indexed: 01/03/2025] Open
Abstract
BACKGROUND Reliable, noninvasive tools to diagnose at-risk metabolic dysfunction-associated steatohepatitis (MASH) are urgently needed to improve management. We developed a risk stratification score incorporating proteomics-derived serum markers with clinical variables to identify high-risk patients with MASH (NAFLD activity score >4 and fibrosis score >2). METHODS In this 3-phase proteomic study of biopsy-proven metabolic dysfunction-associated steatotic fatty liver disease, we first developed a multi-protein predictor for discriminating NAFLD activity score >4 based on SOMAscan proteomics quantifying 1305 serum proteins from 57 US patients. Four key predictor proteins were verified by ELISA in the expanded US cohort (N = 168) and enhanced by adding clinical variables to create the 9-feature MASH Dx score, which predicted MASH and also high-risk MASH (F2+). The MASH Dx score was validated in 2 independent, external cohorts from Germany (N = 139) and Brazil (N = 177). RESULTS The discovery phase identified a 6-protein classifier that achieved an AUC of 0.93 for identifying MASH. Significant elevation of 4 proteins (THBS2, GDF15, SELE, and IGFBP7) was verified by ELISA in the expanded discovery and independently in the 2 external cohorts. MASH Dx score incorporated these proteins with established MASH risk factors (age, body mass index, ALT, diabetes, and hypertension) to achieve good discrimination between MASH and metabolic dysfunction-associated steatotic fatty liver disease without MASH (AUC: 0.87-discovery; 0.83-pooled external validation cohorts), with similar performance when evaluating high-risk MASH F2-4 (vs. MASH F0-1 and metabolic dysfunction-associated steatotic fatty liver disease without MASH). CONCLUSIONS The MASH Dx score offers the first reliable noninvasive approach combining novel, biologically plausible ELISA-based fibrosis markers and clinical parameters to detect high-risk MASH in patient cohorts from the United States, Brazil, and Europe.
Collapse
Affiliation(s)
- Michelle Lai
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Simon T. Dillon
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Xuesong Gu
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tina L. Morhardt
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Yuyan Xu
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Noel Y. Chan
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Beibei Xiong
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Handan Can
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Long H. Ngo
- Harvard Medical School, Boston, Massachusetts, USA
- Divisions of General Medicine and Primary Care, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Lina Jin
- Harvard Medical School, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xuehong Zhang
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Claudia C. Moreira
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathalie C. Leite
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane A. Villela-Nogueira
- Division of Hepatology, Department of Internal Medicine, School of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jörn M. Schattenberg
- Metabolic Liver Research Program, Department of Medicine, University Medical Center, Mainz, Germany
- Department of Internal Medicine II and University of the Saarland, University Medical Center Homburg, Homburg, Germany
| | - Detlef Schuppan
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Institute of Translational Immunology and Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nezam H. Afdhal
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Towia A. Libermann
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Genomics, Proteomics, Bioinformatics and Systems Biology Center, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Authors, Collaborators. Amendment "New nomenclature for MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease)" to the S2k guideline "Non-alcoholic fatty liver disease" (v.2.0/April 2022) of the German Society of Gastroenterology, Digestive and Metabolic Diseases (DGVS). ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:2065-2074. [PMID: 39642895 DOI: 10.1055/a-2408-3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
38
|
Alvarado-Tapias E, Maya-Miles D, Albillos A, Aller R, Ampuero J, Andrade RJ, Arechederra M, Aspichueta P, Banales JM, Blas-García A, Caparros E, Cardoso Delgado T, Carrillo-Vico A, Claria J, Cubero FJ, Díaz-Ruiz A, Fernández-Barrena MG, Fernández-Iglesias A, Fernández-Veledo S, Francés R, Gallego-Durán R, Gracia-Sancho J, Irimia M, Lens S, Martínez-Chantar ML, Mínguez B, Muñoz-Hernández R, Nogueiras R, Ramos-Molina B, Riveiro-Barciela M, Rodríguez-Perálvarez ML, Romero-Gómez M, Sabio G, Sancho-Bru P, Ventura-Cots M, Vidal S, Gahete MD. Proceedings of the 5th Meeting of Translational Hepatology, organized by the Spanish Association for the Study of the Liver (AEEH). GASTROENTEROLOGIA Y HEPATOLOGIA 2024; 47:502207. [PMID: 38723772 DOI: 10.1016/j.gastrohep.2024.502207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/02/2024] [Indexed: 11/30/2024]
Abstract
