1
|
Gargano A, Greco I, Lupia C, Alcaro S, Ambrosio FA. Rosmarinus officinalis L. as Fascinating Source of Potential Anticancer Agents Targeting Aromatase and COX-2: An Overview. Molecules 2025; 30:1733. [PMID: 40333668 PMCID: PMC12029578 DOI: 10.3390/molecules30081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer is the second leading cause of death in the world, with scientific evidence indicating that the enzymes aromatase and cyclooxygenase 2 are upregulated in several types of cancer. Over the past 30 years, natural compounds have played a crucial role in cancer chemotherapy, and to date, many phytocompounds have been reported to interact with these enzymes, inhibiting their activity. Notably, several phytocompounds found in Rosmarinus officinalis L., a medicinal plant native to the Mediterranean region and cultivated around the world, have shown the ability to interact with these enzymes. This review examines the role of the main compounds contained in Rosmarinus officinalis L. as potential anticancer agents acting on aromatase and cyclooxygenase-2.
Collapse
Affiliation(s)
- Adriana Gargano
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Ilario Greco
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, Italy;
- National Etnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
- Net4Science Academic Spin-Off, Università “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
| |
Collapse
|
2
|
Engin A. Obesity-Associated Breast Cancer: Analysis of Risk Factors and Current Clinical Evaluation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:767-819. [PMID: 39287872 DOI: 10.1007/978-3-031-63657-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Several studies show that a significantly stronger association is obvious between increased body mass index (BMI) and higher breast cancer incidence. Additionally, obese and postmenopausal women are at higher risk of all-cause and breast cancer-specific mortality compared with non-obese women with breast cancer. In this context, increased levels of estrogens, excessive aromatization activity of the adipose tissue, overexpression of pro-inflammatory cytokines, insulin resistance, adipocyte-derived adipokines, hypercholesterolemia, and excessive oxidative stress contribute to the development of breast cancer in obese women. Genetic evaluation is an integral part of diagnosis and treatment for patients with breast cancer. Despite trimodality therapy, the four-year cumulative incidence of regional recurrence is significantly higher. Axillary lymph nodes as well as primary lesions have diagnostic, prognostic, and therapeutic significance for the management of breast cancer. In clinical setting, because of the obese population primary lesions and enlarged lymph nodes could be less palpable, the diagnosis may be challenging due to misinterpretation of physical findings. Thereby, a nomogram has been created as the "Breast Imaging Reporting and Data System" (BI-RADS) to increase agreement and decision-making consistency between mammography and ultrasonography (USG) experts. Additionally, the "breast density classification system," "artificial intelligence risk scores," ligand-targeted receptor probes," "digital breast tomosynthesis," "diffusion-weighted imaging," "18F-fluoro-2-deoxy-D-glucose positron emission tomography," and "dynamic contrast-enhanced magnetic resonance imaging (MRI)" are important techniques for the earlier detection of breast cancers and to reduce false-positive results. A high concordance between estrogen receptor (ER) and progesterone receptor (PR) status evaluated in preoperative percutaneous core needle biopsy and surgical specimens is demonstrated. Breast cancer surgery has become increasingly conservative; however, mastectomy may be combined with any axillary procedures, such as sentinel lymph node biopsy (SLNB) and/or axillary lymph node dissection whenever is required. As a rule, SLNB-guided axillary dissection in breast cancer patients who have clinically axillary lymph node-positive to node-negative conversion following neoadjuvant chemotherapy is recommended, because lymphedema is the most debilitating complication after any axillary surgery. There is no clear consensus on the optimal treatment of occult breast cancer, which is much discussed today. Similarly, the current trend in metastatic breast cancer is that the main palliative treatment option is systemic therapy.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
3
|
Guan L, Wang Y, Cheng J, Zhang J, Kang S. Expression and clinical significance of HER2/neu, aromatase P450 and adhesion molecule CD24 in endometrial cancer. Eur J Histochem 2023; 67:3655. [PMID: 37565251 PMCID: PMC10476532 DOI: 10.4081/ejh.2023.3655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
This study aimed at exploring the expression and clinical significance of aromatase P450, adhesion molecule CD24 and HER2/neu in endometrial cancer. The expression of aromatase P450, adhesion molecule CD24 and HER2/neu was detected by immunohistochemistry in 15 cases of endometrial hyperplasia group, 50 cases of endometrial adenocarcinoma and 3 cases of uterine papillary adenocarcinoma, with 15 cases of normal endometrium as control group. We detected no expression of aromatase P450, adhesion molecule CD24 or HER2/neu in control group. Aromatase P450 positive expression rate was 66.7% in endometrial hyperplasia group and 70.3% in endometrial carcinoma group, without significant difference (p>0.05). There was no significant difference (p>0.05) in the positive expression rate of aromatase P450 between different myometrial invasion groups of endometrial adenocarcinomas. CD24 positive expression rate was 40.0% in endometrial hyperplasia group and 79.6% in endometrial carcinoma group, with significant difference (p<0.05). HER2/neu positive expression rate was 26.7% in the endometrial hyperplasia group and 57% in endometrial carcinoma group, with significant difference (p<0.05). In conclusion, aromatase P450 may be one factor associated with endometrial cancer cell proliferation, while CD24 and HER2/neu may be important factors associated with the invasion and metastasis of endometrial cancer.
Collapse
Affiliation(s)
- Liyun Guan
- Department of Oncology, The Third Hospital of Shijiazhuang.
| | - Ying Wang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang.
| | - Jianxin Cheng
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang.
| | - Jun Zhang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang.
| | - Shan Kang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang.
| |
Collapse
|
4
|
Gadi V, Shetty SR. Potential of Anti-inflammatory Molecules in the Chemoprevention of Breast Cancer. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:60-76. [PMID: 36043708 DOI: 10.2174/2772270816666220829090716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 01/20/2023]
Abstract
Breast cancer is a global issue, affecting greater than 1 million women per annum. Over the past two decades, there have been numerous clinical trials involving the use of various pharmacological substances as chemopreventive agents for breast cancer. Various pre-clinical as well as clinical studies have established numerous anti-inflammatory molecules, including nonsteroidal anti-inflammatory drugs (NSAIDs) and dietary phytochemicals as promising agents for chemoprevention of several cancers, including breast cancer. The overexpression of COX-2 has been detected in approximately 40% of human breast cancer cases and pre-invasive ductal carcinoma in-situ lesions, associated with aggressive elements of breast cancer such as large size of the tumour, ER/PR negative and HER-2 overexpression, among others. Anti-inflammatory molecules inhibit COX, thereby inhibiting the formation of prostaglandins and inhibiting nuclear factor-κBmediated signals (NF-kB). Another probable explanation entails inflammation-induced degranulation, with the production of angiogenesis-regulating factors, such as vascular endothelial growth factor, which can be possibly regulated by anti-inflammatory molecules. Apart from NSAIDS, many dietary phytochemicals have the ability to decrease, delay, or stop the progression and/or incidence of breast cancer by their antioxidant action, regulating inflammatory and proliferative cell signalling pathways as well as inducing apoptosis. The rapid progress in chemoprevention research has also established innovative strategies that can be implemented to prevent breast cancer. This article gives a comprehensive overview of the recent advancements in using antiinflammatory molecules in the chemoprevention of breast cancer along with their mechanism of action, supported by latest preclinical and clinical data. The merits of anti-inflammatory chemopreventive agents in the prevention of cardiotoxicity have been described. We have also highlighted the ongoing research and advancements in improving the efficacy of using antiinflammatory molecules as chemopreventive agents.
Collapse
Affiliation(s)
- Vaishnavi Gadi
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMS Narsee Monjee Institute of Management Studies, Mumbai-56, Maharashtra, India
| | - Saritha Rakesh Shetty
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMS Narsee Monjee Institute of Management Studies, Mumbai-56, Maharashtra, India
| |
Collapse
|
5
|
Thabet RH, Gomaa AA, Matalqah LM, Shalaby EM. Vitamin D: an essential adjuvant therapeutic agent in breast cancer. J Int Med Res 2022; 50:3000605221113800. [PMID: 35883275 PMCID: PMC9340350 DOI: 10.1177/03000605221113800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 11/20/2022] Open
Abstract
Low serum levels of vitamin D have been reported as a risk factor for breast cancer. This narrative review provides an update on the impact of vitamin D on hormone receptors, notably estrogen receptor subunits, and gives insights on possible therapeutic interventions to overcome breast cancer. In addition, evidence that supports the beneficial use of vitamin D as adjuvant treatment of breast cancer is summarized. Vitamin D deficiency is significantly widespread in patients with triple-negative tumors. Several studies have observed a possible modulatory effect of vitamin D or its analogues on the expression of different hormone receptors in breast cancer and increased sensitivity to tamoxifen. Vitamin D possesses anti-inflammatory and immunomodulatory effects in patients with breast cancer, and the mechanism of action of vitamin D in patients with breast cancer is discussed. In conclusion, vitamin D appears to have a beneficial role in the prevention and management of breast cancer, however, large-scale, randomized controlled trials are needed to confirm the effects of vitamin D in breast cancer prevention or treatment.
