1
|
Damigos S, Caliskan A, Wajant G, Giddins S, Moldovan A, Kuhn S, Putz E, Dandekar T, Rudel T, Westermann AJ, Zdzieblo D. A Multicellular In Vitro Model of the Human Intestine with Immunocompetent Features Highlights Host-Pathogen Interactions During Early Salmonella Typhimurium Infection. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411233. [PMID: 39807570 PMCID: PMC11884561 DOI: 10.1002/advs.202411233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult. Macrophages, for instance, contribute to the immunocompetence of native tissue, yet their incorporation into human epithelial tissue models is challenging. A 3D immunocompetent tissue model of the human small intestine based on decellularized submucosa enriched with monocyte-derived macrophages (MDM) is established. The multicellular model recapitulated in vivo-like cellular diversity, especially the induction of GP2 positive microfold (M) cells. Infection studies with STm reveal that the pathogen physically interacts with these M-like cells. MDMs show trans-epithelial migration and phagocytosed STm within the model and the levels of inflammatory cytokines are induced upon STm infection. Infected epithelial cells are shed into the supernatant, potentially reflecting an intracellular reservoir of invasion-primed STm. Together, the 3D model of the human intestinal epithelium bears potential as an alternative to animals to identify human-specific processes underlying enteric bacterial infections.
Collapse
Affiliation(s)
- Spyridon Damigos
- Department for Functional Materials in Medicine and DentistryUniversity Hospital WürzburgWürzburgGermany
| | - Aylin Caliskan
- Department of BioinformaticsBiocenterUniversity of WürzburgWürzburgGermany
| | - Gisela Wajant
- Department for Functional Materials in Medicine and DentistryUniversity Hospital WürzburgWürzburgGermany
| | - Sara Giddins
- Department for Functional Materials in Medicine and DentistryUniversity Hospital WürzburgWürzburgGermany
| | - Adriana Moldovan
- Department of MicrobiologyBiocenterUniversity of WürzburgWürzburgGermany
| | - Sabine Kuhn
- Institute of Clinical Transfusion Medicine and HemotherapyUniversity of WuerzburgWuerzburgGermany
| | - Evelyn Putz
- Institute of Clinical Transfusion Medicine and HemotherapyUniversity of WuerzburgWuerzburgGermany
| | - Thomas Dandekar
- Department of BioinformaticsBiocenterUniversity of WürzburgWürzburgGermany
| | - Thomas Rudel
- Department of MicrobiologyBiocenterUniversity of WürzburgWürzburgGermany
| | - Alexander J. Westermann
- Department of MicrobiologyBiocenterUniversity of WürzburgWürzburgGermany
- Helmholtz‐Institute for RNA‐based Infection Research (HIRI)Helmholtz Centre for Infection Research (HZI)WürzburgGermany
| | - Daniela Zdzieblo
- Department for Functional Materials in Medicine and DentistryUniversity Hospital WürzburgWürzburgGermany
- Translational Center for Regenerative Therapies (TLC‐RT)Fraunhofer Institute for Silicate Research (ISC)97070WürzburgGermany
| |
Collapse
|
2
|
Byrne AS, Bissonnette N, Tahlan K. Mechanisms and implications of phenotypic switching in bacterial pathogens. Can J Microbiol 2025; 71:1-19. [PMID: 39361974 DOI: 10.1139/cjm-2024-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment, and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.
Collapse
Affiliation(s)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
3
|
Singh S, Koo OK. A Comprehensive Review Exploring the Protective Role of Specific Commensal Gut Bacteria against Salmonella. Pathogens 2024; 13:642. [PMID: 39204243 PMCID: PMC11356920 DOI: 10.3390/pathogens13080642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Gut microbiota is a diverse community of microorganisms that constantly work to protect the gut against pathogens. Salmonella stands out as a notorious foodborne pathogen that interacts with gut microbes, causing an imbalance in the overall composition of microbiota and leading to dysbiosis. This review focuses on the interactions between Salmonella and the key commensal bacteria such as E. coli, Lactobacillus, Clostridium, Akkermansia, and Bacteroides. The review highlights the role of these gut bacteria and their synergy in combating Salmonella through several mechanistic interactions. These include the production of siderophores, which compete with Salmonella for essential iron; the synthesis of short-chain fatty acids (SCFAs), which exert antimicrobial effects and modulate the gut environment; the secretion of bacteriocins, which directly inhibit Salmonella growth; and the modulation of cytokine responses, which influences the host's immune reaction to infection. While much research has explored Salmonella, this review aims to better understand how specific gut bacteria engage with the pathogen, revealing distinct defense mechanisms tailored to each species and how their synergy may lead to enhanced protection against Salmonella. Furthermore, the combination of these commensal bacteria could offer promising avenues for bacteria-mediated therapy during Salmonella-induced gut infections in the future.
Collapse
Affiliation(s)
| | - Ok Kyung Koo
- Department of Food Science & Technology, Chungnam National University, Daejeon 34134, Republic of Korea;
| |
Collapse
|
4
|
Alfituri OA, Blake R, Jensen K, Mabbott NA, Hope J, Stevens JM. Differential role of M cells in enteroid infection by Mycobacterium avium subsp. paratuberculosis and Salmonella enterica serovar Typhimurium. Front Cell Infect Microbiol 2024; 14:1416537. [PMID: 39040600 PMCID: PMC11260670 DOI: 10.3389/fcimb.2024.1416537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Infection of ruminants such as cattle with Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a disease characterized by chronic inflammation of the small intestine and diarrhoea. Infection with MAP is acquired via the faecal-to-oral route and the pathogen initially invades the epithelial lining of the small intestine. In this study we used an in vitro 3D mouse enteroid model to determine the influence of M cells in infection of the gut epithelia by MAP, in comparison with another bacterial intestinal pathogen of veterinary importance, Salmonella enterica serovar Typhimurium. The differentiation of M cells in the enteroid cultures was induced by stimulation with the cytokine receptor activator of nuclear factor-κB ligand (RANKL), and the effects on MAP and Salmonella uptake and intracellular survival were determined. The presence of M cells in the cultures correlated with increased uptake and intracellular survival of Salmonella, but had no effect on MAP. Interestingly neither pathogen was observed to preferentially accumulate within GP2-positive M cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Joanne M. Stevens
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
5
|
Taddeo JR, Wilson N, Kowal A, Beld J, Andres KS, Tükel Ç, Tam VC. PPARα exacerbates Salmonella Typhimurium infection by modulating the immunometabolism and macrophage polarization. Gut Microbes 2024; 16:2419567. [PMID: 39508622 PMCID: PMC11545264 DOI: 10.1080/19490976.2024.2419567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (STm) is a causative pathogen for robust inflammatory gastrointestinal disease and can lead to systemic infection. Eicosanoids, bioactive lipid mediators, play a crucial role in modulating both the induction and resolution of inflammatory responses during an infection. A subset of eicosanoids activates PPARs, nuclear receptor/transcription factors that regulate fatty acid metabolism, lipid body formation, and macrophage function. In this study, we determined that mice lacking PPARα exhibited reduced inflammatory hallmarks of STm infection, including lower inflammatory gene expression, cecal inflammation, and bacterial dissemination, along with a significant increase in cecal eicosanoid metabolism compared to wildtype C57BL/6 mice. In macrophages, STm favored M2b-polarized macrophages for intracellular infection, leading to reduced arachidonic acid and ceramide production. Inhibition of fatty acid oxidation via Etomoxir in STm-infected macrophages reduced bacterial burdens and promoted cell death. In Etomoxir-treated wildtype mice, STm infection increased ceramide production, decreased inflammatory gene expression in the cecum, and increased the number of STm-containing M1 macrophages in mesenteric lymph nodes. These findings revealed a novel role for the lipid-immune signaling axis in Salmonella infections, providing significant insights into the lipid-mediated regulation of inflammation during bacterial infections in the gut.
Collapse
Affiliation(s)
- Jessica R. Taddeo
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Naomi Wilson
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Anita Kowal
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Center for Advanced Microbial Processing, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | - Çagla Tükel
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Vincent C. Tam
- Center for Microbiology and Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
6
|
De Gaetano GV, Lentini G, Famà A, Coppolino F, Beninati C. Antimicrobial Resistance: Two-Component Regulatory Systems and Multidrug Efflux Pumps. Antibiotics (Basel) 2023; 12:965. [PMID: 37370284 DOI: 10.3390/antibiotics12060965] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The number of multidrug-resistant bacteria is rapidly spreading worldwide. Among the various mechanisms determining resistance to antimicrobial agents, multidrug efflux pumps play a noteworthy role because they export extraneous and noxious substrates from the inside to the outside environment of the bacterial cell contributing to multidrug resistance (MDR) and, consequently, to the failure of anti-infective therapies. The expression of multidrug efflux pumps can be under the control of transcriptional regulators and two-component systems (TCS). TCS are a major mechanism by which microorganisms sense and reply to external and/or intramembrane stimuli by coordinating the expression of genes involved not only in pathogenic pathways but also in antibiotic resistance. In this review, we describe the influence of TCS on multidrug efflux pump expression and activity in some Gram-negative and Gram-positive bacteria. Taking into account the strict correlation between TCS and multidrug efflux pumps, the development of drugs targeting TCS, alone or together with already discovered efflux pump inhibitors, may represent a beneficial strategy to contribute to the fight against growing antibiotic resistance.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, 98124 Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, 98124 Messina, Italy
- Scylla Biotech Srl, 98124 Messina, Italy
| |
Collapse
|
7
|
Ali S, Alsayeqh AF. Review of major meat-borne zoonotic bacterial pathogens. Front Public Health 2022; 10:1045599. [PMID: 36589940 PMCID: PMC9799061 DOI: 10.3389/fpubh.2022.1045599] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 12/16/2022] Open
Abstract
The importance of meat-borne pathogens to global disease transmission and food safety is significant for public health. These pathogens, which can cause a variety of diseases, include bacteria, viruses, fungi, and parasites. The consumption of pathogen-contaminated meat or meat products causes a variety of diseases, including gastrointestinal ailments. Humans are susceptible to several diseases caused by zoonotic bacterial pathogens transmitted through meat consumption, most of which damage the digestive system. These illnesses are widespread worldwide, with the majority of the burden borne by developing countries. Various production, processing, transportation, and food preparation stages can expose meat and meat products to bacterial infections and/or toxins. Worldwide, bacterial meat-borne diseases are caused by strains of Escherichia coli, Salmonella, Listeria monocytogenes, Shigella, Campylobacter, Brucella, Mycobacterium bovis, and toxins produced by Staphylococcus aureus, Clostridium species, and Bacillus cereus. Additionally, consuming contaminated meat or meat products with drug-resistant bacteria is a severe public health hazard. Controlling zoonotic bacterial pathogens demands intervention at the interface between humans, animals, and their environments. This review aimed to highlight the significance of meat-borne bacterial zoonotic pathogens while adhering to the One Health approach for creating efficient control measures.