This is the summary report of the 5th Translational Hepatology Meeting, endorsed by the Spanish Association for the Study of the Liver (AEEH) and held in Seville, Spain, in October 2023. The meeting aimed to provide an update on the latest advances in the field of basic and translational hepatology, covering different molecular, cellular, and pathophysiological aspects of the most relevant clinical challenges in liver pathologies. This includes the identification of novel biomarkers and diagnostic tools, the understanding of the relevance of immune response and inflammation in liver diseases, the characterization of current medical approaches to reverse liver diseases, the incorporation of novel molecular insights through omics techniques, or the characterization of the impact of toxic and metabolic insults, as well as other organ crosstalk, in liver pathophysiology.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Gastroenterology, Hospital Santa Creu I Sant Pau, Institut de Recerca Sant Pau, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - Douglas Maya-Miles
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain.
| | - Agustin Albillos
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Servicio de Gastroenterología y Hepatología, Hospital Universitario Ramón y Cajal/Universidad de Alcalá/Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rocio Aller
- BioCritic, Group for Biomedical Research in Critical Care Medicine, Spain; Department of Medicine, Dermatology and Toxicology, Universidad de Valladolid, Spain; Gastroenterology Unit, Hospital Clínico Universitario de Valladolid, 47003 Valladolid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Javier Ampuero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Raul J Andrade
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - Maria Arechederra
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain
| | - Patricia Aspichueta
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Jesus M Banales
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Liver and Gastrointestinal Diseases, Biogipuzkoa Health Research Institute - Donostia University Hospital - University of the Basque Country (UPV/EHU), Ikerbasque, Donostia-San Sebastian, Spain; Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ana Blas-García
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Departamento de Fisiología, Universitat de València, Av. Blasco Ibáñez, 15, 46010 Valencia, Spain; FISABIO (Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana), Av. de Catalunya, 21, 46020 Valencia, Spain
| | - Esther Caparros
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Teresa Cardoso Delgado
- Biobizkaia Health Research Institute, Barakaldo, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonio Carrillo-Vico
- Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de Bioquímica Médica y Biología Molecular e Inmunología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Joan Claria
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Biochemistry and Molecular Genetics Service, Hospital Clínic, IDIBAPS, Barcelona, Spain; University of Barcelona, Spain
| | - Francisco Javier Cubero
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Maite G Fernández-Barrena
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Investigaciones Sanitarias de Navarra IdiSNA, Pamplona, Spain; Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Spain
| | - Anabel Fernández-Iglesias
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Sonia Fernández-Veledo
- Department of Endocrinology and Nutrition and Research Unit, University Hospital of Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Universitat Rovira i Virgili (URV), Tarragona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Ruben Francés
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Grupo de Inmunobiología Hepática e Intestinal, Departamento Medicina Clínica, Universidad Miguel Hernández, San Juan, Spain; Instituto de Investigación Sanitaria ISABIAL, Hospital General Universitario de Alicante, Alicante, Spain
| | - Rocío Gallego-Durán
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Jordi Gracia-Sancho
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Vascular Biology Research Group, IDIBAPS, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
| | - Manuel Irimia
- Universitat Pompeu Fabra (UPF), Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, ICREA, Barcelona, Spain
| | - Sabela Lens
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain; Liver Unit, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - María Luz Martínez-Chantar
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Bizkaia, Spain
| | - Beatriz Mínguez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rocío Muñoz-Hernández
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain; Departamento de fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rubén Nogueiras
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Physiology, CIMUS, University of Santiago de Compostela, Instituto de Investigación Sanitaria, Santiago de Compostela, Spain; Galician Agency of Innovation (GAIN), Xunta de Galicia, Santiago de Compostela, Spain
| | - Bruno Ramos-Molina
- Obesity, Diabetes and Metabolism Laboratory, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| | - Mar Riveiro-Barciela
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Manuel L Rodríguez-Perálvarez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Department of Hepatology and Liver Transplantation, Reina Sofia University Hospital, Cordoba, Spain; Maimonides Biomedical Research Institute of Córdoba (IMIBIC), University of Córdoba, Cordoba, Spain