Collapse
Affiliation(s)
- Romany H Thabet
- Department of Pharmacology, Faculty of Medicine, Assiut
University
- Department of Basic Medical Sciences, Faculty of Medicine,
Yarmouk University, Irbid-Jordan
| | - Adel A Gomaa
- Department of Pharmacology, Faculty of Medicine, Assiut
University
- Center for Research on Management of Age-Related Diseases,
Assiut University, Assiut, Egypt
| | - Laila M Matalqah
- Department of Basic Medical Sciences, Faculty of Medicine,
Yarmouk University, Irbid-Jordan
| | | |
Collapse
|
6
|
Barone I, Caruso A, Gelsomino L, Giordano C, Bonofiglio D, Catalano S, Andò S. Obesity and endocrine therapy resistance in breast cancer: Mechanistic insights and perspectives. Obes Rev 2022; 23:e13358. [PMID: 34559450 PMCID: PMC9285685 DOI: 10.1111/obr.13358] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/07/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022]
Abstract
The incidence of obesity, a recognized risk factor for various metabolic and chronic diseases, including numerous types of cancers, has risen dramatically over the recent decades worldwide. To date, convincing research in this area has painted a complex picture about the adverse impact of high body adiposity on breast cancer onset and progression. However, an emerging but overlooked issue of clinical significance is the limited efficacy of the conventional endocrine therapies with selective estrogen receptor modulators (SERMs) or degraders (SERDs) and aromatase inhibitors (AIs) in patients affected by breast cancer and obesity. The mechanisms behind the interplay between obesity and endocrine therapy resistance are likely to be multifactorial. Therefore, what have we actually learned during these years and which are the main challenges in the field? In this review, we will critically discuss the epidemiological evidence linking obesity to endocrine therapeutic responses and we will outline the molecular players involved in this harmful connection. Given the escalating global epidemic of obesity, advances in understanding this critical node will offer new precision medicine-based therapeutic interventions and more appropriate dosing schedule for treating patients affected by obesity and with breast tumors resistant to endocrine therapies.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Cosenza, Italy
| |
Collapse
|
7
|
Maharjan CK, Mo J, Wang L, Kim MC, Wang S, Borcherding N, Vikas P, Zhang W. Natural and Synthetic Estrogens in Chronic Inflammation and Breast Cancer. Cancers (Basel) 2021; 14:cancers14010206. [PMID: 35008370 PMCID: PMC8744660 DOI: 10.3390/cancers14010206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/17/2022] Open
Abstract
The oncogenic role of estrogen receptor (ER) signaling in breast cancer has long been established. Interaction of estrogen with estrogen receptor (ER) in the nucleus activates genomic pathways of estrogen signaling. In contrast, estrogen interaction with the cell membrane-bound G-protein-coupled estrogen receptor (GPER) activates the rapid receptor-mediated signaling transduction cascades. Aberrant estrogen signaling enhances mammary epithelial cell proliferation, survival, and angiogenesis, hence is an important step towards breast cancer initiation and progression. Meanwhile, a growing number of studies also provide evidence for estrogen's pro- or anti-inflammatory roles. As other articles in this issue cover classic ER and GPER signaling mediated by estrogen, this review will discuss the crucial mechanisms by which estrogen signaling influences chronic inflammation and how that is involved in breast cancer. Xenoestrogens acquired from plant diet or exposure to industrial products constantly interact with and alter innate estrogen signaling at various levels. As such, they can modulate chronic inflammation and breast cancer development. Natural xenoestrogens generally have anti-inflammatory properties, which is consistent with their chemoprotective role in breast cancer. In contrast, synthetic xenoestrogens are proinflammatory and carcinogenic compounds that can increase the risk of breast cancer. This article also highlights important xenoestrogens with a particular focus on their role in inflammation and breast cancer. Improved understanding of the complex relationship between estrogens, inflammation, and breast cancer will guide clinical research on agents that could advance breast cancer prevention and therapy.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Jiao Mo
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
| | - Sameul Wang
- Canyonoak Consulting LLC, San Diego, CA 92127, USA;
| | - Nicholas Borcherding
- Department of Pathology and Immunology, School of Medicine, Washington University, St. Louis, MO 63110, USA;
| | - Praveen Vikas
- Department of Internal Medicine, Carver College of Medicine, Iowa City, IA 52242, USA;
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA; (C.K.M.); (J.M.); (L.W.); (M.-C.K.)
- Mechanism of Oncogenesis Program, University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
- Correspondence: to: ; Tel.: +1-352-273-6748
| |
Collapse
|
8
|
Ji XK, Madhurapantula SV, He G, Wang KY, Song CH, Zhang JY, Wang KJ. Genetic variant of cyclooxygenase-2 in gastric cancer: More inflammation and susceptibility. World J Gastroenterol 2021; 27:4653-4666. [PMID: 34366627 PMCID: PMC8326261 DOI: 10.3748/wjg.v27.i28.4653] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/17/2021] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer accounts for the majority cancer-related deaths worldwide. Although various methods have considerably improved the screening, diagnosis, and treatment of gastric cancer, its incidence is still high in Asia, and the 5-year survival rate of advanced gastric cancer patients is only 10%-20%. Therefore, more effective drugs and better screening strategies are needed for reducing the incidence and mortality of gastric cancer. Cyclooxygenase-2 (COX-2) is considered to be the key inducible enzyme in prostaglandins (PGs) synthesis, which is involved in multiple pathways in the inflammatory response. For example, inflammatory cytokines stimulate innate immune responses via Toll-like receptors and nuclear factor-kappa B to induce COX-2/PGE2 pathway. In these processes, the production of an inflammatory microenvironment promotes the occurrence of gastric cancer. Epidemiological studies have also indicated that non-steroidal anti-inflammatory drugs can reduce the risk of malignant tumors of the digestive system by blocking the effect of COX-2. However, clinical use of COX-2 inhibitors to prevent or treat gastric cancer may be limited because of potential side effects, especially in the cardiovascular system. Given these side effects and low treatment efficacy, new therapeutic approaches and early screening strategies are urgently needed. Some studies have shown that genetic variation in COX-2 also play an important role in carcinogenesis. However, the genetic variation analysis in these studies is incomplete and isolated, pointing out only a few single nucleotide polymorphisms (SNPs) and the risk of gastric cancer, and no comprehensive study covering the whole gene region has been carried out. In addition, copy number variation (CNV) is not mentioned. In this review, we summarize the SNPs in the whole COX-2 gene sequence, including exons, introns, and both the 5' and 3' untranslated regions. Results suggest that COX-2 does not increase its expression through the CNV and the SNPs in COX-2 may serve as the potential marker to establish risk stratification in the general population. This review synthesizes emerging insights of COX-2 as a biomarker in multiple studies, summarizes the association between whole COX-2 sequence variation and susceptibility to gastric cancer, and discusses the future prospect of therapeutic intervention, which will be helpful for early screening and further research to find new approaches to gastric cancer treatment.
Collapse
Affiliation(s)
- Xuan-Ke Ji
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sailaja Vatsalya Madhurapantula
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Gui He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kun-Yan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Chun-Hua Song
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Jian-Ying Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Kai-Juan Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- Key Laboratory of Tumor Epidemiology of Henan Province, Zhengzhou University, Zhengzhou 450001, Henan Province, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
9
|
Miller B, Chalfant H, Thomas A, Wellberg E, Henson C, McNally MW, Grizzle WE, Jain A, McNally LR. Diabetes, Obesity, and Inflammation: Impact on Clinical and Radiographic Features of Breast Cancer. Int J Mol Sci 2021; 22:2757. [PMID: 33803201 PMCID: PMC7963150 DOI: 10.3390/ijms22052757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity, diabetes, and inflammation increase the risk of breast cancer, the most common malignancy in women. One of the mainstays of breast cancer treatment and improving outcomes is early detection through imaging-based screening. There may be a role for individualized imaging strategies for patients with certain co-morbidities. Herein, we review the literature regarding the accuracy of conventional imaging modalities in obese and diabetic women, the potential role of anti-inflammatory agents to improve detection, and the novel molecular imaging techniques that may have a role for breast cancer screening in these patients. We demonstrate that with conventional imaging modalities, increased sensitivity often comes with a loss of specificity, resulting in unnecessary biopsies and overtreatment. Obese women have body size limitations that impair image quality, and diabetes increases the risk for dense breast tis-sue. Increased density is known to obscure the diagnosis of cancer on routine screening mammography. Novel molecu-lar imaging agents with targets such as estrogen receptor, human epidermal growth factor receptor 2 (HER2), pyrimi-dine analogues, and ligand-targeted receptor probes, among others, have potential to reduce false positive results. They can also improve detection rates with increased resolution and inform therapeutic decision making. These emerg-ing imaging techniques promise to improve breast cancer diagnosis in obese patients with diabetes who have dense breasts, but more work is needed to validate their clinical application.
Collapse
Affiliation(s)
- Braden Miller
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
| | - Hunter Chalfant
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
| | - Alexandra Thomas
- Department of Internal Medicine, Wake Forest University School of Medicine, Wake Forest University, Winston-Salem, NC 27157, USA;
| | - Elizabeth Wellberg
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73105, USA;
| | - Christina Henson
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73105, USA;
| | | | - William E. Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Ajay Jain
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA;
| | - Lacey R. McNally
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (B.M.); (H.C.)
- Stephenson Cancer Center, Oklahoma City, OK 73104, USA;
| |
Collapse
|
10
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
11
|
Takagi K, Miki Y, Ishida T, Sasano H, Suzuki T. The interplay of endocrine therapy, steroid pathways and therapeutic resistance: Importance of androgen in breast carcinoma. Mol Cell Endocrinol 2018; 466:31-37. [PMID: 28918115 DOI: 10.1016/j.mce.2017.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/04/2017] [Accepted: 09/11/2017] [Indexed: 12/27/2022]
Abstract
A great majority of breast carcinomas expresses estrogen receptor (ER) and estrogens have crucial roles in the progress of breast carcinomas. Endocrine therapy targeting ER and/or intratumoral estrogen production significantly improved clinical outcomes of the patients with ER-positive breast carcinomas. However, resistance to endocrine therapy is often observed and significant number of patients will recur after the treatment. In addition, treatment for the patients with triple-negative breast carcinomas (negative for all ER, progesterone receptor (PR) and HER2) are limited to cytotoxic chemotherapy and novel therapeutic targets need to be identified. In breast carcinoma tissues, not only ER but androgen receptor (AR) is frequently expressed, suggesting pivotal roles of androgens in the progress of breast carcinomas. Growing interest on androgen action as possible therapeutic target has been taken, but androgen action seems quite complicated in breast carcinomas and inconsistent findings has been also proposed. In this review, we will summarize recent studies regarding intratumoral androgen production and its regulation as well as distinct subset of breast carcinomas characterized by activated AR signaling and recent clinical trial targeting AR in the patients with either ER-positive and ER-negative breast carcinomas.
Collapse
Affiliation(s)
- Kiyoshi Takagi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Yasuhiro Miki
- Department of Disaster Obstetrics and Gynecology, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Gérard C, Brown KA. Obesity and breast cancer - Role of estrogens and the molecular underpinnings of aromatase regulation in breast adipose tissue. Mol Cell Endocrinol 2018; 466:15-30. [PMID: 28919302 DOI: 10.1016/j.mce.2017.09.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
One in eight women will develop breast cancer over their lifetime making it the most common female cancer. The cause of breast cancer is multifactorial and includes hormonal, genetic and environmental cues. Obesity is now an accepted risk factor for breast cancer in postmenopausal women, particularly for the hormone-dependent subtype of breast cancer. Obesity, which is characterized by an excess accumulation of body fat, is at the origin of chronic inflammation of white adipose tissue and is associated with dramatic changes in the biology of adipocytes leading to their dysfunction. Inflammatory factors found in the breast of obese women considerably impact estrogen signaling, mainly by driving changes in aromatase expression the enzyme responsible for estrogen production, and therefore promote tumor formation and progression. There is thus a strong link between adipose inflammation and estrogen biosynthesis and their signaling pathways converge in obese patients. This review describes how obesity-related factors can affect the risk of hormone-dependent breast cancer, highlighting the different molecular mechanisms and metabolic pathways involved in aromatase regulation, estrogen production and breast malignancy in the context of obesity.
