1
|
Guillou A, Nisli E, Klingler S, Linden A, Holland JP. Photoactivatable Fluorescent Tags for Dual-Modality Positron Emission Tomography Optical Imaging. J Med Chem 2022; 65:811-823. [PMID: 34981931 DOI: 10.1021/acs.jmedchem.1c01899] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescent protein conjugates are vital tools in a wide range of scientific disciplines from basic biochemical research to applications in clinical pathology and intraoperative surgery. We report the synthesis and characterization of photoactivatable fluorophores (PhotoTags) based on the functionalization of coumarin, fluorescein, BODIPY, rhodamine B, and cyanine dyes with a photochemically active aryl azide group. Photochemical labeling experiments using human serum albumin produced fluorescent proteins in high yields under irradiation with ultraviolet light for <15 min. We also synthesized DFO-RhodB-PEG3-ArN3─a photoactivatable compound that can be radiolabeled with 89Zr for applications in optical imaging and positron emission tomography. One-pot 89Zr-radiolabeling and light-induced protein conjugation produced [89Zr]ZrDFO-RhodB-PEG3-azepin-trastuzumab. Proof-of-concept studies in vitro and in vivo confirmed that [89Zr]ZrDFO-RhodB-PEG3-azepin-trastuzumab is a potential dual-modality agent for detecting human epidermal growth factor receptor 2 (HER2/neu) expression. Overall, the PhotoTag technology represents a rapid, synthetically versatile, and user-friendly approach for generating novel protein conjugates.
Collapse
Affiliation(s)
- Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Eda Nisli
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
2
|
Klingler S, Fay R, Holland JP. Light-Induced Radiosynthesis of 89Zr-DFO-Azepin-Onartuzumab for Imaging the Hepatocyte Growth Factor Receptor. J Nucl Med 2020; 61:1072-1078. [PMID: 31924725 DOI: 10.2967/jnumed.119.237180] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022] Open
Abstract
Methods that provide rapid access to radiolabeled antibodies are vital in the development of diagnostic and radiotherapeutic agents for PET or radioimmunotherapy. The human hepatocyte growth factor receptor (c-MET) signaling pathway is dysregulated in several malignancies, including gastric cancer, and is an important biomarker in drug discovery. Here, we used a photoradiochemical approach to produce 89Zr-radiolabeled onartuzumab (a monovalent, antihuman c-MET antibody), starting directly from the fully formulated drug (MetMAb). Methods: Simultaneous 89Zr-radiolabeling and protein conjugation was performed in one-pot reactions containing 89Zr-oxalate, the photoactive chelate desferrioxamine B (DFO)-aryl azide (DFO-ArN3), and MetMAb to give 89Zr-DFO-azepin-onartuzumab. As a control, 89Zr-DFO-benzyl Bn-isothiocyanate Bn-NCS-onartuzumab was prepared via a conventional two-step process using prepurified onartuzumab and DFO-Bn-NCS. Radiotracers were purified by using size-exclusion methods and evaluated by radiochromatography. Radiochemical stability was studied in human serum, and immunoreactivity was determined by cellular binding assays using MKN-45 gastric carcinoma cells. PET imaging at multiple time points (0-72 h) was performed on female athymic nude mice bearing subcutaneous MKN-45 xenografts. Biodistribution experiments were performed after the final image was obtained. The tumor specificity of 89Zr-DFO-azepin-onartuzumab was assessed in vivo by competitive inhibition (blocking) studies. Results: Initial photoradiosynthesis experiments produced 89Zr-DFO-azepin-onartuzumab in less than 15 min, with an isolated decay-corrected radiochemical yield (RCY) of 24.8%, a radiochemical purity of approximately 90%, and a molar activity of approximately 1.5 MBq nmol-1 Reaction optimization improved the radiochemical conversion of 89Zr-DFO-azepin-onartuzumab to 56.9% ± 4.1% (n = 3), with isolated RCYs of 41.2% ± 10.6% (n = 3) and radiochemical purity of more than 90%. Conventional methods produced 89Zr-DFO-Bn-NCS-onartuzumab with an isolated RCY of more than 97%, radiochemical purity of more than 97% and molar activity of approximately 14.0 MBq nmol-1 Both radiotracers were immunoreactive and stable in human serum. PET imaging and biodistribution studies showed high tumor uptake for both radiotracers. By 72 h, tumor and liver uptake (percentage injected dose [%ID]) reached 15.37 ± 5.21 %ID g-1 and 6.56 ± 4.03 %ID g-1, respectively, for 89Zr-DFO-azepin-onartuzumab (n = 4) and 21.38 ± 11.57 %ID g-1 and 18.84 ± 6.03 %ID g-1, respectively, for 89Zr-DFO-Bn-NCS-onartuzumab (n = 4). Blocking experiments gave a statistically significant reduction in tumor uptake (6.34 ± 0.47 %ID g-1) of 89Zr-DFO-azepin-onartuzumab (n = 4). Conclusion: The experiments demonstrated that photoradiosynthesis is a viable alternative approach for producing 89Zr-radiolabeled antibodies directly in protein formulation buffer, reducing protein aggregation and liver uptake.
