1
|
Hartman GD, Sishtla K, Kpenu EK, Mijit M, Muniyandi A, Jo HN, Junge HJ, Shaw A, Bischof D, Liu S, Wan J, Kelley MR, Corson TW. Ref-1 redox activity modulates canonical Wnt signaling in endothelial cells. Redox Biol 2025; 83:103646. [PMID: 40305885 DOI: 10.1016/j.redox.2025.103646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Ischemic retinopathies, including proliferative diabetic retinopathy (PDR) and retinopathy of prematurity (ROP), are characterized by abnormal retinal neovascularization and can lead to blindness in children and adults. Current treatments, such as intravitreal anti-VEGF injections, face limitations due to high treatment burden and variable efficacy, as multiple signaling pathways, beyond VEGF, contribute to retinal neovascularization. Previous studies demonstrate that targeting the redox-mediated transcriptional regulatory function of APE1/Ref-1 reduces pathological neovascularization. We aimed to identify novel signaling pathways regulated by Ref-1 redox activity utilizing RNA sequencing of human retinal endothelial cells (HRECs) treated with a Ref-1 redox inhibitor. We found that Wnt/β-catenin signaling was significantly downregulated after Ref-1 inhibition. Given the role of Wnt signaling in vascular pathologies, we investigated how Ref-1 regulates Wnt/β-catenin signaling. Ref-1 inhibition downregulated Wnt co-receptors LRP5/6 at both the mRNA and protein levels in endothelial cells, suggesting transcriptional regulation. Ref-1 redox inhibitors APX3330 and APX2009 reduced Wnt3a-induced nuclear β-catenin levels, decreased Wnt transcriptional activity by TOPFlash luciferase assay, and blocked hypoxia-induced Wnt/β-catenin activation in HRECs. In the oxygen-induced retinopathy mouse model of retinal neovascularization, Ref-1 specific inhibitor APX2009 reduced the expression of Wnt-related genes at sites of neovascularization. These findings reveal a novel role for Ref-1 redox activity in modulating Wnt/β-catenin signaling in endothelial cells and highlight the potential of Ref-1 redox activity targeted inhibitors as a novel therapeutic approach for retinal neovascular diseases by modulating multiple disease-relevant pathways.
Collapse
Affiliation(s)
- Gabriella D Hartman
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kamakshi Sishtla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Eyram K Kpenu
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mahmut Mijit
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Anbukkarasi Muniyandi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ha-Neul Jo
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Harald J Junge
- Department of Ophthalmology and Visual Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Aaron Shaw
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniela Bischof
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sheng Liu
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN, USA
| | - Mark R Kelley
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Timothy W Corson
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada; Department of Ophthalmology and Vision Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Berry V, Ponnekanti MB, Aychoua N, Ionides A, Tsika C, Quinlan RA, Michaelides M. Multimorbidity Through the Lens of the Eye: Pathogenic Variants for Multiple Systemic Disorders Found in an Autosomal Dominant Congenital Cataract Cohort. Genes (Basel) 2025; 16:604. [PMID: 40428427 PMCID: PMC12111686 DOI: 10.3390/genes16050604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/19/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND This paper will identify the potential genetic causes of multimorbidity associated with autosomal dominant congenital cataract (ADCC). METHODS Whole exome sequencing (WES) was performed on 13 individuals affected with ADCC. Subsequent bioinformatic analyses identified variants with deleterious pathogenicity scores. RESULTS Disease-causing variants were identified in 8 genes already linked to cataract (CHMP4B, CRYAA, CRYBA1, CRYGD, CYP21A2, GJA8, OPA1, and POMGNT1), but variants previously associated with systemic disorders were also found in a further 11 genes (ACTL9, ALDH18A1, CBS, COL4A3, GALT, LRP5, NOD2, PCK2, POMT2, RSPH4A, and SMO). All variants were identified via pipeline data analysis, prioritising rare coding variants using Kaviar and the Genome Aggregation Database. The following ADCC-associated non-ocular phenotypes were identified in four patients in the cohort: (i) Horner's pupils, vaso-vagal syncope, and paroxysmal orthostatic tachycardia syndrome; (ii) reduced kidney function and high cholesterol; (iii) hypertension, high cholesterol, and kidney stones; and (iv) grade 1 spondylolysis. CONCLUSIONS We report 11 novel genes identified in an ADCC patient cohort associated with systemic disorders found, along with 8 known cataract-causing genes. Our findings broaden the spectrum of potentially cataract-associated genes and their related lens phenotypes, as well as evidence multimorbidities in four patients, highlighting the importance of careful multisystem phenotyping following genetic analysis.
