1
|
Braet F, Taatjes DJ, Wisse E. Probing the unseen structure and function of liver cells through atomic force microscopy. Semin Cell Dev Biol 2017; 73:13-30. [PMID: 28688930 DOI: 10.1016/j.semcdb.2017.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 01/02/2023]
Abstract
With the arrival of atomic force microscopy (AFM) about thirty years ago, this new imaging tool opened up a new area for the exploration of biological samples, ranging from the tissue and cellular level down to the supramolecular scale. Commercial instruments of this new imaging technique began to appear in the five years following its discovery in 1986 by Binnig, Quate & Gerber. From that point onwards the AFM has attracted many liver biologists, and the number of publications describing structure-function relationships on the diverse set of liver cells has grown steadily ever since. It is therefore timely to reflect on the achievements of AFM in disclosing the cellular architecture of hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, stellate cells and liver-associated natural killer cells. In this thematic paper, we present new data and provide an in-depth overview of the current AFM literature on liver cell biology. We furthermore include a future outlook on how this scanning probe imaging tool and its latest developments can contribute to clarify various structural and functional aspects of cells in liver health and disease.
Collapse
Affiliation(s)
- Filip Braet
- School of Medical Sciences (Discipline of Anatomy and Histology)-The Bosch Institute, The University of Sydney, NSW 2006, Australia; Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia; Charles Perkins Centre (Cellular Imaging Facility), The University of Sydney, NSW 2006, Australia.
| | - Douglas J Taatjes
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA; Microscopy Imaging Center, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Eddie Wisse
- Maastricht Multimodal Molecular Imaging Institute, Division of Nanoscopy, University of Maastricht, The Netherlands; Department of Internal Medicine, University of Maastricht, 6200, MD, Maastricht, The Netherlands
| |
Collapse
|
2
|
Stylianou A, Stylianopoulos T. Atomic Force Microscopy Probing of Cancer Cells and Tumor Microenvironment Components. BIONANOSCIENCE 2015. [DOI: 10.1007/s12668-015-0187-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Li M, Xiao X, Zhang W, Liu L, Xi N, Wang Y. AFM analysis of the multiple types of molecular interactions involved in rituximab lymphoma therapy on patient tumor cells and NK cells. Cell Immunol 2014; 290:233-44. [PMID: 25117605 DOI: 10.1016/j.cellimm.2014.07.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/12/2014] [Accepted: 07/12/2014] [Indexed: 10/25/2022]
Abstract
Rituximab is a monoclonal antibody drug approved for the treatment of patients with lymphomas. Rituximab's main killing mechanism is antibody-dependent cellular cytotoxicity (ADCC). During ADCC, rituximab's fragment antigen binding (Fab) region binds to the CD20 antigen on the tumor cell and its fragment crystallizable (Fc) region binds to the Fc receptor (FcR) on the natural killer (NK) cells. In this study, two types of molecular interactions (CD20-rituximab, FcR-rituximab) involved in ADCC were measured simultaneously on cells prepared from biopsy specimens of lymphoma patients by utilizing atomic force microscopy (AFM) with functionalized tips carrying rituximab. NK cells were detected by specific NKp46 fluorescent labeling and tumor cells were detected by specific ROR1 fluorescent labeling. Based on the fluorescence recognition, the binding affinity and distribution of FcRs on NK cells, and CD20 on tumor cells, were quantitatively measured and mapped. The binding affinity and distribution of FcRs (on NK cells) and CD20 (on tumor cells) were associated with rituximab clinical efficacy. The experimental results provide a new approach to simultaneously quantify the multiple types of molecular interactions involved in rituximab ADCC mechanism on patient biopsy cells, which is of potential clinical significance to predict rituximab efficacy for personalized medicine.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiubin Xiao
- Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071, China
| | - Weijing Zhang
- Department of Lymphoma, Affiliated Hospital of Military Medical Academy of Sciences, Beijing 100071, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Ning Xi
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China; Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yuechao Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
4
|