Collapse
Affiliation(s)
- Céline Gérard
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Kristy A Brown
- Metabolism & Cancer Laboratory, Hudson Institute of Medical Research, Clayton, VIC, Australia; Department of Physiology, Monash University, Clayton, VIC, Australia; Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Abstract
Chemotherapy and hormonal therapy have significantly decreased breast cancer mortality, although with considerable side effects and financial costs. In the USA, over three million women are living after a breast cancer diagnosis and are eager for new treatments that are low in toxicity and cost. Multiple observational studies have reported improved breast cancer survival with regular aspirin use. Furthermore, pooled data from five large randomized trials of aspirin for cardiovascular disease showed that subjects on aspirin had decreased risk of cancer mortality and decreased risk of metastatic cancer. Although the potential mechanism for aspirin preventing breast cancer is not known, possible pathways may involve platelets, inflammation, cyclooxygenase (COX) 2, hormones, or PI3 kinase. This review article summarizes the current epidemiologic and clinical trial evidence as well as possible underlying mechanisms that justify current phase III randomized trials of aspirin to improve breast cancer survival.
Collapse
|
14
|
Sun X, Lv M, Wang B, Zhao S, Guo P, Wang S, Gu L, Chen X. Comparative pharmacokinetics study of anastrozole after single administration and combination with celecoxib. Xenobiotica 2017; 48:279-284. [PMID: 28906164 DOI: 10.1080/00498254.2017.1298872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. There are numerous investigations demonstrating that the cyclooxygenase-2 (COX-2) inhibitors might enhance the efficiency of anastrozole in breast cancer. Hence, this study was conducted to investigate the comparative pharmacokinetics of anastrozole after single administration and combination with celecoxib. 2. A simple protein precipitation procedure was adopted for the sample preparation with satisfactory extraction recovery for both anastrozole and the internal standard, and then anastrozole was separated and analysed on an ACQUITY BEH UPLC C18 column (50 × 2.0 mm, 1.7 μm, Waters) within 2 min. The calibration curves showed good linarites (r = 0.994). Intra- and inter-day precision were within 4.93 and 13.83%, respectively. The mean extraction recoveries across QC levels were within 91.4%, and the matrix effects were within 94.5%. 3. Results showed that the method was reliable to determine anastrozole in rat plasma. Compared with rats in single administration group, no significant difference was found in the combination group. It is workable to use celecoxib combined with anastrozole in clinical therapy.
Collapse
Affiliation(s)
- Xiaoyang Sun
- a Department of Pharmaceutical Analysis , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Mingming Lv
- a Department of Pharmaceutical Analysis , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Binjie Wang
- a Department of Pharmaceutical Analysis , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Simin Zhao
- b Baiyunshan Pharmaceutical General Factory, Guangzhou Baiyunshan Pharmaceutical Holdings Co, Ltd , Guangzhou , PR China
| | - Ping Guo
- a Department of Pharmaceutical Analysis , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Shixiao Wang
- a Department of Pharmaceutical Analysis , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Liqiang Gu
- a Department of Pharmaceutical Analysis , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| | - Xiaohui Chen
- a Department of Pharmaceutical Analysis , School of Pharmacy, Shenyang Pharmaceutical University , Shenyang , PR China and
| |
Collapse
|
15
|
Zhang X, Harbeck N, Jeschke U, Doisneau-Sixou S. Influence of vitamin D signaling on hormone receptor status and HER2 expression in breast cancer. J Cancer Res Clin Oncol 2017; 143:1107-1122. [PMID: 28025696 DOI: 10.1007/s00432-016-2325-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Breast cancer is a significant global public health issue. It is the leading cause of death among women around the world, with an incidence increasing annually. In recent years, there has been more and more information in the literature regarding a protective role of vitamin D in cancer. Increasingly preclinical and clinical studies suggest that vitamin D optimal levels can reduce the risk of breast cancer development and regulate cancer-related pathways. METHOD In this review, we focus on the importance of vitamin D in breast cancers, discussing especially the influence of vitamin D signaling on estrogen receptor and human epidermal growth factor receptor 2 (HER2), two major biomarkers of breast cancer today. CONCLUSION We discuss the possibility of actual and future targeted therapeutic approaches for vitamin D signaling in breast cancer.
Collapse
Affiliation(s)
- Xi Zhang
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Nadia Harbeck
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Udo Jeschke
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany
| | - Sophie Doisneau-Sixou
- Brustzentrum der Universität München, Klinik und Poliklinik für Frauenheilkunde und Geburtshilfe, Campus Innenstadt, Klinikum der Ludwig-Maximilians-Universität, Maistraße 11, 80337, Munich, Germany.
- Faculté des Sciences Pharmaceutiques, Université Paul Sabatier Toulouse III, 31062, Toulouse Cedex 09, France.
| |
Collapse
|
16
|
Kim HG, Jin SW, Kim YA, Khanal T, Lee GH, Kim SJ, Rhee SD, Chung YC, Hwang YJ, Jeong TC, Jeong HG. Leptin induces CREB-dependent aromatase activation through COX-2 expression in breast cancer cells. Food Chem Toxicol 2017; 106:232-241. [PMID: 28571770 DOI: 10.1016/j.fct.2017.05.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 05/12/2017] [Accepted: 05/26/2017] [Indexed: 11/16/2022]
Abstract
Leptin plays a key role in the control of adipocyte formation, as well as in the associated regulation of energy intake and expenditure. The goal of this study was to determine if leptin-induced aromatase enhances estrogen production and induces tumor cell growth stimulation. To this end, breast cancer cells were incubated with leptin in the absence or presence of inhibitor pretreatment, and changes in aromatase and cyclooxygenase-2 (COX-2) expression were evaluated at the mRNA and protein levels. Transient transfection assays were performed to examine the aromatase and COX-2 gene promoter activities and immunoblot analysis was used to examine protein expression. Leptin induced aromatase expression, estradiol production, and promoter activity in breast cancer cells. Protein levels of phospho-STAT3, PKA, Akt, ERK, and JNK were increased by leptin. Leptin also significantly increased cAMP levels, cAMP response element (CRE) activation, and CREB phosphorylation. In addition, leptin induced COX-2 expression, promoter activity, and increased the production of prostaglandin E2. Finally, a COX-2 inhibitor and aromatase inhibitor suppressed leptin-induced cell proliferation in MCF-7 breast cancer cells. Together, our data show that leptin increased aromatase expression in breast cancer cells, which was correlated with COX-2 upregulation, mediated through CRE activation and cooperation among multiple signaling pathways.
Collapse
Affiliation(s)
- Hyung Gyun Kim
- Department Research Planning Team, Mokpo Marine Food-industry Research Center, Mokpo, Republic of Korea; Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sun Woo Jin
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Yong An Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Tilak Khanal
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Gi Ho Lee
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Se Jong Kim
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Dal Rhee
- Research Center for Drug Discovery Technology, Division of Bio & Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Young Chul Chung
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Young Jung Hwang
- Department of Food Science, International University of Korea, Jinju, Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Hye Gwang Jeong
- Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
17
|
Brunelle M, Sartin EA, Wolfe LG, Sirois J, Doré M. Cyclooxygenase-2 Expression in Normal and Neoplastic Canine Mammary Cell Lines. Vet Pathol 2016; 43:656-66. [PMID: 16966442 DOI: 10.1354/vp.43-5-656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammary cancer is the most common cancer in female dogs. Induction of cyclooxygenase-2 (COX-2), a key enzyme in prostaglandins (PGs) biosynthesis, has been demonstrated in various cancers in humans and dogs, including mammary cancer. The objective of this study was to investigate the expression and regulation of COX-2 in canine mammary epithelial cells. Cell lines derived from normal and neoplastic canine mammary glands were cultured in the absence or presence of phorbol 12-myristate 13-acetate (PMA), and immunoblots, immunocytochemistry, radioimmunoassays, and a cell proliferation assay were used to study COX-2 expression and PGs production. Results showed that the neoplastic cell line CMT12 constitutively overexpressed COX-2 protein whereas other mammary cell lines expressed low to undetectable basal levels of COX-2 protein. Basal PGE2 production was significantly higher ( P < .05) in CMT12 compared to other cell lines. Levels of COX-2 protein in CMT12 decreased in a time-dependent manner with serum starvation, and PMA stimulation induced a strong time-dependent increase in COX-2 protein. Treatment of CMT12 cells with NS-398 (a specific COX-2 inhibitor) significantly blocked PGE2 synthesis and reduced cell proliferation ( P < .05). These results indicate that some neoplastic canine mammary cell lines constitutively overexpress COX-2, and that COX-2 inhibition decreases PGE2 production and cell proliferation, supporting a role for COX-2 and PGs in canine mammary oncogenesis.
Collapse
Affiliation(s)
- M Brunelle
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, C.P. 5000, St-Hyacinthe, Québec J2S 7C6, Canada
| | | | | | | | | |
Collapse
|
18
|
Misron NA, Looi LM, Nik Mustapha NR. Cyclooxygenase-2 expression in invasive breast carcinomas of no special type and correlation with pathological profiles suggest a role in tumorigenesis rather than cancer progression. Asian Pac J Cancer Prev 2015; 16:1553-8. [PMID: 25743830 DOI: 10.7314/apjcp.2015.16.4.1553] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND COX-2 has been shown to play an important role in the development of breast cancer and increased expression has been mooted as a poor prognostic factor. The purpose of this study was to investigate the relationship between COX-2 immunohistochemical expression and known predictive and prognostic factors in breast cancer in a routine diagnostic histopathology setting. MATERIALS AND METHODS Formalin-fixed paraffin- embedded tumour tissue of 144 no special type (NST) invasive breast carcinomas histologically diagnosed between January 2009 and December 2012 in Hospital Sultanah Bahiyah, Alor Setar, Kedah were immunostained with COX-2 antibody. COX-2 overexpression was analysed against demographic data, hormone receptor status, HER2- neu overexpression, histological grade, tumour size and lymph node status. RESULTS COX-2 was overexpressed in 108/144 (75%) tumours and was significantly more prevalent (87%) in hormone receptor-positive tumours. There was no correlation between COX-2 overexpression and HER2/neu status. Triple negative cancers had the lowest prevalence (46%) (p<0.05). A rising trend of COX-2 overexpression with increasing age was observed. There was a significant inverse relationship with tumour grade (p<0.05), prevalences being 94%, 83% and 66% in grades 1, 2 and 3 tumours, respectively. A higher prevalence of COX-2 overexpression in smaller size tumours was observed but this did not reach statistical significance. There was no relationship between COX-2 expression and lymph node status. CONCLUSIONS This study did not support the generally held notion that COX-2 overexpression is linked to poor prognosis, rather supporting a role in tumorigenesis. Larger scale studies with outcome data and basic studies on cancer pathogenetic pathways will be required to cast further light on whether COX-2 inhibitors would have clinical utility in cancer prevention or blockage of cancer progression. In either setting, the pathological assessment for COX-2 overexpression in breast cancers would have an important role in the selection of cancer patients for personalized therapy with COX-2 inhibitors.