Collapse
Affiliation(s)
- Sultan Ali
- Institute of Microbiology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah F. Alsayeqh
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
8
|
Siepker CL, Schwartz KJ, Feldhacker TJ, Magstadt DR, Sahin O, Almeida M, Li G, Hayman KP, Gorden PJ. Salmonella enterica serovar Brandenburg abortions in dairy cattle. J Vet Diagn Invest 2022; 34:864-869. [PMID: 35762117 DOI: 10.1177/10406387221105890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two separate late-term abortion outbreaks in Jersey heifers in July 2020 and December 2020 were investigated by the Iowa State University Veterinary Diagnostic Laboratory. We evaluated 3 whole fetuses and 11 sets of fresh and formalin-fixed fetal tissues during the course of the outbreaks. The late-term abortions were first identified at a heifer development site and subsequently observed at the dairy farm. Aborted fetuses had moderate-to-marked postmortem autolysis with no gross lesions identified. Observed clinical signs in cows at the dairy farm ranged from intermittent loose stools to acute post-abortion pyrexia and reduced feed intake. Routine histopathology and reproductive bacterial culture revealed acute, suppurative placentitis with moderate-to-heavy growth of Salmonella spp. group B from stomach contents, liver, placenta, and heifer fecal contents. Serotyping identified Salmonella enterica subsp. enterica serovar Brandenburg in all 14 fresh tissue cases, as well as individual and pooled heifer feces. Whole-genome sequencing analysis revealed that all isolates belonged to ST type 873 and possessed typhoid toxin genes, several fimbrial gene clusters, type III secretion system genes, and several pathogenicity islands. Abortions caused by Salmonella Brandenburg have not been reported previously in dairy cattle in the United States, to our knowledge.
Collapse
Affiliation(s)
- Christopher L Siepker
- Departments of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kent J Schwartz
- Departments of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | - Drew R Magstadt
- Departments of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Orhan Sahin
- Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Marcelo Almeida
- Departments of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Ganwu Li
- Departments of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Kristin P Hayman
- Departments of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Patrick J Gorden
- Departments of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
9
|
Devlin JR, Santus W, Mendez J, Peng W, Yu A, Wang J, Alejandro-Navarreto X, Kiernan K, Singh M, Jiang P, Mechref Y, Behnsen J. Salmonella enterica serovar Typhimurium chitinases modulate the intestinal glycome and promote small intestinal invasion. PLoS Pathog 2022; 18:e1010167. [PMID: 35482787 PMCID: PMC9049507 DOI: 10.1371/journal.ppat.1010167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/23/2022] [Indexed: 11/19/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - William Santus
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Jorge Mendez
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Xiomarie Alejandro-Navarreto
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Kaitlyn Kiernan
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Manmeet Singh
- Department of Pathology, University of Illinois Chicago, Chicago, Illinois, United States of America
| | - Peilin Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, United States of America
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Safety aspects of natural food additives frequently used at their maximum levels in South Korea. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-021-00191-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Foster N, Tang Y, Berchieri A, Geng S, Jiao X, Barrow P. Revisiting Persistent Salmonella Infection and the Carrier State: What Do We Know? Pathogens 2021; 10:1299. [PMID: 34684248 PMCID: PMC8537056 DOI: 10.3390/pathogens10101299] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
One characteristic of the few Salmonella enterica serovars that produce typhoid-like infections is that disease-free persistent infection can occur for months or years in a small number of individuals post-convalescence. The bacteria continue to be shed intermittently which is a key component of the epidemiology of these infections. Persistent chronic infection occurs despite high levels of circulating specific IgG. We have reviewed the information on the basis for persistence in S. Typhi, S. Dublin, S. Gallinarum, S. Pullorum, S. Abortusovis and also S. Typhimurium in mice as a model of persistence. Persistence appears to occur in macrophages in the spleen and liver with shedding either from the gall bladder and gut or the reproductive tract. The involvement of host genetic background in defining persistence is clear from studies with the mouse but less so with human and poultry infections. There is increasing evidence that the organisms (i) modulate the host response away from the typical Th1-type response normally associated with immune clearance of an acute infection to Th2-type or an anti-inflammatory response, and that (ii) the bacteria modulate transformation of macrophage from M1 to M2 type. The bacterial factors involved in this are not yet fully understood. There are early indications that it might be possible to remodulate the response back towards a Th1 response by using cytokine therapy.
Collapse
Affiliation(s)
- Neil Foster
- SRUC Aberdeen Campus, Craibstone Estate, Ferguson Building, Aberdeen AB21 9YA, UK
| | - Ying Tang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518055, China;
| | - Angelo Berchieri
- Departamento de Patologia Veterinária, Faculdade de Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Via de Acesso Paulo Donato Castellane, s/n, 14884-900 Jaboticabal, SP, Brazil;
| | - Shizhong Geng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (S.G.); (X.J.)
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; (S.G.); (X.J.)
| | - Paul Barrow
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Road, Guildford GU2 7AL, UK;
| |
Collapse
|
12
|
Wójcicki M, Świder O, Daniluk KJ, Średnicka P, Akimowicz M, Roszko MŁ, Sokołowska B, Juszczuk-Kubiak E. Transcriptional Regulation of the Multiple Resistance Mechanisms in Salmonella-A Review. Pathogens 2021; 10:pathogens10070801. [PMID: 34202800 PMCID: PMC8308502 DOI: 10.3390/pathogens10070801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
The widespread use of antibiotics, especially those with a broad spectrum of activity, has resulted in the development of multidrug resistance in many strains of bacteria, including Salmonella. Salmonella is among the most prevalent causes of intoxication due to the consumption of contaminated food and water. Salmonellosis caused by this pathogen is pharmacologically treated using antibiotics such as fluoroquinolones, ceftriaxone, and azithromycin. This foodborne pathogen developed several molecular mechanisms of resistance both on the level of global and local transcription modulators. The increasing rate of antibiotic resistance in Salmonella poses a significant global concern, and an improved understanding of the multidrug resistance mechanisms in Salmonella is essential for choosing the suitable antibiotic for the treatment of infections. In this review, we summarized the current knowledge of molecular mechanisms that control gene expression related to antibiotic resistance of Salmonella strains. We characterized regulators acting as transcription activators and repressors, as well as two-component signal transduction systems. We also discuss the background of the molecular mechanisms of the resistance to metals, regulators of multidrug resistance to antibiotics, global regulators of the LysR family, as well as regulators of histone-like proteins.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Kamila J. Daniluk
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Monika Akimowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
| | - Marek Ł. Roszko
- Department of Food Safety and Chemical Analysis, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (O.Ś.); (M.Ł.R.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (K.J.D.); (B.S.)
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (M.W.); (P.Ś.); (M.A.)
- Correspondence: ; Tel.: +48-22-6063605
| |
Collapse
|
13
|
Ude VC, Brown DM, Stone V, Johnston HJ. Time dependent impact of copper oxide nanomaterials on the expression of genes associated with oxidative stress, metal binding, inflammation and mucus secretion in single and co-culture intestinal in vitro models. Toxicol In Vitro 2021; 74:105161. [PMID: 33839236 DOI: 10.1016/j.tiv.2021.105161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/05/2021] [Accepted: 04/04/2021] [Indexed: 12/18/2022]
Abstract
The potential for ingestion of copper oxide nanomaterials (CuO NMs) is increasing due to their increased exploitation. Investigation of changes in gene expression allows toxicity to be detected at an early stage of NM exposure and can enable investigation of the mechanism of toxicity. Here, undifferentiated Caco-2 cells, differentiated Caco-2 cells, Caco-2/HT29-MTX (mucus secreting) and Caco-2/Raji B (M cell model) co-cultures were exposed to CuO NMs and copper sulphate (CuSO4) in order to determine their impacts. Cellular responses were measured in terms of production of reactive oxygen species (ROS), the gene expression of an antioxidant (haem oxygenase 1 (HMOX1)), the pro-inflammatory cytokine (interleukin 8 (IL8)), the metal binding (metallothionein 1A and 2A (MT1A and MT2A)) and the mucus secreting (mucin 2 (MUC2)), as well as HMOX-1 protein level. While CuSO4 induced ROS production in cells, no such effect was observed for CuO NMs. However, these particles did induce an increase in the level of HMOX-1 protein and upregulation of HMOX1, MT2A, IL8 and MUC2 genes in all cell models. In conclusion, the expression of HMOX1, IL8 and MT2A were responsive to CuO NMs at 4 to 12 h post exposure when investigating the toxicity of NMs using intestinal in vitro models. These findings can inform the selection of endpoints, timepoints and models when investigating NM toxicity to the intestine in vitro in the future.
Collapse
Affiliation(s)
- Victor C Ude
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - David M Brown
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Helinor J Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
14
|
Augustyniak D, Kramarska E, Mackiewicz P, Orczyk-Pawiłowicz M, Lundy FT. Mammalian Neuropeptides as Modulators of Microbial Infections: Their Dual Role in Defense versus Virulence and Pathogenesis. Int J Mol Sci 2021; 22:ijms22073658. [PMID: 33915818 PMCID: PMC8036953 DOI: 10.3390/ijms22073658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of infection and inflammation by a variety of host peptides may represent an evolutionary failsafe in terms of functional degeneracy and it emphasizes the significance of host defense in survival. Neuropeptides have been demonstrated to have similar antimicrobial activities to conventional antimicrobial peptides with broad-spectrum action against a variety of microorganisms. Neuropeptides display indirect anti-infective capacity via enhancement of the host’s innate and adaptive immune defense mechanisms. However, more recently concerns have been raised that some neuropeptides may have the potential to augment microbial virulence. In this review we discuss the dual role of neuropeptides, perceived as a double-edged sword, with antimicrobial activity against bacteria, fungi, and protozoa but also capable of enhancing virulence and pathogenicity. We review the different ways by which neuropeptides modulate crucial stages of microbial pathogenesis such as adhesion, biofilm formation, invasion, intracellular lifestyle, dissemination, etc., including their anti-infective properties but also detrimental effects. Finally, we provide an overview of the efficacy and therapeutic potential of neuropeptides in murine models of infectious diseases and outline the intrinsic host factors as well as factors related to pathogen adaptation that may influence efficacy.
Collapse
Affiliation(s)
- Daria Augustyniak
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-71-375-6296
| | - Eliza Kramarska
- Department of Pathogen Biology and Immunology, Faculty of Biology, University of Wroclaw, 51-148 Wroclaw, Poland;
- Institute of Biostructures and Bioimaging, Consiglio Nazionale delle Ricerche, 80134 Napoli, Italy
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland;
| | | | - Fionnuala T. Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK;
| |
Collapse
|
15
|
Enteric Fever Diagnosis: Current Challenges and Future Directions. Pathogens 2021; 10:pathogens10040410. [PMID: 33915749 PMCID: PMC8065732 DOI: 10.3390/pathogens10040410] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022] Open
Abstract
Enteric fever is a life-threatening systemic febrile disease caused by Salmonella enterica serovars Typhi and Paratyphi (S. Typhi and S. Paratyphi). Unfortunately, the burden of the disease remains high primarily due to the global spread of various drug-resistant Salmonella strains despite continuous advancement in the field. An accurate diagnosis is critical for effective control of the disease. However, enteric fever diagnosis based on clinical presentations is challenging due to overlapping symptoms with other febrile illnesses that are also prevalent in endemic areas. Current laboratory tests display suboptimal sensitivity and specificity, and no diagnostic methods are available for identifying asymptomatic carriers. Several research programs have employed systemic approaches to identify more specific biomarkers for early detection and asymptomatic carrier detection. This review discusses the pros and cons of currently available diagnostic tests for enteric fever, the advancement of research toward improved diagnostic tests, and the challenges of discovering new ideal biomarkers and tests.