Pillet F, Chopinet L, Formosa C, Dague E. Atomic Force Microscopy and pharmacology: from microbiology to cancerology. Biochim Biophys Acta Gen Subj 2013; 1840:1028-50. [PMID: 24291690 DOI: 10.1016/j.bbagen.2013.11.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/18/2013] [Accepted: 11/20/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Atomic Force Microscopy (AFM) has been extensively used to study biological samples. Researchers take advantage of its ability to image living samples to increase our fundamental knowledge (biophysical properties/biochemical behavior) on living cell surface properties, at the nano-scale. SCOPE OF REVIEW AFM, in the imaging modes, can probe cells morphological modifications induced by drugs. In the force spectroscopy mode, it is possible to follow the nanomechanical properties of a cell and to probe the mechanical modifications induced by drugs. AFM can be used to map single molecule distribution at the cell surface. We will focus on a collection of results aiming at evaluating the nano-scale effects of drugs, by AFM. Studies on yeast, bacteria and mammal cells will illustrate our discussion. Especially, we will show how AFM can help in getting a better understanding of drug mechanism of action. MAJOR CONCLUSIONS This review demonstrates that AFM is a versatile tool, useful in pharmacology. In microbiology, it has been used to study the drugs fighting Candida albicans or Pseudomonas aeruginosa. The major conclusions are a better understanding of the microbes' cell wall and of the drugs mechanism of action. In cancerology, AFM has been used to explore the effects of cytotoxic drugs or as an innovative diagnostic technology. AFM has provided original results on cultured cells, cells extracted from patient and directly on patient biopsies. GENERAL SIGNIFICANCE This review enhances the interest of AFM technologies for pharmacology. The applications reviewed range from microbiology to cancerology.
Collapse
Affiliation(s)
- Flavien Pillet
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Louise Chopinet
- CNRS, IPBS-UMR 5089, BP64182, 205 route de Narbonne, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France
| | - Cécile Formosa
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS, UMR 7565, SRSMC, Vandoeuvre-lès-Nancy, France; Université de Lorraine, UMR 7565, Faculté de Pharmacie, Nancy, France
| | - Etienne Dague
- CNRS, LAAS, 7 avenue du colonel Roche, F-31077 Toulouse Cedex 4, France; Université de Toulouse, UPS, INSA, INP, ISAE, UT1, UTM, LAAS, ITAV, F-31077 Toulouse Cedex 4, France; CNRS; ITAV-USR 3505; F31106 Toulouse, France.
| |
Collapse
|
5
|
AFM volumetric methods for the characterization of proteins and nucleic acids. Methods 2013; 60:113-21. [DOI: 10.1016/j.ymeth.2013.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 02/14/2013] [Indexed: 11/19/2022] Open
|
6
|
Braet F, Wisse E. AFM imaging of fenestrated liver sinusoidal endothelial cells. Micron 2012; 43:1252-8. [PMID: 22464743 DOI: 10.1016/j.micron.2012.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/15/2012] [Indexed: 02/06/2023]
Abstract
Each microscope with its dedicated sample preparation technique provides the investigator with a specific set of data giving an instrument-determined (or restricted) insight into the structure and function of a tissue, a cell or parts thereof. Stepwise improvements in existing techniques, both instrumental and preparative, can sometimes cross barriers in resolution and image quality. Of course, investigators get really excited when completely new principles of microscopy and imaging are offered in promising new instruments, such as the AFM. The present paper summarizes a first phase of studies on the thin endothelial cells of the liver. It describes the preparation-dependent differences in AFM imaging of these cells after isolation. Special point of interest concerned the dynamics of the fenestrae, thought to filter lipid-carrying particles during their transport from the blood to the liver cells. It also describes the attempts to image the details of these cells when alive in cell cultures. It explains what physical conditions, mainly contributed to the scanning stylus, are thought to play a part in the limitations in imaging these cells. The AFM also offers promising specifications to those interested in cell surface details, such as membrane-associated structures, receptors, coated pits, cellular junctions and molecular aggregations or domains. The AFM also offers nano-manipulation possibilities, strengths and elasticity measurements, force interactions, affinity measurements, stiffness and other physical aspects of membranes and cytoskeleton. The potential for molecular approaches is there. New developments in cantilever construction and computer software promise to bring real time video imaging to the AFM. Home made accessories for the first generation of AFM are now commodities in commercial instruments and make the life of the AFM microscopist easier. Also, the combination of different microscopies, such as AFM and TEM, or AFM and SEM find their way to the market allowing comfortable correlative microscopy.