Collapse
Affiliation(s)
- Simon Klingler
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Patra M, Klingler S, Eichenberger LS, Holland JP. Simultaneous Photoradiochemical Labeling of Antibodies for Immuno-Positron Emission Tomography. iScience 2019; 13:416-431. [PMID: 30903963 PMCID: PMC6430723 DOI: 10.1016/j.isci.2019.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 03/02/2019] [Indexed: 12/04/2022] Open
Abstract
A method for the simultaneous (one-step) photochemical conjugation and 89Zr-radiolabeling of antibodies is introduced. A photoactivatable chelate based on the functionalization of desferrioxamine B with an arylazide moiety (DFO-ArN3, [1]) was synthesized. The radiolabeled complex, 89Zr-1+, was produced and characterized. Density functional theory calculations were used to investigate the mechanism of arylazide photoactivation. 89Zr-radiolabeling experiments were also used to determine the efficiency of photochemical conjugation. A standard two-step approach gave a measured conjugation efficiency of 3.5% ± 0.4%. In contrast, the one-step process gave a higher photoradiolabeling efficiency of ∼76%. Stability measurements, cellular saturation binding assays, positron emission tomographic imaging, and biodistribution studies in mice bearing SK-OV-3 tumors confirmed the biochemical viability and tumor specificity of photoradiolabeled [89Zr]ZrDFO-azepin-trastuzumab. Experimental data support the conclusion that the combination of photochemistry and radiochemistry is a viable strategy for producing radiolabeled proteins for imaging and therapy.
Photochemistry is combined with radiochemistry for radiosynthesis in a flash Simultaneous photoradiochemistry is achieved with high radiolabeling efficiency Photoradiochemistry produces viable 89Zr-radiolabeled antibodies Density functional theory calculations elucidate the photoactivation mechanism
Collapse
Affiliation(s)
- Malay Patra
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Simon Klingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Larissa S Eichenberger
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland
| | - Jason P Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, Zurich 8057, Switzerland.
| |
Collapse
|
4
|
Troise F, Cafaro V, Giancola C, D'Alessio G, De Lorenzo C. Differential binding of human immunoagents and Herceptin to the ErbB2 receptor. FEBS J 2008; 275:4967-79. [PMID: 18795950 DOI: 10.1111/j.1742-4658.2008.06625.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Overexpression of the ErbB2 receptor is associated with the progression of breast cancer, and is a sign of a poor prognosis. Herceptin, a humanized antibody directed to the ErbB2 receptor, has been proven to be effective in the immunotherapy of breast cancer. However, it can result in cardiotoxicity, and a large fraction of breast cancer patients are resistant to Herceptin treatment. We have engineered three novel, fully human, anti-ErbB2 immunoagents: Erbicin, a human single-chain antibody fragment; ERB-hRNase, a human immunoRNase composed of Erbicin fused to a human RNase; ERB-hcAb, a human 'compact' antibody in which two Erbicin molecules are fused to the Fc fragment of a human IgG1. Both ERB-hRNase and ERB-hcAb strongly inhibit the growth of ErbB2-positive cells in vivo. The interactions of the Erbicin-derived immunoagents and Herceptin with the extracellular domain of ErbB2 (ErbB2-ECD) were investigated for the first time by three different methods. Erbicin-derived immunoagents bind soluble extracellular domain with a lower affinity than that measured for the native antigen on tumour cells. Herceptin, by contrast, shows a higher affinity for soluble ErbB2-ECD. Accordingly, ErbB2-ECD abolished the in vitro antitumour activity of Herceptin, with no effect on that of Erbicin-derived immunoagents. These results suggest that the fraction of immunoagent neutralized by free extracellular domain shed into the bloodstream is much higher for Herceptin than for Erbicin-derived immunoagents, which therefore may be used at lower therapeutic doses than those employed for Herceptin.