Collapse
|
16
|
Hewawaduge C, Senevirathne A, Yang MS, Jeong TW, Kim B, Lee JH. Comparative study of sodium bicarbonate- and magnesium hydroxide-based gastric antacids for the effectiveness of Salmonella delivered Brucella antigens against wild type challenge in BALB/c mice. Pathog Dis 2021; 79:6126344. [PMID: 33527985 DOI: 10.1093/femspd/ftab002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/11/2021] [Indexed: 11/14/2022] Open
Abstract
We compared the effects of two antacid formulations based on sodium bicarbonate and magnesium hydroxide on a Salmonella-delivered oral Brucella live attenuated vaccine. We conducted a series of in vitro and in vivo experiments to investigate the pH buffering capacity, buffering longevity and the effects of these formulations on the survival of Salmonella under neutralized pH conditions and its impact on immune responses. Magnesium hydroxide had a greater, stable and prolonged buffering capacity than sodium bicarbonate and was safer when administered orally. Oral administration of sodium bicarbonate resulted in discomfort as reflected by mouse behavior and mild muscle tremors, whereas mice treated with magnesium hydroxide and PBS were completely normal. Gastric survival studies using BALB/c mice revealed that a higher number of Salmonella reached the intestine when the magnesium hydroxide-based antacid buffer was administrated. Co-administration with attenuated Salmonella secreting Brucella antigens, SodC and Omp19 along with individual antacid formulations, significantly enhanced the antigen-specific protective immune responses against virulent Brucella challenge. Together, our results indicated that the pre vaccinated oral administration of bicarbonate-citric acid or magnesium hydroxide-based neutralizing buffers significantly counteract stomach acidity by maintaining the viability of an oral enteric vaccine formulation.
Collapse
Affiliation(s)
- Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Myeon-Sik Yang
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Tae-Won Jeong
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Bumseok Kim
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| |
Collapse
|
17
|
Kong W. Development of Antiviral Vaccine Utilizing Self-Destructing Salmonella for Antigen and DNA Vaccine Delivery. Methods Mol Biol 2021; 2225:39-61. [PMID: 33108656 DOI: 10.1007/978-1-0716-1012-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Vaccines are the most effective means to prevent infectious diseases, especially for viral infection. The key to an excellent antiviral vaccine is the ability to induce long-term protective immunity against a specific virus. Bacterial vaccine vectors have been used to impart protection against self, as well as heterologous antigens. One significant benefit of using live bacterial vaccine vectors is their ability to invade and colonize deep effector lymphoid tissues after mucosal delivery. The bacterium Salmonella is considered the best at this deep colonization. This is critically essential for inducing protective immunity. This chapter describes the methodology for developing genetically modified self-destructing Salmonella (GMS) vaccine delivery systems targeting influenza infection. Specifically, the methods covered include the procedures for the development of GMSs for protective antigen delivery to induce cellular immune responses and DNA vaccine delivery to induce systemic immunity against the influenza virus. These self-destructing GMS could be modified to provide effective biological containment for genetically engineered bacteria used for a diversity of purposes in addition to vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Viral/biosynthesis
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Female
- Genes, Lethal
- Genetic Engineering/methods
- Humans
- Immunity, Cellular/drug effects
- Immunity, Mucosal/drug effects
- Immunization/methods
- Influenza Vaccines/genetics
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Nucleoproteins/genetics
- Nucleoproteins/immunology
- Organisms, Genetically Modified
- Plasmids/chemistry
- Plasmids/metabolism
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Transgenes
- Vaccines, DNA/genetics
Collapse
Affiliation(s)
- Wei Kong
- Center for Immunotherapy, Vaccines and Virotherapy, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
18
|
Abstract
The gut-brain axis is a coordinated communication system that not only maintains homeostasis, but significantly influences higher cognitive functions and emotions, as well as neurological and behavioral disorders. Among the large populations of sensory and motor neurons that innervate the gut, insights into the function of primary afferent nociceptors, whose cell bodies reside in the dorsal root ganglia and nodose ganglia, have revealed their multiple crosstalk with several cell types within the gut wall, including epithelial, vascular, and immune cells. These bidirectional communications have immunoregulatory functions, control host response to pathogens, and modulate sensations associated with gastrointestinal disorders, through activation of immune cells and glia in the peripheral and central nervous system, respectively. Here, we will review the cellular and neurochemical basis of these interactions at the periphery, in dorsal root ganglia, and in the spinal cord. We will discuss the research gaps that should be addressed to get a better understanding of the multifunctional role of sensory neurons in maintaining gut homeostasis and regulating visceral sensitivity.
Collapse
Affiliation(s)
- Nasser Abdullah
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Manon Defaye
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Christophe Altier
- Department of Physiology and Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Diseases and Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Ding S, Song Y, Brulois KF, Pan J, Co JY, Ren L, Feng N, Yasukawa LL, Sánchez-Tacuba L, Wosen JE, Mellins ED, Monack DM, Amieva MR, Kuo CJ, Butcher EC, Greenberg HB. Retinoic Acid and Lymphotoxin Signaling Promote Differentiation of Human Intestinal M Cells. Gastroenterology 2020; 159:214-226.e1. [PMID: 32247021 PMCID: PMC7569531 DOI: 10.1053/j.gastro.2020.03.053] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Intestinal microfold (M) cells are a unique subset of intestinal epithelial cells in the Peyer's patches that regulate mucosal immunity, serving as portals for sampling and uptake of luminal antigens. The inability to efficiently develop human M cells in cell culture has impeded studies of the intestinal immune system. We aimed to identify signaling pathways required for differentiation of human M cells and establish a robust culture system using human ileum enteroids. METHODS We analyzed transcriptome data from mouse Peyer's patches to identify cell populations in close proximity to M cells. We used the human enteroid system to determine which cytokines were required to induce M-cell differentiation. We performed transcriptome, immunofluorescence, scanning electron microscope, and transcytosis experiments to validate the development of phenotypic and functional human M cells. RESULTS A combination of retinoic acid and lymphotoxin induced differentiation of glycoprotein 2-positive human M cells, which lack apical microvilli structure. Upregulated expression of innate immune-related genes within M cells correlated with a lack of viral antigens after rotavirus infection. Human M cells, developed in the enteroid system, internalized and transported enteric viruses, such as rotavirus and reovirus, across the intestinal epithelium barrier in the enteroids. CONCLUSIONS We identified signaling pathways required for differentiation of intestinal M cells, and used this information to create a robust culture method to develop human M cells with capacity for internalization and transport of viruses. Studies of this model might increase our understanding of antigen presentation and the systemic entry of enteric pathogens in the human intestine.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri.
| | - Yanhua Song
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kevin F. Brulois
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Junliang Pan
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Julia Y. Co
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA,Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Lili Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ningguo Feng
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Linda L. Yasukawa
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Liliana Sánchez-Tacuba
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan E. Wosen
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Manuel R. Amieva
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA,Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA 94305, USA
| | - Eugene C. Butcher
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Harry B. Greenberg
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Hashizume-Takizawa T, Shibata N, Kurashima Y, Kiyono H, Kurita-Ochiai T, Fujihashi K. Distinct roles for Peyer's patch B cells for induction of antigen-specific IgA antibody responses in mice administered oral recombinant Salmonella. Int Immunol 2020; 31:531-541. [PMID: 30868152 DOI: 10.1093/intimm/dxz029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/13/2019] [Indexed: 12/23/2022] Open
Abstract
Our previous study demonstrated an indispensable role of Peyer's patches (PPs) for the induction of antigen-specific secretory (S)IgA antibody responses after oral immunization with recombinant Salmonella expressing fragment C of tetanus toxin (rSalmonella-Tox C). In this study, we defined the PP lymphoid structures and immune cells required for the induction of mucosal SIgA antibody responses. Adoptive transfer of mononuclear cells (MNCs) from PPs into PP-deficient (PP-null) mice failed to elicit tetanus toxoid (TT)-specific mucosal immunity. However, when the same PP MNCs were transferred into lethally irradiated PP-normal recipient mice, PP MNCs preferentially emigrated to recipient PPs, leading to PP lymphoid structures and TT-specific SIgA antibody responses. Significantly reduced numbers of TT-specific IgA antibody-forming cells were detected in the mesenteric lymph nodes (MLNs) and intestinal lamina propria of mice when surface expression of the sphingosine 1-phosphate receptor on lymphocytes was inhibited by its agonist FTY720. However, FTY720 treatment did not alter dendritic cell migration or Salmonella dissemination into these tissues. When rSalmonella-Tox C-stimulated CD4+ T cells isolated from PPs, MLNs and the spleen were co-cultured with B cells from these tissues, significantly increased levels of TT-specific IgA antibody responses were exclusively induced in cultures containing PP B cells. Furthermore, surface IgA+ PP B cells produced TT-specific IgA antibody responses in vitro. These findings suggest that PP lymphoid structures and surface IgA+ PP B cells are essential elements for the induction of antigen-specific intestinal SIgA antibody responses to oral Salmonella.
Collapse
Affiliation(s)
- Tomomi Hashizume-Takizawa
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Naoko Shibata
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Faculty of Science and Engineering, Waseda University, 513 Wasedatsurumakicho, Shinjuku-ku, Tokyo, Japan
| | - Yosuke Kurashima
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Division of Mucosal Immunology, The University of Tokyo, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California, La Jolla, San Diego, CA, USA.,Departments of Innovative Medicine and Mucosal Immunology, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba-shi, Chiba, Japan.,Laboratory of Vaccine Materials, National Institutes of Biomedical Innovation, Health and Nutrition, Saito, Ibaraki-shi, Osaka, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Division of Mucosal Immunology, The University of Tokyo, Distinguished Professor Unit, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Division of Gastroenterology, Department of Medicine, CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, University of California, La Jolla, San Diego, CA, USA.,Mucosal Immunology and Allergy Therapeutics, Institute for Global Prominent Research, Graduate School of Medicine, Chiba University, Chuo-ku, Chiba-shi, Chiba, Japan
| | - Tomoko Kurita-Ochiai
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | - Kohtaro Fujihashi
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan.,Department of Pediatric Dentistry, Institute of Oral Health Research, The University of Alabama at Birmingham, SDB, Birmingham, AL, USA
| |
Collapse
|
21
|
Wang M, Qazi IH, Wang L, Zhou G, Han H. Salmonella Virulence and Immune Escape. Microorganisms 2020; 8:microorganisms8030407. [PMID: 32183199 PMCID: PMC7143636 DOI: 10.3390/microorganisms8030407] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Salmonella genus represents the most common foodborne pathogens causing morbidity, mortality, and burden of disease in all regions of the world. The introduction of antimicrobial agents and Salmonella-specific phages has been considered as an effective intervention strategy to reduce Salmonella contamination. However, data from the United States, European countries, and low- and middle-income countries indicate that Salmonella cases are still a commonly encountered cause of bacterial foodborne diseases globally. The control programs have not been successful and even led to the emergence of some multidrug-resistant Salmonella strains. It is known that the host immune system is able to effectively prevent microbial invasion and eliminate microorganisms. However, Salmonella has evolved mechanisms of resisting host physical barriers and inhibiting subsequent activation of immune response through their virulence factors. There has been a high interest in understanding how Salmonella interacts with the host. Therefore, in the present review, we characterize the functions of Salmonella virulence genes and particularly focus on the mechanisms of immune escape in light of evidence from the emerging mainstream literature.