Collapse
Affiliation(s)
- F Braet
- Australian Centre for Microscopy & Microanalysis, The University of Sydney, NSW 2006, Australia.
| | | |
Collapse
|
7
|
Wang DC, Chen KY, Tsai CH, Chen GY, Chen CH. AFM membrane roughness as a probe to identify oxidative stress-induced cellular apoptosis. J Biomech 2011; 44:2790-4. [PMID: 21937047 DOI: 10.1016/j.jbiomech.2011.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/21/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
The morphological change of cellular apoptosis initiates from the change of membrane roughness. In order to identify cellular apoptosis in its early stage, atomic force microscope was adapted to reveal the change of membrane roughness in unprecedented details, providing an image in nanometer-scaled resolution. The mouse monocyte/macrophage cell line RAW 264.7 was the subject studied and subjected to apoptotic induction by hydrogen peroxide. A finding of the qualitative correlation between cell membrane roughness and oxidative stress level is disclosed stating that roughness is increasing with the increasing level of oxidative stress.
Collapse
Affiliation(s)
- Dau-Chung Wang
- Department of Mechanical Engineering, National Yunlin University of Science and Technology, Taiwan.
| | | | | | | | | |
Collapse
|
8
|
Abstract
AFM (atomic force microscopy) analysis, both of fixed cells, and live cells in physiological environments, is set to offer a step change in the research of cellular function. With the ability to map cell topography and morphology, provide structural details of surface proteins and their expression patterns and to detect pico-Newton force interactions, AFM represents an exciting addition to the arsenal of the cell biologist. With the explosion of new applications, and the advent of combined instrumentation such as AFM-confocal systems, the biological application of AFM has come of age. The use of AFM in the area of biomedical research has been proposed for some time, and is one where a significant impact could be made. Fixed cell analysis provides qualitative and quantitative subcellular and surface data capable of revealing new biomarkers in medical pathologies. Image height and contrast, surface roughness, fractal, volume and force analysis provide a platform for the multiparameter analysis of cell and protein functions. Here, we review the current status of AFM in the field and discuss the important contribution AFM is poised to make in the understanding of biological systems.
Collapse
|
9
|
Riethmüller C, Schäffer TE, Kienberger F, Stracke W, Oberleithner H. Vacuolar structures can be identified by AFM elasticity mapping. Ultramicroscopy 2007; 107:895-901. [PMID: 17640806 DOI: 10.1016/j.ultramic.2007.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fluid-filled organelles like vesicles, endosomes and pinosomes are inevitable parts of cellular signalling and transport. Endothelial cells, building a barrier between blood and tissue, can form vacuolar organelles. These structures are implicated in upregulated fluid transport across the endothelium under inflammatory conditions. Vacuolar organelles have been described by transmission electron microscopy so far. Here, we present a method that images and mechanically characterizes intracellular structures in whole cells by atomic force microscopy (AFM). After crosslinking the cellular proteins with the fixative glutaraldehyde, plasma membrane depressions become observable, which are scattered around the cell nucleus. Nanomechanical analysis identifies them as spots of reduced stiffness. Scanning electron microscopy confirms their pit-like appearance. In addition, fluorescence microscopy detects an analogous pattern of protein-poor spots, thereby confirming mechanical rigidity to arise from crosslinked proteins. This AFM application opens up a mechanical dimension for the investigation of intracellular organelles.