| | - Manuel Romero-Gómez
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Instituto de Biomedicina de Sevilla (IBIS), Hospital Universitario Virgen del Rocío (HUVR), CISC, Universidad de Sevilla, Sevilla, Spain
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Stress Kinases in Diabetes, Cancer and Biochemistry, Spain; Centro Nacional de Investigaciones Oncologicas (CNIO), Organ Crosstalk in Metabolic Diseases, Madrid, Spain
| | - Pau Sancho-Bru
- CIBEREHD (Center for Biomedical Network Research in Liver and Digestive Diseases), Instituto de Salud Carlos III, 28029 Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Meritxell Ventura-Cots
- Liver Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Center for Liver Diseases, Pittsburgh Liver Research Center, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Vidal
- Group of Inflammatory Diseases, Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Manuel D Gahete
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Molecular Hepatology Group, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Spain; Reina Sofia University Hospital, Cordoba, Spain.
| |
Collapse
|
39
|
FAGOONEE S, PANELLA R. MASHing up molecular imaging and biomarkers for improved diagnosis of metabolic dysfunction-associated steatotic liver disease. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2024; 36. [DOI: 10.23736/s2724-542x.24.03224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
|
40
|
Sourianarayanane A, Salemi MR, Phinney BS, McCullough AJ. Liver Tissue Proteins Improve the Accuracy of Plasma Proteins as Biomarkers in Diagnosing Metabolic Dysfunction-Associated Steatohepatitis. Proteomics Clin Appl 2024; 18:e202300236. [PMID: 39073724 DOI: 10.1002/prca.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/12/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Biomarkers for metabolic dysfunction-associated steatohepatitis (MASH) have been considered based on proteomic and lipidomic data from plasma and liver tissue without clinical benefits. This study evaluated proteomics-based plasma and liver tissue biomarkers collected simultaneously from patients with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Liver tissue and plasma samples were collected during liver biopsy to diagnose MASLD. Untargeted proteomics was performed on 64 patients. RESULTS Twenty plasma proteins were up- or downregulated in patients with MASH compared with those without MASH. The potential biomarkers utilizing the best combinations of these plasma proteins had an area under the receiver operating curve (AUROC) of 0.671 for detecting those with MASH compared with those without it. However, none of the 20 plasma proteins were represented among the significantly regulated liver tissue proteins in patients with MASH. Ten of them displayed a trend and relevance in liver tissue with MASLD progression. These 10 plasma proteins had an AUROC of 0.793 for MASH identification and higher positive and negative predictive values. CONCLUSION The plasma and liver protein expressions of patients with MASH were not directly comparable. Plasma protein biomarkers that are also expressed in liver tissue can help improve MASH detection.
Collapse
Affiliation(s)
- Achuthan Sourianarayanane
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michelle R Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, California, USA
| | - Brett S Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, California, USA
| | | |
Collapse
|
41
|
Pericàs JM, Anstee QM, Augustin S, Bataller R, Berzigotti A, Ciudin A, Francque S, Abraldes JG, Hernández-Gea V, Pons M, Reiberger T, Rowe IA, Rydqvist P, Schabel E, Tacke F, Tsochatzis EA, Genescà J. A roadmap for clinical trials in MASH-related compensated cirrhosis. Nat Rev Gastroenterol Hepatol 2024; 21:809-823. [PMID: 39020089 DOI: 10.1038/s41575-024-00955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 07/19/2024]
Abstract
Although metabolic dysfunction-associated steatohepatitis (MASH) is rapidly becoming a leading cause of cirrhosis worldwide, therapeutic options are limited and the number of clinical trials in MASH-related compensated cirrhosis is low as compared to those conducted in earlier disease stages. Moreover, designing clinical trials in MASH cirrhosis presents a series of challenges regarding the understanding and conceptualization of the natural history, regulatory considerations, inclusion criteria, recruitment, end points and trial duration, among others. The first international workshop on the state of the art and future direction of clinical trials in MASH-related compensated cirrhosis was held in April 2023 at Vall d'Hebron University Hospital in Barcelona (Spain) and was attended by a group of international experts on clinical trials from academia, regulatory agencies and industry, encompassing expertise in MASH, cirrhosis, portal hypertension, and regulatory affairs. The presented Roadmap summarizes important content of the workshop on current status, regulatory requirements and end points in MASH-related compensated cirrhosis clinical trials, exploring alternative study designs and highlighting the challenges that should be considered for upcoming studies on MASH cirrhosis.