Collapse
Affiliation(s)
- Nurul Akmar Misron
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia E-mail :
| | | | | |
Collapse
|
19
|
Basu S, Combe K, Kwiatkowski F, Caldefie-Chézet F, Penault-Llorca F, Bignon YJ, Vasson MP. Cellular Expression of Cyclooxygenase, Aromatase, Adipokines, Inflammation and Cell Proliferation Markers in Breast Cancer Specimen. PLoS One 2015; 10:e0138443. [PMID: 26431176 PMCID: PMC4592217 DOI: 10.1371/journal.pone.0138443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022] Open
Abstract
Current evidences suggest that expression of Ki67, cyclooxygenase (COX), aromatase, adipokines, prostaglandins, free radicals, β-catenin and α-SMA might be involved in breast cancer pathogenesis. The main objective of this study was to compare expression/localization of these potential compounds in breast cancer tissues with tissues collected adjacent to the tumor using immunohistochemistry and correlated with clinical pathology. The breast cancer specimens were collected from 30 women aged between 49 and 89 years who underwent breast surgery following cancer diagnosis. Expression levels of molecules by different stainings were graded as a score on a scale based upon staining intensity and proportion of positive cells/area or individually. AdipoR1, adiponectin, Ob-R, leptin, COX-1, COX-2, aromatase, PGF2α, F2-isoprostanes and α-SMA were localised on higher levels in the breast tissues adjacent to the tumor compared to tumor specimens when considering either score or staining area whereas COX-2 and AdipoR2 were found to be higher considering staining intensity and Ki67 on score level in the tumor tissue. There was no significant difference observed on β-catenin either on score nor on staining area and intensity between tissues adjacent to the tumor and tumor tissues. A positive correlation was found between COX-1 and COX-2 in the tumor tissues. In conclusion, these suggest that Ki67, COXs, aromatase, prostaglandin, free radicals, adipokines, β-catenin and α-SMA are involved in breast cancer. These further focus the need of examination of tissues adjacent to tumor, tumor itself and compare them with normal or benign breast tissues for a better understanding of breast cancer pathology and future evaluation of therapeutic benefit.
Collapse
Affiliation(s)
- Samar Basu
- Clermont Université, Université d'Auvergne, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, BP 10448, F-63000, Clermont-Ferrand, France
- Oxidative Stress and Inflammation, Department of Public Health and Caring Sciences, Faculty of Medicine, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Kristell Combe
- Clermont Université, Université d'Auvergne, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, BP 10448, F-63000, Clermont-Ferrand, France
| | | | - Florence Caldefie-Chézet
- Clermont Université, Université d'Auvergne, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, BP 10448, F-63000, Clermont-Ferrand, France
| | | | - Yves-Jean Bignon
- Centre Jean Perrin, Unicancer, F-63000, Clermont-Ferrand, France
| | - Marie-Paule Vasson
- Clermont Université, Université d'Auvergne, UMR 1019, Unité de Nutrition Humaine, CRNH-Auvergne, BP 10448, F-63000, Clermont-Ferrand, France
- Centre Jean Perrin, Unicancer, F-63000, Clermont-Ferrand, France
- CHU Clermont-Ferrand, Unité d’exploration nutritionnelle, F-63003, Clermont-Ferrand, France
| |
Collapse
|
20
|
Schech A, Yu S, Goloubeva O, McLenithan J, Sabnis G. A nude mouse model of obesity to study the mechanisms of resistance to aromatase inhibitors. Endocr Relat Cancer 2015; 22:645-56. [PMID: 26113604 DOI: 10.1530/erc-15-0168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2015] [Indexed: 12/14/2022]
Abstract
Obesity is a risk factor for breast cancer progression. Breast cancer patients who are overweight or obese or have excess abdominal fat have an increased risk of local or distant recurrence and cancer-related death. Hormone depletion therapies can also cause weight gain, exacerbating the risk for these patients. To understand the effect of obesity on hormone-dependent human breast cancer tumors, we fed ovariectomized athymic nude mice a diet containing 45% kcal fat and 17% kcal sucrose (high fat sucrose diet (HFSD)), 10% kcal fat (low fat diet (LFD)), or a standard chow diet (chow). The mice fed the HFSD developed metabolic abnormalities consistent with the development of obesity such as weight gain, high fasting blood glucose, and impaired glucose tolerance. These mice also developed hyperinsulinemia and insulin resistance. The obese mice also had a higher tumor growth rate compared to the lean mice. Furthermore, the obese mice showed a significantly reduced responsiveness to letrozole. To understand the role of obesity in this reduced responsiveness, we examined the effect of insulin on the growth of MCF-7Ca cells in response to estrogen or letrozole. The presence of insulin rendered MCF-7Ca cells less responsive to estrogen and letrozole. Exogenous insulin treatment of MCF-7Ca cells also resulted in increased p-Akt as well as ligand-independent phosphorylation of ERα. These findings suggest that diet-induced obesity may result in reduced responsiveness of tumors to letrozole due to the development of hyperinsulinemia. We conclude that obesity influences the response and resistance of breast cancer tumors to aromatase inhibitor treatment.
Collapse
Affiliation(s)
- Amanda Schech
- Department of PharmacologyDivision of BiostatisticsUniversity of Maryland School of Medicine, University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, USADepartment of Medicine and PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Stephen Yu
- Department of PharmacologyDivision of BiostatisticsUniversity of Maryland School of Medicine, University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, USADepartment of Medicine and PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Olga Goloubeva
- Department of PharmacologyDivision of BiostatisticsUniversity of Maryland School of Medicine, University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, USADepartment of Medicine and PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John McLenithan
- Department of PharmacologyDivision of BiostatisticsUniversity of Maryland School of Medicine, University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, USADepartment of Medicine and PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gauri Sabnis
- Department of PharmacologyDivision of BiostatisticsUniversity of Maryland School of Medicine, University of Maryland Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland, USADepartment of Medicine and PhysiologyUniversity of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Zeichner SB, Koru-Sengul T, Shah N, Liu Q, Markward NJ, Montero AJ, Glück S, Silva O, Ahn ER. Improved clinical outcomes associated with vitamin D supplementation during adjuvant chemotherapy in patients with HER2+ nonmetastatic breast cancer. Clin Breast Cancer 2014; 15:e1-11. [PMID: 25241299 DOI: 10.1016/j.clbc.2014.08.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND Vitamin D (VD) supplementation has pleiotropic effects that extend beyond their impact on bone health, including the disruption of downstream VD receptor signaling and human epidermal growth factor receptor 2 (HER2) signaling through the ErbB2/AKT/ERK pathway. In the present study, we examined our institutional experience with patients having nonmetastatic HER2-positive (HER(+)) breast cancer and hypothesized that those patients who received VD supplementation during neoadjuvant chemotherapy would have improved long-term outcomes. PATIENTS AND METHODS We performed a retrospective review of all patients (n = 308) given trastuzumab-based chemotherapy between 2006 and 2012 at the University of Miami/Sylvester Comprehensive Cancer Center (UM/SCCC). We identified 2 groups of patients for comparison-those who received VD supplementation during neoadjuvant chemotherapy (n = 134) and those who did not (n = 112). Univariate and multivariate Cox proportional hazard regression models were fitted to overall survival (OS) and disease-free survival (DFS). RESULTS More than half of the patients received VD during neoadjuvant chemotherapy (54.5%), with 60% receiving a dose < 10,000 units/wk and 33.3% having a VD deficiency at the start of therapy. In our final multivariate model, VD use was associated with improved DFS (hazard ratio [HR], 0.36; 95% confidence interval [CI], 0.15-0.88; P = .026], whereas larger tumor size was associated with worse DFS (HR, 3.52; 95% CI, 1.06-11.66; P = .04). There were no differences in OS based on any of the categories, including VD use, tumor size, number of metastatic lymph nodes, age at diagnosis, or lymphovascular invasion (LVI). CONCLUSION VD supplementation in patients with nonmetastatic HER2(+) breast cancer is associated with improved DFS.
Collapse
Affiliation(s)
- Simon B Zeichner
- Department of Hematology and Oncology, Emory Winship Cancer Center, Atlanta, GA.
| | - Tulay Koru-Sengul
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL; Sylvester Comprehensive Cancer Center at University of Miami Miller School of Medicine, Miami, FL
| | - Nikesh Shah
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Qingyun Liu
- Department of Psychology, University of Miami Miller School of Medicine, Miami, FL
| | | | - Alberto J Montero
- Department of Solid Tumor Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Stefan Glück
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Sylvester Comprehensive Cancer Center at University of Miami Miller School of Medicine, Miami, FL
| | - Orlando Silva
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Sylvester Comprehensive Cancer Center at University of Miami Miller School of Medicine, Miami, FL
| | - Eugene R Ahn
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL; Sylvester Comprehensive Cancer Center at University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
22
|
Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ. Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res 2013; 19:6074-83. [PMID: 23958744 DOI: 10.1158/1078-0432.ccr-12-2603] [Citation(s) in RCA: 267] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The increasing rate of obesity worldwide is predicted to be associated with a surge in diseases. Notably, obesity has been linked to approximately 20% of cancer cases in the United States; obesity is associated with both increased risk and worse outcomes after diagnosis. Altered levels of circulating factors are strongly implicated, including insulin, insulin-like growth factor 1, leptin, adiponectin, and interleukin-6 (IL-6). In addition, increasing attention has focused on the consequences of local adipose inflammation. Inflammatory foci characterized by crown-like structures consisting of dead adipocytes encircled by macrophages occur in white adipose depots, including the breast tissue, of most overweight and obese women. Saturated fatty acids, released as a consequence of obesity-associated lipolysis, induce macrophage activation via Toll-like receptor 4, thereby stimulating NF-κB signaling. This, in turn, activates transcription of proinflammatory genes including COX-2, IL-6, IL-1β, and TNFα. Elevated levels of proinflammatory mediators cause both local and systemic effects. Of particular relevance with regard to breast cancer is increased transcription of the CYP19 gene encoding aromatase, the rate-limiting enzyme for estrogen synthesis. Notably, this obesity-inflammation-aromatase axis provides a plausible explanation for increased rates of postmenopausal, hormone receptor-positive breast cancer associated with obesity and hence may offer targets for interventions to attenuate risk or improve prognosis. Potential approaches include weight reduction, exercise, and suppression of obesity-driven signaling pathways using pharmaceutical or dietary agents. A key future goal is to identify biomarkers that accurately report adipose inflammation, both for identification of at-risk individuals and to assess the efficacy of interventions. Clin Cancer Res; 19(22); 6074-83. ©2013 AACR.