Collapse
|
10
|
Soon L, Braet F, Condeelis J. Moving in the right direction-nanoimaging in cancer cell motility and metastasis. Microsc Res Tech 2007; 70:252-7. [PMID: 17279509 DOI: 10.1002/jemt.20411] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although genetic and protein manipulations have been the cornerstone for the study and understanding of biological processes for many decades, complimentary nanoscale observations have only more recently been achieved in the live-imaging mode. It is at the nano measurement level that events such as protein-protein interactions, enzymatic conversions, and single-molecule stochastic behavior take place. Therefore, nanoscale observations allow us to reinterpret knowledge from large-scale or bulk techniques and gain new insight into molecular events that has cellular, tissue, and organismal phenotypic manifestations. This review identifies pertinent questions relating to the sensing and directional component of cancer cell chemotaxis and discusses the platforms that provide insight into the molecular events related to cell motility. The study of cell motility at the molecular imaging level often necessitates the use of devices such as microinjection, microfluidics, in vivo/intravital and in vitro chemotaxis assays, as well as fluorescence methods like uncaging and FRET. The micro- and nanofabricated devices that facilitate these techniques and their incorporation to specialized microscopes such as the multiphoton, AFM, and TIR-FM, for high-resolution imaging comprise the nanoplatforms used to explore the mechanisms of carcinogenesis. In real-time observations, within a milieu of physiological protein concentrations, true states of dynamic and kinetic fluxes can be monitored.
Collapse
Affiliation(s)
- Lilian Soon
- Australian Key Centre for Microscopy and Microanalysis, The University of Sydney, New South Wales, Australia.
| | | | | |
Collapse
|
11
|
Braet F, Nagatsuma K, Saito M, Soon L, Wisse E, Matsuura T. The hepatic sinusoidal endothelial lining and colorectal liver metastases. World J Gastroenterol 2007; 13:821-5. [PMID: 17352008 PMCID: PMC4065914 DOI: 10.3748/wjg.v13.i6.821] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant disease and the severe nature of cases in men and women who develop colorectal cancer makes this an important socio-economic health issue. Major challenges such as understanding and modeling colorectal cancer pathways rely on our understanding of simple models such as outlined in this paper. We discuss that the development of novel standardized approaches of multidimensional (correlative) biomolecular microscopy methods facilitates the collection of (sub) cellular tissue information in the early onset of colorectal liver metastasis and that this approach will be crucial in designing new effective strategies for CRC treatment. The application of X-ray micro-computed tomography and its potential in correlative imaging of the liver vasculature will be discussed.
Collapse
|
12
|
Leguen E, Chassepot A, Decher G, Schaaf P, Voegel JC, Jessel N. Bioactive coatings based on polyelectrolyte multilayer architectures functionalized by embedded proteins, peptides or drugs. ACTA ACUST UNITED AC 2007; 24:33-41. [PMID: 16860599 DOI: 10.1016/j.bioeng.2006.05.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In recent years, considerable effort has been devoted to the design and controlled fabrication of structured materials with functional properties. The layer by layer buildup of polyelectrolyte multilayer films (PEM films) from oppositely charged polyelectrolytes offers new opportunities for the preparation of functionalized biomaterial coatings. This technique allows the preparation of supramolecular nano-architectures exhibiting specific properties in terms of control of cell activation and may also play a role in the development of local drug delivery systems. Peptides, proteins, chemically bound to polyelectrolytes, adsorbed or embedded in PEM films, have been shown to retain their biological activities.