Collapse
Affiliation(s)
- Fulvia Troise
- Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Italy
| | | | | | | | | |
Collapse
|
5
|
Uram JD, Mayer M. Estimation of solid phase affinity constants using resistive-pulses from functionalized nanoparticles. Biosens Bioelectron 2006; 22:1556-60. [PMID: 16889953 DOI: 10.1016/j.bios.2006.06.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 06/15/2006] [Accepted: 06/23/2006] [Indexed: 11/21/2022]
Abstract
This paper describes a method for estimating the solid phase affinity constant of antibodies by using resistive-pulse (Coulter counting) data from spherical nanoparticles that expose antigens. We developed this technique by analyzing data published recently by Saleh, O.A., Sohn, L.L., 2003a. Proc. Natl. Acad. Sci. U.S.A. 100, 820-824. These authors used resistive-pulse sensing to detect an increase in the diameter of streptavidin-functionalized colloids due to the binding of monoclonal anti-streptavidin antibodies. Based on further analysis of their data, we were able to determine the number of antibodies bound to the colloids at various antibody concentrations. This information made it possible to estimate the solid phase affinity constant of the interaction by fitting the data with binding isotherms that describe the binding equilibrium between antibody and antigen. We calculated a value of 2.6x10(8)+/-0.8x10(8) M-1 which is in agreement with the specifications of the supplier of the antibody.
Collapse
Affiliation(s)
- Jeffrey D Uram
- Department of Biomedical Engineering University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
6
|
Dimmock NJ, Hardy SA. Valency of antibody binding to virions and its determination by surface plasmon resonance. Rev Med Virol 2004; 14:123-35. [PMID: 15027004 DOI: 10.1002/rmv.419] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
All IgGs are homobivalent, but their ability to bind bivalently to the surface of a virus particle depends mainly on a favourable spacing of cognate epitopes and the angle that the FAb arm makes with the virus surface. If the angle of binding forces the second FAb arm to point into solution, monovalent binding is inevitable. This IgG will have the same affinity as its FAb, will be less stably bound than if it were bound bivalently, cannot cross-link epitopes on the surface of a virion, and cannot neutralise by cross-linking surface proteins. However, at moderate IgG concentrations, monovalently bound IgG can reduce infectivity by aggregating virions, a phenomenon that cannot occur with IgG bound bivalently. This review describes how surface plasmon resonance can be used to determine the valency of IgG binding to enveloped and non-enveloped virus particles, and discusses the implications of this new methodology.