Collapse
Affiliation(s)
- Louise R Howe
- Authors' Affiliations: Departments of Cell & Developmental Biology and Medicine, Weill Cornell Medical College; and Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | | | | | |
Collapse
|
23
|
Liu E, Samad F, Mueller BM. Local adipocytes enable estrogen-dependent breast cancer growth: Role of leptin and aromatase. Adipocyte 2013; 2:165-9. [PMID: 23991363 PMCID: PMC3756105 DOI: 10.4161/adip.23645] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 12/14/2022] Open
Abstract
The importance of the microenvironment in breast cancer growth and progression is becoming increasingly clear. Adipocytes are abundant in the mammary microenvironment, and recent studies show that adipocytes produce endocrine, inflammatory, and angiogenic factors that have tremendous potential to affect adjacent breast cancer cells. Yet, the extent to which local adipocyte function contributes to the pathogenesis of breast cancer is largely unexplored. Here we describe a unique animal model to study interactions between adipocytes and breast cancer cells in the tumor microenvironment. Our results suggest that local interactions between adipocytes and tumor cells are sufficient to promote the growth of hormone-dependent breast cancer. We also demonstrate that leptin signaling in adipocytes induces aromatase expression, expected to result in higher estrogen in the microenvironment thus enabling mammary tumorigenesis.
Collapse
|
24
|
Howe LR, Subbaramaiah K, Kent CV, Zhou XK, Chang SH, Hla T, Jakobsson PJ, Hudis CA, Dannenberg AJ. Genetic deletion of microsomal prostaglandin E synthase-1 suppresses mouse mammary tumor growth and angiogenesis. Prostaglandins Other Lipid Mediat 2013; 106:99-105. [PMID: 23624019 DOI: 10.1016/j.prostaglandins.2013.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/24/2013] [Accepted: 04/17/2013] [Indexed: 02/06/2023]
Abstract
The cyclooxygenase/prostaglandin (COX/PG) signaling pathway is of central importance in inflammation and neoplasia. COX inhibitors are widely used for analgesia and also have demonstrated activity for cancer prophylaxis. However, cardiovascular toxicity associated with this drug class diminishes their clinical utility and motivates the development of safer approaches both for pain relief and cancer prevention. The terminal synthase microsomal PGE synthase-1 (mPGES-1) has attracted considerable attention as a potential target. Overexpression of mPGES-1 has been observed in both colorectal and breast cancers, and gene knockout and overexpression approaches have established a role for mPGES-1 in gastrointestinal carcinogenesis. Here we evaluate the contribution of mPGES-1 to mammary tumorigenesis using a gene knockout approach. Mice deficient in mPGES-1 were crossed with a strain in which breast cancer is driven by overexpression of human epidermal growth factor receptor 2 (HER2/neu). Loss of mPGES-1 was associated with a substantial reduction in intramammary PGE2 levels, aromatase activity, and angiogenesis in mammary glands from HER2/neu transgenic mice. Consistent with these findings, we observed a significant reduction in multiplicity of tumors ≥1mm in diameter, suggesting that mPGES-1 contributes to mammary tumor growth. Our data identify mPGES-1 as a potential anti-breast cancer target.
Collapse
Affiliation(s)
- Louise R Howe
- Department of Cell & Developmental Biology and Weill Cornell Cancer Center, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Crew KD. Vitamin d: are we ready to supplement for breast cancer prevention and treatment? ISRN ONCOLOGY 2013; 2013:483687. [PMID: 23533810 PMCID: PMC3600307 DOI: 10.1155/2013/483687] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 01/29/2013] [Indexed: 12/31/2022]
Abstract
Vitamin D deficiency is a potentially modifiable risk factor that may be targeted for breast cancer prevention and treatment. Preclinical studies support various antitumor effects of vitamin D in breast cancer. Numerous observational studies have reported an inverse association between vitamin D status, including circulating 25-hydroxyvitamin D (25(OH)D) levels, and breast cancer risk. The relationship between vitamin D and mammographic density, a strong predictor of breast cancer risk, remains unclear. Studies analyzing the link between genetic polymorphisms in vitamin D pathway genes and breast cancer incidence and prognosis have yielded inconsistent results. Vitamin D deficiency among breast cancer patients has been associated with poorer clinical outcomes and increased mortality. Despite a number of clinical trials of vitamin D supplementation, the efficacy, optimal dosage of vitamin D, and target blood level of 25(OH)D for breast cancer prevention have yet to be determined. Even with substantial literature on vitamin D and breast cancer, future studies need to focus on gaining a better understanding of the biologic effects of vitamin D in breast tissue. Despite compelling data from experimental and observational studies, there is still insufficient data from clinical trials to make recommendations for vitamin D supplementation for breast cancer prevention or treatment.
Collapse
Affiliation(s)
- Katherine D. Crew
- Department of Medicine, Division of Hematology/Oncology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
26
|
Basu S, Nachat-Kappes R, Caldefie-Chézet F, Vasson MP. Eicosanoids and adipokines in breast cancer: from molecular mechanisms to clinical considerations. Antioxid Redox Signal 2013; 18:323-60. [PMID: 22746381 DOI: 10.1089/ars.2011.4408] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammation is one of the foremost risk factors for different types of malignancies, including breast cancer. Additional risk factors of this pathology in postmenopausal women are weight gain, obesity, estrogen secretion, and an imbalance in the production of adipokines, such as leptin and adiponectin. Various signaling products of transcription factor, nuclear factor-kappaB, in particular inflammatory eicosanoids, reactive oxygen species (ROS), and cytokines, are thought to be involved in chronic inflammation-induced cancer. Together, these key components have an influence on inflammatory reactions in malignant tissue damage when their levels are deregulated endogenously. Prostaglandins (PGs) are well recognized in inflammation and cancer, and they are solely biosynthesized through cyclooxygenases (COXs) from arachidonic acid. Concurrently, ROS give rise to bioactive isoprostanes from arachidonic acid precursors that are also involved in acute and chronic inflammation, but their specific characteristics in breast cancer are less demonstrated. Higher aromatase activity, a cytochrome P-450 enzyme, is intimately connected to tumor growth in the breast through estrogen synthesis, and is interrelated to COXs that catalyze the formation of both inflammatory and anti-inflammatory PGs such as PGE(2), PGF(2α), PGD(2), and PGJ(2) synchronously under the influence of specific mediators and downstream enzymes. Some of the latter compounds upsurge the intracellular cyclic adenosine monophosphate concentration and appear to be associated with estrogen synthesis. This review discusses the role of COX- and ROS-catalyzed eicosanoids and adipokines in breast cancer, and therefore ranges from their molecular mechanisms to clinical aspects to understand the impact of inflammation.
Collapse
Affiliation(s)
- Samar Basu
- Biochemistry, Molecular Biology and Nutrition, University of Auvergne, Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
27
|
Gomes TS, Noguti J, Forones NM, Lima FO, Dobo C, Fernandes Junior JA, Oshima CTF, Ribeiro DA. Correlation analysis of c-myc, p21WAF/CIP1, p53, C-erbB-2 and COX-2 proteins in esophageal squamous cell carcinoma. Pathol Res Pract 2013. [DOI: 10.1016/j.prp.2012.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Howe LR. Pharmacologic Interventions with NSAIDs. OBESITY, INFLAMMATION AND CANCER 2013:257-303. [DOI: 10.1007/978-1-4614-6819-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Toda K, Ono M, Yuhki KI, Ushikubi F, Saibara T. 17β-Estradiol is critical for the preovulatory induction of prostaglandin E(2) synthesis in mice. Mol Cell Endocrinol 2012; 362:176-82. [PMID: 22713853 DOI: 10.1016/j.mce.2012.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Aromatase-deficient (ArKO) mice are totally anovulatory due to insufficient estrogen production. However, sequential administrations of high doses of 17β-estradiol (E2) and gonadotropins were found to induce ovulation in these mice. Here, we examined how the ovulatory stimulation for ArKO mice alters the expressions of genes related to prostaglandin (PG) E(2) metabolism and ovarian contents of PGE(2), as PGE(2) is one of the critical mediators of ovulatory induction. The ovulatory stimulation significantly increased mRNA expressions of prostaglandin-endoperoxide synthase 2, PGE(2) receptor type 4 and sulfotransferase family 1E, member 1, in preovulatory ArKO ovaries. In contrast, it suppressed the mRNA expression of 15-hydroxyprostaglandin dehydrogenase. Furthermore, significant elevation in the PGE(2) contents was detected in the preovulatory ovaries of ArKO mice after stimulation with E2 plus ovulatory doses of gonadotropins. Thus, these analyses demonstrate a requirement of E2 for the preovulatory enhancement of PGE(2) synthesis, leading to future success in ovulation.
Collapse
Affiliation(s)
- Katsumi Toda
- Department of Biochemistry, Kochi University, School of Medicine, Nankoku, Kochi 783-8505, Japan.
| | | | | | | | | |
Collapse
|
30
|
Subbaramaiah K, Howe LR, Zhou XK, Yang P, Hudis CA, Kopelovich L, Dannenberg AJ. Pioglitazone, a PPARγ agonist, suppresses CYP19 transcription: evidence for involvement of 15-hydroxyprostaglandin dehydrogenase and BRCA1. Cancer Prev Res (Phila) 2012; 5:1183-94. [PMID: 22787115 PMCID: PMC3694442 DOI: 10.1158/1940-6207.capr-12-0201] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen synthesis is catalyzed by cytochrome P450 aromatase, which is encoded by the CYP19 gene. In obese postmenopausal women, increased aromatase activity in white adipose tissue is believed to contribute to hormone-dependent breast cancer. Prostaglandin E(2) (PGE(2)) stimulates the cAMP→protein kinase A (PKA) pathway leading to increased CYP19 transcription and elevated aromatase activity in inflamed white adipose tissue. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) plays a major role in the catabolism of PGE(2). Here, we investigated the mechanism by which pioglitazone, a ligand of the nuclear receptor PPARγ suppressed aromatase expression. Treatment of human preadipocytes with pioglitazone suppressed Snail, a repressive transcription factor, resulting in elevated levels of 15-PGDH and reduced levels of PGE(2) in the culture medium. Pioglitazone also inhibited cAMP→PKA signaling leading to reduced interaction between phosphorylated cAMP responsive element-binding protein, p300, and CYP19 I.3/II promoter. BRCA1, a repressor of CYP19 transcription, was induced by pioglitazone. Consistent with these in vitro findings, treatment of mice with pioglitazone activated PPARγ, induced 15-PGDH and BRCA1 while suppressing aromatase levels in the mammary gland. Collectively, these results indicate that the activation of PPARγ induces BRCA1 and suppresses the PGE(2)→cAMP→PKA axis leading to reduced levels of aromatase. PPARγ agonists may have a role in reducing the risk of hormone-dependent breast cancer in obese postmenopausal women.