Collapse
Affiliation(s)
- Mengyao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Linli Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (H.H.); (G.Z.)
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (H.H.); (G.Z.)
| |
Collapse
|
22
|
Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A, Ma P, Potts DE, Chen Z, Paik D, Soualhi S, Yan Y, Misra A, Goldstein K, Lagomarsino VN, Nordstrom A, Sivanathan KN, Wallrapp A, Kuchroo VK, Nowarski R, Starnbach MN, Shi H, Surana NK, An D, Wu C, Huh JR, Rao M, Chiu IM. Gut-Innervating Nociceptor Neurons Regulate Peyer's Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense. Cell 2020; 180:33-49.e22. [PMID: 31813624 PMCID: PMC6954329 DOI: 10.1016/j.cell.2019.11.014] [Citation(s) in RCA: 242] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 09/08/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
Gut-innervating nociceptor sensory neurons respond to noxious stimuli by initiating protective responses including pain and inflammation; however, their role in enteric infections is unclear. Here, we find that nociceptor neurons critically mediate host defense against the bacterial pathogen Salmonella enterica serovar Typhimurium (STm). Dorsal root ganglia nociceptors protect against STm colonization, invasion, and dissemination from the gut. Nociceptors regulate the density of microfold (M) cells in ileum Peyer's patch (PP) follicle-associated epithelia (FAE) to limit entry points for STm invasion. Downstream of M cells, nociceptors maintain levels of segmentous filamentous bacteria (SFB), a gut microbe residing on ileum villi and PP FAE that mediates resistance to STm infection. TRPV1+ nociceptors directly respond to STm by releasing calcitonin gene-related peptide (CGRP), a neuropeptide that modulates M cells and SFB levels to protect against Salmonella infection. These findings reveal a major role for nociceptor neurons in sensing and defending against enteric pathogens.
Collapse
Affiliation(s)
- Nicole Y Lai
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa A Musser
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Pankaj Baral
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Amanda Jacobson
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Pingchuan Ma
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - David E Potts
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Zuojia Chen
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Donggi Paik
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Salima Soualhi
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yiqing Yan
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Aditya Misra
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Kaitlin Goldstein
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Anja Nordstrom
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kisha N Sivanathan
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Antonia Wallrapp
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Roni Nowarski
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Hailian Shi
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Neeraj K Surana
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Duke University, Durham, NC 27710, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA
| | - Dingding An
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Chuan Wu
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun R Huh
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Meenakshi Rao
- Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Vaccination against the digestive enzyme Cathepsin B using a YS1646 Salmonella enterica Typhimurium vector provides almost complete protection against Schistosoma mansoni challenge in a mouse model. PLoS Negl Trop Dis 2019; 13:e0007490. [PMID: 31790394 PMCID: PMC6907844 DOI: 10.1371/journal.pntd.0007490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/12/2019] [Accepted: 10/01/2019] [Indexed: 12/03/2022] Open
Abstract
Schistosoma mansoni threatens hundreds of millions of people in >50 countries. Schistosomulae migrate through the lung and adult worms reside in blood vessels adjacent to the intestinal mucosa. Current candidate vaccines aren’t designed to elicit a mucosal response. We have repurposed an attenuated Salmonella enterica Typhimurium strain (YS1646) to produce such a vaccine targeting Cathepsin B (CatB), a digestive enzyme important for parasite survival. Promoter-Type 3 secretory signal pairs were screened for protein expression in vitro and transfected into YS1646 to generate candidate vaccine strains. Two strains were selected for in vivo evaluation (nirB_SspH1 and SspH1_SspH1). Female C57BL/6 mice were immunized twice, 3 weeks apart, using six strategies: i) saline gavage (control), ii) the ‘empty’ YS1646 vector orally (PO) followed by intramuscular (IM) recombinant CatB (20μg IM rCatB), iii) two doses of IM rCatB, iv) two PO doses of YS1646-CatB, v) IM rCatB then PO YS1646-CatB and vi) PO YS1646-CatB then IM rCatB. Serum IgG responses to CatB were monitored by ELISA. Three weeks after the second dose, mice were challenged with 150 cercariae and sacrificed 7 weeks later to assess adult worm and egg burden (liver and intestine), granuloma size and egg morphology. CatB-specific IgG antibodies were low/absent in the control and PO only groups but rose substantially in other groups (5898-6766ng/mL). The highest response was in animals that received nirB_SspH1 YS1646 PO then IM rCatB. In this group, reductions in worm and intestine/liver egg burden (vs. control) were 93.1% and 79.5%/90.3% respectively (all P < .0001). Granuloma size was reduced in all vaccinated groups (range 32.9–52.8 x103μm2) and most significantly in the nirB_SspH1 + CatB IM group (34.7±3.4 x103μm2vs. 62.2±6.1 x103μm2: vs. control P < .01). Many eggs in the vaccinated animals had abnormal morphology. Targeting CatB using a multi-modality approach can provide almost complete protection against S. mansoni challenge. Schistosomiasis is a parasitic disease that affects over 250 million people worldwide and over 800 million are at risk of infection. Of the three main species, Schistosoma mansoni is the most widely distributed and is endemic in the Caribbean, South America, and Africa. It causes a chronic disease with severe negative effects on quality of life. Mass drug administration of praziquantel is the only available course of action due to a current lack of vaccines. However, praziquantel does not protect from reinfection. Therefore, a vaccine would be beneficial as a long-term solution to reduce morbidity and transmission of the disease. Our group has repurposed the attenuated YS1646 strain of Salmonella Typhimurium as an oral vaccine vector for the digestive enzyme Cathepsin B of S. mansoni. Oral vaccination followed by an intramuscular dose of recombinant Cathepsin B lead to significant reductions in parasite burden in mice. These animals had the highest titers in serum IgG and intestinal IgA antibodies. This multimodal vaccination approach also elicited both Th1 and Th2 cytokines as seen by the increases in IFNγ and IL-5. Finally, vaccinated mice had reductions in granuloma size along with a higher proportion of morphologically-abnormal eggs. This work demonstrates that a YS1646-based, multimodality, prime-boost immunization schedule can provide nearly complete protection against S. mansoni in a well-established murine model.
Collapse
|
24
|
Vaccination against Clostridium difficile by Use of an Attenuated Salmonella enterica Serovar Typhimurium Vector (YS1646) Protects Mice from Lethal Challenge. Infect Immun 2019; 87:IAI.00089-19. [PMID: 31138615 PMCID: PMC6652760 DOI: 10.1128/iai.00089-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/17/2019] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile disease is mediated primarily by toxins A and B (TcdA and TcdB, respectively). The receptor binding domains (RBD) of TcdA and TcdB are immunogenic, and anti-RBD antibodies are protective. Since these toxins act locally, an optimal C. difficile vaccine would generate both systemic and mucosal responses. We have repurposed an attenuated Salmonella enterica serovar Typhimurium strain (YS1646) to produce such a vaccine. Plasmid-based candidates expressing either the TcdA or TcdB RBD were screened. Different vaccine routes and schedules were tested to achieve detectable serum and mucosal antibody titers in C57BL/6J mice. When given in a multimodality schedule over 1 week (intramuscularly and orally [p.o.] on day 0 and p.o. on days 2 and 4), several candidates provided 100% protection against lethal challenge. Substantial protection (82%) was achieved with combined p.o. TcdA and TcdB vaccination alone (days 0, 2, and 4). These data demonstrate the potential of the YS1646-based vaccines for C. difficile and strongly support their further development.
Collapse
|
25
|
Ude VC, Brown DM, Stone V, Johnston HJ. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. J Nanobiotechnology 2019; 17:70. [PMID: 31113462 PMCID: PMC6530093 DOI: 10.1186/s12951-019-0503-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 05/17/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Copper oxide nanomaterials (CuO NMs) are exploited in many products including inks, cosmetics, textiles, wood preservatives and food contact materials. Their incorporation into these products may enhance oral exposure in consumer, environmental and occupational settings. Undifferentiated and differentiated monocultures of Caco-2 cells are commonly used to assess NM toxicity to the intestine in vitro. However, the integration of other cell types into Caco-2 in vitro models increases their physiological relevance. Therefore, the aim of this study is to evaluate the toxicity of CuO NMs and copper sulphate (CuSO4) to intestinal microfold (M) cell (Caco-2/Raji B) and mucus secreting (Caco-2/HT29-MTX) co-culture in vitro models via assessment of their impact on barrier integrity, viability and interleukin (IL)-8 secretion. The translocation of CuO NMs and CuSO4 across the intestinal barrier was also investigated in vitro. RESULTS CuO NMs and CuSO4 impaired the function of the intestinal barrier in the co-culture models [as indicated by a reduction in transepithelial electrical resistance (TEER) and Zonular occludens (ZO-1) staining intensity]. Cu translocation was observed in both models but was greatest in the Caco-2/Raji B co-culture. CuO NMs and CuSO4 stimulated an increase in IL-8 secretion, which was greatest in the Caco-2/HT29-MTX co-culture model. CuO NMs and CuSO4 did not stimulate a loss of cell viability, when assessed using light microscopy, nuclei counts and scanning electron microscopy. CuO NMs demonstrated a relatively similar level of toxicity to CuO4 in both Caco-2/Raji B and Caco-2/HT29-MTX co- culture models. CONCLUSIONS The Caco-2/Raji B co-culture model was more sensitive to CuO NM and CuSO4 toxicity than the Caco-2/HT29-MTX co-culture model. However, both co-culture models were less sensitive to CuO NM and CuSO4 toxicity than simple monocultures of undifferentiated and differentiated Caco-2 cells, which are more routinely used to investigate NM toxicity to the intestine. Obtained data can therefore feed into the design of future studies which assess the toxicity of substances (e.g. NMs) and pathogens to the intestine (e.g. by informing model and endpoint selection). However, more testing with a wider panel of NMs would be beneficial in order to help select which in vitro models and endpoints to prioritise when screening the safety of ingested NMs. Comparisons with in vivo findings will also be essential to identify the most suitable in vitro model to screen the safety of ingested NMs.
