1
|
Fang J, Wang J, Zhao X, Yang Y, Xiao Y. KLHDC8A knockdown in normal ovarian epithelial cells promoted the polarization of pro-tumoral macrophages via the C5a/C5aR/p65 NFκB signaling pathway. Cell Immunol 2025; 409-410:104913. [PMID: 39805213 DOI: 10.1016/j.cellimm.2024.104913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/13/2024] [Accepted: 12/22/2024] [Indexed: 01/16/2025]
Abstract
AIMS Tumor-associated macrophages (TAM) is related to Ovarian cancer (OC) pathogenesis, but the exact mechanism remains unclear. This study investigated the expression of Kelch Domain Containing 8 A (KLHDC8A) in OC and the mechanism associated with TAM. MAIN METHODS Bioinformatics analysis of differential expression genes between normal and OC tissues were analyzed based on the Tumor Genome Atlas (TCGA) databases. KLHDC8A mRNA expression was knocked down in normal epithelial cells (IOSE80), and then the effects of siKLHDC8A on the proliferation, invasion, migration and C5a secretion of IOSE80 cells were explored. THP1-derived macrophages were cultured with medium of NC-IOSE80 cells, siKLHDC8A-IOSE80 cells with or without C5aR antagonists. KEY FINDINGS KLHDC8A was lowly expressed in OC and negatively correlated with the infiltration of tumor-promoting macrophages, contributing to the survival of OC patients. Furthermore, siKLHDC8A promotes the proliferation, invasion and migration of IOSE80 cells and leads to polarization of pro-tumoral macrophages, which can be rescued by C5aR antagonists. SIGNIFICANCE Our results indicated that KLHDC8A knockdown could modulate the development of OC by affecting macrophage polarization to pro-tumoral type via the C5a/C5aR/p65 NFκB signaling pathway. It may play an essential role as the tumor suppressor genes in diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Jie Fang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China.
| | - Jin Wang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Xinyue Zhao
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yaping Yang
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Yujia Xiao
- Department of Gynecology, the Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212001, China
| |
Collapse
|
2
|
Jin J, Bai L, Wang D, Ding W, Cao Z, Yan P, Li Y, Xi L, Wang Y, Zheng X, Wei H, Ding C, Wang Y. SIRT3-dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep 2023; 24:e56052. [PMID: 36896611 PMCID: PMC10157311 DOI: 10.15252/embr.202256052] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/30/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Lysine lactylation (Kla) is a recently discovered histone mark derived from metabolic lactate. The NAD+ -dependent deacetylase SIRT3, which can also catalyze removal of the lactyl moiety from lysine, is expressed at low levels in hepatocellular carcinoma (HCC) and has been suggested to be an HCC tumor suppressor. Here we report that SIRT3 can delactylate non-histone proteins and suppress HCC development. Using SILAC-based quantitative proteomics, we identify cyclin E2 (CCNE2) as one of the lactylated substrates of SIRT3 in HCC cells. Furthermore, our crystallographic study elucidates the mechanism of CCNE2 K348la delactylation by SIRT3. Our results further suggest that lactylated CCNE2 promotes HCC cell growth, while SIRT3 activation by Honokiol induces HCC cell apoptosis and prevents HCC outgrowth in vivo by regulating Kla levels of CCNE2. Together, our results establish a physiological function of SIRT3 as a delactylase that is important for suppressing HCC, and our structural data could be useful for the future design of activators.
Collapse
Affiliation(s)
- Jing Jin
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHeifeiChina
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical CenterUniversity of Science and Technology of ChinaHefeiChina
| | - Lin Bai
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Human Phenome Institute, School of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Dongyao Wang
- Division of Life Sciences and Medicine, Department of Hematology, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHefeiChina
| | - Wei Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
| | - Zhuoxian Cao
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHeifeiChina
| | - Peidong Yan
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHeifeiChina
| | - Yunjia Li
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHeifeiChina
| | - Lulu Xi
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHeifeiChina
| | - Yuxin Wang
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHeifeiChina
| | - Xiaohu Zheng
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical CenterUniversity of Science and Technology of ChinaHefeiChina
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical CenterUniversity of Science and Technology of ChinaHefeiChina
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Human Phenome Institute, School of Life Sciences, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yi Wang
- Division of Life Sciences and Medicine, Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTCUniversity of Science and Technology of ChinaHeifeiChina
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine and Medical CenterUniversity of Science and Technology of ChinaHefeiChina
| |
Collapse
|
3
|
Sortilin 1 Promotes Hepatocellular Carcinoma Cell Proliferation and Migration by Regulating Immune Cell Infiltration. JOURNAL OF ONCOLOGY 2022; 2022:6509028. [PMID: 35847356 PMCID: PMC9286884 DOI: 10.1155/2022/6509028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/24/2022] [Indexed: 12/17/2022]
Abstract
Objectives Recent evidence suggests that Sort1 promotes carcinogenesis and tumor progression in multiple types of cancers. This study investigates the role of Sort1 in hepatocellular carcinoma (HCC). Methods The differentially expressed gene was screened through GEO and TCGA databases. The Sort1 gene was identified and its expression was then verified by TCGA and HCCDB (a database of hepatocellular carcinoma expression atlas) databases. The Human Protein Atlas database was used to assess the gene expression in tissues. The TCGA and KM-plotter databases were used to study the relationship between Sort1 and HCC. The correlation between Sort1 and immune cells was evaluated through the TIMER database. GO and KEGG enrichment analysis was used to investigate the possible mechanism. The role of Sort1 in cell proliferation and invasion of HCC was further explored through in vitro experiments. Result The differentially expressed molecule obtained from database screening was Sort1. Its expression was higher in cancer tissues than in paracancerous ones, and it was mainly located in the cytoplasm. The TCGA, KM-plotter databases, and our study data showed that low expression of Sort1 in HCC patients had better overall survival (OS), progression-free survival (PFI), and disease-specific survival (DSS). Further analysis indicated a significant correlation between Sort1 expression and immune cell infiltration. The gene set enrichment analysis (GSEA) analysis showed that Sort1 affected the biological events of HCC by participating in the WNT, TGF-BETA, JAK, STAT, and CALCIUM signaling pathways. In vitro, cytological experiments demonstrated reduced expression of PCNA, Ki-67, Vimentin, N-cadherin, and MMP-9 mRNA after knocking down Sort1, although E-cadherin expression was promoted. Overall, these processes reduced the ability of proliferation and invasion of HCC cells. Conclusion Downregulation of Sort1 can prolong the OS, PFI, and DSS of HCC patients. Furthermore, due to its link with immune cell infiltration, the Sort1 gene represents a potentially novel predictive biomarker of HCC. The growth of HCC can be significantly inhibited by interfering with Sort1; therefore, these results provide a potential target for developing anticancer strategies for HCC.
Collapse
|
4
|
Xue J, Yang W, Wang X, Wang P, Meng X, Yu T, Fan C. A transcriptome sequencing study on the effect of macro-pores in hydrogel scaffolds on global gene expression of laden human cartilage chondrocytes. Biomed Mater 2022; 17. [PMID: 35609582 DOI: 10.1088/1748-605x/ac7304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/24/2022] [Indexed: 11/12/2022]
Abstract
The macro-porous hydrogel scaffolds can not only enhance the proliferation of laden chondrocytes but also favor the deposition of hyaline cartilaginous extracellular matrix, however, the underlying molecular mechanism is still unclear. Herein, the global gene expression of human cartilage chondrocytes (HCCs) encapsulated in traditional hydrogel (Gel) constructs and micro-cavitary gel (MCG) constructs are investigated by using high-throughput RNA sequencing (RNA-seq). The differentially expressed genes (DEGs) between the HCCs cultured in Gel and MCG constructs have been identified via bioinformatics analysis. Significantly, the DEGs that promote cell proliferation (e.g. POSTN, MKI67, KIF20A) or neo-cartilage formation (e.g. COL2, ASPN, COMP, FMOD, FN1), are more highly expressed in MCG constructs than in Gel constructs, while the expressions of the DEGs associated with chondrocyte hypertrophy (e.g. EGR1, IBSP) are upregulated in Gel constructs. The expression of representative DEGs is verified at both mRNA and protein levels. Besides, cellular viability and morphology as well as the enriched signaling pathway of DEGs are studied in detail. These results of this work may provide data for functional tissue engineering of cartilage.