Collapse
Affiliation(s)
- Vanita Berry
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (A.I.); (C.T.)
| | - Manav B. Ponnekanti
- UCL Medical School, University College London, 74 Huntley St, London WC1E 6DE, UK;
| | - Nancy Aychoua
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (A.I.); (C.T.)
| | - Alex Ionides
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (A.I.); (C.T.)
| | - Chrysanthi Tsika
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (A.I.); (C.T.)
| | - Roy A. Quinlan
- Department of Biosciences, University of Durham, Durham DH1 3LE, UK;
| | - Michel Michaelides
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK;
- Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK; (A.I.); (C.T.)
| |
Collapse
|
3
|
Bosakova M, Abraham SP, Wachtell D, Zieba JT, Kot A, Nita A, Czyrek AA, Koudelka A, Ursachi VC, Feketova Z, Rico-Llanos G, Svozilova K, Kocerova P, Fafilek B, Gregor T, Kotaskova J, Duran I, Vanhara P, Doubek M, Mayer J, Soucek K, Krakow D, Krejci P. Endoplasmic reticulum stress disrupts signaling via altered processing of transmembrane receptors. Cell Commun Signal 2025; 23:209. [PMID: 40307870 PMCID: PMC12044870 DOI: 10.1186/s12964-025-02208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/17/2025] [Indexed: 05/02/2025] Open
Abstract
Cell communication systems based on polypeptide ligands use transmembrane receptors to transmit signals across the plasma membrane. In their biogenesis, receptors depend on the endoplasmic reticulum (ER)-Golgi system for folding, maturation, transport and localization to the cell surface. ER stress, caused by protein overproduction and misfolding, is a well-known pathology in neurodegeneration, cancer and numerous other diseases. How ER stress affects cell communication via transmembrane receptors is largely unknown. In disease models of multiple myeloma, chronic lymphocytic leukemia and osteogenesis imperfecta, we show that ER stress leads to loss of the mature transmembrane receptors FGFR3, ROR1, FGFR1, LRP6, FZD5 and PTH1R at the cell surface, resulting in impaired downstream signaling. This is caused by downregulation of receptor production and increased intracellular retention of immature receptor forms. Reduction of ER stress by treatment of cells with the chemical chaperone tauroursodeoxycholic acid or by expression of the chaperone protein BiP resulted in restoration of receptor maturation and signaling. We show a previously unappreciated pathological effect of ER stress; impaired cellular communication due to altered receptor processing. Our findings have implications for disease mechanisms related to ER stress and are particularly important when receptor-based pharmacological approaches are used for treatment.
Collapse
Affiliation(s)
- Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Davis Wachtell
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jennifer T Zieba
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexander Kot
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Aleksandra Anna Czyrek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Adolf Koudelka
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Vlad-Constantin Ursachi
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Zuzana Feketova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Gustavo Rico-Llanos
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Katerina Svozilova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Petra Kocerova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
| | - Bohumil Fafilek
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Tomas Gregor
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
| | - Jana Kotaskova
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 62500, Brno, Czech Republic
| | - Ivan Duran
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Petr Vanhara
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic
| | - Michael Doubek
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 62500, Brno, Czech Republic
| | - Jiri Mayer
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno, 62500, Brno, Czech Republic
| | - Karel Soucek
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- Department of Cytokinetics, Institute of Biophysics, Czech Academy of Sciences, 61265, Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, Human Genetics, and Obstetrics and Gynecology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, 62500, Brno, Czech Republic.
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 60200, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 65691, Brno, Czech Republic.
| |
Collapse
|
4
|
Gorges DM, Filippin-Monteiro FB. Genetic variants in the LRP5 gene associated with gain and loss of bone mineral density. In Silico Pharmacol 2025; 13:61. [PMID: 40255261 PMCID: PMC12003225 DOI: 10.1007/s40203-025-00341-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/17/2025] [Indexed: 04/22/2025] Open
Abstract
The low-density lipoprotein receptor-related protein 5 (LRP5) plays a pivotal role in bone formation, influencing the proliferation and differentiation of osteoblasts and thereby impacting overall bone mass. Genetic variations stemming from non-synonymous single nucleotide polymorphisms (nsSNPs) within the LRP5 gene can lead to either enhanced or diminished function of the resultant protein, culminating in distinct phenotypic expressions such as osteoporosis-pseudoglioma syndrome (OPPG) and high bone mass (HBM). Through in silico analysis of 17 identified nsSNPs, it was observed that 14 of these variants induced damage at highly conserved sites, resulting in the destabilization of both protein function and structure. Notably, the functional alteration, be it a gain or loss, is primarily dictated by the interaction between the molecule and LRP5, rather than the specific amino acid substitution. This research offers an identification of detrimental nsSNPs within the LRP5 protein and serves as a foundation for population-based investigations into the phenotypic repercussions on a broader scale.
Collapse
Affiliation(s)
- Daphany Marah Gorges
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88040900 Brazil
| | - Fabíola Branco Filippin-Monteiro
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Florianópolis, SC 88040900 Brazil
| |
Collapse
|
5
|
Fu PJ, Zheng SY, Luo Y, Ren ZQ, Li ZH, Wang YP, Lu BB. Prg4 and Osteoarthritis: Functions, Regulatory Factors, and Treatment Strategies. Biomedicines 2025; 13:693. [PMID: 40149669 PMCID: PMC11940178 DOI: 10.3390/biomedicines13030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
Proteoglycan 4 (PRG4), also known as lubricin, plays a critical role in maintaining joint homeostasis by reducing friction between articular cartilage surfaces and preventing cartilage degradation. Its deficiency leads to early-onset osteoarthritis (OA), while overexpression can protect against cartilage degeneration. Beyond its lubricating properties, PRG4 exerts anti-inflammatory effects by interacting with Toll-like receptors, modulating inflammatory responses within the joint. The expression of Prg4 is regulated by various factors, including mechanical stimuli, inflammatory cytokines, transcription factors such as Creb5 and FoxO, and signaling pathways like TGF-β, EGFR, and Wnt/β-catenin. Therapeutic strategies targeting PRG4 in OA have shown promising results, including recombinant PRG4 protein injections, gene therapies, and small molecules that enhance endogenous Prg4 expression or mimic its function. Further research into the molecular mechanisms regulating Prg4 expression will be essential in developing more effective OA treatments. Understanding the interplay between Prg4 and other signaling pathways could reveal novel therapeutic targets. Additionally, advancements in gene therapy and biomaterials designed to deliver PRG4 in a controlled manner may hold potential for the long-term management of OA, improving patient outcomes and delaying disease progression.