Collapse
Affiliation(s)
- Victor C. Ude
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - David M. Brown
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS UK
| | - Helinor J. Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS UK
| |
Collapse
|
26
|
Schwerdtfeger LA, Nealon NJ, Ryan EP, Tobet SA. Human colon function ex vivo: Dependence on oxygen and sensitivity to antibiotic. PLoS One 2019; 14:e0217170. [PMID: 31095647 PMCID: PMC6522050 DOI: 10.1371/journal.pone.0217170] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background Human intestines contain a heterogeneous collection of cells that include immune, neural and epithelial elements interacting in a highly complex physiology that is challenging to maintain ex vivo. There is an extreme oxygen gradient across the intestinal wall due in part to microbiota in the lumen and close to the gut wall, which complicates the design of tissue culture systems. The current study established the use of an organotypic slice model of human intestinal tissue derived from colonoscopy biopsies to study host-microbial interactions after antibiotic treatment, and the influence of oxygen concentration on gut wall function. Methods Organotypic slices from human colon biopsies collected during routine colonoscopy provided three-dimensional environments that maintained cellular morphology ex vivo. Biopsy slices were used to study impacts of oxygen concentrations and antibiotic treatments on epithelial proliferation rates, and metabolites from tissue culture supernatants. Results Immune function was validated via demonstration of a T lymphocyte response to Salmonella enterica serovar Typhimurium. Following 24 h of Salmonella exposure there was a significant increase in CD3+ T-lymphocytes in biopsy slices. Metabolite profiling of tissue culture supernatants validated the influence of antibiotic treatment under varied oxygen culture conditions on both host and microbiome-mediated metabolism. Epithelial health was influenced by oxygen and antibiotic. Increased epithelial proliferation was measured in lowered oxygen conditions (1% = 5.9 mmHg) compared to atmospheric conditions standard at 5000 feet above sea level in Colorado (~17% = 100 mmHg). Antibiotic treatment reduced epithelial proliferation only in 5.9 mmHg oxygen cultured slices. Conclusions A human colon organotypic slice model was established for applications ranging from gut epithelial proliferation to enteric pathogen influence on mucosal immune functions ex vivo. The results further support the need to account for oxygen concentration in primary tissue cultures, and that antibiotic use impacts gut-microbe-immune interactions.
Collapse
Affiliation(s)
- Luke A. Schwerdtfeger
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
| | - Nora Jean Nealon
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Elizabeth P. Ryan
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- Program in Cell and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Stuart A. Tobet
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, United States of America
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
27
|
Kim K, Golubeva YA, Vanderpool CK, Slauch JM. Oxygen-dependent regulation of SPI1 type three secretion system by small RNAs in Salmonella enterica serovar Typhimurium. Mol Microbiol 2018; 111:570-587. [PMID: 30484918 DOI: 10.1111/mmi.14174] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2018] [Indexed: 01/31/2023]
Abstract
Salmonella Typhimurium induces inflammatory diarrhea and uptake into intestinal epithelial cells using the Salmonella pathogenicity island 1 (SPI1) type III secretion system (T3SS). Three AraC-like regulators, HilD, HilC and RtsA, form a feed-forward regulatory loop that activates transcription of hilA, encoding the activator of the T3SS structural genes. Many environmental signals and regulatory systems are integrated into this circuit to precisely regulate SPI1 expression. A subset of these regulatory factors affects translation of hilD, but the mechanisms are poorly understood. Here, we identified two sRNAs, FnrS and ArcZ, which repress hilD translation, leading to decreased production of HilA. FnrS and ArcZ are oppositely regulated in response to oxygen, one of the key environmental signals affecting expression of SPI1. Mutational analysis demonstrates that FnrS and ArcZ bind to the hilD mRNA 5' UTR, resulting in translational repression. Deletion of fnrS led to increased HilD production under low-aeration conditions, whereas deletion of arcZ abolished the regulatory effect on hilD translation aerobically. The fnrS arcZ double mutant has phenotypes in a mouse oral infection model consistent with increased expression of SPI1. Together, these results suggest that coordinated regulation by these two sRNAs maximizes HilD production at an intermediate level of oxygen.
Collapse
Affiliation(s)
- Kyungsub Kim
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Yekaterina A Golubeva
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Carin K Vanderpool
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - James M Slauch
- Department of Microbiology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
28
|
Renu S, Markazi AD, Dhakal S, Lakshmanappa YS, Gourapura SR, Shanmugasundaram R, Senapati S, Narasimhan B, Selvaraj RK, Renukaradhya GJ. Surface engineered polyanhydride-based oral Salmonella subunit nanovaccine for poultry. Int J Nanomedicine 2018; 13:8195-8215. [PMID: 30555234 PMCID: PMC6280892 DOI: 10.2147/ijn.s185588] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Salmonellosis is a severe economic threat in poultry and a public health concern. Currently available vaccines are ineffective, and thus, developing effective oral Salmonella vaccine is warranted. Especially, a potent oral vaccine such as the mucoadhesive polyanhydride nanoparticle (PNP) protects the vaccine cargo and delivers to intestinal immune sites to elicit robust mucosal immunity and mitigate Salmonella colonization and shedding. MATERIALS AND METHODS We designed a Salmonella subunit vaccine using PNP containing immunogenic Salmonella outer membrane proteins (OMPs) and flagellar (F) protein-entrapped and surface F-protein-coated PNPs (OMPs-F-PNPs) using a solvent displacement method. Using high-throughput techniques, we characterized the OMPs-F-PNPs physicochemical properties and analyzed its efficacy in layer birds vaccinated orally. RESULTS The candidate vaccine was resistant in acidic microenvironment and had ideal physicochemical properties for oral delivery in terms of particle size, charge, morphology, biocompatibility, and pH stability. In vitro, in vivo, and ex vivo studies showed that F-protein surface-anchored nanoparticles were better targeted to chicken immune cells in peripheral blood and splenocytes and intestinal Peyer's patch sites. In layer chickens inoculated orally with OMPs-F-PNPs, substantially higher OMPs-specific IgG response and secretion of Th1 cytokine IFN-γ in the serum, enhanced CD8+/CD4+ cell ratio in spleen, and increased OMPs-specific lymphocyte proliferation were observed. OMPs-F-PNPs vaccination also upregulated the expression of toll-like receptor (TLR)-2 and -4, TGF-β, and IL-4 cytokines' genes in chicken cecal tonsils (lymphoid tissues). Importantly, OMPs-F-PNPs vaccine cleared Salmonella cecal colonization in 33% of vaccinated birds. CONCLUSION This pilot in vivo study demonstrated the targeted delivery of OMPs-F-PNPs to ileum mucosal immune sites of chickens and induced specific immune response to mitigate Salmonella colonization in intestines.
Collapse
Affiliation(s)
- Sankar Renu
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA,
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Ashley D Markazi
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Santosh Dhakal
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA,
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Yashavanth S Lakshmanappa
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA,
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Suren R Gourapura
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA,
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| | - Revathi Shanmugasundaram
- Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Sujata Senapati
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA,
| | - Gourapura J Renukaradhya
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA,
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA,
| |
Collapse
|
29
|
Jiang X, Xia S, He X, Ma H, Feng Y, Liu Z, Wang W, Tian M, Chen H, Peng F, Wang L, Zhao P, Ge J, Liu D. Targeting peptide‐enhanced antibody and CD11c+dendritic cells to inclusion bodies expressing protective antigen against ETEC in mice. FASEB J 2018; 33:2836-2847. [DOI: 10.1096/fj.201800289rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xinpeng Jiang
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
- Postdoctoral WorkstationHeilongjiang Academy of Agricultural SciencesHarbinChina
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Shuang Xia
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Xinmiao He
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Hong Ma
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Yanzhong Feng
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Ziguang Liu
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Wentao Wang
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Ming Tian
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
- Postdoctoral WorkstationHeilongjiang Academy of Agricultural SciencesHarbinChina
| | - Heshu Chen
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Fugang Peng
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Liang Wang
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| | - Peng Zhao
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Junwei Ge
- Department of Preventive Veterinary MedicineCollege of Veterinary MedicineNortheast Agricultural UniversityHarbinChina
| | - Di Liu
- Key Laboratory of Combining Farming and Animal HusbandryMinistry of AgricultureAnimal Husbandry Research InstituteHarbinChina
| |
Collapse
|
30
|
S. E, T.R. N, V.K. R, Baranwal G, Biswas R, R. J, S. S. Fucoidan coated ciprofloxacin loaded chitosan nanoparticles for the treatment of intracellular and biofilm infections of Salmonella. Colloids Surf B Biointerfaces 2017; 160:40-47. [DOI: 10.1016/j.colsurfb.2017.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/31/2022]
|
31
|
Mass spectrometry imaging identifies palmitoylcarnitine as an immunological mediator during Salmonella Typhimurium infection. Sci Rep 2017; 7:2786. [PMID: 28584281 PMCID: PMC5459799 DOI: 10.1038/s41598-017-03100-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
Salmonella Typhimurium causes a self-limiting gastroenteritis that may lead to systemic disease. Bacteria invade the small intestine, crossing the intestinal epithelium from where they are transported to the mesenteric lymph nodes (MLNs) within migrating immune cells. MLNs are an important site at which the innate and adaptive immune responses converge but their architecture and function is severely disrupted during S. Typhimurium infection. To further understand host-pathogen interactions at this site, we used mass spectrometry imaging (MSI) to analyse MLN tissue from a murine model of S. Typhimurium infection. A molecule, identified as palmitoylcarnitine (PalC), was of particular interest due to its high abundance at loci of S. Typhimurium infection and MLN disruption. High levels of PalC localised to sites within the MLNs where B and T cells were absent and where the perimeter of CD169+ sub capsular sinus macrophages was disrupted. MLN cells cultured ex vivo and treated with PalC had reduced CD4+CD25+ T cells and an increased number of B220+CD19+ B cells. The reduction in CD4+CD25+ T cells was likely due to apoptosis driven by increased caspase-3/7 activity. These data indicate that PalC significantly alters the host response in the MLNs, acting as a decisive factor in infection outcome.
Collapse
|
32
|
Man AL, Gicheva N, Regoli M, Rowley G, De Cunto G, Wellner N, Bassity E, Gulisano M, Bertelli E, Nicoletti C. CX3CR1+ Cell-Mediated Salmonella Exclusion Protects the Intestinal Mucosa during the Initial Stage of Infection. THE JOURNAL OF IMMUNOLOGY 2016; 198:335-343. [PMID: 27895168 DOI: 10.4049/jimmunol.1502559] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 10/25/2016] [Indexed: 12/24/2022]
Abstract
During Salmonella Typhimurium infection, intestinal CX3CR1+ cells can either extend transepithelial cellular processes to sample luminal bacteria or, very early after infection, migrate into the intestinal lumen to capture bacteria. However, until now, the biological relevance of the intraluminal migration of CX3CR1+ cells remained to be determined. We addressed this by using a combination of mouse strains differing in their ability to carry out CX3CR1-mediated sampling and intraluminal migration. We observed that the number of S. Typhimurium traversing the epithelium did not differ between sampling-competent/migration-competent C57BL/6 and sampling-deficient/migration-competent BALB/c mice. In contrast, in sampling-deficient/migration-deficient CX3CR1-/- mice the numbers of S. Typhimurium penetrating the epithelium were significantly higher. However, in these mice the number of invading S. Typhimurium was significantly reduced after the adoptive transfer of CX3CR1+ cells directly into the intestinal lumen, consistent with intraluminal CX3CR1+ cells preventing S. Typhimurium from infecting the host. This interpretation was also supported by a higher bacterial fecal load in CX3CR1+/gfp compared with CX3CR1gfp/gfp mice following oral infection. Furthermore, by using real-time in vivo imaging we observed that CX3CR1+ cells migrated into the lumen moving through paracellular channels within the epithelium. Also, we reported that the absence of CX3CR1-mediated sampling did not affect Ab responses to a noninvasive S. Typhimurium strain that specifically targeted the CX3CR1-mediated entry route. These data showed that the rapidly deployed CX3CR1+ cell-based mechanism of immune exclusion is a defense mechanism against pathogens that complements the mucous and secretory IgA Ab-mediated system in the protection of intestinal mucosal surface.