Collapse
Affiliation(s)
- Junqiang Xue
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, People's Republic of China.,Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xinping Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Peiyan Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| | - Tengbo Yu
- Department of Sports Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266000, Shandong, People's Republic of China
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266021, Shandong, People's Republic of China.,School of Basic Medicine, College of Medicine, Qingdao University, Qingdao 266071, Shandong, People's Republic of China
| |
Collapse
|
5
|
Wei B, Chen H, Chen X, Guo D, Hong L, Zheng S. Sox15 Methylation Inhibits Cell Proliferation Through Wnt Signaling in Hepatocellular Carcinoma. Front Oncol 2022; 12:842312. [PMID: 35392235 PMCID: PMC8980349 DOI: 10.3389/fonc.2022.842312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
The expression of the SRY-Box Transcription Factor 15 (Sox15) is reduced by DNA methylation, and its progression is suppressed within numerous tumors. However, its effect on hepatocellular carcinoma (HCC) remains unknown. In the present work, the clinical importance and function of Sox15, as well as the underlying molecular mechanism, were explored within HCC. The expression of Sox15 is reduced and positively correlated with prognosis in HCC as analyzed by GEPIA (Gene Expression Profiling Interactive Analysis) and OncoLnc. Meanwhile, the hypermethylated Sox15 promoter CpG-site predicted a dismal HCC prognosis. Besides, ectopic Sox15 expression within the HCC cells (LM3, HUH7, SK-hep-1) remarkably inhibited in vitro cell growth and inhibited xenograft tumorigenesis in the nude mice. Moreover, Sox15 inactivated the Wnt pathway under both in vivo and in vitro conditions. To summarize, Sox15 played a tumor suppressor role within the HCC via the inactivated Wnt pathway. Sox15 and CpG-site methylation of its promoter are the factors that independently predict the prognosis of HCC.
Collapse
Affiliation(s)
- Bajin Wei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Chen
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaobin Chen
- Department of Lung Transplantation and General Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Danjing Guo
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liangjie Hong
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,National Health Commission (NHC) Key Laboratory of Combined Multi-organ Transplantation, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Wei XC, Xia YR, Zhou P, Xue X, Ding S, Liu LJ, Zhu F. Hepatitis B core antigen modulates exosomal miR-135a to target vesicle-associated membrane protein 2 promoting chemoresistance in hepatocellular carcinoma. World J Gastroenterol 2021; 27:8302-8322. [PMID: 35068871 PMCID: PMC8717014 DOI: 10.3748/wjg.v27.i48.8302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. The association of hepatitis B virus (HBV) infection with HCC is hitherto documented. Exosomal miRNAs contribute to cancer progression and chemoresistance. HBV X protein has been known to modulate miRNAs that facilitate cell proliferation and the process of hepatocarcinogenesis. However, there has been no report on hepatitis B core antigen (HBc) regulating exosomal miRNAs to induce drug resistance of HCC cells. AIM To elucidate the mechanism by which HBc promotes Doxorubicin hydrochloride (Dox) resistance in HCC. METHODS Exosomes were isolated by ultracentrifugation. The morphology and size of exosomes were evaluated by Dynamic Light Scattering (DLS) and transmission electron microscopy (TEM). The miRNAs differentially expressed in HCC were identified using The Cancer Genome Atlas (TCGA) database. The level of miR-135a-5p in patient tissue samples was detected by quantitative polymerase chain reaction. TargetScan and luciferase assay were used to predict and prove the target gene of miR-135a-5p. Finally, we identified the effects of miR-135a-5p on anti-apoptosis and the proliferation of HCC in the presence or absence of Dox using flow cytometry, Cell counting kit 8 (CCK-8) assay and western blot. RESULTS We found that HBc increased the expression of exosomal miR-135a-5p. Integrated analysis of bioinformatics and patient samples found that miR-135a-5p was increased in HCC tissues in comparison with paracancerous tissues. Bioinformatic analysis and in vitro validation identified vesicle-associated membrane protein 2 (VAMP2) as a novel target gene of miR-135a-5p. Functional assays showed that exosomal miR-135a-5p induced apoptosis protection, cell proliferation, and chemotherapy resistance in HCC. In addition, the rescue experiment demonstrated that VAMP2 reversed apoptosis protection, cell growth, and drug resistance by miR-135a-5p. Finally, HBc promoted HCC anti-apoptosis, proliferation, and drug resistance and prevented Dox-induced apoptosis via the miR-135a-5p/VAMP2 axis. CONCLUSION These data suggested that HBc upregulated the expression of exosomal miR-135a-5p and promoted anti-apoptosis, cell proliferation, and chemical resistance through miR-135a-5p/VAMP2. Thus, our work indicated an essential role of the miR-135a-5p/VAMP2 regulatory axis in chemotherapy resistance of HCC and a potential molecular therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiao-Cui Wei
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ya-Ru Xia
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ping Zhou
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xing Xue
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Shuang Ding
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Li-Juan Liu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
7
|
Abd Elhameed AG, Helal MG, Said E, Salem HA. Saxagliptin defers thioacetamide-induced hepatocarcinogenesis in rats: A novel suppressive impact on Wnt/Hedgehog/Notch1 signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 86:103668. [PMID: 33945853 DOI: 10.1016/j.etap.2021.103668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/24/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
AIM Hepatocellular carcinoma (HCC) is a highly invasive form of hepatic cancer. It is a highly intricate disease with multiple pathophysiological mechanisms underlying its pathogenesis. MATERIALS AND METHODS The results of the current investigation shed light on the ability of saxagliptin (SAXA) (12.5 mg/kg) to defer HCC progression in an experimental model of thioacetamide (TAA)-induced hepatocarcinogenesis. RESULTS SAXA administration improved liver function biomarkers, with a concomitant histopathological recovery. Mechanistically, the observed hepatoprotective impact was associated with significant suppression of the hepatic content of Wnt3a, β-catenin, Notch1, Smo, and Gli2 and enhanced expression of GSK 3β. Nevertheless, the hepatic expression of PCNA, P53, and cyclin D1 was significantly enhanced, with a parallel increase in the tumor expression of caspase-3. Thus, it appears that SAXA significantly enhanced tumor apoptosis, with concomitant suppression of HCC proliferation. CONCLUSION SAXA deferred experimentally-induced HCC via suppressing Wnt/Hedgehog/Notch1 Signaling, with enhanced tumor apoptosis and suppressed proliferation.
Collapse
Affiliation(s)
- Ahmed G Abd Elhameed
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt; Dep. of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Manar G Helal
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Eman Said
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Hatem A Salem
- Dep. of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Gu R, Shao K, Xu Q, Zhao X, Qiu H, Hu H. Circular RNA hsa_circ_0008003 facilitates tumorigenesis and development of non-small cell lung carcinoma via modulating miR-488/ZNF281 axis. J Cell Mol Med 2020; 26:1754-1765. [PMID: 33320427 PMCID: PMC8918407 DOI: 10.1111/jcmm.15987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/07/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
As one of the most aggressive malignancies, non‐small cell lung carcinoma (NSCLC) has high risks of death. It has been demonstrated that circRNAs accelerate NSCLC progression, but the underlying molecular mechanisms of circRNAs in NSCLC were still obscure. In the first place, the circRNA microarray of NSCLC was investigated in this study, and hsa_circ_0008003 (circ‐0008003) was chosen as the research object. Then, it was unveiled that the expression of circ‐0008003 examined via qRT‐PCR was elevated in tumour tissues relative to the non‐tumour tissues, which was associated with TNM stage and lymphatic metastasis in NSCLC. Additionally, the prognosis of NSCLC patients with high circ‐0008003 level was poor. Besides, circ‐0008003 silencing dampened the invasion and proliferation of NSCLC cells. Next, according to the mechanistic studies, circ‐0008003 functioned as a ceRNA of ZNF281 in NSCLC by acting as the endogenous sponge for miR‐488, which was proved to be a tumour suppressor in NSCLC. Additionally, ZNF281 overexpression and miR‐488 suppression recovered the influences of repressed circ‐0008003 on NSCLC cellular processes. It was validated in this research that circ‐0008003 triggered tumour formation in NSCLC, which was adjusted via miR‐488/ZNF281 axis, casting a novel light on the resultful target for treating NSCLC and predicting the prognosis.