Collapse
Affiliation(s)
- Erell Leguen
- INSERM Unité 595, Université Louis Pasteur, 11 Rue Humann, F-67085 Strasbourg Cedex, France
| | | | | | | | | | | |
Collapse
|
13
|
Timmers M, Vekemans K, Vermijlen D, Asosingh K, Kuppen P, Bouwens L, Wisse E, Braet F. Interactions between rat colon carcinoma cells and Kupffer cells during the onset of hepatic metastasis. Int J Cancer 2004; 112:793-802. [PMID: 15386374 DOI: 10.1002/ijc.20481] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver sinusoids harbor populations of 2 important types of immunocompetent cells, Kupffer cells (KCs) and natural killer (NK) cells, which are thought to play an important role in controlling hepatic metastasis in the first 24 hr upon arrival of the tumor cells in the liver. We studied the early interaction of KCs, NK and CC531s colon carcinoma cells in a syngeneic rat model by confocal laser scanning microscopy. Results showed a minority of KCs (19% periportal and 7% pericentral) involved in the interaction with 94% of tumor cells and effecting the phagocytosis of 92% of them. NK cell depletion decreased the phagocytosis of tumor cells by KCs by 33% over a period of 24 hr, leaving 35% of the cancer cells free, as compared to 6% in NK-positive rats. Surviving cancer cells were primarily located close to the Glisson capsule, suggesting that metastasis would initiate from this region.
Collapse
Affiliation(s)
- Maarten Timmers
- Laboratory for Cell Biology and Histology, Free University of Brussels, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Papanikolaou IS, Lazaris AC, Apostolopoulos P, Kavantzas N, Papas MG, Mavrogiannis C, Patsouris ES, Archimandritis A. Tissue detection of natural killer cells in colorectal adenocarcinoma. BMC Gastroenterol 2004; 4:20. [PMID: 15363095 PMCID: PMC517933 DOI: 10.1186/1471-230x-4-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 09/13/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Natural killer (NK) cells represent a first line of defence against a developing cancer; however, their exact role in colorectal cancer remains undetermined. The aim of the present study was to evaluate the expression of CD16 and CD57 [immunohistochemical markers of natural NK cells] in colorectal adenocarcinoma. METHODS Presence of NK cells was investigated in 82 colorectal adenocarcinomas. Immunohistochemical analysis was performed, using 2 monoclonal antibodies (anti-Fc Gamma Receptor II, CD16 and an equivalent to Leu-7, specific for CD-57). The number of immunopositive cells (%) was evaluated by image analysis. The cases were characterized according to: patient gender and age, tumor location, size, grade, bowel wall invasion, lymph node metastases and Dukes' stage. RESULTS NK cells were detected in 79/82 cases at the primary tumor site, 27/33 metastatic lymph nodes and 3/4 hepatic metastases; they were detected in levels similar to those reported in the literature, but their presence was not correlated to the clinical or pathological characteristics of the series, except for a negative association with the patients' age (p = 0.031). CONCLUSIONS Our data do not support an association of NK cell tissue presence with clinical or pathological variables of colorectal adenocarcinoma, except for a negative association with the patients' age; this might possibly be attributed to decreased adhesion molecule expression in older ages.