Collapse
Affiliation(s)
- Angela L Man
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Nadezhda Gicheva
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Mari Regoli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Gary Rowley
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Giovanna De Cunto
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Nikolaus Wellner
- Analytical Sciences Unit, Institute of Food Research, Norwich NR4 7UA, United Kingdom; and
| | - Elizabeth Bassity
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Massimo Gulisano
- Section of Human Anatomy, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Claudio Nicoletti
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom; .,Section of Human Anatomy, Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
33
|
Fernández-Santoscoy M, Wenzel UA, Persson E, Yrlid U, Agace W, Wick MJ. A reduced population of CD103+CD11b+ dendritic cells has a limited impact on oral Salmonella infection. Immunol Lett 2016; 176:72-80. [DOI: 10.1016/j.imlet.2016.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/21/2016] [Accepted: 05/19/2016] [Indexed: 12/23/2022]
|
34
|
Feng XM, Zheng WY, Zhang HM, Shi WY, Li Y, Cui BJ, Wang HY. Vaccination with Bivalent DNA Vaccine of α1-Giardin and CWP2 Delivered by Attenuated Salmonella typhimurium Reduces Trophozoites and Cysts in the Feces of Mice Infected with Giardia lamblia. PLoS One 2016; 11:e0157872. [PMID: 27332547 PMCID: PMC4917239 DOI: 10.1371/journal.pone.0157872] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/04/2022] Open
Abstract
Background Giardia lamblia is one of the most common infectious protozoans in human that may cause diarrhea in travelers. Searching for antigens that induced effectively protective immunity has become a key point in the development of vaccine against giardiasis. Methodology/Principal Findings Mice vaccinated with G. lamblia trophozozite-specific α1-giardin DNA vaccine delivered orally by attenuated Salmonella typhimurium SL7027 elicited 74.2% trophozoite reduction, but only 28% reduction in cyst shedding compared with PBS buffer control. Oral vaccination with Salmonella-delivered cyst-specific CWP2 DNA produced 89% reduction in cysts shedding in feces of vaccinated mice. Significantly, the mice vaccinated with Salmonella-delivered bivalent α1-giardin and CWP2 DNA vaccines produced significant reduction in both trophozoite (79%) and cyst (93%) in feces of vaccinated mice. This parasite reduction is associated with the strong local mucosal IgA secretion and the IgG2a-dominant systemic immune responses in vaccinated mice. Conclusions The results demonstrate that bivalent vaccines targeting α1-giardin and CWP2 can protect mice against the colonization of Giardia trophozoite and block the transformation of cyst in host at the same time, and can be used to prevent Giardia infection and block the transmission of giardiasis.
Collapse
Affiliation(s)
- Xian-Min Feng
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
- * E-mail:
| | - Wen-Yu Zheng
- The Center Hospital of Jilin City, Jilin City, China
| | - Hong-Mei Zhang
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Wen-Yan Shi
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Yao Li
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Bai-Ji Cui
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| | - Hui-Yan Wang
- The Department of Pathogenic Biology, Jilin Medical University, Jilin City, China
| |
Collapse
|
35
|
Anuforom O, Wallace GR, Buckner MMC, Piddock LJV. Ciprofloxacin and ceftriaxone alter cytokine responses, but not Toll-like receptors, to Salmonella infection in vitro. J Antimicrob Chemother 2016; 71:1826-33. [PMID: 27076102 DOI: 10.1093/jac/dkw092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/28/2016] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Antibiotics that enhance host natural defences to infection offer an alternative approach to treating infections. However, mechanisms underlying such processes are poorly understood. The aim of this study was to investigate the effects of clinically relevant concentrations of two antibiotics on bacterial interactions with murine macrophages. METHODS Adhesion of Salmonella Typhimurium SL1344 to and invasion by Salmonella Typhimurium SL1344 of antibiotic-treated or untreated J774 murine macrophages were measured using a tissue culture infection model. Expression of genes central to the Toll-like receptor (TLR) signalling pathway of macrophages infected with Salmonella was analysed using the RT(2) Profiler PCR Array. Cytokine production was measured by ELISA. RESULTS Adhesion of Salmonella Typhimurium SL1344 to J774 macrophage monolayers was increased when macrophages were exposed to ciprofloxacin and ceftriaxone, while invasion was decreased by ciprofloxacin. Expression of IL-1β and TNF-α mRNA was greater in SL1344-infected macrophages that had been treated with ciprofloxacin or ceftriaxone than in macrophages exposed to antibiotics alone or SL1344 alone. TLR mRNA was down-regulated by SL1344 infection, a response that was not altered by antibiotic pretreatment. CONCLUSIONS Clinically relevant concentrations of two antibiotics differentially enhanced the response of immune cells and their interaction with bacteria, increasing bacterial adhesion to macrophages and increasing cytokine production. As increased expression of IL-1β fosters apoptosis of Salmonella-infected macrophages and clearance by neutrophils, the immunomodulatory potential of these antibiotics may explain, in part, why these two drugs continue to be used to treat salmonellosis successfully.
Collapse
Affiliation(s)
- Olachi Anuforom
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Graham R Wallace
- Centre for Translational Inflammation, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Michelle M C Buckner
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Laura J V Piddock
- Antimicrobials Research Group, Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
36
|
Hashizume-Takizawa T, Yamamoto M. Toll-like receptor 5 is not essential for the promotion of secretory immunoglobulin A antibody responses to flagellated bacteria. Microbiol Immunol 2015; 59:716-23. [PMID: 26564803 DOI: 10.1111/1348-0421.12336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/13/2015] [Accepted: 11/04/2015] [Indexed: 11/26/2022]
Abstract
Toll-like receptor 5 recognizes bacterial flagellin, plays a critical role in innate immunity, and contributes to flagellin-specific humoral immunity. Further, TLR5-expressing dendritic cells play an important role in IgA synthesis in the intestine; however, the contribution of TLR5 to antigen (Ag)-specific mucosal immunity remains unclear. Thus, whether TLR5 is essential for the induction of intestinal secretory (S)IgA antibody (Ab) responses against flagellin and bacterial Ags attached to the bacterial surface in response to an oral flagellated bacterium, Salmonella, was explored in this study. Our results indicate that when TLR5 knockout (TLR5(-/-)) mice are orally immunized with recombinant Salmonella expressing fragment C of tetanus toxin (rSalmonella-Tox C), tetanus toxoid (TT)- and flagellin (FliC)-specific systemic IgG and intestinal SIgA Abs are elicited. The numbers of TT-specific IgG Ab-forming cells (AFCs) in the spleen and IgA AFCs in the lamina propria (LP) of TLR5(-/-) mice were comparable to those in wild-type mice. rSalmonella-Tox C was equally disseminated in TLR5(-/-) mice, TLR5(-/-) mice lacking Peyer's patches (PPs), and wild-type mice. In contrast, TLR5(-/-) PP-null mice failed to induce TT- and FliC-specific SIgA Abs in the intestine and showed significantly reduced numbers of TT-specific IgA AFCs in the LP. These results suggest that TLR5 is dispensable for the induction of flagellin and surface Ag-specific systemic and mucosal immunity against oral flagellated bacteria. Rather, pathogen recognition, which occurs in PPs, is a prerequisite for the induction of mucosal immunity against flagellated bacteria.
Collapse
Affiliation(s)
- Tomomi Hashizume-Takizawa
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| | - Masafumi Yamamoto
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan
| |
Collapse
|
37
|
Kinnear CL, Strugnell RA. Vaccination Method Affects Immune Response and Bacterial Growth but Not Protection in the Salmonella Typhimurium Animal Model of Typhoid. PLoS One 2015; 10:e0141356. [PMID: 26509599 PMCID: PMC4625024 DOI: 10.1371/journal.pone.0141356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 10/07/2015] [Indexed: 01/22/2023] Open
Abstract
Understanding immune responses elicited by vaccines, together with immune responses required for protection, is fundamental to designing effective vaccines and immunisation programs. This study examines the effects of the route of administration of a live attenuated vaccine on its interactions with, and stimulation of, the murine immune system as well as its ability to increase survival and provide protection from colonisation by a virulent challenge strain. We assess the effect of administration method using the murine model for typhoid, where animals are infected with S. Typhimurium. Mice were vaccinated either intravenously or orally with the same live attenuated S. Typhimurium strain and data were collected on vaccine strain growth, shedding and stimulation of antibodies and cytokines. Following vaccination, mice were challenged with a virulent strain of S. Typhimurium and the protection conferred by the different vaccination routes was measured in terms of challenge suppression and animal survival. The main difference in immune stimulation found in this study was the development of a secretory IgA response in orally-vaccinated mice, which was absent in IV vaccinated mice. While both strains showed similar protection in terms of challenge suppression in systemic organs (spleen and liver) as well as survival, they differed in terms of challenge suppression of virulent pathogens in gut-associated organs. This difference in gut colonisation presents important questions around the ability of vaccines to prevent shedding and transmission. These findings demonstrate that while protection conferred by two vaccines can appear to be the same, the mechanisms controlling the protection can differ and have important implications for infection dynamics within a population.
Collapse
Affiliation(s)
- Clare L. Kinnear
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Biosciences, The University of Melbourne, Melbourne, Victoria, Australia
- * E-mail:
| | - Richard A. Strugnell
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
38
|
Ghosal A, Jellbauer S, Kapadia R, Raffatellu M, Said HM. Salmonella infection inhibits intestinal biotin transport: cellular and molecular mechanisms. Am J Physiol Gastrointest Liver Physiol 2015; 309:G123-31. [PMID: 25999427 PMCID: PMC4504957 DOI: 10.1152/ajpgi.00112.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/13/2015] [Indexed: 01/31/2023]
Abstract
Infection with the nontyphoidal Salmonella is a common cause of food-borne disease that leads to acute gastroenteritis/diarrhea. Severe/prolonged cases of Salmonella infection could also impact host nutritional status, but little is known about its effect on intestinal absorption of vitamins, including biotin. We examined the effect of Salmonella enterica serovar Typhimurium (S. typhimurium) infection on intestinal biotin uptake using in vivo (streptomycin-pretreated mice) and in vitro [mouse (YAMC) and human (NCM460) colonic epithelial cells, and human intestinal epithelial Caco-2 cells] models. The results showed that infecting mice with wild-type S. typhimurium, but not with its nonpathogenic isogenic invA spiB mutant, leads to a significant inhibition in jejunal/colonic biotin uptake and in level of expression of the biotin transporter, sodium-dependent multivitamin transporter. In contrast, infecting YAMC, NCM460, and Caco-2 cells with S. typhimurium did not affect biotin uptake. These findings suggest that the effect of S. typhimurium infection is indirect and is likely mediated by proinflammatory cytokines, the levels of which were markedly induced in the intestine of S. typhimurium-infected mice. Consistent with this hypothesis, exposure of NCM460 cells to the proinflammatory cytokines TNF-α and IFN-γ led to a significant inhibition of biotin uptake, sodium-dependent multivitamin transporter expression, and activity of the SLC5A6 promoter. The latter effects appear to be mediated, at least in part, via the NF-κB signaling pathway. These results demonstrate that S. typhimurium infection inhibits intestinal biotin uptake, and that the inhibition is mediated via the action of proinflammatory cytokines.