Collapse
Affiliation(s)
- Runhuan Gu
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Koufeng Shao
- Department of Oncology, Huai'an Chuzhou Hospital of Traditional Chinese Medicine, Zhongda Hospital Group Hospital Addiliated to Southest University, Huai'an, China
| | - Qiaoxia Xu
- Nursing Department, Huaiyin Hospital of Huai'an City, Huai'an, China
| | - Xue Zhao
- Department of Thoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| | - Haibing Qiu
- Department of Respiratory, Huaiyin Hospital of Huai'an City, Huai'an, China
| | - Haibo Hu
- Department of Thoracic Surgery, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China
| |
Collapse
|
9
|
Tan G, Huang C, Chen J, Zhi F. HMGB1 released from GSDME-mediated pyroptotic epithelial cells participates in the tumorigenesis of colitis-associated colorectal cancer through the ERK1/2 pathway. J Hematol Oncol 2020; 13:149. [PMID: 33160389 PMCID: PMC7648939 DOI: 10.1186/s13045-020-00985-0] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pyroptosis is a form of proinflammatory gasdermin-mediated programmed cell death. Abnormal mucosal inflammation in the intestine is a critical risk factor for colitis-associated colorectal cancer (CAC). However, it is unknown whether pyroptosis participates in the development of CAC. METHODS To investigate the role of gasdermin E (GSDME)-mediated pyroptosis in the development of CAC, Gsdme-/- mice and their wild-type (WT) littermate controls were challenged with azoxymethane (AOM) and dextran sodium sulfate (DSS) to induce a CAC model. Neutralizing antibodies against high-mobility group box protein 1 (HMGB1) were used to determine the role of HMGB1 in CAC. To identify the role of ERK1/2 in HMGB1-induced colon cancer cell proliferation, we performed western blotting and CCK8 assays using the ERK1/2-specific inhibitor U0126 in CT26 colon cancer cells. RESULTS In the CAC model, Gsdme-/- mice exhibited reduced weight loss and colon shortening, attenuated rectal prolapse, and reduced tumor numbers and sizes compared to WT littermates. Furthermore, treatment with neutralizing anti-HMGB1 antibodies decreased the numbers and sizes of tumors, ERK1/2 activation and proliferating cell nuclear antigen (PCNA) expression in AOM/DSS-challenged WT mice. In addition, our in vitro experiments demonstrated that HMGB1 induced proliferation and PCNA expression in CT26 colon cancer cells through the ERK1/2 pathway. CONCLUSION GSDME-mediated pyroptosis promotes the development of CAC by releasing HMGB1, which induces tumor cell proliferation and PCNA expression through the ERK1/2 pathway. This finding reveals a previously unrecognized link between pyroptosis and CAC tumorigenesis and offers new insight into CAC pathogenesis.
Collapse
Affiliation(s)
- Gao Tan
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Chongyang Huang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiaye Chen
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Qi J, Zhou J, Tang XQ, Wang Y. Gene Biomarkers Derived from Clinical Data of Hepatocellular Carcinoma. Interdiscip Sci 2020; 12:226-236. [PMID: 32297074 DOI: 10.1007/s12539-020-00366-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 03/05/2020] [Accepted: 04/02/2020] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer of high mortality, mainly due to the difficulty in diagnosis during its clinical stage. Here we aim to find the gene biomarkers, which are of important significance for diagnosis and treatment. In this work, 3682 differentially expressed genes on HCC were firstly differentiated based on the Cancer Genome Atlas database (TCGA). Co-expression modules of these differentially expressed genes were then constructed based on the weighted correlation network algorithm. The correlation coefficient between the co-expression module and clinical data from the Broad GDAC Firehose was thereafter derived. Finally, the interactive network of genes was then constructed. Then, the hub genes were used to implement enrichment analysis and pathway analysis in the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. Results revealed that the abnormally expressed genes in the module played an important role in the biological process including cell division, sister chromatid cohesion, DNA repair, and G1/S transition of mitotic cell cycle. Meanwhile, these genes also enriched in a few crucial pathways related to Cell cycle, Oocyte meiosis, and p53 signaling. Via investigating the closeness centrality of the interactive network, eight gene biomarkers including the CKAP2, TPX2, CDCA8, KIFC1, MELK, SGO1, RACGAP1, and KIAA1524 gene were discovered, whose functions had been indeed revealed to be correlated with HCC. This study, therefore, suggests that the abnormal expression of those eight genes may be taken as gene biomarkers of HCC.
Collapse
Affiliation(s)
- Jiaming Qi
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Jiaxing Zhou
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Xu-Qing Tang
- School of Science, Jiangnan University, Wuxi, 214122, China. .,Wuxi Engineering Research Center for Biocomputing, Jiangnan University, Wuxi, 214122, China.
| | - Yaolai Wang
- Wuxi Engineering Research Center for Biocomputing, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
11
|
Chen X, Hu X, Hu J, Qiu Z, Yuan M, Zheng G. Celastrol-Loaded Galactosylated Liposomes Effectively Inhibit AKT/c-Met-Triggered Rapid Hepatocarcinogenesis in Mice. Mol Pharm 2020; 17:738-747. [PMID: 31904241 DOI: 10.1021/acs.molpharmaceut.9b00428] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Our previous study proved that celastrol was a potential candidate for hepatocellular carcinoma (HCC) therapy. However, poor water solubility and toxic side effects may restrict its clinical application. To overcome these shortcomings and optimize its antitumor efficacy, we developed galactosylated liposomes using galactose-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) to deliver celastrol (C-GPL). C-GPL improved the water solubility of celastrol and exhibited high encapsulation efficiency, good stability in serum, and slow drug release profile. In vitro studies showed that C-GPL increased the cellular uptake of celastrol through receptor-mediated endocytosis, thereby enhancing celastrol cytotoxicity and cancer cell apoptosis. Particularly, in vivo antitumor activity of C-GPL was assessed in rapid HCC mouse models established via hydrodynamic transfection of the activated forms of AKT and c-Met. Compared to free celastrol, C-GPL significantly prevented liver weight gain, decreased liver damage biomarkers (glutamic-oxalacetic transaminase and alanine aminotransferase) and HCC marker (alpha-fetoprotein), and led to tumor disappearance on the liver surface. The improved therapeutic effect of C-GPL may be attributed to suppression of AKT activation, induction of apoptosis, and retardation of cell proliferation. Importantly, C-GPL exerted low toxicity to normal tissues without causing severe weight loss in mice. Taken together, C-GPL may become a promising drug delivery system for HCC treatment.
Collapse
Affiliation(s)
- Xinyan Chen
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xianxian Hu
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Junjie Hu
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhenpeng Qiu
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ming Yuan
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guohua Zheng
- Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
12
|
GTSE1, CDC20, PCNA, and MCM6 Synergistically Affect Regulations in Cell Cycle and Indicate Poor Prognosis in Liver Cancer. Anal Cell Pathol (Amst) 2019; 2019:1038069. [PMID: 32082966 PMCID: PMC7012210 DOI: 10.1155/2019/1038069] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
GTSE1 is well correlated with tumor progression; however, little is known regarding its role in liver cancer prognosis. By analyzing the hepatocellular carcinoma (HCC) datasets in GEO and TCGA databases, we showed that high expression of GTSE1 was correlated with advanced pathologic stage and poor prognosis of HCC patients. To investigate underlying molecular mechanism, we generated GTSE1 knockdown HCC cell line and explored the effects of GTSE1 deficiency in cell growth. Between GTSE1 knockdown and wild-type HCC cells, we identified 979 differentially expressed genes (520 downregulated and 459 upregulated genes) in the analysis of microarray-based gene expression profiling. Functional enrichment analysis of DEGs suggested that S phase was dysregulated without GTSE1 expression, which was further verified from flow cytometry analysis. Moreover, three other DEGs: CDC20, PCNA, and MCM6, were also found contributing to GTSE1-related cell cycle arrest and to be associated with poor overall survival of HCC patients. In conclusion, GTSE1, together with CDC20, PCNA, and MCM6, may synergistically promote adverse prognosis in HCC by activating cell cycle. Genes like GTSE1, CDC20, PCNA, and MCM6 may be promising prognostic molecular biomarkers in liver cancer.