Collapse
Affiliation(s)
- Juan M Pericàs
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | | | - Ramón Bataller
- Liver Unit, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Barcelona, Barcelona, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Andreea Ciudin
- Endocrinology and Nutrition Department, Morbid Obesity Unit Coordinator, Vall d'Hebron University Hospital, Barcelona, Spain
- Centros de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Juan G Abraldes
- Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Canada
| | - Virginia Hernández-Gea
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
- Liver Unit, Hospital Clinic Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat Barcelona, Barcelona, Spain
| | - Mònica Pons
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Ian A Rowe
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Peter Rydqvist
- Medical Department, Madrigal Pharmaceuticals, West Conshohocken, PA, USA
| | - Elmer Schabel
- Federal Institute for Drugs and Medical Devices, Bonn, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Joan Genescà
- Liver Unit, Division of Digestive Diseases, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centros de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
42
|
Colosimo S, Miller H, Koutoukidis DA, Marjot T, Tan GD, Harman DJ, Aithal GP, Manousou P, Forlano R, Parker R, Sheridan DA, Newsome PN, Alazawi W, Cobbold JF, Tomlinson JW. Glycated haemoglobin is a major predictor of disease severity in patients with NAFLD. Diabetes Res Clin Pract 2024; 217:111820. [PMID: 39147101 DOI: 10.1016/j.diabres.2024.111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/30/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
OBJECTIVES Currently, non-invasive scoring systems to stage the severity of non-alcoholic fatty liver disease (NAFLD) do not consider markers of glucose control (glycated haemoglobin, HbA1c); this study aimed to define the relationship between HbA1c and NAFLD severity in patients with and without type 2 diabetes. RESEARCH DESIGN AND METHODS Data were obtained from 857 patients with liver biopsy staged NAFLD. Generalized-linear models and binomial regression analysis were used to define the relationships between histological NAFLD severity, age, HbA1c, and BMI. Paired biopsies from interventional studies (n = 421) were used to assess the impact of change in weight, HbA1c and active vs. placebo treatment on improvements in steatosis, non-alcoholic steatohepatitis (NASH), and fibrosis. RESULTS In the discovery cohort (n = 687), risk of severe steatosis, NASH and advanced fibrosis correlated positively with HbA1c, after adjustment for obesity and age. These data were endorsed in a separate validation cohort (n = 170). Predictive modelling using HbA1c and age was non-inferior to the established non-invasive biomarker, Fib-4, and allowed the generation of HbA1c, age, and BMI adjusted risk charts to predict NAFLD severity. Following intervention, reduction in HbA1c was associated with improvements in steatosis and NASH after adjustment for weight change and treatment, whilst fibrosis change was only associated with weight change and treatment. CONCLUSIONS HbA1c is highly informative in predicting NAFLD severity and contributes more than BMI. Assessments of HbA1c must be a fundamental part of the holistic assessment of patients with NAFLD and, alongside age, can be used to identify patients with highest risk of advanced disease.