Collapse
Affiliation(s)
- Abhisek Ghosal
- 1Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| | - Stefan Jellbauer
- 3Department of Microbiology and Molecular Genetics, University of California, Irvine, California; and ,4Institute for Immunology, University of California, Irvine, California
| | - Rubina Kapadia
- 1Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| | - Manuela Raffatellu
- 3Department of Microbiology and Molecular Genetics, University of California, Irvine, California; and ,4Institute for Immunology, University of California, Irvine, California
| | - Hamid M. Said
- 1Departments of Medicine and Physiology/Biophysics, University of California, Irvine, California; ,2Department of Veterans Affairs Medical Center, Long Beach, California;
| |
Collapse
|
39
|
Bioimage analysis of Shigella infection reveals targeting of colonic crypts. Proc Natl Acad Sci U S A 2015; 112:E3282-90. [PMID: 26056271 DOI: 10.1073/pnas.1509091112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Few studies within the pathogenic field have used advanced imaging and analytical tools to quantitatively measure pathogenicity in vivo. In this work, we present a novel approach for the investigation of host-pathogen processes based on medium-throughput 3D fluorescence imaging. The guinea pig model for Shigella flexneri invasion of the colonic mucosa was used to monitor the infectious process over time with GFP-expressing S. flexneri. A precise quantitative imaging protocol was devised to follow individual S. flexneri in a large tissue volume. An extensive dataset of confocal images was obtained and processed to extract specific quantitative information regarding the progression of S. flexneri infection in an unbiased and exhaustive manner. Specific parameters included the analysis of S. flexneri positions relative to the epithelial surface, S. flexneri density within the tissue, and volume of tissue destruction. In particular, at early time points, there was a clear association of S. flexneri with crypts, key morphological features of the colonic mucosa. Numerical simulations based on random bacterial entry confirmed the bias of experimentally measured S. flexneri for early crypt targeting. The application of a correlative light and electron microscopy technique adapted for thick tissue samples further confirmed the location of S. flexneri within colonocytes at the mouth of crypts. This quantitative imaging approach is a novel means to examine host-pathogen systems in a tailored and robust manner, inclusive of the infectious agent.
Collapse
|
40
|
Kato K, Ishiwa A. The role of carbohydrates in infection strategies of enteric pathogens. Trop Med Health 2014; 43:41-52. [PMID: 25859152 PMCID: PMC4361345 DOI: 10.2149/tmh.2014-25] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023] Open
Abstract
Enteric pathogens cause considerable public health concerns worldwide including tropical regions. Here, we review the roles of carbohydrates in the infection strategies of various enteric pathogens including viruses, bacteria and protozoa, which infect the epithelial lining of the human and animal intestine. At host cell entry, enteric viruses, including norovirus, recognize mainly histo-blood group antigens. At the initial step of bacterial infections, carbohydrates also function as receptors for attachment. Here, we describe the function of carbohydrates in infection by Salmonella enterica and several bacterial species that produce a variety of fimbrial adhesions. During invasion by enteropathogenic protozoa, apicomplexan parasites utilize sialic acids or sulfated glycans. Carbohydrates serve as receptors for infection by these microbes; however, their usage of carbohydrates varies depending on the microbe. On the surface of the mucosal tissues of the gastrointestinal tract, various carbohydrate moieties are present and play a crucial role in infection, representing the site of infection or route of access for most microbes. During the infection and/or invasion process of the microbes, carbohydrates function as receptors for various microbes, but they can also function as a barrier to infection. One approach to develop effective prophylactic and therapeutic antimicrobial agents is to modify the drug structure. Another approach is to modify the mode of inhibition of infection depending on the individual pathogen by using and mimicking the interactions with carbohydrates. In addition, similarities in mode of infection may also be utilized. Our findings will be useful in the development of new drugs for the treatment of enteric pathogens.
Collapse
Affiliation(s)
- Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine , Inada-cho, Obihiro, Hokkaido 080-8555, Japan ; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akiko Ishiwa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine , Inada-cho, Obihiro, Hokkaido 080-8555, Japan ; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
41
|
Rodríguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 2014; 5:779-84. [PMID: 25398740 PMCID: PMC4224214 DOI: 10.3945/an.114.007229] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Human milk is a source of bacteria to the infant gut; however, the origin of milk bacteria, as well as their impact on neonatal gut microbiota establishment, remains largely unknown. In the past years, results provided by different research groups suggest that certain bacteria from the maternal gastrointestinal tract could translocate through a mechanism involving mononuclear immune cells, migrate to the mammary glands via an endogenous cellular route (the bacterial entero-mammary pathway), and subsequently colonize the gastrointestinal tract of the breast-fed neonate. If such findings are confirmed in the future, we could exert a positive influence on infant health by modulating the maternal gut microbiota.
Collapse
|
42
|
Malt LM, Perrett CA, Humphrey S, Jepson MA. Applications of microscopy in Salmonella research. Methods Mol Biol 2014; 1225:165-98. [PMID: 25253256 DOI: 10.1007/978-1-4939-1625-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Salmonella enterica is a Gram-negative enteropathogen that can cause localized infections, typically resulting in gastroenteritis, or systemic infection, e.g., typhoid fever, in humans and many other animals. Understanding the mechanisms by which Salmonella induces disease has been the focus of intensive research. This has revealed that Salmonella invasion requires dynamic cross-talk between the microbe and host cells, in which bacterial adherence rapidly leads to a complex sequence of cellular responses initiated by proteins translocated into the host cell by a type 3 secretion system. Once these Salmonella-induced responses have resulted in bacterial invasion, proteins translocated by a second type 3 secretion system initiate further modulation of cellular activities to enable survival and replication of the invading pathogen. Elucidation of the complex and highly dynamic pathogen-host interactions ultimately requires analysis at the level of single cells and single infection events. To achieve this goal, researchers have applied a diverse range of microscopy techniques to analyze Salmonella infection in models ranging from whole animal to isolated cells and simple eukaryotic organisms. For example, electron microscopy and high-resolution light microscopy techniques such as confocal microscopy can reveal the precise location of Salmonella and its relationship to cellular components. Widefield light microscopy is a simpler approach with which to study the interaction of bacteria with host cells and often has advantages for live cell imaging, enabling detailed analysis of the dynamics of infection and cellular responses. Here we review the use of imaging techniques in Salmonella research and compare the capabilities of different classes of microscope to address specific types of research question. We also provide protocols and notes on some microscopy techniques used routinely in our own research.
Collapse
Affiliation(s)
- Layla M Malt
- Department of Biochemistry, School of Medical Sciences, University of Bristol, Tyndall Avenue, Bristol, BS8 1TD, UK
| | | | | | | |
Collapse
|
43
|
Liu X, Wang X, Bai X, Liu X, Wu X, Zhao Y, Sun S, Yu L, Su X, Wang Z, Wang F, Liu M. Oral administration with attenuated Salmonella encoding a Trichinella cystatin-like protein elicited host immunity. Exp Parasitol 2014; 141:1-11. [DOI: 10.1016/j.exppara.2014.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 01/30/2023]
|
44
|
Susceptibility to Salmonella carrier-state: a possible Th2 response in susceptible chicks. Vet Immunol Immunopathol 2014; 159:16-28. [PMID: 24694400 DOI: 10.1016/j.vetimm.2014.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 01/13/2014] [Accepted: 03/02/2014] [Indexed: 11/23/2022]
Abstract
Infection of chicken with Salmonella may lead to a carrier-state characterized by the persistence of bacteria in the ceca for a long period of time and result in their excretion in feces. This excretion is the source of contamination of their congeners and food. During infection, enterocytes are the primary target cells for Salmonella, the producers of soluble factors which launch immune response and cells which are reciprocally responsive to surrounding immune cells. This study used microarrays to compare the gene expression profile during carrier-state of enterocytes purified from infected and control chicks which are either resistant or susceptible to Salmonella Enteritidis carrier-state. In total, we identified 271 genes significantly differentially expressed with an absolute fold change greater than 1.5. A global analysis determined interaction networks between differentially regulated genes. Using an a priori approach, our analyses focused on differentially expressed genes which were transcriptionally linked to cytokines playing a major role in the fate of the immune response. The expression of genes transcriptionally linked to type I interferon and TGF-β was down-regulated in infected chicks from both lines. Gene expression linked to the Th1 axis suggests the latter is inhibited in both lines. Finally, the expression of genes linked to IL-4, IL-5 and IL-13 indicates that susceptibility to carrier-state could be associated with a Th2 bias. Overall, these results highlight that the response to Salmonella during the acute phase and carrier-state is different and that enterocytes play a central role in this response.
Collapse
|
45
|
Parsons BN, Wigley P, Simpson HL, Williams JM, Humphrey S, Salisbury AM, Watson AJM, Fry SC, O'Brien D, Roberts CL, O'Kennedy N, Keita ÅV, Söderholm JD, Rhodes JM, Campbell BJ. Dietary supplementation with soluble plantain non-starch polysaccharides inhibits intestinal invasion of Salmonella Typhimurium in the chicken. PLoS One 2014; 9:e87658. [PMID: 24498347 PMCID: PMC3911995 DOI: 10.1371/journal.pone.0087658] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/28/2013] [Indexed: 01/25/2023] Open
Abstract
Soluble fibres (non-starch polysaccharides, NSP) from edible plants but particularly plantain banana (Musa spp.), have been shown in vitro and ex vivo to prevent various enteric pathogens from adhering to, or translocating across, the human intestinal epithelium, a property that we have termed contrabiotic. Here we report that dietary plantain fibre prevents invasion of the chicken intestinal mucosa by Salmonella. In vivo experiments were performed with chicks fed from hatch on a pellet diet containing soluble plantain NSP (0 to 200 mg/d) and orally infected with S.Typhimurium 4/74 at 8 d of age. Birds were sacrificed 3, 6 and 10 d post-infection. Bacteria were enumerated from liver, spleen and caecal contents. In vitro studies were performed using chicken caecal crypts and porcine intestinal epithelial cells infected with Salmonella enterica serovars following pre-treatment separately with soluble plantain NSP and acidic or neutral polysaccharide fractions of plantain NSP, each compared with saline vehicle. Bacterial adherence and invasion were assessed by gentamicin protection assay. In vivo dietary supplementation with plantain NSP 50 mg/d reduced invasion by S.Typhimurium, as reflected by viable bacterial counts from splenic tissue, by 98.9% (95% CI, 98.1-99.7; P<0.0001). In vitro studies confirmed that plantain NSP (5-10 mg/ml) inhibited adhesion of S.Typhimurium 4/74 to a porcine epithelial cell-line (73% mean inhibition (95% CI, 64-81); P<0.001) and to primary chick caecal crypts (82% mean inhibition (95% CI, 75-90); P<0.001). Adherence inhibition was shown to be mediated via an effect on the epithelial cells and Ussing chamber experiments with ex-vivo human ileal mucosa showed that this effect was associated with increased short circuit current but no change in electrical resistance. The inhibitory activity of plantain NSP lay mainly within the acidic/pectic (homogalacturonan-rich) component. Supplementation of chick feed with plantain NSP was well tolerated and shows promise as a simple approach for reducing invasive salmonellosis.