Collapse
|
13
|
Qi Z, Chen M, Song Y, Wang X, Li B, Chen ZF, Tsang SY, Cai Z. Acute exposure to triphenyl phosphate inhibits the proliferation and cardiac differentiation of mouse embryonic stem cells and zebrafish embryos. J Cell Physiol 2019; 234:21235-21248. [PMID: 31032947 DOI: 10.1002/jcp.28729] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Attention has recently paid to the interaction of triphenyl phosphate (TPHP) and body tissues, particularly within the reproductive and development systems, due to its endocrine-disrupting properties. However, the acute effects of TPHP on early embryonic development remain unclear. Here, we used mouse embryonic stem cells (mESC) and zebrafish embryos to investigate whether TPHP is an embryo toxicant. First, we found that continuous exposure of TPHP decreased the proliferation and increased the apoptotic populations of mESCs in a concentration-dependent manner. Results of mass spectrometry showed that the intracellular concentration of TPHP reached 39.45 ± 7.72 µg/g w/w after 3 hr of acute exposure with TPHP (38.35 μM) but gradually decreased from 3 hr to 48 hr. Additionally, DNA damage was detected in mESCs after a short-term treatment with TPHP, which in turn, activated DNA damage responses, leading to cell cycle arrest by changing the expression levels of p53, proliferating cell nuclear antigen, and Y15-phosphorylated Cdk I. Furthermore, our results revealed that short-term treatment with TPHP disturbed cardiac differentiation by decreasing the expression levels of Oct4, Sox2, and Nanog and transiently reduced the glycolysis capacity in mESCs. In zebrafish embryos, exposure to TPHP resulted in broad, concentration-dependent developmental defects and coupled with heart malformation and reduced heart rate. In conclusion, the two models demonstrate that acute exposure to TPHP affects early embryonic development and disturbs the cardiomyogenic differentiation.
Collapse
Affiliation(s)
- Zenghua Qi
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Min Chen
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiya Wang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Bingkun Li
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Zhi-Feng Chen
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Suk Ying Tsang
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zongwei Cai
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, Guangdong, China.,State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
14
|
Chen Y, Zhao ZX, Huang F, Yuan XW, Deng L, Tang D. MicroRNA-1271 functions as a potential tumor suppressor in hepatitis B virus-associated hepatocellular carcinoma through the AMPK signaling pathway by binding to CCNA1. J Cell Physiol 2019; 234:3555-3569. [PMID: 30565670 DOI: 10.1002/jcp.26955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is mainly associated with hepatitis B virus (HBV) infection and characterized by metastasizing and infiltrating adjacent and distant tissues. Notably, microRNA-1271 (miR-1271) is a tumor suppressor in various cancers. Therefore, we evaluate the ability of miR-1271 to influence cell proliferation, migration, invasion, and apoptosis in HBV-associated HCC through the Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway via targeting CCNA1. HBV-associated HCC and adjacent normal tissues were collected to identify the expression of miR-1271 and CCNA1. To verify the relationship between miR-1271 and CCNA1, we used bioinformatics prediction and the dual-luciferase reporter gene assay. The effects of miR-1271 on HBV-associated HCC cell behaviors were investigated by treatment of the miR-1271 mimic, the miR-1271 inhibitor, or small interfering RNA against CCNA1. The HBV-DNA quantitative assay, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid assay, scratch test, transwell assay, and flow cytometry were used to detect HBV-DNA replication, cell proliferation, invasion, migration, and apoptosis. MiR-1271 showed a low expression, whereas CCNA1 showed a high expression in HBV-associated HCC tissues. We identified that miR-1271 targeted and negatively regulated CCNA1. Upregulated miR-1271 and downregulated CCNA1 inhibited the HBV-associated HCC cell HBV-DNA replication, proliferation, migration, and invasion, while accelerating apoptosis by activating the AMPK signaling pathway. MiR-1271 promotes the activation of the AMPK signaling pathway by binding to CCNA1, whereby miR-1271 suppresses HBV-associated HCC progression. This study points to a potential therapeutic approach of downregulation of miR-1271 in HBV-associated HCC treatment.
Collapse
Affiliation(s)
- Yang Chen
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Zhen-Xian Zhao
- Department of Hepatobiliary Surgery, The Eastern Hospital of The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fei Huang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiao-Wei Yuan
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Liang Deng
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Di Tang
- Department of General Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
15
|
Interpretation of Euphorbia Kansui Stir-Fried with Vinegar Treating Malignant Ascites by a UPLC-Q-TOF/MS Based Rat Serum and Urine Metabolomics Strategy Coupled with Network Pharmacology. Molecules 2018; 23:molecules23123246. [PMID: 30544627 PMCID: PMC6322356 DOI: 10.3390/molecules23123246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Euphorbia kansui stir-fried with vinegar (V-kansui) has promising biological activities toward treating malignant ascites with reduced toxicity compared to crude kansui. But the mechanism concerning promoting the excretion of ascites has not been systematically studied. The purpose of this paper was to investigate the possible mechanism of V-kansui in treating malignant ascites, including metabolic pathways and molecular mechanism using an integrated serum and urine metabolomics coupled with network pharmacology. Serum and urine samples of rats were collected and analyzed by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). A comparison with crude kansui was also made to demonstrate the feasibility of processing. Principle component analysis (PCA) and orthogonal partial least square discriminate analysis (OPLS-DA) were conducted to discriminate the groups, search important variables and reveal the possible pathways. A compound-target-metabolite network was finally constructed to identify the crucial targets to further understand the molecular mechanism. Sixteen significant metabolites contributing to the discrimination of model and control groups were tentatively screened out. They were mainly involved in the arachidonic acid metabolism, steroid hormone biosynthesis and primary bile acid to possibly reduce inflammatory and modulate the renin-angiotensin-aldosterone system to achieve treating malignant ascites. A bio-network starting from the compounds and ending in the metabolites was constructed to elucidate the molecular mechanism. HSP90AA1, ANXA2, PRDX6, PCNA, SOD2 and ALB were identified as the potential key targets that were responsible for the treatment of malignant ascites by the parameter combining the average shortest path length and betweenness centrality. The correlated 17 compounds were considered as the potential active ingredients in V-kansui. In addition, the metabolomics showed that the effect of V-kansui was almost in accordance with crude kansui. These results systematically revealed the mechanism of V-kansui against malignant ascites for the first time using metabolomics coupled with network pharmacology. V-kansui could be a promising safe and therapeutic medicine for the excretion of ascites.
Collapse
|
16
|
Bourckhardt GF, Cecchini MS, Ammar D, Kobus-Bianchini K, Müller YMR, Nazari EM. Effects of homocysteine on mesenchymal cell proliferation and differentiation during chondrogenesis on limb development. J Appl Toxicol 2015; 35:1390-7. [DOI: 10.1002/jat.3111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Gilian Fernando Bourckhardt
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina; Campus Universitário; Trindade Florianópolis SC Brazil
| | - Manuela Sozo Cecchini
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina; Campus Universitário; Trindade Florianópolis SC Brazil
| | - Dib Ammar
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina; Campus Universitário; Trindade Florianópolis SC Brazil
| | - Karoline Kobus-Bianchini
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina; Campus Universitário; Trindade Florianópolis SC Brazil
| | - Yara Maria Rauh Müller
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina; Campus Universitário; Trindade Florianópolis SC Brazil
| | - Evelise Maria Nazari
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina; Campus Universitário; Trindade Florianópolis SC Brazil
| |
Collapse
|
17
|
Wang W, Huang P, Zhang L, Wei J, Xie Q, Sun Q, Zhou X, Xie H, Zhou L, Zheng S. Antitumor efficacy of C-X-C motif chemokine ligand 14 in hepatocellular carcinoma in vitro and in vivo. Cancer Sci 2013; 104:1523-31. [PMID: 24033560 DOI: 10.1111/cas.12279] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/09/2013] [Accepted: 08/15/2013] [Indexed: 12/16/2022] Open
Abstract
C-X-C motif chemokine ligand 14 (CXCL14) is a novel gene that is expressed in many normal cells but is absent from or expressed at very low levels in cancerous tissues such as head and neck squamous cell carcinoma (HNSCC), prostate cancer, and pancreatic cancer. However, the relationship between CXCL14 and hepatocellular carcinoma (HCC) remains unclear. Therefore, the exact function of CXCL14, which may modulate antitumor immune responses in certain cancers, was evaluated. CXCL14 was downregulated in HCC tissues compared to adjacent normal tissues. Moreover, overexpression of CXCL14 had an inhibitory effect on cell proliferation, induced apoptosis and inhibited the invasion of HCC cells in vitro. Upregulation of CXCL14 by lentivirus also significantly suppressed the growth of subcutaneous tumors in nude mice in vivo. We further demonstrated that the loss of CXCL14 expression was regulated by promoter hypermethylation. CXCL14 induced tumor cell apoptosis through both the mitochondrial and nuclear apoptosis pathways. CXCL14 suppressed tumor cell proliferation through regulation of the cell cycle by downregulation of cyclins and cyclin-dependent kinases. In conclusion, CXCL14 plays a pivotal role as a potential tumor suppressor in HCC. The re-expression or upregulation of this gene may provide a novel strategy in HCC therapy in the future.