Collapse
Affiliation(s)
- Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Cancer Center, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Krishnan AV, Swami S, Feldman D. The potential therapeutic benefits of vitamin D in the treatment of estrogen receptor positive breast cancer. Steroids 2012; 77:1107-12. [PMID: 22801352 PMCID: PMC3429709 DOI: 10.1016/j.steroids.2012.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 06/11/2012] [Accepted: 06/26/2012] [Indexed: 01/08/2023]
Abstract
Calcitriol (1,25-dihydroxyvitamin D(3)), the hormonally active form of vitamin D, inhibits the growth of many malignant cells including breast cancer (BCa) cells. The mechanisms of calcitriol anticancer actions include cell cycle arrest, stimulation of apoptosis and inhibition of invasion, metastasis and angiogenesis. In addition we have discovered new pathways of calcitriol action that are especially relevant in inhibiting the growth of estrogen receptor positive (ER+) BCa cells. Calcitriol suppresses COX-2 expression and increases that of 15-PGDH thereby reducing the levels of inflammatory prostaglandins (PGs). Our in vitro and in vivo studies show that calcitriol decreases the expression of aromatase, the enzyme that catalyzes estrogen synthesis selectively in BCa cells and in the mammary adipose tissue surrounding BCa, by a direct repression of aromatase transcription via promoter II as well as an indirect effect due to the reduction in the levels of PGs, which are major stimulator of aromatase transcription through promoter II. Calcitriol down-regulates the expression of ERα and thereby attenuates estrogen signaling in BCa cells including the proliferative stimulus provided by estrogens. Thus the inhibition of estrogen synthesis and signaling by calcitriol and its anti-inflammatory actions will play an important role in inhibiting ER+BCa. We hypothesize that dietary vitamin D would exhibit similar anticancer activity due to the presence of the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1) in breast cells ensuring conversion of circulating 25-hydroxyvitamin D to calcitriol locally within the breast micro-environment where it can act in a paracrine manner to inhibit BCa growth. Cell culture and in vivo data in mice strongly suggest that calcitriol and dietary vitamin D would play a beneficial role in the prevention and/or treatment of ER+BCa in women.
Collapse
Affiliation(s)
| | | | - David Feldman
- Address correspondence and reprint requests to: David Feldman, MD, Stanford University School of Medicine, 300 Pasteur Drive, Room S025, Stanford CA 94305-5103, Fax: 650 725 7085,
| |
Collapse
|
32
|
Syntheses and biological activities of sulfoximine-based acyclic triaryl olefins. Bioorg Med Chem Lett 2012; 22:4307-9. [DOI: 10.1016/j.bmcl.2012.05.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/03/2012] [Accepted: 05/07/2012] [Indexed: 01/03/2023]
|
33
|
Patel JB, Patel KD, Patel SR, Shah FD, Shukla SN, Patel PS. Recent Candidate Molecular Markers: Vitamin D Signaling and Apoptosis Specific Regulator of p53 (ASPP) in Breast Cancer. Asian Pac J Cancer Prev 2012; 13:1727-35. [DOI: 10.7314/apjcp.2012.13.5.1727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
34
|
Subbaramaiah K, Morris PG, Zhou XK, Morrow M, Du B, Giri D, Kopelovich L, Hudis CA, Dannenberg AJ. Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov 2012; 2:356-65. [PMID: 22576212 PMCID: PMC3398487 DOI: 10.1158/2159-8290.cd-11-0241] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
UNLABELLED Obesity is a risk factor for hormone receptor-positive breast cancer in postmenopausal women. Estrogen synthesis is catalyzed by aromatase, which is encoded by CYP19. We previously showed that aromatase expression and activity are increased in the breast tissue of overweight and obese women in the presence of characteristic inflammatory foci [crown-like structures of the breast (CLS-B)]. In preclinical studies, proinflammatory prostaglandin E(2) (PGE(2)) is a determinant of aromatase expression. We provide evidence that cyclooxygenase (COX)-2-derived PGE(2) stimulates the cyclic AMP (cAMP) → PKA signal transduction pathway that activates CYP19 transcription, resulting in increased aromatase expression and elevated progesterone receptor levels in breast tissues from overweight and obese women. We further demonstrate that a measure of in-breast inflammation (CLS-B index) is a better correlate of these biologic end points than body mass index. The obesity → inflammation → aromatase axis is likely to contribute to the increased risk of hormone receptor-positive breast cancer and the worse prognosis of obese patients with breast cancer. SIGNIFICANCE We show that obesity-associated inflammatory foci in the human breast are associated with elevated COX-2 levels and activation of the PGE2 → cAMP → PKA signal transduction pathway resulting in increased aromatase expression. These findings help to explain the link among obesity, low-grade chronic inflammation, and breast cancer with important clinical implications.
Collapse
Affiliation(s)
- Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Patrick G. Morris
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Xi Kathy Zhou
- Department of Public Health, Weill Cornell Medical College, New York, New York
| | - Monica Morrow
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Baoheng Du
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Dilip Giri
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Clifford A. Hudis
- Department of Medicine, Weill Cornell Medical College, New York, New York
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | |
Collapse
|
35
|
Baumgarten SC, Frasor J. Minireview: Inflammation: an instigator of more aggressive estrogen receptor (ER) positive breast cancers. Mol Endocrinol 2012; 26:360-71. [PMID: 22301780 DOI: 10.1210/me.2011-1302] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Approximately 75% of breast tumors express the estrogen receptor (ER), and women with these tumors will receive endocrine therapy. Unfortunately, up to 50% of these patients will fail ER-targeted therapies due to either de novo or acquired resistance. ER-positive tumors can be classified based on gene expression profiles into Luminal A- and Luminal B-intrinsic subtypes, with distinctly different responses to endocrine therapy and overall patient outcome. However, the underlying biology causing this tumor heterogeneity has yet to become clear. This review will explore the role of inflammation as a risk factor in breast cancer as well as a player in the development of more aggressive, therapy-resistant ER-positive breast cancers. First, breast cancer risk factors, such as obesity and mammary gland involution after pregnancy, which can foster an inflammatory microenvironment within the breast, will be described. Second, inflammatory components of the tumor microenvironment, including tumor-associated macrophages and proinflammatory cytokines, which can act on nearby breast cancer cells and modulate tumor phenotype, will be explored. Finally, activation of the nuclear factor κB (NF-κB) pathway and its cross talk with ER in the regulation of key genes in the promotion of more aggressive breast cancers will be reviewed. From these multiple lines of evidence, we propose that inflammation may promote more aggressive ER-positive tumors and that combination therapy targeting both inflammation and estrogen production or actions could benefit a significant portion of women whose ER-positive breast tumors fail to respond to endocrine therapy.
Collapse
Affiliation(s)
- Sarah C Baumgarten
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 South Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
36
|
Abstract
The nuclear estrogen receptors (ER) are the major targets for endocrine treatment of hormone-dependent breast cancers. Hormone therapy blocked endogenous estrogen activation of ER, either by competitive inhibition of endogenous estrogens (selective estrogen receptor modulators - SERM or selective estrogen receptor down regulators - SERD) or by inhibition of estrogen synthesis (aromatase inhibitors) from adrenal androgens in post-menopausal women. The efficacy of these treatments has been shown on large series of breast cancer patients. However de novo or acquired resistance to treatment occurs. The better knowledge of the mechanism of action of such treatment may help to better understand them, and also for the determinism of adverse side effects of the different class of molecules.
Collapse
|
37
|
Wong AW, Dunlap SM, Holcomb VB, Nunez NP. Alcohol Promotes Mammary Tumor Development via the Estrogen Pathway in Estrogen Receptor Alpha-Negative HER2/neu Mice. Alcohol Clin Exp Res 2011; 36:577-87. [DOI: 10.1111/j.1530-0277.2011.01654.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
38
|
Cutolo M, Pizzorni C, Sulli A. Vitamin D endocrine system involvement in autoimmune rheumatic diseases. Autoimmun Rev 2011; 11:84-7. [PMID: 21864722 DOI: 10.1016/j.autrev.2011.08.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 08/05/2011] [Indexed: 11/15/2022]
Abstract
Vitamin D is synthesized from cholesterol in the skin (80-90%) under the sunlight and then metabolized into an active D hormone in liver, kidney and peripheral immune/inflammatory cells. These endocrine-immune effects include also the coordinated activities of the vitamin D-activating enzyme, 1alpha-hydroxylase (CYP27B1), and the vitamin D receptor (VDR) on cells of the immune system in mediating intracrine and paracrine actions. Vitamin D is implicated in prevention and protection from chronic infections (i.e. tubercolosis), cancer (i.e. breast cancer) and autoimmune rheumatic diseases since regulates both innate and adaptive immunity potentiating the innate response (monocytes/macrophages with antimicrobial activity and antigen presentation), but suppressing the adaptive immunity (T and B lymphocyte functions). Vitamin D has modulatory effects on B lymphocytes and Ig production and recent reports have demonstrated that 1,25(OH)2D3 does indeed exert direct effects on B cell homeostasis. A circannual rhythm of trough vitamin D levels in winter and peaks in summer time showed negative correlation with clinical status at least in rheumatoid arthritis and systemic lupus erythematosus. Recently, the onset of symptoms of early arthritis during winter or spring have been associated with greater radiographic evidence of disease progression at 12 months possibly are also related to seasonal lower vitamin D serum levels.
Collapse
Affiliation(s)
- Maurizio Cutolo
- Research Laboratories and Academic Unit of Clinical Rheumatology, Department of Internal Medicine, University of Genoa, Italy.
| | | | | |
Collapse
|
39
|
Vanoirbeek E, Krishnan AV, Eelen IG, Verlinden L, Bouillon R, Feldman D, Verstuyf A. The anti-cancer and anti-inflammatory actions of 1,25(OH)₂D₃. Best Pract Res Clin Endocrinol Metab 2011; 25:593-604. [PMID: 21872801 PMCID: PMC3164534 DOI: 10.1016/j.beem.2011.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Various epidemiological studies have shown an aetiological link between vitamin D deficiency and cancer incidence. The active metabolite of vitamin D, 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], has potent anti-cancer activities both in vitro and in vivo. These anti-cancer effects are attained by regulating the transcription of numerous genes that are involved in different pathways to reduce tumorigenesis and are dependent on the cancer cell type. Besides reducing cell growth and inducing apoptosis, 1,25(OH)₂D₃ also inhibits angiogenesis and metastasis. Moreover, its potency to inhibit inflammation also contributes to its anti-tumoral activity. Here, we report the different ways in which 1,25(OH)₂D₃ interferes with the malignant processes that are activated in cancer cells.