Collapse
Affiliation(s)
- Bryony N. Parsons
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Paul Wigley
- Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst, United Kingdom
| | - Hannah L. Simpson
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Jonathan M. Williams
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Suzie Humphrey
- Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst, United Kingdom
| | - Anne-Marie Salisbury
- Infection Biology, Institute of Infection and Global Health, University of Liverpool, Leahurst, United Kingdom
| | - Alastair J. M. Watson
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Stephen C. Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David O'Brien
- Provexis plc, c/o Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Carol L. Roberts
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
- Provexis plc, c/o Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Niamh O'Kennedy
- Provexis plc, c/o Rowett Institute of Nutrition and Health, Aberdeen, United Kingdom
| | - Åsa V. Keita
- Clinical and Experimental Medicine, Division of Surgery, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Johan D. Söderholm
- Clinical and Experimental Medicine, Division of Surgery, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Jonathan M. Rhodes
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Barry J. Campbell
- Gastroenterology, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
46
|
Chin'ombe N, Ruhanya V. Recombinant Salmonella Bacteria Vectoring HIV/AIDS Vaccines. Open Virol J 2013; 7:121-6. [PMID: 24478808 PMCID: PMC3905348 DOI: 10.2174/1874357901307010121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 11/13/2013] [Accepted: 11/18/2013] [Indexed: 11/29/2022] Open
Abstract
HIV/AIDS is an important public health problem globally. An affordable, easy-to-deliver and protective HIV
vaccine is therefore required to curb the pandemic from spreading further. Recombinant Salmonella bacteria can be
harnessed to vector HIV antigens or DNA vaccines to the immune system for induction of specific protective immunity.
These are capable of activating the innate, humoral and cellular immune responses at both mucosal and systemic
compartments. Several studies have already demonstrated the utility of live recombinant Salmonella in delivering
expressed foreign antigens as well as DNA vaccines to the host immune system. This review gives an overview of the
studies in which recombinant Salmonella bacteria were used to vector HIV/AIDS antigens and DNA vaccines. Most of
the recombinant Salmonella-based HIV/AIDS vaccines developed so far have only been tested in animals (mainly mice)
and are yet to reach human trials.
Collapse
Affiliation(s)
- Nyasha Chin'ombe
- Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe ; Division of Medical Virology, University of Cape Town, Cape Town, South Africa
| | - Vurayai Ruhanya
- Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|
47
|
Lim KY, Jiang SC. Reevaluation of health risk benchmark for sustainable water practice through risk analysis of rooftop-harvested rainwater. WATER RESEARCH 2013; 47:7273-86. [PMID: 24238739 DOI: 10.1016/j.watres.2013.09.059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 05/25/2023]
Abstract
Health risk concerns associated with household use of rooftop-harvested rainwater (HRW) constitute one of the main impediments to exploit the benefits of rainwater harvesting in the United States. However, the benchmark based on the U.S. EPA acceptable annual infection risk level of ≤1 case per 10,000 persons per year (≤10(-4) pppy) developed to aid drinking water regulations may be unnecessarily stringent for sustainable water practice. In this study, we challenge the current risk benchmark by quantifying the potential microbial risk associated with consumption of HRW-irrigated home produce and comparing it against the current risk benchmark. Microbial pathogen data for HRW and exposure rates reported in literature are applied to assess the potential microbial risk posed to household consumers of their homegrown produce. A Quantitative Microbial Risk Assessment (QMRA) model based on worst-case scenario (e.g. overhead irrigation, no pathogen inactivation) is applied to three crops that are most popular among home gardeners (lettuce, cucumbers, and tomatoes) and commonly consumed raw. The infection risks of household consumers attributed to consumption of these home produce vary with the type of produce. The lettuce presents the highest risk, which is followed by tomato and cucumber, respectively. Results show that the 95th percentile values of infection risk per intake event of home produce are one to three orders of magnitude (10(-7) to 10(-5)) lower than U.S. EPA risk benchmark (≤10(-4) pppy). However, annual infection risks under the same scenario (multiple intake events in a year) are very likely to exceed the risk benchmark by one order of magnitude in some cases. Estimated 95th percentile values of the annual risk are in the 10(-4) to 10(-3) pppy range, which are still lower than the 10(-3) to 10(-1) pppy risk range of reclaimed water irrigated produce estimated in comparable studies. We further discuss the desirability of HRW for irrigating home produce based on the relative risk of HRW to reclaimed wastewater for irrigation of food crops. The appropriateness of the ≤10(-4) pppy risk benchmark for assessing safety level of HRW-irrigated fresh produce is questioned by considering the assumptions made for the QMRA model. Consequently, the need of an updated approach to assess appropriateness of sustainable water practice for making guidelines and policies is proposed.
Collapse
Affiliation(s)
- Keah-Ying Lim
- Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697-2175, USA
| | | |
Collapse
|
48
|
Gonzalez-Escobedo G, La Perle KMD, Gunn JS. Histopathological analysis of Salmonella chronic carriage in the mouse hepatopancreatobiliary system. PLoS One 2013; 8:e84058. [PMID: 24349565 PMCID: PMC3861519 DOI: 10.1371/journal.pone.0084058] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 11/18/2013] [Indexed: 12/13/2022] Open
Abstract
Salmonella Typhi asymptomatic chronic carriage represents a challenge for the diagnosis and prevention of typhoid fever in endemic areas. Such carriers are thought to be reservoirs for further spread of the disease. Gallbladder carriage has been demonstrated to be mediated by biofilm formation on gallstones and by intracellular persistence in the gallbladder epithelium of mice. In addition, both gallstones and chronic carriage have been associated with chronic inflammation and the development of gallbladder carcinoma. However, the pathogenic relationship between typhoid carriage and the development of pre-malignant and/or malignant lesions in the hepatopancreatobiliary system as well as the host-pathogen interactions occurring during chronic carriage remains unclear. In this study, we monitored the histopathological features of chronic carriage up to 1 year post-infection. Chronic cholecystitis and hepatitis ranging from mild to severe were present in infected mice regardless of the presence of gallstones. Biliary epithelial hyperplasia was observed more commonly in the gallbladder of mice with gallstones (uninfected or infected). However, pre-malignant lesions, atypical hyperplasia and metaplasia of the gallbladder and exocrine pancreas, respectively, were only associated with chronic Salmonella carriage. This study has implications regarding the role of Salmonella chronic infection and inflammation in the development of pre-malignant lesions in the epithelium of the gallbladder and pancreas that could lead to oncogenesis.
Collapse
Affiliation(s)
- Geoffrey Gonzalez-Escobedo
- Departments of Microbiology and Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Krista M. D. La Perle
- Department of Veterinary Biosciences, Comparative Pathology and Mouse Phenotyping Shared Resource, The Ohio State University, Columbus, Ohio, United States of America
| | - John S. Gunn
- Departments of Microbiology and Microbial Infection and Immunity, Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
49
|
Herrero-Fresno A, Leekitcharoenphon P, Hendriksen RS, Olsen JE, Aarestrup FM. .Analysis of the contribution of bacteriophage ST64B to in vitro virulence traits of Salmonella enterica serovar Typhimurium. J Med Microbiol 2013; 63:331-342. [PMID: 24324031 DOI: 10.1099/jmm.0.068221-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Comparison of the publicly available genomes of the virulent Salmonella enterica serovar Typhimurium (S. Typhimurium) strains SL1344, 14028s and D23580 to that of the virulence-attenuated isolate LT2 revealed the absence of a full sequence of bacteriophage ST64B in the latter. Four selected ST64B regions of unknown function (sb7-sb11, sb46, sb49-sb50 and sb54) were mapped by PCR in two strain collections: (i) 310 isolates of S. Typhimurium from human blood or stool samples, and from food, animal and environmental reservoirs; and (ii) 90 isolates belonging to other serovars. The region sb49-sb50 was found to be unique to S. Typhimurium and was strongly associated with strains isolated from blood samples (100 and 28.4 % of the blood and non-blood isolates, respectively). The region was cloned into LT2 and knocked out in SL1344, and these strains were compared to wild-type isogenic strains in in vitro assays used to predict virulence association. No difference in invasion of the Int407 human cell line was observed between the wild-type and mutated strains, but the isolate carrying the whole ST64B prophage was found to have a slightly better survival in blood. The study showed a high prevalence and a strong association between the prophage ST64B and isolates of S. Typhimurium collected from blood, and may indicate that such strains constitute a selected subpopulation within this serovar. Further studies are indicated to determine whether the slight increase in blood survival observed in the strain carrying ST64B genes is of paramount importance for systemic infections.
Collapse
Affiliation(s)
- Ana Herrero-Fresno
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.,WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Pimlapas Leekitcharoenphon
- WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Rene S Hendriksen
- WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| | - John E Olsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Frank M Aarestrup
- WHO Collaborating Centre for Antimicrobial Resistance in Food-borne Pathogens and EU Reference Laboratory for Antimicrobial Resistance, National Food Institute, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
50
|
Poorbaghi SL, Dadras H, Gheisari HR, Mosleh N, Firouzi S, Roohallazadeh H. Effects of Lactobacillus acidophilus and inulin on faecal viral shedding and immunization against H9 N2 Avian influenza virus. J Appl Microbiol 2013; 116:667-76. [PMID: 24206196 DOI: 10.1111/jam.12390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/12/2013] [Accepted: 11/07/2013] [Indexed: 12/24/2022]
Abstract
AIMS The aims of this investigation were to compare the effects of Lactobacillus acidophilus addition as simple or microencapsulated (ME) probiotic and inulin as prebiotic to the broiler diet on the faecal viral shedding and immunization against avian influenza virus (AIV) with or without H9 N2 vaccination. METHODS AND RESULTS Simple or ME forms of Lact. acidophilus, inulin and combination of them as synbiotic were analysed for their ability to enhance immunity against H9 N2 AIV and to decrease faecal viral shedding in Cobb-500 broiler chicks. Our results indicated that probiotic as ME form can decrease haemagglutination inhibition (HI) titre significantly on days 34 in vaccinated trial (P < 0·05). Also, the effects of ME form of probiotic are more remarkable on reduction of viral faecal shedding detected by RT-PCR. CONCLUSIONS The study shows the significant role of microencapsulation on probiotic effects against H9 N2 AIV. SIGNIFICANCE AND IMPACT OF THE STUDY The application of probiotics especially in the ME form could have the potential for stimulating the immune system, preventing influenza infection and consequently reduce faecal viral shedding of H9 N2 AIV.
Collapse
Affiliation(s)
- S L Poorbaghi
- Department of Avian Medicine, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | | | | | | |
Collapse
|