Collapse
Affiliation(s)
- Weilin Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Organ Transplantation, Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang G, Li B, Hao Y, Zhi J, He C, Xu C. Correlation analysis between gene expression profile of high-fat emulsion-induced non-alcoholic fatty liver and liver regeneration in rat. Cell Biol Int 2013; 37:917-28. [PMID: 23619824 DOI: 10.1002/cbin.10118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/29/2013] [Indexed: 12/21/2022]
Abstract
To explore the relevance of non-alcoholic fatty liver disease (NAFLD) to liver regeneration (LR), rat models of non-alcoholic steatohepatitis (NASH) and LR were established, respectively, then Rat Genome 230 2.0 Array was used to detect the gene expression abundance of them, and the reliabilities of the array data were confirmed by real-time RT-PCR. As a result, the expression of 93 genes was significantly changed during NAFLD occurrence and 948 genes in LR. Hierarchical clustering indicated that the expression profiles of the above two events were quite different. K-means cluster classified their expression patterns into four clusters, and gene expression trends of clusters 1, 2 were similar in NAFLD and LR, while clusters 3, 4 were contrary with the gene expression changes of LR more abundant. DAVID classifications and functional enrichment analysis found that lipid metabolism and carbohydrate metabolism were stronger in NAFLD than in LR, but some other physiological activities including inflammation/immune response, cell adhesion, and migration, cell proliferation and differentiation in NAFLD were weaker than in LR. IPA further indicated that lipid metabolism, inflammation response, and cellular development were highly associated with NAFLD, and thus identified some potential biomarkers for NAFLD.
Collapse
Affiliation(s)
- Gaiping Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan Province, China
| | | | | | | | | | | |
Collapse
|
19
|
Specific siRNA targeting receptor for advanced glycation end products (RAGE) decreases proliferation in human breast cancer cell lines. Int J Mol Sci 2013; 14:7959-78. [PMID: 23579957 PMCID: PMC3645726 DOI: 10.3390/ijms14047959] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/21/2013] [Accepted: 04/01/2013] [Indexed: 12/18/2022] Open
Abstract
Receptor for Advanced Glycation End Products (RAGE) is an oncogenic trans-membranous receptor overexpressed in various human cancers. However, the role of RAGE in breast cancer development and proliferation is still unclear. In this study, we demonstrated that RAGE expression levels are correlated to the degree of severity of breast cancer. Furthermore, there is a decrease in the proliferation of all sub-types of breast cancer, MCF-7, SK-Br-3 and MDA-MB-231, as a result of the effect of RAGE siRNA. RAGE siRNA arrested cells in the G1 phase and inhibited DNA synthesis (p < 0.05). Moreover, qRT-PCR and Western Blot results demonstrated that RAGE siRNA decreases the expression of transcriptional factor NF-κB p65 as well as the expression of cell proliferation markers PCNA and cyclinD1. RAGE and RAGE ligands can thus be considered as possible targets for breast cancer management and therapy.
Collapse
|
20
|
Rudzitis-Auth J, Menger MD, Laschke MW. Resveratrol is a potent inhibitor of vascularization and cell proliferation in experimental endometriosis. Hum Reprod 2013; 28:1339-47. [PMID: 23427233 DOI: 10.1093/humrep/det031] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY QUESTION Does the phytochemical compound resveratrol inhibit vascularization of endometriotic lesions? SUMMARY ANSWER Resveratrol suppresses the development of new microvessels in endometriotic lesions by inhibiting endothelial cell proliferation. WHAT IS KNOWN ALREADY Establishment and progression of endometriosis is crucially dependent on angiogenesis. Resveratrol is a pleiotropic agent, which dose-dependently suppresses the development of new blood vessels. STUDY DESIGN, SIZE, DURATION This was a randomized study in a mouse model of endometriosis. Twenty female BALB/c mice with surgically induced endometriosis were treated with resveratrol (40 mg/kg/day, n = 10) or vehicle (n = 10) for 4 weeks. MATERIAL, SETTING, METHODS Peritoneal and mesenteric endometriotic lesions were surgically induced by uterine tissue transplantation into the abdominal cavity of BALB/c mice. The animals were daily treated with resveratrol (40 mg/kg) or vehicle by oral gavage. Lesion growth, vascularization, apoptosis and cell proliferation were subsequently analyzed by means of high-resolution ultrasound imaging, caliper measurements, histology and immunohistochemistry throughout an observation period of 4 weeks. MAIN RESULTS AND THE ROLE OF CHANCE Resveratrol inhibited angiogenesis in peritoneal and mesenteric endometriotic lesions, as indicated by a significantly reduced microvessel density when compared with controls. Additional immunohistochemical analyses revealed that this was caused by a decreased proliferating activity of CD31-positive endothelial cells in the newly developing microvasculature of the lesions. In line with these findings, lesions in resveratrol-treated mice exhibited a reduced growth rate and a smaller final size than controls. This was associated with lower numbers of proliferating cell nuclear antigen- and Ki67-positive stromal and glandular cells. Apoptotic cells were not detectable in either group. To limit the role of chance, the experiments were conducted under standardized laboratory conditions with appropriate controls. Statistical significance was accepted for a value of P < 0.05. LIMITATIONS, REASONS FOR CAUTION Endometriotic lesions were surgically induced by uterine tissue transplantation without the use of pathological endometriotic tissue of human origin. Therefore, the results obtained in this mouse model may not fully correlate to human patients with endometriosis. WIDER IMPLICATIONS OF THE FINDINGS Resveratrol is a potent inhibitor of vascularization in endometriotic lesions. This, most probably, causes the suppression of lesion growth. Accordingly, resveratrol represents a promising candidate therapy for future phytochemical treatment of endometriosis. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by a grant of the 'Freunde des Universitätsklinikums des Saarlandes'. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- J Rudzitis-Auth
- Institute for Clinical and Experimental Surgery, University of Saarland, Homburg/Saar D66421, Germany.
| | | | | |
Collapse
|
21
|
Zafar H, Ali S. Boron inhibits the proliferating cell nuclear antigen index, molybdenum containing proteins and ameliorates oxidative stress in hepatocellular carcinoma. Arch Biochem Biophys 2013; 529:66-74. [DOI: 10.1016/j.abb.2012.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/22/2012] [Accepted: 11/22/2012] [Indexed: 12/14/2022]
|
22
|
Lee J, Lim KT. Normalizing effect of SJSZ glycoprotein (38 kDa) on proliferating cell nuclear antigen and interferon-γ in diethylnitrosamine-induced mice splenocytes. J Cell Biochem 2012; 114:808-15. [PMID: 23060247 DOI: 10.1002/jcb.24419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/01/2012] [Indexed: 11/10/2022]
Abstract
One of the immunosuppressive responses when hepatocellular carcinoma (HCC) develops in mammals is defective proliferation in the spleen. The objective of this study was to investigate the protective effect of the Styrax japonica Siebold et al. Zuccarini (SJSZ) glycoprotein on the proliferation of splenocytes induced by diethlynitrosamine (DEN). To assess whether the SJSZ glycoprotein modulates splenocyte proliferation, Balb/c mice were injected intraperitoneally with DEN (50 mg/kg, BW) for 7 weeks. After 7 weeks, the mice were sacrificed, and spleens were isolated. We evaluated [(3) H]-thymidine incorporation, extracellular signal-regulated kinase (ERK), cell cycle-related factors [p53, p21, p27, cyclin D1/cyclin dependent kinase (CDK) 4], proliferating cell nuclear antigen and interferon (IFN)-γ using radiation activity, immunoblot analysis, and the reverse transcription-polymerase chain reaction. The results revealed that the SJSZ glycoprotein (10 mg/kg, BW) increased [(3) H]-thymidine incorporation, ERK phosphorylation, expression levels of cyclin D1/cyclin dependent kinase 4, and IFN-γ. However, the SJSZ glycoprotein decreased levels of p53, p21, and p27. Taken together, these results suggest that the SJSZ glycoprotein inhibited defective splenocyte proliferation induced by DEN.