Collapse
Affiliation(s)
- Nigel J Dimmock
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
7
|
Meng R, Smallshaw JE, Pop LM, Yen M, Liu X, Le L, Ghetie MA, Vitetta ES, Ghetie V. The Evaluation of Recombinant, Chimeric, Tetravalent Antihuman CD22 Antibodies. Clin Cancer Res 2004; 10:1274-81. [PMID: 14977825 DOI: 10.1158/1078-0432.ccr-1154-03] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The purpose of this study was to prepare chimeric antihuman CD22 tetravalent monoclonal antibodies (MAbs) with high functional affinity, long persistence in the circulation, increased antitumor activity, and conserved effector function in vitro. EXPERIMENTAL DESIGN We investigated the association/dissociation rates of these tetravalent antibodies using CD22(+) Daudi lymphoma cells. We then tested their ability to interact with Fc receptors on a human cell line (U937), to mediate antibody-dependent cellular cytotoxicity with human natural killer cells, to bind human C1q, to inhibit the in vitro growth of CD22 Daudi cells, and to persist in the circulation. RESULTS The rate of dissociation of the tetravalent MAbs versus the divalent antibody was considerably slower. These tetravalent MAbs inhibited the in vitro proliferation of CD22 Daudi cells at a concentration that was at least 100-fold lower than that of the divalent murine antibody. The tetravalent MAbs containing both the CH2 and CH3 domains and a chimeric recombinant divalent antibody bound similarly to Fc receptor, C1q, and mediate antibody-dependent cellular cytotoxicity equally well with human natural killer cells. The persistence in the circulation of chimeric tetravalent MAbs was considerably longer than that of chemical homodimers. CONCLUSIONS The tetravalent anti-CD22 MAbs with intact Fc regions should make effective therapeutic agents for B-cell tumors.
Collapse
Affiliation(s)
- Ruiqi Meng
- The Cancer Immunobiology Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390-8576, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Geary SM, Cambareri AC, Sincock PM, Fitter S, Ashman LK. Differential tissue expression of epitopes of the tetraspanin CD151 recognised by monoclonal antibodies. TISSUE ANTIGENS 2001; 58:141-53. [PMID: 11703821 DOI: 10.1034/j.1399-0039.2001.580301.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
CD151, a member of the tetraspanin family of cell membrane proteins, is widely expressed in epithelial, endothelial and muscle cells as well as platelets and megakaryocytes. Several monoclonal antibodies recognising CD151 in transfected cells and immunoprecipitating typical bands of 28 and 32 kDa from cell lysates have been produced. Surprisingly, these antibodies show different patterns of staining on tissue sections and on haemopoietic cells. Here we show that these differences are at least in part due to masking of certain epitopes in integrin/CD151 complexes. These data have important implications for the use of monoclonal antibodies in studies of the distribution and function of CD151. Of six monoclonal antibodies from four laboratories, 11B1 was found to be the most reliable for detection of CD151 in different cell and tissue contexts.
Collapse
Affiliation(s)
- S M Geary
- Division of Haematology, Hanson Centre for Cancer Research, Rundle Mall, Adelaide, SA 5000, Australia
| | | | | | | | | |
Collapse
|
9
|
Okun VM, Moser R, Blaas D, Kenndler E. Complexes between monoclonal antibodies and receptor fragments with a common cold virus: determination of stoichiometry by capillary electrophoresis. Anal Chem 2001; 73:3900-6. [PMID: 11534714 DOI: 10.1021/ac0102213] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Complex formation between monoclonal antibodies or soluble receptor fragments and a human rhinovirus is quantified by relating the concentration of the antibody or receptor under equilibrium conditions to the initial concentration of the virus. Within a given concentration range of the reactants, the shape of the resulting curve depends only on the value of the dissociation constant of the particular system studied. Using antibodies and receptor fragments, cases for high, low, and intermediate affinity were investigated. For high-affinity systems, the curve approximates a decaying straight line and the binding stoichiometry can be accurately determined from the intercept with the x-axis. For the case of intermediate affinity, the curve can be linearized at low virus concentrations with the receptors present in large excess. Extrapolation of this line allows derivation of the binding stoichiometry from the intercept with the x-axis, although with less accuracy. For intermediate affinities, an estimate of the dissociation constant can be obtained from fitting the curve to the data points measured. Finally, in the case of low affinity none of the binding parameters can be quantified, although a rough estimate of the lower limit of the dissociation constant is possible. The method was applied for two different monoclonal antibodies, a Fab fragment and a receptor fragment, binding to human rhinovirus serotype 2. Thirty copies of the monoclonal antibody 8F5 were found to bind to the virion, which is in agreement with data from electron cryomicroscopy. The complex between monovalent human very-low-density lipoprotein receptor encompassing repeats 2 and 3 and human rhinovirus serotype 2 showed 60 receptor molecules bound per virion.