Collapse
Affiliation(s)
- Ioannis S Papanikolaou
- Department of Gastroenterology, H. Venizelou General Hospital, Faculty of Nursing, National University of Athens, Athens, Greece
| | - Andreas Ch Lazaris
- Department of Pathology, National University of Athens Medical School, Athens, Greece
| | - Periklis Apostolopoulos
- Department of Pathophysiology, Gastroenterology Section, National University of Athens Medical School, Athens, Greece
| | - Nikos Kavantzas
- Department of Pathology, National University of Athens Medical School, Athens, Greece
| | - Maria G Papas
- Department of General Medicine, University Hospital, Dijon, France
| | - Christos Mavrogiannis
- Department of Gastroenterology, H. Venizelou General Hospital, Faculty of Nursing, National University of Athens, Athens, Greece
| | | | - Athanasios Archimandritis
- Department of Pathophysiology, Gastroenterology Section, National University of Athens Medical School, Athens, Greece
| |
Collapse
|
15
|
Melling M, Karimian-Teherani D, Mostler S, Behnam M, Hochmeister S. 3-D morphological characterization of the liver parenchyma by atomic force microscopy and by scanning electron microscopy. Microsc Res Tech 2004; 64:1-9. [PMID: 15287013 DOI: 10.1002/jemt.20045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A comparative study of atomic force microscopy (AFM) and scanning electron microscopy (SEM) imaging of the healthy human liver parenchyma was carried out to determine the similarities and the differences. In this study, we compared the fine hepatic structures as observed by SEM and AFM. Although AFM revealed such typical hepatic structures as bile canaliculi and hepatocytes, it also showed the location of the nucleus and chromatin granules in rough relief structure, which was not visible by SEM. By contrast, SEM visualized other structures, such as microvilli, the central vein, and collagenous fibers, none of which was visualized by AFM. For better orientation and confirmation of most of the structures imaged by SEM and AFM, Congo Red-stained specimens were also examined. Amyloid deposits in the Disse's spaces were shown especially clearly in these images. The differences between the SEM and AFM images reflected the characteristics of the detection systems and methods used for sample preparation. Our results reveal that more detailed information on hepatic morphology is obtained by exploiting the advantages of both SEM and AFM.
Collapse
Affiliation(s)
- Mahmoud Melling
- First Department of Anatomy, University of Vienna, A-1170 Vienna, Austria.
| | | | | | | | | |
Collapse
|
16
|
Kuznetsov YG, Victoria JG, Robinson WE, McPherson A. Atomic force microscopy investigation of human immunodeficiency virus (HIV) and HIV-infected lymphocytes. J Virol 2003; 77:11896-909. [PMID: 14581526 PMCID: PMC254268 DOI: 10.1128/jvi.77.22.11896-11909.2003] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2003] [Accepted: 08/18/2003] [Indexed: 01/11/2023] Open
Abstract
Isolated human immunodeficiency virus (HIV) and HIV-infected human lymphocytes in culture have been imaged for the first time by atomic force microscopy (AFM). Purified virus particles spread on glass substrates are roughly spherical, reasonably uniform, though pleomorphic in appearance, and have diameters of about 120 nm. Similar particles are also seen on infected cell surfaces, but morphologies and sizes are considerably more varied, possibly a reflection of the budding process. The surfaces of HIV particles exhibit "tufts" of protein, presumably gp120, which do not physically resemble spikes. The protein tufts, which number about 100 per particle, have average diameters of about 200 A, but with a large variance. They likely consist of arbitrary associations of small numbers of gp120 monomers on the surface. In examining several hundred virus particles, we found no evidence that the gp120 monomers form threefold symmetric trimers. Although >95% of HIV-infected H9 lymphocytic cells were producing HIV antigens by immunofluorescent assay, most lymphocytes displayed few or no virus on their surfaces, while others were almost covered by a hundred or more viruses, suggesting a dependence on cell cycle or physiology. HIV-infected cells treated with a viral protease inhibitor and their progeny viruses were also imaged by AFM and were indistinguishable from untreated virions. Isolated HIV virions were disrupted by exposure to mild neutral detergents (Tween 20 and CHAPS) at concentrations from 0.25 to 2.0%. Among the products observed were intact virions, the remnants of completely degraded virions, and partially disrupted particles that lacked sectors of surface proteins as well as virions that were split or broken open to reveal their empty interiors. Capsids containing nucleic acid were not seen, suggesting that the capsids were even more fragile than the envelope and were totally degraded and lost. From these images, a good estimate of the thickness of the envelope protein-membrane-matrix protein outer shell of the virion was obtained. Treatment with even low concentrations (<0.1%) of sodium dodecyl sulfate completely destroyed all virions but produced many interesting products, including aggregates of viral proteins with strands of nucleic acid.
Collapse
Affiliation(s)
- Y G Kuznetsov
- Department of Molecular Biology and Biochemistry, University of California-Irvine, Irvine, California 92697-3900, USA
| | | | | | | |
Collapse
|