Collapse
Affiliation(s)
- Jin Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, 300 Yongbong-Dong, Gwang-ju 500-757, South Korea
| | | |
Collapse
|
23
|
Li D, Chen P, Li XY, Zhang LY, Xiong W, Zhou M, Xiao L, Zeng F, Li XL, Wu MH, Li GY. Grade-specific expression profiles of miRNAs/mRNAs and docking study in human grade I-III astrocytomas. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 15:673-82. [PMID: 21978395 DOI: 10.1089/omi.2011.0064] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although several miRNAs have been identified to be involved in glioblastoma tumorigenesis, little is known about the global expression profiles of miRNAs and their functional targets in astrocytomas at earlier stages of malignancy. In this study the global expression of miRNAs and mRNAs in normal brain tissue samples and grade I-III astrocytomas were analyzed parallelly using microarrays, and the grade-specific expression profiles of them were obtained by unsupervised hierarchical clustering. It was also confirmed that miR-107, miR-124, miR-138, and miR-149 were downregulated significantly in grade I-IV astrocytomas, and overexpression of miR-124 and miR-149 inhibited glioblastoma cell proliferation and migration. Furthermore, grade-specific changes were discovered in the central biological processes, regulatory networks, and signaling pathways associated with dysregulated genes, and a regulatory network of putative functional miRNA-mRNA pairs was defined. In conclusion, our results may contribute to a better understanding of the molecular mechanisms involved in astrocytoma tumorigenesis and malignant progression.
Collapse
Affiliation(s)
- Dan Li
- Cancer Research Institute, Central South University, Changsha, Hunan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Selective targeting of genetically engineered mesenchymal stem cells to tumor stroma microenvironments using tissue-specific suicide gene expression suppresses growth of hepatocellular carcinoma. Ann Surg 2012; 254:767-74; discussion 774-5. [PMID: 22042469 DOI: 10.1097/sla.0b013e3182368c4f] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The use of engineered mesenchymal stem cells (MSCs) as therapeutic vehicles for the treatment of experimental pancreatic and breast cancer has been previously demonstrated. The potential application of MSCs for the treatment of hepatocellular carcinoma (HCC) has been controversial. The general approach uses engineered MSCs to target different aspects of tumor biology, including angiogenesis or the fibroblast-like stromal compartment, through the use of tissue-specific expression of therapeutic transgenes. The aim of the present study was (1) to evaluate the effect of exogenously added MSCs on the growth of HCC and (2) the establishment of an MSC-based suicide gene therapy for experimental HCC. METHODS Mesenchymal stem cells were isolated from bone marrow of C57/Bl6 p53(-/-) mice. The cells were injected into mice with HCC xenografts and the effect on tumor proliferation and angiogenesis was evaluated. The cells were then stably transfected with red fluorescent protein (RFP) or Herpes simplex virus thymidine kinase (HSV-Tk) gene under control of the Tie2 promoter/enhancer or the CCL5 promoter. Mesenchymal stem cells were injected intravenously into mice with orthotopically growing xenografts of HCC and treated with ganciclovir (GCV). RESULTS Ex vivo examination of hepatic tumors revealed tumor-specific recruitment, enhanced tumor growth, and increased microvessel density after nontherapeutic MSC injections. After their homing to the hepatic xenografts, engineered MSCs demonstrated activation of the Tie2 or CCL5 promoter as shown by RFP expression. Application of CCL5/HSV-TK transfected MSCs in combination with GCV significantly reduced tumor growth by 56.4% as compared with the control group and by 71.6% as compared with nontherapeutic MSC injections. CCL5/HSV-TK(+) transfected MSCs proved more potent in tumor inhibition as compared with Tie2/HSV-TK(+) MSCs. CONCLUSION Exogenously added MSCs are recruited to growing HCC xenografts with concomitant activation of the CCL5 or Tie2 promoters within the MSCs. Stem cell-mediated introduction of suicide genes into the tumor followed by prodrug administration was effective for treatment of experimental HCC and thus may help fill the existing gap in bridging therapies for patients suffering from advanced HCCs.
Collapse
|
25
|
Chen GG, Leung J, Liang NC, Li L, Wu K, Chan UPF, Leung BCS, Li M, Du J, Deng YF, Gong X, Lv Y, Chak ECW, Lai PBS. Ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid inhibits hepatocellular carcinoma in vitro and in vivo via stabilizing IkBα. Invest New Drugs 2012; 30:2210-8. [PMID: 22227815 DOI: 10.1007/s10637-011-9791-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/29/2011] [Indexed: 12/17/2022]
Abstract
Ent-11-hydroxy-15-oxo-kaur-16-en-19-oic-acid (5F) isolated from Pteris Semipinnata L is known to inhibit certain tumor cells in vitro. The information on the in vivo effect of 5F is limited and its effect on hepatocellular carcinoma (HCC) is unknown. In this study, the anti-tumor effect of 5F was investigated in a diethylnitrosamine (DEN)-induced mouse HCC model. In addition to therapeutic effect, the potential side effect was monitored. A panel of cultured HCC cells was used to confirm the in vivo data and explore the responsible molecular pathway. The result showed that 5F significantly inhibited the DEN-induced HCC tumors by reducing the number of tumor foci and the volume of tumors. Furthermore, 5F induced the death of cultured HCC cells in dose- and time-dependent manners. The cell death was confirmed to be apoptotic by in vivo and in vitro TUNEL assays. 5F inhibited NF-kB by stabilizing its inhibitor IkBα, reducing the nuclear p65 and inhibiting NF-kB activity. Subsequently it affected the NF-kB downstream molecules with a decrease in anti-apoptotic Bcl-2 and increase in pro-apoptotic Bax and Bak. During the whole period of the experiment, mice receiving 5F appeared to be healthy, though they suffered from a mild degree of hair loss. 5F did not damage liver and renal functions. In conclusion, 5F is effective against HCC with minimal side effects. It induces apoptosis in HCC cells via inhibiting NF-kB, leading to the decrease of Bcl-2 but the increase of Bax and Bak.
Collapse
Affiliation(s)
- George G Chen
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Modulatory effect of phytoglycoprotein (38 kDa) on cyclin D1/CDK4 in BNL CL.2 cells induced by N-methyl-N'-nitro-N-nitrosoguanidine. Naunyn Schmiedebergs Arch Pharmacol 2011; 385:181-90. [PMID: 22012075 DOI: 10.1007/s00210-011-0699-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
In the developmental stages of cancer, cell transformation occurs after the promotion stage and is a marker of cancer progression. This cell transformation is related to abnormal proliferation during the cancer initiation stage. The purpose of this study was to evaluate the effect of Styrax japonica Siebold et al. Zuccarin (SJSZ) glycoprotein on cell transformation in murine embryonic liver cells (BNL CL.2) following N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) treatment. To determine abnormal proliferation during the initiation stage, intracellular reactive oxygen species (ROS), phosphorylation of extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK), activities of cell cycle-related factors [cyclin D1/cyclin dependent kinase (CDK) 4], cell cycle inhibitors (p53, p21, and p27), nuclear factor (NF)-κB, and proliferating cell nuclear antigen (PCNA) were evaluated using Western blot analysis and real-time PCR. Our study demonstrated that SJSZ glycoprotein (50 μg/ml) reduces foci formation with combined treatment [MNNG and 12-O-tetradecanoyl phorbol-13-acetate] of BNL CL.2 cells. With regard to proliferation-related signals, our finding indicated that SJSZ glycoprotein (50 μg/ml) diminished the production of intracellular ROS, activity of phosphorylated ERK, p38 MAPK, NF-κB (p50 and p65), PCNA, and cyclin D1/CDK4 in MNNG-induced BNL CL.2 cells. Taken together, these results lead us to speculate that SJSZ glycoprotein can inhibit abnormal cell proliferation at the initiation stage of hepatocarcinogenesis.