Collapse
Affiliation(s)
- V M Okun
- Institute of Analytical Chemistry, University of Vienna, Austria
| | | | | | | |
Collapse
|
10
|
|
11
|
Vonakis BM, Haleem-Smith H, Benjamin P, Metzger H. Interaction between the unphosphorylated receptor with high affinity for IgE and Lyn kinase. J Biol Chem 2001; 276:1041-50. [PMID: 11010962 DOI: 10.1074/jbc.m003397200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chinese hamster ovary fibroblasts previously transfected with the high affinity receptor for IgE (FcepsilonRI) were further transfected with the alpha subunit of the receptor for interleukin 2 (Tac) or with chimeric constructs in which the cytoplasmic domain of Tac was replaced with the C-terminal cytoplasmic domain of either the beta subunit or the gamma subunit of FcepsilonRI. Whereas native Tac failed to affect the aggregation-induced phosphorylation of FcepsilonRI, both chimeric constructs substantially inhibited this reaction. Alternatively, the FcepsilonRI-bearing fibroblasts were transfected with two chimeric constructs in which the cytoplasmic domain of Tac was replaced with a modified short form of Lyn kinase. The Lyn in both of the chimeric constructs had been mutated to remove the sites that are normally myristoylated and palmitoylated, respectively; one of the constructs had in addition been altered to be catalytically inactive. The catalytically active construct enhanced, and the inactive construct inhibited, aggregation-induced phosphorylation of the receptors. All of the chimeric constructs were largely distributed outside the detergent resistant microdomains, and whereas aggregation caused them to move to the domains in part, their aggregation was neither necessary nor enhanced their effects. These results and others indicate that the receptor and Lyn interact through protein-protein interactions that neither are dependent upon either the post-translational modification of the kinase with lipid moieties nor result exclusively from their co-localization in specialized membrane domains.
Collapse
Affiliation(s)
- B M Vonakis
- Section on Chemical Immunology, Arthritis and Rheumatism Branch, NIAMS, National Institutes of Health, Bethesda, Maryland 20892-1820, USA
| | | | | | | |
Collapse
|
12
|
Oda M, Azuma T. Reevaluation of stoichiometry and affinity/avidity in interactions between anti-hapten antibodies and mono- or multi-valent antigens. Mol Immunol 2000; 37:1111-22. [PMID: 11451416 DOI: 10.1016/s0161-5890(01)00028-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In order to obtain further information on the interaction between antigens (Ags) and B cell Ag receptors (BCR) for a better understanding of the relationship between signals resulting from Ag binding and B cell activation, effects of Ag valence and size on the apparent association constant, i.e. the avidity as well as the molecular stoichiometry of immune complexes in Ag-antibody (Ab) interactions were studied. Hapten conjugates using proteins of various molecular weights, such as hen egg lysozyme (HEL), ovalbumin (OVA), bovine serum albumin (BSA), and chicken gammaglobulin (CGG), were prepared for this purpose. Different ratios of the hapten, (4-hydroxy-3-nitrophenyl)acetyl (NP), to the protein were used for conjugation, and interactions between anti-NP monoclonal Abs (mAbs) and the NP conjugates were evaluated by surface plasmon resonance. It was founded that the two binding sites of an Ab were able to simultaneously accommodate two NP(1)-HEL, resulting in a tri-molecular complex, Ag(2)Ab(1). However, NP conjugates of the higher-molecular-weight proteins, OVA and BSA, formed only Ag(1)Ab(1), irrespective of hapten valence. This was thought to be due to steric hindrance caused by the binding of the first Ag. These results suggested that the stoichiometry depended largely on the size of the Ag involved and that mAbs with a low affinity are more efficient at raising the binding strength through divalent interaction since the avidity of two mAbs in interactions with highly haptenated BSA was not significantly different in spite of a 10-fold difference in affinity to the monovalent NP(1)-HEL.