Collapse
Affiliation(s)
- Peng-Jie Fu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Sheng-Yuan Zheng
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Yan Luo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Zhuo-Qun Ren
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Zi-Han Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Clinical Medicine, Xiangya Medicine School, Central South University, Changsha 410013, China
| | - Ya-Ping Wang
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Bang-Bao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China; (P.-J.F.); (S.-Y.Z.); (Y.L.); (Z.-Q.R.); (Z.-H.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
6
|
Danz JC, Degen M. Selective modulation of the bone remodeling regulatory system through orthodontic tooth movement-a review. FRONTIERS IN ORAL HEALTH 2025; 6:1472711. [PMID: 40115506 PMCID: PMC11924204 DOI: 10.3389/froh.2025.1472711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/14/2025] [Indexed: 03/23/2025] Open
Abstract
Little is known about how tissues mediate the ability to selectively form or resorb bone, as required during orthodontic tooth movement (OTM), facial growth, continued tooth eruption and for healing after fractures, maxillofacial surgical repositioning or implant dentistry. OTM has the unique ability to selectively cause apposition, resorption or a combination of both at the alveolar periosteal surface and therefore, provides an optimal process to study the regulation of bone physiology at a tissue level. Our aim was to elucidate the mechanisms and signaling pathways of the bone remodeling regulatory system (BRRS) as well as to investigate its clinical applications in osteoporosis treatment, orthopedic surgery, fracture management and orthodontic treatment. OTM is restricted to a specific range in which the BRRS permits remodeling; however, surpassing this limit may lead to bone dehiscence. Low-intensity pulsed ultrasound, vibration or photobiomodulation with low-level laser therapy have the potential to modify BRRS with the aim of reducing bone dehiscence and apical root resorption or accelerating OTM. Unloading of bone and periodontal compression promotes resorption via receptor activator of nuclear factor κB-ligand, monocyte chemotactic protein-1, parathyroid hormone-related protein (PTHrP), and suppression of anti-resorptive mediators. Furthermore, proinflammatory cytokines, such as interleukin-1 (IL-1), IL-6, IL-8, tumor necrosis factor-α, and prostaglandins exert a synergistic effect on bone resorption. While proinflammatory cytokines are associated with periodontal sequelae such as bone dehiscence and gingival recessions, they are not essential for OTM. Integrins mediate mechanotransduction by converting extracellular biomechanical signals into cellular responses leading to bone apposition. Active Wnt signaling allows β-catenin to translocate into the nucleus and to stimulate bone formation, consequently converging with integrin-mediated mechanotransductive signals. During OTM, periodontal fibroblasts secrete PTHrP, which inhibits sclerostin secretion in neighboring osteocytes via the PTH/PTHrP type 1 receptor interaction. The ensuing sclerostin-depleted region may enhance stem cell differentiation into osteoblasts and subperiosteal osteoid formation. OTM-mediated BRRS modulation suggests that administering sclerostin-inhibiting antibodies in combination with PTHrP may have a synergistic bone-inductive effect. This approach holds promise for enhancing osseous wound healing, treating osteoporosis, bone grafting and addressing orthodontic treatments that are linked to periodontal complications.
Collapse
Affiliation(s)
- Jan Christian Danz
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine ZMK, University of Bern, Bern, Switzerland
| | - Martin Degen
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Xi Y, Jiang Q, Dai W, Chen C, Wang Y, Miao X, Lai K, Jiang Z, Yang G, Wang Y. SP7 transcription factor ameliorates bone defect healing in low-density lipoprotein receptor-related protein 5 (LRP5)-dependent osteoporosis mice. J Zhejiang Univ Sci B 2025; 26:254-268. [PMID: 40082204 PMCID: PMC11906391 DOI: 10.1631/jzus.b2300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/30/2023] [Indexed: 03/16/2025]
Abstract
Loss-of-function variants of low-density lipoprotein receptor-related protein 5 (LRP5) can lead to reduced bone formation, culminating in diminished bone mass. Our previous study reported transcription factor osterix (SP7)-binding sites on the LRP5 promoter and its pivotal role in upregulating LRP5 expression during implant osseointegration. However, the potential role of SP7 in ameliorating LRP5-dependent osteoporosis remained unknown. In this study, we used mice with a conditional knockout (cKO) of LRP5 in mature osteoblasts, which presented decreased osteogenesis. The in vitro experimental results showed that SP7 could promote LRP5 expression, thereby upregulating the osteogenic markers such as alkaline phosphatase (ALP), Runt-related transcription factor 2 (Runx2), and β-catenin (P<0.05). For the in vivo experiment, the SP7 overexpression virus was injected into a bone defect model of LRP5 cKO mice, resulting in increased bone mineral density (BMD) (P<0.001) and volumetric density (bone volume (BV)/total volume (TV)) (P<0.001), and decreased trabecular separation (Tb.Sp) (P<0.05). These data suggested that SP7 could ameliorate bone defect healing in LRP5 cKO mice. Our study provides new insights into potential therapeutic opportunities for ameliorating LRP5-dependent osteoporosis.