Collapse
|
27
|
Lee J, Lim KT. Plant-originated glycoprotein (24 kDa) has an inhibitory effect on proliferation of BNL CL.2 cells in response to di(2-ethylhexyl)phthalate. Cell Biochem Funct 2011; 29:496-505. [DOI: 10.1002/cbf.1777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 04/28/2011] [Accepted: 06/03/2011] [Indexed: 11/10/2022]
Affiliation(s)
- Jin Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute and Center for the Control of Animal Hazards Using Biotechnology (BK21); Chonnam National University; Gwangju; South Korea
| | - Kye-Taek Lim
- Molecular Biochemistry Laboratory, Biotechnology Research Institute; Chonnam National University; Gwangju; South Korea
| |
Collapse
|
28
|
Bruner-Tran KL, Osteen KG, Taylor HS, Sokalska A, Haines K, Duleba AJ. Resveratrol inhibits development of experimental endometriosis in vivo and reduces endometrial stromal cell invasiveness in vitro. Biol Reprod 2010; 84:106-12. [PMID: 20844278 DOI: 10.1095/biolreprod.110.086744] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Endometriosis is a common gynecologic disorder characterized by ectopic attachment and growth of endometrial tissues. Resveratrol is a natural polyphenol with antiproliferative and anti-inflammatory properties. Our objective was to study the effects of resveratrol on human endometriotic implants in a nude mouse model and to examine its impact on human endometrial stromal (HES) cell invasiveness in vitro. Human endometrial tissues were obtained from healthy donors. Endometriosis was established in oophorectomized nude mice by intraperitoneal injection of endometrial tissues. Mice were treated with 17β-estradiol (8 mg, silastic capsule implants) alone (n = 16) or with resveratrol (6 mg/mouse; n = 20) for 10-12 and 18-20 days beginning 1 day after tissue injection. Mice were killed and endometrial implants were evaluated. A Matrigel invasion assay was used to examine the effects of resveratrol on HES cells. We assessed number and size of endometriotic implants in vivo and Matrigel invasion in vitro. Resveratrol decreased the number of endometrial implants per mouse by 60% (P < 0.001) and the total volume of lesions per mouse by 80% (P < 0.001). Resveratrol (10-30 μM) also induced a concentration-dependent reduction of invasiveness of HES by up to 78% (P < 0.0001). Resveratrol inhibits development of endometriosis in the nude mouse and reduces invasiveness of HES cells. These observations may aid in the development of novel treatments of endometriosis.
Collapse
Affiliation(s)
- Kaylon L Bruner-Tran
- Women's Reproductive Health Research Center, Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
29
|
Li G, Dong S, Qu J, Sun Z, Huang Z, Ye L, Liang H, Ai X, Zhang W, Chen X. Synergism of hydroxyapatite nanoparticles and recombinant mutant human tumour necrosis factor-alpha in chemotherapy of multidrug-resistant hepatocellular carcinoma. Liver Int 2010; 30:585-92. [PMID: 19780956 DOI: 10.1111/j.1478-3231.2009.02113.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Locoregional chemotherapy continues to be the mainstay for the treatment of unresectable hepatocellular carcinoma (HCC). One of the principal obstacles implicated in its unsuccessful therapy is multidrug resistance (MDR). Former studies have identified the multidrug-resistant nature and possible mechanisms of hepatoma cells both in vitro and in vivo. This work aimed to develop an effective strategy for the treatment of HCC with MDR. METHODS The treatment was exploited to inhibit the MDR cells by co-administration of the recombinant mutant human tumour necrosis factor-alpha (rmhTNF-alpha), a sublethal dose of chemicals [adriamycin (ADM), mitomycin and 5-FU] and hydroxyapatite nanoparticles (nHAPs). Real-time quantitative reverse transcriptase-polymerase chain reaction and electrochemiluminescence Western blot were used to detect the expression of several related genes. RESULTS The chemicals acted synergistically with rmhTNF-alpha and nHAP in suppressing the growth of hepatoma cells and inducing apoptosis of the cells, with the MDR phenotype reversed, as measured by intracellular ADM retention. Analysis of mRNA and protein revealed that rmhTNF-alpha inhibited the gene expression of XIAP, survivin, Ki67, PCNA, MDR1 and BCRP to some extent. Moreover, the inhibitory effects mentioned above could be as good or better than when nHAP is incorporated into the regimens. CONCLUSIONS rmhTNF-alpha was not only able to restore the chemotherapeutic sensitivity to HepG2/ADM, its xenograft model and clinical samples but also further inhibited the growth of these tumours by a combination of nHAP. These results strongly suggested that chemicals in combination with rmhTNF-alpha and nHAP may be beneficial for the local treatment of advanced HCC.
Collapse
Affiliation(s)
- Gaopeng Li
- Department of Ultrasound, the Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Venturi A, Piaz FD, Giovannini C, Gramantieri L, Chieco P, Bolondi L. Human hepatocellular carcinoma expresses specific PCNA isoforms: an in vivo and in vitro evaluation. J Transl Med 2008; 88:995-1007. [PMID: 18521065 DOI: 10.1038/labinvest.2008.50] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is a 36 kDa protein involved in several cellular mechanisms, including DNA synthesis and repair, cell cycle regulation and apoptosis. An alteration in PCNA structure might contribute to DNA-damage accumulation in cancer cells. This study was aimed to evaluate the PCNA pattern of expression, in terms of aggregation status, isoforms and post-translational modifications, in human hepatocellular carcinoma (HCC) and cirrhosis as well as in HCC cell lines. Twelve HCCs and surrounding cirrhotic tissues were analysed, along with HepG2, Hep3B and SNU-398 cell lines. Normal liver specimens and cirrhosis without HCC were included as controls. Both DNA-bound and DNA-unbound PCNA fractions were analysed, and PCNA pattern of expression was displayed on two-dimensional gel electrophoresis followed by western blot. Results were confirmed by mass spectrometry. To compare HCCs vs surrounding tissues, immunolabelling and immunostaining were performed. In 6 of 12 HCCs and in cell lines, we found three major PCNA acidic forms, corresponding to monomers, probably dimers and trimers, and a basic isoform. In the six remaining HCCs, only a PCNA acidic form associated with multiple basic isoforms was detected. Importantly, the PCNA basic form was not found in cirrhotic tissues. To clarify the nature of the detected PCNA isoforms, ubiquitin-specific immunoblotting as well as phosphatase treatment were employed. A PCNA-ubiquitylated form in cell lines and PCNA-phosphorylated isoforms in 6 of 12 HCCs were detected. Finally, in the DNA-bound fraction we detected only an acidic PCNA monomeric form. We conclude that human hepatocellular carcinoma expresses specific PCNA isoforms compared to those found in cirrhosis, implicating a role for PCNA functional alterations in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Annamaria Venturi
- Department of Internal Medicine and Gastroenterology, University of Bologna, Bologna, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Kao JT, Chuah SK, Huang CC, Chen CL, Wang CC, Hung CH, Chen CH, Wang JH, Lu SN, Lee CM, Changchien CS, Hu TH. P21/WAF1 is an independent survival prognostic factor for patients with hepatocellular carcinoma after resection. Liver Int 2007; 27:772-781. [PMID: 17617120 DOI: 10.1111/j.1478-3231.2007.01499.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIMS The cyclin kinase inhibitor p21/WAF1 is regulated by p53-dependent or independent pathways and inhibits the action of proliferating cell nuclear antigen (PCNA). The prognostic role of p21/WAF1 in hepatocellular carcinoma (HCC) is ambiguous. To further clarify this, we examined the expression of three genes in HCC. METHODS A total of 122 resected HCC specimens were collected from 1987 to 1998. Expression of p21/WAF1, p53, and PCNA in HCC was analysed by immunohistochemistry. RESULTS Immunoreactivity was detectable for p21/WAF1 in 37%, and for p53 in 41.8% of HCCs. Positive expression of both genes does not relate to each other, but both are associated with a high PCNA labelling index (LI) (P<0.05) in tumour. p53 (+) is also associated with high serum alpha-foetoprotein (alphaFP) (P<0.001), tumour dedifferentiation (P=0.001) and advanced pathologic stages (P=0.017). However, p21/WAF1 (+) did not show clinicopathologic significance. Survival analysis indicated that poor prognostic factors were p21/WAF1 (-) (P=0.024), p53 (+) (P=0.008), high PCNA (P<0.001), tumour without capsule (P=0.001), poor tumour differentiation (P=0.004), advanced pathologic stage (P<0.001), and high serum alphaFP(P<0.001). Independent factors were p21/WAF1 expression, pathologic stage, and PCNA. CONCLUSION In HCC, increased proliferation index PCNA is significantly associated with positive p53 and p21/WAF1. But p21/WAF1 expression did not relate to p53 expression. P21/WAF1 (+) is a good event and serves as an independent survival prognostic factor for HCC, which is a novel finding apart from previous reports.