Collapse
Affiliation(s)
- Santo Colosimo
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Hamish Miller
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Barts Liver Centre, Queen Mary University London and Barts Health NHS Trust, London, UK
| | - Dimitrios A Koutoukidis
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Thomas Marjot
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Oxford Liver Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; UK NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Garry D Tan
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - David J Harman
- Royal Berkshire Hospital NHS Foundation Trust, Reading, UK
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, UK
| | - Pinelopi Manousou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Roberta Forlano
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Richard Parker
- Leeds Liver Unit, St James's University Hospital Leeds, Leeds, UK
| | - David A Sheridan
- Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Philip N Newsome
- National Institute for Health Research Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust and the University of Birmingham, Birmingham, UK
| | - William Alazawi
- Barts Liver Centre, Queen Mary University London and Barts Health NHS Trust, London, UK; Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jeremy F Cobbold
- Oxford Liver Unit, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; UK NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jeremy W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford and NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
43
|
Kraemer S, Schneider DJ, Paterson C, Perry D, Westacott MJ, Hagar Y, Katilius E, Lynch S, Russell TM, Johnson T, Astling DP, DeLisle RK, Cleveland J, Gold L, Drolet DW, Janjic N. Crossing the Halfway Point: Aptamer-Based, Highly Multiplexed Assay for the Assessment of the Proteome. J Proteome Res 2024; 23:4771-4788. [PMID: 39038188 PMCID: PMC11536431 DOI: 10.1021/acs.jproteome.4c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Measuring responses in the proteome to various perturbations improves our understanding of biological systems. The value of information gained from such studies is directly proportional to the number of proteins measured. To overcome technical challenges associated with highly multiplexed measurements, we developed an affinity reagent-based method that uses aptamers with protein-like side chains along with an assay that takes advantage of their unique properties. As hybrid affinity reagents, modified aptamers are fully comparable to antibodies in terms of binding characteristics toward proteins, including epitope size, shape complementarity, affinity and specificity. Our assay combines these intrinsic binding properties with serial kinetic proofreading steps to allow highly effective partitioning of stable specific complexes from unstable nonspecific complexes. The use of these orthogonal methods to enhance specificity effectively overcomes the severe limitation to multiplexing inherent to the use of sandwich-based methods. Our assay currently measures half of the unique proteins encoded in the human genome with femtomolar sensitivity, broad dynamic range and exceptionally high reproducibility. Using machine learning to identify patterns of change, we have developed tests based on measurement of multiple proteins predictive of current health states and future disease risk to guide a holistic approach to precision medicine.
Collapse
Affiliation(s)
- Stephan Kraemer
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Daniel J. Schneider
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Clare Paterson
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Darryl Perry
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Matthew J. Westacott
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Yolanda Hagar
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Evaldas Katilius
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Sean Lynch
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Theresa M. Russell
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Ted Johnson
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - David P. Astling
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Robert Kirk DeLisle
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Jason Cleveland
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Larry Gold
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Daniel W. Drolet
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| | - Nebojsa Janjic
- SomaLogic, 2495 Wilderness Place, Boulder, Colorado 80301, United States of America
| |
Collapse
|
44
|