Collapse
Affiliation(s)
- Yue Xi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Qifeng Jiang
- School of Stomatology, Zhejiang University, Hangzhou 310058, China
| | - Wei Dai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Chaozhen Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Yang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Xiaoyan Miao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China. ,
| |
Collapse
|
8
|
Loh NY, Vasan SK, Rosoff DB, Roberts E, van Dam AD, Verma M, Phillips D, Wesolowska-Andersen A, Neville MJ, Noordam R, Ray DW, Tobias JH, Gregson CL, Karpe F, Christodoulides C. LRP5 promotes adipose progenitor cell fitness and adipocyte insulin sensitivity. COMMUNICATIONS MEDICINE 2025; 5:51. [PMID: 40000740 PMCID: PMC11862225 DOI: 10.1038/s43856-025-00774-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND WNT signaling plays a key role in postnatal bone formation. Individuals with gain-of-function mutations in the WNT co-receptor LRP5 exhibit increased lower-body fat mass and potentially enhanced glucose metabolism, alongside high bone mass. However, the mechanisms by which LRP5 regulates fat distribution and its effects on systemic metabolism remain unclear. This study aims to explore the role of LRP5 in adipose tissue biology and its impact on metabolism. METHODS Metabolic assessments and imaging were conducted on individuals with gain- and loss-of-function LRP5 mutations, along with age- and BMI-matched controls. Mendelian randomization analyses were used to investigate the relationship between bone, fat distribution, and systemic metabolism. Functional studies and RNA sequencing were performed on abdominal and gluteal adipose cells with LRP5 knockdown. RESULTS Here we show that LRP5 promotes lower-body fat distribution and enhances systemic and adipocyte insulin sensitivity through cell-autonomous mechanisms, independent of its bone-related functions. LRP5 supports adipose progenitor cell function by activating WNT/β-catenin signaling and preserving valosin-containing protein (VCP)-mediated proteostasis. LRP5 expression in adipose progenitors declines with age, but gain-of-function LRP5 variants protect against age-related fat loss in the lower body. CONCLUSIONS Our findings underscore the critical role of LRP5 in regulating lower-body fat distribution and insulin sensitivity, independent of its effects on bone. Pharmacological activation of LRP5 in adipose tissue may offer a promising strategy to prevent age-related fat redistribution and metabolic disorders.
Collapse
Affiliation(s)
- Nellie Y Loh
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Senthil K Vasan
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Daniel B Rosoff
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Emile Roberts
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Andrea D van Dam
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Manu Verma
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Daniel Phillips
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Agata Wesolowska-Andersen
- Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Matt J Neville
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - David W Ray
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Jonathan H Tobias
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, UK
| | - Celia L Gregson
- MRC Integrative Epidemiology Unit (IEU), Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, UK
| | - Fredrik Karpe
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK
| | - Constantinos Christodoulides
- Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, OUH Foundation Trust, Oxford, UK.
| |
Collapse
|
9
|
Wang Z, Ren L, Li Z, Qiu Q, Wang H, Huang X, Ma D. Impact of Different Cell Types on the Osteogenic Differentiation Process of Mesenchymal Stem Cells. Stem Cells Int 2025; 2025:5551222. [PMID: 39980864 PMCID: PMC11842143 DOI: 10.1155/sci/5551222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/15/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
The skeleton is an important organ in the human body. Bone defects caused by trauma, inflammation, tumors, and other reasons can impact the quality of life of patients. Although the skeleton has a certain ability to repair itself, the current most effective method is still autologous bone transplantation due to factors such as blood supply and defect size. Modern medicine is attempting to overcome these limitations through cell therapy, with mesenchymal stem cells (MSCs) playing a crucial role. MSCs can be extracted from different tissues, and their differentiation potential varies depending on the source. Various cells and cell secretions can influence this process. This article, based on previous research, reviews the effects of macrophages, endothelial cells (ECs), nerve cells, periodontal cells, and even some bacteria on MSC osteogenic differentiation, aiming to provide a reference for multicell coculture strategies related to osteogenesis.