Collapse
Affiliation(s)
- Jung-Ta Kao
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sun W, Xing B, Sun Y, Du X, Lu M, Hao C, Lu Z, Mi W, Wu S, Wei H, Gao X, Zhu Y, Jiang Y, Qian X, He F. Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis: novel protein markers in hepatocellular carcinoma tissues. Mol Cell Proteomics 2007; 6:1798-808. [PMID: 17627933 DOI: 10.1074/mcp.m600449-mcp200] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor, and chronic infection with hepatitis B virus is one of its major risk factors. To identify the proteins involved in HCC carcinogenesis, we used two-dimensional fluorescence DIGE to study the differentially expressed proteins in tumor and adjacent nontumor tissue samples. Samples from 12 hepatitis B virus-associated HCC patients were analyzed. A total of 61 spots were significantly up-regulated (ratio >/= 2, p </= 0.01) in tumor samples, whereas 158 spots were down-regulated (ratio </= -2, p </= 0.01). Seventy-one gene products were identified among these spots. Members of the heat shock protein 70 and 90 families were simultaneously up-regulated, whereas metabolism-associated proteins were decreased in HCC samples. The down-regulation of mitochondrial and peroxisomal proteins in these results suggested loss of special organelle functions during HCC carcinogenesis. Four metabolic enzymes involved in the methylation cycle in the liver were down-regulated in HCC tissues, indicating S-adenosylmethionine deficiency in HCC. Two gene products, glyceraldehyde-3-phosphate dehydrogenase and formimidoyltransferase-cyclodeaminase, were identified from inversely altered spots, suggesting that different isoforms or post-translational modifications of these two proteins might play different roles in HCC. For the first time, the overexpression of Hcp70/Hsp90-organizing protein and heterogeneous nuclear ribonucleoproteins C1/C2 in HCC tissues was confirmed by Western blot and then by immunohistochemistry staining in 70 HCC samples, suggesting their potential as protein tumor markers. In summary, we profiled proteome alterations in HCC tissues, and these results may provide useful insights for understanding the mechanism involved in the process of HCC carcinogenesis.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Ammonia-Lyases/metabolism
- Biomarkers, Tumor/analysis
- Blotting, Western
- Carcinoma, Hepatocellular/chemistry
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Down-Regulation
- Electrophoresis, Gel, Two-Dimensional/methods
- Female
- Gene Expression Regulation, Neoplastic
- Heat-Shock Proteins/chemistry
- Heat-Shock Proteins/metabolism
- Heterogeneous-Nuclear Ribonucleoproteins/chemistry
- Heterogeneous-Nuclear Ribonucleoproteins/metabolism
- Humans
- Immunohistochemistry
- Male
- Middle Aged
- Molecular Sequence Data
- Neoplasm Proteins/analysis
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/isolation & purification
- Proteome/analysis
- Reproducibility of Results
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Subcellular Fractions
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Quaglia A, McStay M, Stoeber K, Loddo M, Caplin M, Fanshawe T, Williams G, Dhillon A. Novel markers of cell kinetics to evaluate progression from cirrhosis to hepatocellular carcinoma. Liver Int 2006; 26:424-32. [PMID: 16629645 DOI: 10.1111/j.1478-3231.2006.01242.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND We investigated cell cycle kinetics of nodular lesions in cirrhosis to differentiate hepatocellular carcinoma (HCC) from its precursor lesions. METHODS Twelve small HCC, 10 regenerative (RN), six large regenerative (LRN), and five dysplastic nodules (DN), identified in explant cirrhotic livers of five consecutive patients transplanted at Royal Free Hospital in 2002. Immunoperoxidase for MCM2, geminin and Ki67 was performed and the percentage of positive cells counted. RESULTS The proportion of cells expressing MCM2 was more than those expressing Ki67, which in turn was more than those expressing geminin (overall median=16%, 2% and 0.5%, respectively, P<0.001). There was a statistically significant trend of increasing Ki67 expression (P=0.006), from RN to HCC; this trend was not statistically significant for geminin (P=0.18) or MCM2 (P=0.51). The median percentage of cells expressing Ki67 was 1% in RN, 0.5% in LRN, 2.2% in DN and 5.4% in HCC. The combination of these markers identified four different cell kinetics patterns: 'resting' (G0 cells: MCM2 -ve, Ki67 -ve, geminin -ve); 'licensed' (MCM2 +ve, Ki67 -ve, geminin -ve); 'slowly growing' (G1 phase arrest, MCM2 +ve, Ki67 +ve, low (0.4%) geminin) and expanding (MCM2 +ve, Ki67 +ve, geminin +ve) nodules. CONCLUSIONS The combination of MCM2, geminin and Ki67 could represent a valuable tool in the understanding of HCC progression in cirrhosis.
Collapse
Affiliation(s)
- Alberto Quaglia
- Department of Histopathology, Royal Free and University College Medical School, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gramantieri L, Chieco P, Giovannini C, Lacchini M, Treré D, Grazi GL, Venturi A, Bolondi L. GADD45-α expression in cirrhosis and hepatocellular carcinoma: relationship with DNA repair and proliferation. Hum Pathol 2005; 36:1154-62. [PMID: 16260267 DOI: 10.1016/j.humpath.2005.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 07/29/2005] [Indexed: 11/22/2022]
Abstract
Growth arrest and DNA damage 45-alpha (GADD45-alpha) is a nuclear protein involved in maintenance of genomic stability, DNA repair, and suppression of cell growth through interaction with nuclear elements, including cyclin-dependent kinase inhibitor 1A (CDKN1A) and PCNA. In this study, GADD45-alpha expression was assessed in 28 cases of hepatocellular carcinoma (HCC) and matched cirrhosis tissues, and correlated with the presence of DNA-bound PCNA and CDKN1A as markers of DNA repair, as well as with clinicopathologic variables including histopathologic grade, tumor size, nodularity, viral status, alpha-fetoprotein serum levels, and p53 and Ki67 immunostaining. GADD45-alpha and CDKN1A messenger RNA (mRNA) were analyzed by reverse transcriptase-polymerase chain reaction. GADD45-alpha protein expression was evaluated by Western blot (WB) and enzyme-linked immunosorbent assays (ELISAs). PCNA and CDKN1A DNA-bound fractions were determined by WB. GADD45-alpha mRNA was down-regulated in 20 of 26 HCCs with respect to matched cirrhosis, but no correlation was found with the corresponding protein levels assessed by both WB and ELISA. GADD45-alpha and CDKN1A protein levels were related to each other both in cirrhotic and in neoplastic tissues, and a concordant up- or down-regulation was observed in HCCs with respect to cirrhosis. DNA-bound PCNA and CDKN1A were present in 5 HCCs and were associated with higher GADD45-alpha protein levels assessed by ELISA. No significant association was found in HCCs between GADD45-alpha protein expression and histopathologic grading, nodule size, focality, and proliferation, whereas a positive correlation was found with alpha-fetoprotein serum levels. In conclusion, GADD45-alpha mRNA was down-regulated with respect to matched cirrhosis in most HCCs; however, no correlation was found between mRNA and protein levels. GADD45-alpha protein levels were higher in HCCs with DNA-bound CDKN1A and PCNA, suggesting a possible role in DNA repair.
Collapse
Affiliation(s)
- Laura Gramantieri
- Center for Applied Biomedical Research (CRBA), Saint Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Fiume L, Bolondi L, Busi C, Chieco P, Kratz F, Lanza M, Mattioli A, Di Stefano G. Doxorubicin coupled to lactosaminated albumin inhibits the growth of hepatocellular carcinomas induced in rats by diethylnitrosamine. J Hepatol 2005; 43:645-52. [PMID: 16023760 DOI: 10.1016/j.jhep.2005.02.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/16/2004] [Accepted: 02/01/2005] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS The hepatocyte receptor for asialoglycoproteins internalizes galactosyl terminating macromolecules which can be used as hepatotropic drug carriers. Since this receptor is also expressed on the cells of well differentiated human hepatocellular carcinomas (HCCs), we studied whether conjugation of doxorubicin (DOXO) with lactosaminated human albumin (L-HSA) increases the drug efficacy on HCCs induced in rats by diethylnitrosamine (DENA). METHODS DENA was given in the drinking water for 8 weeks. One week after the last day of DENA administration, animals were randomly assigned to three groups. Each group was administered with either saline, free or coupled DOXO (1 microg/g). Rats received 4 weekly intravenous injections. One week after the last administration, rats were killed and HCC development was evaluated by counting the tumor nodules on the surface of hepatic lobes. RESULTS In rats treated with L-HSA coupled DOXO the number of neoplastic nodules was significantly lower (P < 0.05) than that counted in animals injected with saline or with free DOXO. Coupled DOXO did not decrease body rat weight, which was markedly reduced by the free drug. CONCLUSIONS Conjugation with L-HSA increased the antineoplastic efficacy and decreased the systemic toxicity of DOXO administered to rats with HCCs produced by DENA.
Collapse
Affiliation(s)
- Luigi Fiume
- Department of Experimental Pathology, University of Bologna, via San Giacomo, 14 40126 Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|