Singh A, Sohal A, Batta A. Recent developments in non-invasive methods for assessing metabolic dysfunction-associated fatty liver disease. World J Gastroenterol 2024; 30:4324-4328. [PMID: 39492822 PMCID: PMC11525852 DOI: 10.3748/wjg.v30.i39.4324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated fatty liver disease (MAFLD) is increasing, affecting over one-third of the global population and contributing to significant morbidity and mortality. Diagnosing MAFLD, especially with advanced fibrosis, remains challenging due to the limitations of liver biopsy, the current gold standard. Non-invasive tests are crucial for early detection and management. Among these, the fibrosis-4 index (Fib-4) is widely recommended as a first-line test for screening for liver fibrosis. Advanced imaging techniques, including ultrasound-based elastography and magnetic resonance elastography, offer high accuracy but are limited by cost and availability. Combining biomarkers, such as in the enhanced liver fibrosis score and FibroScan-AST score, enhances diagnostic precision and is recommended to further stratify patients who are considered to be intermediate or high risk from the Fib-4 score. We believe that the future lies in the combined use of biomarkers to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Anmol Singh
- Department of Medicine, Tristar Centennial Medical Center, Nashville, TN 37203, United States
| | - Aalam Sohal
- Department of Gastroenterology and Hepatology, Creighton University School of Medicine, Phoenix, AZ 85012, United States
| | - Akash Batta
- Department of Cardiology, Dayanand Medical College and Hospital, Ludhiana 141001, Punjab, India
| |
Collapse
|
45
|
Chan WK, Wong VWS, Adams LA, Nguyen MH. MAFLD in adults: non-invasive tests for diagnosis and monitoring of MAFLD. Hepatol Int 2024; 18:909-921. [PMID: 38913148 DOI: 10.1007/s12072-024-10661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/13/2024] [Indexed: 06/25/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the liver manifestation of a metabolic syndrome and is highly prevalent in the general population. There has been significant progress in non-invasive tests for MAFLD, from the diagnosis of fatty liver and monitoring of liver fat content in response to intervention, to evaluation of liver fibrosis and its change over time, and from risk stratification of patients within the context of clinical care pathways, to prognostication. Various non-invasive tests have also been developed to assess for fibrotic metabolic dysfunction-associated steatohepatitis, which has emerged as an important diagnostic goal, particularly in the context of clinical trials. Non-invasive tests can be used to diagnose clinically significant portal hypertension so that intervention can be administered to reduce the risk of decompensation. Furthermore, the use of risk stratification algorithms can identify at-risk patients for hepatocellular carcinoma surveillance. Beyond the liver, various tests that evaluate cardiovascular disease risk, assess sarcopenia and measure patient reported outcomes, can be utilized to improve the care of patients with MAFLD. This review provides an up-to-date overview of these non-invasive tests and the limitations of liver biopsy in the management of patients with MAFLD.
Collapse
Affiliation(s)
- Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Vincent Wai-Sun Wong
- Medical Data Analytics Centre, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Leon A Adams
- Medical School, University of Western Australia, Perth, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Perth, Australia
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University Medical Center, Stanford, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| |
Collapse
|
46
|
McPherson S, Dyson JK, Jopson L, Masson S, Patel P, Anstee QM. Letter: Beyond advanced fibrosis-The critical need for assessing NITs performance in identifying F2-F3 fibrosis. Authors' reply. Aliment Pharmacol Ther 2024; 60:976-977. [PMID: 39253944 DOI: 10.1111/apt.18209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
LINKED CONTENTThis article is linked to McPherson et al papers. To view these articles, visit https://doi.org/10.1111/apt.18061 and https://doi.org/10.1111/apt.18171.
Collapse
Affiliation(s)
- Stuart McPherson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jessica K Dyson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Jopson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Steven Masson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Preya Patel
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Quentin M Anstee
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
47
|
Wang J, Pan Y, Xiong Y, Wu C, Huang R. Letter: Algorithmic NIT approaches to identify advanced liver fibrosis in patients with MASLD. Aliment Pharmacol Ther 2024; 60:978-979. [PMID: 39212093 DOI: 10.1111/apt.18176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
LINKED CONTENTThis article is linked to McPherson et al papers. To view these articles, visit https://doi.org/10.1111/apt.18061 and https://doi.org/10.1111/apt.18215
Collapse
Affiliation(s)
- Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Yifan Pan
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye Xiong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- Institute of Viruses and Infectious Diseases, Nanjing University, Nanjing, Jiangsu, China
- Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
48
|
McPherson S, Dyson JK, Jopson L, Masson S, Patel P, Anstee QM. Letter: Algorithmic NIT approaches to identify advanced liver fibrosis in patients with MASLD: Authors' reply. Aliment Pharmacol Ther 2024; 60:980-981. [PMID: 39212090 DOI: 10.1111/apt.18215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