Collapse
Affiliation(s)
- Zixin Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Lina Ren
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Zhengtao Li
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Qingyuan Qiu
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Haonan Wang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Xin Huang
- School of Stomatology, Lanzhou University, Lanzhou, China
| | - Dongyang Ma
- School of Stomatology, Lanzhou University, Lanzhou, China
- Department of Oral and Maxillofacial Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| |
Collapse
|
10
|
Tahoori M, Tafreshi AP, Naghshnejad F, Zeynali B. Transforming Growth Factor-β Signaling Inhibits the Osteogenic Differentiation of Mesenchymal Stem Cells via Activation of Wnt/β-Catenin Pathway. J Bone Metab 2025; 32:11-20. [PMID: 40098425 PMCID: PMC11960301 DOI: 10.11005/jbm.24.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Due to the contradictory and temporally variable effects of transforming growth factor-β (TGF-β) and the Wnt/β-catenin pathways on osteogenic differentiation in different stem cell types, we sought to examine the activity of these pathways as well as their interaction during the osteogenic differentiation of the osteo-induced adiposederived mesenchymal stem cells (AD-MSCs). METHODS The osteo-induced AD-MSCs were treated with TGF-β1 (1 ng/mL) either alone or together with its antagonist SB- 431542 (10 μM) or that of the Wnt antagonist, inhibitor of Wnt production 2 (IWP2) (3 μM), every 3 days for 21 days. Cells were then analyzed for calcium deposit, bone matrix production, and the osteogenic markers gene expression. RESULTS Our results showed firstly that, either of the pathways is active since the mRNA expressions of their respective target genes, PAI-1 and Cyclin D1 were detectable although the latter was at a very low level. Secondly that, treatment with TGF-β1 decreased levels of calcium deposit, bone matrix production and the osteogenic markers gene expression. Accordingly, osteogenesis was induced in those treated with SB either alone or together with the TGF-β1, pointing to inhibitory effect of TGF-β pathway on osteogenic differentiation. Thirdly that following treatment with IWP2 and TGF-β1, the inhibitory effect of TGF-β1 on bone matrix production was reversed. Fourthly, there was constantly low expression of Wnt3amRNA but progressively increasing that of its endogenous antagonist Dkk-1mRNA throughout. CONCLUSIONS Together these results suggest that TGF-β1 requires the active Wnt/β-catenin signaling pathway to exert its inhibitory effects on osteogenic differentiation of AD-MSCs.
Collapse
Affiliation(s)
- Mahsa Tahoori
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
| | - Azita Parvaneh Tafreshi
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran,
Iran
| | - Fatemeh Naghshnejad
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
| | - Bahman Zeynali
- Developmental Biology Laboratory, School of Biology, College of Science, University of Tehran, Tehran,
Iran
| |
Collapse
|
11
|
Abdullah Sani N, Kamaruddin NA, Soelaiman IN, Pang KL, Chin KY, Ramli ESM. Palm Tocotrienol Activates the Wnt3a/β-Catenin Signaling Pathway, Protecting MC3T3-E1 Osteoblasts from Cellular Damage Caused by Dexamethasone and Promoting Bone Formation. Biomedicines 2025; 13:243. [PMID: 39857826 PMCID: PMC11762645 DOI: 10.3390/biomedicines13010243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025] Open
Abstract
Background and aim: Prolonged glucocorticoid (GC) treatment increases oxidative stress, triggers apoptosis of osteoblasts, and contributes to osteoporosis. Tocotrienol, as an antioxidant, could protect the osteoblasts and preserve bone quality under glucocorticoid treatment. From this study, we aimed to determine the effects of tocotrienol on MC3T3-E1 murine pre-osteoblastic cells treated with GC. Methods: MC3T3-E1 cells were exposed to dexamethasone (150 µM), with or without palm tocotrienol (PTT; 0.25, 0.5, and 1 µg/mL). Cell viability was measured by the MTS assay. Alizarin Red staining was performed to detect calcium deposits. Cellular alkaline phosphatase activity was measured to evaluate osteogenic activity. The expression of osteoblastic differentiation markers was measured by an enzyme-linked immunoassay. Results: Enhanced matrix mineralization was observed in the cells treated with 0.5 µg/mL PTT, especially on day 18 (p < 0.05). The expression of Wnt3a, β-catenin, collagen 1α1, alkaline phosphatase, osteocalcin, low-density lipoprotein receptor-related protein 6, and runt-related transcription factor-2 were significantly increased in the PTT-treated groups compared to the vehicle control group, especially at 0.5 µg/mL of PTT (p < 0.05) and on day 6 of treatment. Conclusions: PTT maintains the osteogenic activity of the dexamethasone-treated osteoblasts by promoting their differentiation.
Collapse
Affiliation(s)
- Norfarahin Abdullah Sani
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.S.); (N.A.K.)
| | - Nur Aqilah Kamaruddin
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.S.); (N.A.K.)
| | - Ima Nirwana Soelaiman
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.S.); (K.-L.P.); (K.-Y.C.)
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.S.); (K.-L.P.); (K.-Y.C.)