Collapse
Affiliation(s)
- M Oda
- Research Institute for Biological Sciences (RIBS), Science University of Tokyo, 2669 Noda, Chiba 278-0022, Japan
| | | |
Collapse
|
13
|
Geyer A, Gege C, Schmidt RR. Calcium-Dependent Carbohydrate-Carbohydrate Recognition between Lewis(X) Blood Group Antigens This research was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. Angew Chem Int Ed Engl 2000; 39:3245-3249. [PMID: 11028065 DOI: 10.1002/1521-3773(20000915)39:18<3245::aid-anie3245>3.0.co;2-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- A Geyer
- Fachbereich Chemie M716 der Universität Konstanz 78457 Konstanz (Germany)
| | | | | |
Collapse
|
14
|
|
15
|
Yun CO, Nolan KF, Beecham EJ, Reisfeld RA, Junghans RP. Targeting of T lymphocytes to melanoma cells through chimeric anti-GD3 immunoglobulin T-cell receptors. Neoplasia 2000; 2:449-59. [PMID: 11191112 PMCID: PMC1507984 DOI: 10.1038/sj.neo.7900108] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Immunoglobulin T-cell receptors (IgTCRs) combine the specificity of antibodies with the potency of cellular killing by grafting antibody recognition domains onto TCR signaling chains. IgTCR-modified T cells are thus redirected to kill tumor cells based on their expression of intact antigen on cell surfaces, bypassing the normal mechanism of activation through TCR-peptide-major histocompatibility complex (MHC) recognition. Melanoma is one of the most immunoresponsive of human cancers and has served as a prototype for the development of a number of immunotherapies. The target antigen for this study is the ganglioside GD3, which is highly expressed on metastatic melanoma with only minor immunologic cross-reaction with normal tissues. To determine an optimal configuration for therapy, four combinations of IgTCRs were prepared and studied: sFv-epsilon, sFv-zeta, Fab-epsilon, Fab-zeta. These were expressed on the surface of human T cells by retroviral transduction. IgTCR successfully redirected T-cell effectors in an MHC-unrestricted manner, in this case against a non-T-dependent antigen, with specific binding, activation, and cytotoxicity against GD3+ melanoma cells. Soluble GD3 in concentrations up to 100 microg/ml did not interfere with recognition and binding of membrane-bound antigen. Based on the outcomes of these structural and functional tests, the sFv-zeta construct was selected for clinical development. These results demonstrate key features that emphasize the potential of anti-GD3 IgTCR-modified autologous T cells for melanoma therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/immunology
- Antigens, Neoplasm/immunology
- Binding Sites
- Cell Line
- Chemotaxis, Leukocyte/physiology
- Cytotoxicity, Immunologic
- Gangliosides/immunology
- Genes, Immunoglobulin
- Humans
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fragments/genetics
- Immunoglobulin Fragments/immunology
- Immunoglobulin Variable Region/genetics
- Immunoglobulin Variable Region/immunology
- Immunotherapy, Adoptive
- Interleukin-2/biosynthesis
- Jurkat Cells
- Kidney
- Melanoma/immunology
- Membrane Proteins/genetics
- Mice
- Rats
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
Collapse
Affiliation(s)
- C O Yun
- Biotherapeutics Development Lab, Harvard Institute of Human Genetics, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
16
|
Abstract
Flow cytometry is a powerful technique that enables the sensitive and quantitative detection of both cellular antigens and bound biological moieties. This article reviews how flow cytometry is increasingly being used as histocompatibility laboratories for the analysis of antibody specificity and HLA antigen expression. A basic description of flow cytometry principles and standardisation is given, together with an outline of clinical application in the areas of pre-transplant cross-matching, antibody screening, post-transplant antibody monitoring and HLA-B27 detection. It is concluded that flow cytometry is a useful multi-parametric analytical tool, yielding clinical benefit especially in the identification of patients at risk of early transplant rejection.
Collapse
Affiliation(s)
- T Horsburgh
- Department of Surgery, Leicester General Hospital, UK
| | | | | |
Collapse
|
17
|
|