LINKED CONTENTThis article is linked to McPherson et al papers. To view these articles, visit https://doi.org/10.1111/apt.18061 and https://doi.org/10.1111/apt.18176
Collapse
Affiliation(s)
- Stuart McPherson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Jessica K Dyson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Jopson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Steven Masson
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Preya Patel
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Quentin M Anstee
- Liver Unit, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
- Newcastle NIHR Biomedical Research Centre, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
49
|
Kim MN, Han JW, An J, Kim BK, Jin YJ, Kim SS, Lee M, Lee HA, Cho Y, Kim HY, Shin YR, Yu JH, Kim MY, Choi Y, Chon YE, Cho EJ, Lee EJ, Kim SG, Kim W, Jun DW, Kim SU, on behalf of The Korean Association for the Study of the Liver (KASL). KASL clinical practice guidelines for noninvasive tests to assess liver fibrosis in chronic liver disease. Clin Mol Hepatol 2024; 30:S5-S105. [PMID: 39159947 PMCID: PMC11493350 DOI: 10.3350/cmh.2024.0506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Affiliation(s)
- Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Beom Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Seung-seob Kim
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Minjong Lee
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Yuri Cho
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Hee Yeon Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yu Rim Shin
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Moon Young Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - YoungRok Choi
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Young Eun Chon
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Won Kim
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - on behalf of The Korean Association for the Study of the Liver (KASL)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
- Department of Internal Medicine, Institute of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
- Department of Internal Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
50
|
Chon YE, Jin YJ, An J, Kim HY, Choi M, Jun DW, Kim MN, Han JW, Lee HA, Yu JH, Kim SU. Optimal cut-offs of vibration-controlled transient elastography and magnetic resonance elastography in diagnosing advanced liver fibrosis in patients with nonalcoholic fatty liver disease: A systematic review and meta-analysis. Clin Mol Hepatol 2024; 30:S117-S133. [PMID: 39165159 PMCID: PMC11493355 DOI: 10.3350/cmh.2024.0392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND/AIMS Opinions differ regarding vibration-controlled transient elastography and magnetic resonance elastography (VCTE/MRE) cut-offs for diagnosing advanced fibrosis (AF) in patients with non-alcoholic fatty liver disease (NAFLD). We investigated the diagnostic performance and optimal cut-off values of VCTE and MRE for diagnosing AF. METHODS Literature databases, including Medline, EMBASE, Cochrane Library, and KoreaMed, were used to identify relevant studies published up to June 13, 2023. We selected studies evaluating VCTE and MRE regarding the degree of liver fibrosis using liver biopsy as the reference. The sensitivity, specificity, and area under receiver operating characteristics curves (AUCs) of the pooled data for VCTE and MRE for each fibrosis stage and optimal cut-offs for AF were investigated. RESULTS A total of 19,199 patients from 63 studies using VCTE showed diagnostic AUC of 0.83 (95% confidence interval: 0.80-0.86), 0.83 (0.80-0.86), 0.87 (0.84-0.90), and 0.94 (0.91-0.96) for ≥F1, ≥F2, ≥F3, and F4 stages, respectively. Similarly, 1,484 patients from 14 studies using MRE showed diagnostic AUC of 0.89 (0.86-0.92), 0.92 (0.89-0.94), 0.89 (0.86-0.92), and 0.94 (0.91-0.96) for ≥F1, ≥F2, ≥F3, and F4 stages, respectively. The diagnostic AUC for AF using VCTE was highest at 0.90 with a cut-off of 7.1-7.9 kPa, and that of MRE was highest at 0.94 with a cut-off of 3.62-3.8 kPa. CONCLUSION VCTE (7.1-7.9 kPa) and MRE (3.62-3.8 kPa) with the suggested cut-offs showed favorable accuracy for diagnosing AF in patients with NAFLD. This result will serve as a basis for clinical guidelines for non-invasive tests and differential diagnosis of AF.
Collapse
Affiliation(s)
- Young Eun Chon
- Department of Gastroenterology, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Jihyun An
- Department of Gastroenterology and Hepatology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Korea
| | - Hee Yeon Kim
- Department of Internal Medicine, College of Medicine, Bucheon St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Miyoung Choi
- Division of Health Technology Assessment Research, National Evidence-Based Healthcare Collaborating Agency (NECA), Seoul, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Korea
| | - Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| | - Ji Won Han
- Department of Internal Medicine, College of Medicine, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jung Hwan Yu
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Korea
| |
Collapse
|