Collapse
Affiliation(s)
- Els Vanoirbeek
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Herestraat 49 bus 901 O&NI, Leuven, Belgium, tel. +32 16 347145, fax +32 16 345934
| | - Aruna V Krishnan
- Dept. of Medicine, Division of Endocrinology, Stanford University School of Medicine 300 Pasteur Drive, Stanford, CA 94305-5103, USA, tel: 650-725-2910, fax: 650-725-7085
| | - Ir Guy Eelen
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Herestraat 49 bus 901 O&NI, Leuven, Belgium, tel. +32 16 347145, fax +32 16 345934
| | - Lieve Verlinden
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Herestraat 49 bus 901 O&NI, Leuven, Belgium, tel. +32 16 347145, fax +32 16 345934
| | - Roger Bouillon
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Herestraat 49 bus 901 O&NI, Leuven, Belgium, tel. +32 16 345970, fax +32 16 345934
| | - David Feldman
- Dept. of Medicine, Division of Endocrinology, Stanford University School of Medicine 300 Pasteur Drive, Stanford, CA 94305-5103, USA, tel: 650-725-2910, fax: 650-725-7085
| | - Annemieke Verstuyf
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Katholieke Universiteit Leuven, Herestraat 49 bus 901 O&NI, Leuven, Belgium, tel. +32 16 346209, fax +32 16 345934
| |
Collapse
|
40
|
Fouladdel S, Azizi E, Rahimi H, Ostad S. Determination of the Expression of COX II and Aromatase Protein in Parent and Tamoxifen-resistant Subline of Human Breast Cancer T47D Cells. INT J PHARMACOL 2011. [DOI: 10.3923/ijp.2011.710.715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
41
|
Purohit A, Woo LWL, Potter BVL. Steroid sulfatase: a pivotal player in estrogen synthesis and metabolism. Mol Cell Endocrinol 2011; 340:154-60. [PMID: 21693170 DOI: 10.1016/j.mce.2011.06.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 06/14/2011] [Accepted: 06/15/2011] [Indexed: 02/07/2023]
Abstract
Steroid sulfatase plays a pivotal role in regulating the formation of biologically active steroids from inactive steroid sulfates. It is responsible for the hydrolysis of estrone sulfate and dehydroepiandrosterone sulfate to estrone and dehydroepiandrosterone, respectively, both of which can be subsequently reduced to steroids with estrogenic properties (i.e. estradiol and androstenediol) that can stimulate the growth of tumors in hormone-responsive tissues of the breast, endometrium and prostate. Hence, the action of steroid sulfatase is implicated in physiological processes and pathological conditions. It has been five years since our group last reviewed the important role of this enzyme in steroid synthesis and the progress made in the development of potent inhibitors of this important enzyme target. This timely review therefore concentrates on recent advances in steroid sulfatase research, and summarises the findings of clinical trials with Irosustat (BN83495), the only steroid sulfatase inhibitor that is being trialed in postmenopausal women with breast or endometrial cancer.
Collapse
Affiliation(s)
- Atul Purohit
- Oncology Drug Discovery Group, Section of Investigative Medicine, Hammersmith Hospital, Imperial College London, London W12 0NN, UK.
| | | | | |
Collapse
|
42
|
Swami S, Krishnan AV, Wang JY, Jensen K, Peng L, Albertelli MA, Feldman D. Inhibitory effects of calcitriol on the growth of MCF-7 breast cancer xenografts in nude mice: selective modulation of aromatase expression in vivo. HORMONES & CANCER 2011; 2:190-202. [PMID: 21686077 PMCID: PMC3114631 DOI: 10.1007/s12672-011-0073-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calcitriol (1,25-dihydroxyvitamin D(3)), the hormonally active metabolite of vitamin D, exerts many anticancer effects in breast cancer (BCa) cells. We have previously shown using cell culture models that calcitriol acts as a selective aromatase modulator (SAM) and inhibits estrogen synthesis and signaling in BCa cells. We have now examined calcitriol effects in vivo on aromatase expression, estrogen signaling, and tumor growth when used alone and in combination with aromatase inhibitors (AIs). In immunocompromised mice bearing MCF-7 xenografts, increasing doses of calcitriol exhibited significant tumor inhibitory effects (~50% to 70% decrease in tumor volume). At the suboptimal doses tested, anastrozole and letrozole also caused significant tumor shrinkage when used individually. Although the combinations of calcitriol and the AIs caused a statistically significant increase in tumor inhibition in comparison to the single agents, the cooperative interaction between these agents appeared to be minimal at the doses tested. Calcitriol decreased aromatase expression in the xenograft tumors. Importantly, calcitriol also acted as a SAM in the mouse, decreasing aromatase expression in the mammary adipose tissue, while increasing it in bone marrow cells and not altering it in the ovaries and uteri. As a result, calcitriol significantly reduced estrogen levels in the xenograft tumors and surrounding breast adipose tissue. In addition, calcitriol inhibited estrogen signaling by decreasing tumor ERα levels. Changes in tumor gene expression revealed the suppressive effects of calcitriol on inflammatory and growth signaling pathways and demonstrated cooperative interactions between calcitriol and AIs to modulate gene expression. We hypothesize that cumulatively these calcitriol actions would contribute to a beneficial effect when calcitriol is combined with an AI in the treatment of BCa.
Collapse
Affiliation(s)
- Srilatha Swami
- Department of Medicine–Endocrinology, Stanford University School of Medicine, Room S025, 300 Pasteur Drive, Stanford, CA 94305–5103 USA
| | - Aruna V. Krishnan
- Department of Medicine–Endocrinology, Stanford University School of Medicine, Room S025, 300 Pasteur Drive, Stanford, CA 94305–5103 USA
| | - Jennifer Y. Wang
- Department of Medicine–Endocrinology, Stanford University School of Medicine, Room S025, 300 Pasteur Drive, Stanford, CA 94305–5103 USA
| | - Kristin Jensen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Pathology, Palo Alto Veterans Affairs Hospital Care Systems, Palo Alto, CA 94304 USA
| | - Lihong Peng
- Department of Medicine–Endocrinology, Stanford University School of Medicine, Room S025, 300 Pasteur Drive, Stanford, CA 94305–5103 USA
| | - Megan A. Albertelli
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - David Feldman
- Department of Medicine–Endocrinology, Stanford University School of Medicine, Room S025, 300 Pasteur Drive, Stanford, CA 94305–5103 USA
| |
Collapse
|
43
|
Tootle TL, Williams D, Hubb A, Frederick R, Spradling A. Drosophila eggshell production: identification of new genes and coordination by Pxt. PLoS One 2011; 6:e19943. [PMID: 21637834 PMCID: PMC3102670 DOI: 10.1371/journal.pone.0019943] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/06/2011] [Indexed: 12/03/2022] Open
Abstract
Drosophila ovarian follicles complete development using a spatially and temporally controlled maturation process in which they resume meiosis and secrete a multi-layered, protective eggshell before undergoing arrest and/or ovulation. Microarray analysis revealed more than 150 genes that are expressed in a stage-specific manner during the last 24 hours of follicle development. These include all 30 previously known eggshell genes, as well as 19 new candidate chorion genes and 100 other genes likely to participate in maturation. Mutations in pxt, encoding a putative Drosophila cyclooxygenase, cause many transcripts to begin expression prematurely, and are associated with eggshell defects. Somatic activity of Pxt is required, as RNAi knockdown of pxt in the follicle cells recapitulates both the temporal expression and eggshell defects. One of the temporally regulated genes, cyp18a1, which encodes a cytochromome P450 protein mediating ecdysone turnover, is downregulated in pxt mutant follicles, and cyp18a1 mutation itself alters eggshell gene expression. These studies further define the molecular program of Drosophila follicle maturation and support the idea that it is coordinated by lipid and steroid hormonal signals.
Collapse
Affiliation(s)
- Tina L Tootle
- Department of Anatomy and Cell Biology, Roy J. and Lucille Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America.
| | | | | | | | | |
Collapse
|
44
|
Krishnan AV, Feldman D. Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol 2011; 51:311-36. [PMID: 20936945 DOI: 10.1146/annurev-pharmtox-010510-100611] [Citation(s) in RCA: 332] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcitriol, the hormonally active form of vitamin D, is being evaluated in clinical trials as an anti-cancer agent. Calcitriol exerts multiple anti-proliferative, pro-apoptotic, and pro-differentiating actions on various malignant cells and retards tumor growth in animal models of cancer. Calcitriol also exhibits several anti-inflammatory effects including suppression of prostaglandin (PG) action, inhibition of p38 stress kinase signaling, and the subsequent production of pro-inflammatory cytokines and inhibition of NF-κB signaling. Calcitriol also decreases the expression of aromatase, the enzyme that catalyzes estrogen synthesis in breast cancer, both by a direct transcriptional repression and indirectly by reducing PGs, which are major stimulators of aromatase transcription. Other important effects include the suppression of tumor angiogenesis, invasion, and metastasis. These calcitriol actions provide a basis for its potential use in cancer therapy and chemoprevention. We summarize the status of trials involving calcitriol and its analogs, used alone or in combination with known anti-cancer agents.
Collapse
Affiliation(s)
- Aruna V Krishnan
- Department of Medicine, Stanford University School of Medicine, California 94305, USA
| | | |
Collapse
|
45
|
Subbaramaiah K, Howe LR, Bhardwaj P, Du B, Gravaghi C, Yantiss RK, Zhou XK, Blaho VA, Hla T, Yang P, Kopelovich L, Hudis CA, Dannenberg AJ. Obesity is associated with inflammation and elevated aromatase expression in the mouse mammary gland. Cancer Prev Res (Phila) 2011; 4:329-46. [PMID: 21372033 PMCID: PMC3071249 DOI: 10.1158/1940-6207.capr-10-0381] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elevated circulating estrogen levels are associated with increased risk of breast cancer in obese postmenopausal women. Following menopause, the biosynthesis of estrogens through CYP19 (aromatase)-mediated metabolism of androgen precursors occurs primarily in adipose tissue, and the resulting estrogens are then secreted into the systemic circulation. The potential links between obesity, inflammation, and aromatase expression are unknown. In both dietary and genetic models of obesity, we observed necrotic adipocytes surrounded by macrophages forming crown-like structures (CLS) in the mammary glands and visceral fat. The presence of CLS was associated with activation of NF-κB and increased levels of proinflammatory mediators (TNF-α, IL-1β, Cox-2), which were paralleled by elevated levels of aromatase expression and activity in the mammary gland and visceral fat of obese mice. Analyses of the stromal-vascular and adipocyte fractions of the mammary gland suggested that macrophage-derived proinflammatory mediators induced aromatase and estrogen-dependent gene expression (PR, pS2) in adipocytes. Saturated fatty acids, which have been linked to obesity-related inflammation, stimulated NF-κB activity in macrophages leading to increased levels of TNF-α, IL-1β, and Cox-2, each of which contributed to the induction of aromatase in preadipocytes. The discovery of the obesity → inflammation → aromatase axis in the mammary gland and visceral fat and its association with CLS may provide insight into mechanisms underlying the increased risk of hormone receptor-positive breast cancer in obese postmenopausal women, the reduced efficacy of aromatase inhibitors in the treatment of breast cancer in these women, and their generally worse outcomes. The presence of CLS may be a biomarker of increased breast cancer risk or poor prognosis.