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 46150, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.S.); (K.-L.P.); (K.-Y.C.)
| | - Elvy Suhana Mohd Ramli
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (N.A.S.); (N.A.K.)
| |
Collapse
|
12
|
An F, Jia X, Shi Y, Xiao X, Yang F, Su J, Peng X, Geng G, Yan C. The ultimate microbial composition for correcting Th17/Treg cell imbalance and lipid metabolism disorders in osteoporosis. Int Immunopharmacol 2025; 144:113613. [PMID: 39571271 DOI: 10.1016/j.intimp.2024.113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/28/2024] [Accepted: 11/07/2024] [Indexed: 12/15/2024]
Abstract
Osteoporosis is a systemic bone disease characterised by decreased bone mass and a deteriorated bone microstructure, leading to increased bone fragility and fracture risk. Disorders of the intestinal microbiota may be key inducers of osteoporosis. Furthermore, such disorders may contribute to osteoporosis by influencing immune function and lipid metabolism. Therefore, in this review, we aimed to summarise the molecular mechanisms through which the intestinal microbiota affect the onset and development of osteoporosis by regulating Th17/Treg imbalance and lipid metabolism disorders. We also discussed the regulatory mechanisms underlying the effect of intestinal microbiota-related modulators on Th17/Treg imbalance and lipid metabolism disorders in osteoporosis, to explore new molecular targets for its treatment and provide a theoretical basis for clinical management.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| | - Xueru Jia
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yangyang Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaolong Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Fan Yang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Junchang Su
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xia Peng
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Guangqin Geng
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
13
|
Cooper A, Stevens H, Batlle I. FAMILIAL EXUDATIVE VITREORETINOPATHY WITH NASAL RETINAL INVOLVEMENT: A RARE PRESENTATION. Retin Cases Brief Rep 2025; 19:107-111. [PMID: 37922565 PMCID: PMC11649170 DOI: 10.1097/icb.0000000000001511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/01/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE To present a case of familial exudative vitreoretinopathy with nasal retinal involvement and aim to describe the clinical presentation, diagnostic findings, management strategies, and genetic testing. METHODS An evaluation of a 31-year-old female patient with familial exudative vitreoretinopathy presenting with predominate nasal retinal involvement. Diagnostic tests-including fundus examination, optical coherence tomography, fluorescein angiography, and genetic testing-were performed. The patient's management involved intravitreal injection of 1.25 mg/0.05 mL of bevacizumab in the left eye and sectoral panretinal photocoagulation in both eyes. RESULTS The patient exhibited discrete neovascularization and tortuosity predominantly localized to the nasal retinal blood vessels. Optical coherence tomography imaging showed macular schisis and vitreomacular traction without retinal detachment. Genetic testing identified a likely pathogenic variant associated with autosomal dominant and recessive exudative vitreoretinopathy. Treatment with bevacizumab and panretinal photocoagulation resulted in regression of neovascularization and improvement in macular schisis. Conclusion: This case report highlights an atypical presentation of familial exudative vitreoretinopathy with nasal retinal involvement. Early recognition and genetic testing aids in diagnosis and management.
Collapse
Affiliation(s)
- Amelia Cooper
- University of Kansas School of Medicine, Kansas City, Kansas
| | - Henry Stevens
- Santa Clara University, Santa Clara, California; and
| | | |
Collapse
|
14
|
Azhdari M, Zur Hausen A. Wnt/β-catenin and notch signaling pathways in cardiovascular disease: Mechanisms and therapeutics approaches. Pharmacol Res 2025; 211:107565. [PMID: 39725339 DOI: 10.1016/j.phrs.2024.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/30/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Wnt and Notch signaling pathways play crucial roles in the development and homeostasis of the cardiovascular system. These pathways regulate important cellular processes in cardiomyocytes, endothelial cells, and smooth muscle cells, which are the key cell types involved in the structure and function of the heart and vasculature. During embryonic development, Wnt and Notch signaling coordinate cell fate specification, proliferation, differentiation, and morphogenesis of the heart and blood vessels. In the adult cardiovascular system, these pathways continue to maintain tissue homeostasis and arrange adaptive responses to various physiological and pathological stimuli. Dysregulation of Wnt and Notch signaling has been involved in the pathogenesis of numerous cardiovascular diseases, including atherosclerosis, hypertension, myocardial infarction, and heart failure. Abnormal activation or suppression of these pathways in specific cell types can contribute to endothelial dysfunction, vascular remodeling, cardiomyocyte hypertrophy, impaired cardiac contractility and dead. Understanding the complex interplay between Wnt and Notch signaling in the cardiovascular system has led to the investigation of these pathways as potential therapeutic targets in clinical trials. In conclusion, this review summarizes the current knowledge on the roles of Wnt and Notch signaling in the development and homeostasis of cardiomyocytes, endothelial cells, and smooth muscle cells. It further discusses the dysregulation of these pathways in the context of major cardiovascular diseases and the ongoing clinical investigations targeting Wnt and Notch signaling for therapeutic intervention.
Collapse
Affiliation(s)
- Manizheh Azhdari
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| | - Axel Zur Hausen
- Pathologie, School for Cardiovascular Diseases, Fac. Health, Medicine and Life Sciences, Maastricht university, MUMC, the Netherland.
| |
Collapse
|
15
|
Fu YF, Shi SW, Wu JJ, Yuan ZD, Wang LS, Nie H, Zhang ZY, Wu X, Chen YC, Ti HB, Zhang KY, Mao D, Ye JX, Li X, Yuan FL. Osteoclast Secretes Stage-Specific Key Molecules for Modulating Osteoclast-Osteoblast Communication. J Cell Physiol 2025; 240:e31484. [PMID: 39606839 DOI: 10.1002/jcp.31484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
In most cases of bone metabolic disorders, such as osteoporosis and osteomalacia, these conditions are often attributed to dysfunctional osteoclasts, leading to their common characterization as "destructors." In addition to the widely documented regulatory process where osteoblasts direct osteoclastic bone resorption, there is increasing evidence suggesting that osteoclasts also in turn influence osteoblastic bone formation through direct and indirect mechanisms. It is well-known that differentiation of osteoclasts involves several stages, each characterized by specific cellular features and functions. Stage-specific key molecules secreted during these stages play a critical role in mediating osteoclast-osteoblast communication. In this review, we described the different stages of osteoclast differentiation and reviewed stage-specific key molecules involved in osteoclasts-osteoblasts communication. We highlighted that a detailed understanding of these processes and molecular mechanism could facilitate the development of novel treatments for bone metabolic disorders.