Collapse
Affiliation(s)
- Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Louise R. Howe
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York
| | - Priya Bhardwaj
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Baoheng Du
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Claudia Gravaghi
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Rhonda K. Yantiss
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Xi Kathy Zhou
- Department of Public Health, Weill Cornell Medical College, New York, New York
| | - Victoria A. Blaho
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Timothy Hla
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, New York
| | - Peiying Yang
- Department of General Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Levy Kopelovich
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland
| | - Clifford A. Hudis
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York
| | | |
Collapse
|
46
|
Subbaramaiah K, Hudis CA, Dannenberg AJ. The prostaglandin transporter regulates adipogenesis and aromatase transcription. Cancer Prev Res (Phila) 2011; 4:194-206. [PMID: 21212407 DOI: 10.1158/1940-6207.capr-10-0367] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 aromatase, encoded by the CYP19 gene, catalyzes estrogen synthesis. In obese postmenopausal women, increased estrogen synthesis in adipose tissue has been linked to hormone-dependent breast carcinogenesis. Hence, it is important to elucidate the mechanisms that regulate CYP19 gene expression. Prostaglandin E(2) (PGE(2)) stimulates the cyclic AMP (cAMP) → protein kinase A (PKA) → cAMP responsive element binding protein (CREB) pathway leading to increased CYP19 transcription. The prostaglandin transporter (PGT) removes PGE(2) from the extracellular milieu and delivers it to the cytosol, where it is inactivated. The main objective of this study was to determine whether PGT regulates CYP19 transcription. Silencing of PGT in preadipocytes increased PGE(2) levels in the extracellular medium, thereby stimulating the cAMP → PKA pathway resulting in enhanced interaction between pCREB, p300, and the CYP19 I.3/II promoter. A reciprocal decrease in the interaction between the CYP19 I.3/II promoter and BRCA1, a repressor of CYP19 transcription, was observed. Overexpressing PGT reduced extracellular PGE(2) levels, suppressed the cAMP → PKA pathway, enhanced the interaction between BRCA1 and p300, and inhibited aromatase expression. We also compared the PGT → aromatase axis in preadipocytes versus adipocytes. Aromatase levels were markedly increased in preadipocytes versus adipocytes. This increase in aromatase was explained, at least in part, by reduced PGT levels leading to enhanced PGE(2) → cAMP → PKA signaling. In addition to regulating aromatase expression, PGT-mediated changes in extracellular PGE(2) levels were a determinant of adipocyte differentiation. Collectively, these results suggest that PGT modulates adipogenesis and thereby PGE(2)-mediated activation of the cAMP → PKA → CREB pathway leading to altered CYP19 transcription and aromatase activity.
Collapse
Affiliation(s)
- Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | | | | |
Collapse
|
47
|
Gschwantler-Kaulich D, Fink-Retter A, Czerwenka K, Hudelist G, Kaulich A, Kubista E, Singer CF. Differential expression pattern of estrogen receptors, aromatase, and sulfotransferase in breast cancer tissue and corresponding lymph node metastases. Tumour Biol 2010; 32:501-8. [PMID: 21188569 DOI: 10.1007/s13277-010-0144-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 12/01/2010] [Indexed: 11/26/2022] Open
Abstract
Patients with hormone receptor positive breast cancer who are treated with endocrine therapy generally have a good prognosis. However, resistance to hormonal therapy and progression occurs, and the reasons for this are manifold. It has been proposed that the local estrogenic environment has a role in the process of local invasion and progression. We have determined the expression pattern of estrogen receptor α, estrogen receptor β, and the epithelial and stromal expression of the estrogen-metabolizing enzymes aromatase and sulfotransferase by immunohistochemistry in tissue arrays, containing 50 paraffin-embedded sets of tissues obtained from breast cancer and from corresponding metastatic axillary lymph nodes of the same patients. We have found statistically significant higher estrogen receptors α and β expression in primary tumors than in corresponding lymph node metastases (p = 0.0004 and p = 0.003, respectively). Aromatase was also expressed more frequently in epithelial as well as in stromal cells of the malignant tumor when compared to according lymph node metastases (p = 0.08 and p = 0.12, respectively). While in lymph node metastases only estrogen receptor α and stromal aromatase expression were correlated (p = 0.01), significant associations were seen between the estrogen receptor β and sromal aromatase, and epithelial sulfotransferase (p = 0.0006 and p = 0.03, respectively) in the primary tumor. We hypothesize that the decreased expression of local estrogens by aromatase, in combination with a decreased expression of estrogen receptors α and β in lymphatic metastases, renders these metastases hormone insensitive and could contribute to the poor response to endocrine therapy that is often seen in nodal-positive tumors.
Collapse
Affiliation(s)
- Daphne Gschwantler-Kaulich
- Division of Special Gynaecology, University of Vienna Medical Center, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
48
|
Han EH, Kim HG, Hwang YP, Choi JH, Im JH, Park B, Yang JH, Jeong TC, Jeong HG. The role of cyclooxygenase-2-dependent signaling via cyclic AMP response element activation on aromatase up-regulation by o,p'-DDT in human breast cancer cells. Toxicol Lett 2010; 198:331-41. [PMID: 20678559 DOI: 10.1016/j.toxlet.2010.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 07/24/2010] [Accepted: 07/26/2010] [Indexed: 11/17/2022]
Abstract
o,p'-Dichlorodiphenyltrichloroethane (o,p'-DDT) is a DDT isomer and xenoestrogen that can induce inflammation and cancer. However, the effect of o,p'-DDT on aromatase is unclear. Thus, we investigated the effects of o,p'-DDT on aromatase expression in human breast cancer cells. We also examined whether cyclooxygenase-2 (COX-2) is involved in o,p'-DDT-mediated aromatase expression. Treatment with o,p'-DDT-induced aromatase protein expression in MCF-7 and MDA-MB-231 human breast cancer cells; enhancing aromatase gene expression, and enzyme and promoter activity. Treatment with ICI 182.780, a estrogen receptor antagonist, did not affect the inductive effects of o,p'-DDT on aromatase expression. In addition, o,p'-DDT increased COX-2 protein levels markedly, increased COX-2 mRNA expression and promoter activity, enhanced the production of prostaglandin E(2) (PGE(2)), induced cyclic AMP response element (CRE) activation, and cAMP levels and binding of CREB. o,p'-DDT also increased the phosphorylation of PKA, Akt, ERK, and JNK in their signaling pathways in MCF-7 and MDA-MB-231 cells. Finally, o,p'-DDT induction of aromatase was inhibited by various inhibitors [COX-2 (by NS-398), PKA (H-89), PI3-K/Akt (LY 294002), EP2 (AH6809), and EP4 receptor (AH23848)]. Together, these results suggest that o,p'-DDT increases aromatase, and that o,p'-DDT-induced aromatase is correlated with COX-2 up-regulation, mediated via the CRE activation and PKA and PI3-kinase/Akt signaling pathways in breast cancer cells.
Collapse
Affiliation(s)
- Eun Hee Han
- Department of Toxicology, College of Pharmacy, Chungnam National University, 220 Gung-dong, Daejeon 305-764, Yuseong-Gu, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Krishnan AV, Swami S, Feldman D. Vitamin D and breast cancer: inhibition of estrogen synthesis and signaling. J Steroid Biochem Mol Biol 2010; 121:343-8. [PMID: 20156557 DOI: 10.1016/j.jsbmb.2010.02.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 02/08/2010] [Indexed: 11/18/2022]
Abstract
Calcitriol (1,25-dihydroxyvitamin D3), the hormonally active metabolite of vitamin D, inhibits the growth and induces the differentiation of many malignant cells including breast cancer (BCa) cells. Calcitriol exerts its anti-proliferative activity in BCa cells by inducing cell cycle arrest and stimulating apoptosis. Calcitriol also inhibits invasion, metastasis and tumor angiogenesis in experimental models of BCa. Our recent studies show additional newly discovered pathways of calcitriol action to inhibit the growth of BCa cells. Calcitriol suppresses COX-2 expression and increases that of 15-PGDH thereby reducing the levels and biological activity of prostaglandins (PGs). Calcitriol decreases the expression of aromatase, the enzyme that catalyzes estrogen synthesis selectively in BCa cells and the breast adipose tissue surrounding BCa, by a direct repression of aromatase transcription via promoter II as well as an indirect effect due to the reduction in the levels and biological activity of PGE2, which is a major stimulator of aromatase transcription through promoter II in BCa. Calcitriol down-regulates the expression of estrogen receptor alpha and thereby attenuates estrogen signaling in BCa cells including the proliferative stimulus provided by estrogens. We hypothesize that the inhibition of estrogen synthesis and signaling by calcitriol and its anti-inflammatory actions will play an important role in the use of calcitriol for the prevention and/or treatment of BCa.
Collapse
Affiliation(s)
- Aruna V Krishnan
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, United States
| | | | | |
Collapse
|
50
|
Horn SL, Fentiman IS. The Role of Non-Steroidal Anti-Inflammatory Drugs in the Chemoprevention of Breast Cancer. Pharmaceuticals (Basel) 2010; 3:1550-1560. [PMID: 27713317 PMCID: PMC4033996 DOI: 10.3390/ph3051550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/26/2010] [Accepted: 05/10/2010] [Indexed: 01/28/2023] Open
Abstract
Epidemiological evidence suggests that non-steroidal anti-inflammatory drugs (NSAIDs) which act as cyclooxygenase (COX-2) inhibitors may reduce breast cancer incidence by up to 20%. These agents are often taken for pain relief by older women with osteoarthritis. Age is the major risk factor for breast cancer in women with 50% cases being diagnosed in those aged >65 years. NSAIDs reduce serum estradiol by 17% in post-menopausal women and since most of these who develop breast cancers have estrogen receptor positive tumours; this suggests a possible preventative role. Careful use of these agents could provide a strategy for both relief of symptoms of osteoarthritis and also breast cancer prevention. Instead of conducting a randomised trial, proof of efficacy could be from an adequately powered cohort study within the breast screening programme.
Collapse
Affiliation(s)
- Sarah L Horn
- Hedley Atkins Breast Unit, Guy's Hospital, London SE1 9RT, UK.
| | - Ian S Fentiman
- Hedley Atkins Breast Unit, Guy's Hospital, London SE1 9RT, UK.
| |
Collapse
|