Collapse
Affiliation(s)
- Yi-Fei Fu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Shu-Wen Shi
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Dong Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Lei-Sheng Wang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hao Nie
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
| | - Zheng-Yu Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xian Wu
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Yue-Chun Chen
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Hui-Bo Ti
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Ke-Yue Zhang
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Dong Mao
- Orthopaedic Institute, Wuxi Ninth People's Hospital Affiliated to Soochow University, Wuxi, Jiangsu, China
| | - Jun-Xing Ye
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Xia Li
- Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Institute of Integrated Chinese and Western Medicine, Affiliated to Jiangnan University, Wuxi, China
- Wuxi Medical College, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Pierre-Jerome C. The peripheral nervous system: peripheral neuropathies in the diabetic foot. MYOPATHIES AND TENDINOPATHIES OF THE DIABETIC FOOT 2025:451-482. [DOI: 10.1016/b978-0-443-13328-2.00022-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
van Velsen EFS, Wijnen M, Muradin GSR, Zillikens MC. Incident Vertebral Fractures During Romosozumab Treatment in a Patient With a Pathogenic LRP5 Variant. JCEM CASE REPORTS 2025; 3:luae238. [PMID: 39726666 PMCID: PMC11669863 DOI: 10.1210/jcemcr/luae238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 12/28/2024]
Abstract
A defect in the canonical Wnt-β-catenin pathway may lead to reduced bone strength and increased fracture risk. Sclerostin is a key inhibitor of this pathway by binding to low-density lipoprotein (LDL) receptor-related protein (LRP)-5/6, thereby reducing bone formation. The effectiveness of romosozumab, a human monoclonal antibody that binds sclerostin and prevents this inhibitory effect, has been questioned in patients with inactivating genetic variants in LRP5 or LRP6. We present a 67-year-old woman with severe osteoporosis with 4 grade 2 vertebral fractures due to a heterozygous pathogenic variant in LRP5. She was treated with romosozumab for 1 year, after which a routine follow-up spine x-ray revealed 5 new vertebral fractures, despite a strong increase in bone mineral density (BMD) (lumbar spine [LS] + 58%; femur neck [FN] + 23%), although overestimated at LS because of the vertebral fractures. This suggests that in patients with loss-of-function LRP5 variants, romosozumab is able to increase BMD. However, it is unclear whether the progressive vertebral fractures are due to the severe osteoporosis in relation to the start of romosozumab or a diminished responsiveness related to her LRP5 variant. Further evaluation is needed on the effect of romosozumab on BMD and fracture outcomes in patients with a likely defective LRP5/6 receptor.
Collapse
Affiliation(s)
- Evert F S van Velsen
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands
- Erasmus MC Bone Center, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands
| | - Mark Wijnen
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands
- Erasmus MC Bone Center, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands
| | - Galied S R Muradin
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands
- Erasmus MC Bone Center, Erasmus Medical Center, University Medical Center, 3015 CE, Rotterdam, the Netherlands
| |
Collapse
|
18
|
Songkoomkrong S, Nonkhwao S, Duangprom S, Saetan J, Manochantr S, Sobhon P, Kornthong N, Amonruttanapun P. Investigating the potential effect of Holothuria scabra extract on osteogenic differentiation in preosteoblast MC3T3-E1 cells. Sci Rep 2024; 14:26415. [PMID: 39488645 PMCID: PMC11531581 DOI: 10.1038/s41598-024-77850-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
The present medical treatments of osteoporosis come with adverse effects. It leads to the exploration of natural products as safer alternative medical prevention and treatment. The sea cucumber, Holothuria scabra, has commercial significance in Asian countries with rising awareness of its properties as a functional food. This study aims to investigate the effects of the inner wall (IW) extract isolated from H. scabra on extracellular matrix maturation, mineralization, and osteogenic signaling pathways on MC3T3-E1 preosteoblasts. The IW showed the expression of several growth factors. Molecular docking revealed that H. scabra BMP2/4 binds specifically to mammal BMP2 type I receptor (BMPR-IA). After osteogenic induction, the viability of cells treated with IW extract was assessed and designated with treatment of 0.1, 0.5, 1, and 5 µg/ml of IW extract for 21 consecutive days. On days 14 and 21, treatments with IW extract at 1 and 5 µg/ml showed increased alkaline phosphatase (ALP) activity and calcium deposit levels in a dose-dependent manner compared to the control group. Moreover, the transcriptomic analysis of total RNA of cells treated with 5 µg/ml of IW extract exhibited upregulation of TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways at days 14. This study suggests that IW extract from H. scabra exhibits the potential to enhance osteogenic differentiation and mineralization of MC3T3-E1 preosteoblasts through TGF-β, PI3K/Akt, MAPK, Wnt and PTH signaling pathways. Further investigation into the molecular mechanisms underlying the effect of IW extract on osteogenesis is crucial to support its application as a naturally derived supplement for prevention or treatment of osteoporosis.
Collapse
Affiliation(s)
- Sineenart Songkoomkrong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| | - Siriporn Nonkhwao
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Supawadee Duangprom
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Jirawat Saetan
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Sirikul Manochantr
- Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12121, Thailand
- Center of Excellence in Stem Cell Research and Innovation, Thammasat University, Pathumthani, 12121, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Napamanee Kornthong
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand
| | - Prateep Amonruttanapun
- Chulabhorn International College of Medicine, Thammasat University, Rangsit campus, Pathumthani, 12121, Thailand.
| |
Collapse
|
19
|
Song F, Marmo T, Song C, Liao X, Long F. Wnt7b overexpression in osteoblasts stimulates bone formation and reduces obesity in mice on a high-fat diet. JBMR Plus 2024; 8:ziae122. [PMID: 39434845 PMCID: PMC11491285 DOI: 10.1093/jbmrpl/ziae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Previous studies have shown that Wnt7b potently stimulates bone formation by promoting osteoblast differentiation and activity. As high-fat feeding leads to obesity and systemic metabolic dysregulation, here we investigate the potential benefit of Wnt7b overexpression in osteoblasts on both bone and whole-body metabolism in mice fed with a high-fat diet (HFD). Wnt7b overexpression elicited massive overgrowth of trabecular and cortical bone but seemed to ameliorate body fat accumulation in mice with prolonged HFD feeding. In addition, Wnt7b overexpression modestly improved glucose tolerance in male mice on HFD. Collectively, the results indicate that targeted overexpression of Wnt7b in osteoblasts not only stimulates bone formation but also improves certain aspects of global metabolism in overnourished mice.
Collapse
Affiliation(s)
- Fangfang Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei 430079, China
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Tyler Marmo
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Chao Song
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Xueyang Liao
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Fanxin Long
- Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, United States
| |
Collapse
|
20
|
Mancini M, Chapurlat R, Isidor B, Desjonqueres M, Couture G, Guggenbuhl P, Coutant R, El Chehadeh S, Fradin M, Frazier A, Goldenberg A, Guillot P, Koumakis E, Mehsen-Cêtre N, Rossi M, Schaefer É, Sigaudy S, Porquet-Bordes V, Fontanges É, Letard P, Edouard T, Javier RM, Cohen-Solal M, Funck-Brentano T, Collet C. Early-Onset Osteoporosis: Molecular Analysis in Large Cohort and Focus on the PLS3 Gene. Calcif Tissue Int 2024; 115:591-598. [PMID: 39316135 DOI: 10.1007/s00223-024-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/01/2024] [Indexed: 09/25/2024]
Abstract
Osteoporosis is a skeletal disorder characterized by abnormal bone microarchitecture and low bone mineral density (BMD), responsible for an increased risk of fractures and skeletal fragility. It is a common pathology of the aging population. However, when osteoporosis occurs in children or young adults, it strongly suggests an underlying genetic etiology. Over the past two decades, several genes have been identified as responsible for this particular kind of considered monogenic early-onset osteoporosis (EOOP) or juvenile osteoporosis, the main ones being COL1A1, COL1A2, LRP5, LRP6, WNT1, and more recently PLS3. In this study, the objective was to characterize a large cohort of patients diagnosed with primary osteoporosis and to establish its diagnosis yield. The study included 577 patients diagnosed with primary osteoporosis and its diagnosis yield was established. To this end, next-generation sequencing (NGS) of a panel of 21 genes known to play a role in bone fragility was carried out. A genetic etiology was explained in about 18% of cases, while the others remain unexplained. The most frequently identified gene associated with EOOP is LRP5, which was responsible for 8.2% of the positive results (47 patients). As unexpected, 17 patients (2.9%) had a variant in PLS3 which encodes plastin 3. Alterations of PLS3 are associated with dominant X-linked osteoporosis, an extremely rare disease. Given the rarity of this disease, we focused on it. It was observed that males were more affected than females, but it is noteworthy that three females with a particularly severe phenotype were identified. Of these three, two had a variant in an additional gene involved in EOP, illustrating the probable existence of digenism. We significantly increase the number of variants potentially associated with EOOP, especially in PLS3. The results of our study demonstrate that molecular analysis in EOOP is beneficial and useful.
Collapse
Affiliation(s)
- Maxence Mancini
- Biochemistry and Molecular Genetics Department, Lariboisière Hospital, AP-HP, Paris, France
| | - Roland Chapurlat
- Rheumatology and Bone Pathology Department, Inserm UMR 1033, Université de Lyon, Edouard Herriot Hospital, HCL, Lyon, France
| | - Bertrand Isidor
- Medical Genetics Department, CHU de Nantes, Hôtel Dieu Hospital, Nantes, France
| | - Marine Desjonqueres
- Nephrology - Rheumatology - Dermatology Paediatric Department, Edouard Herriot Hospital, HCL, Lyon, France
| | - Guillaume Couture
- Endocrine, Bone Diseases and Genetics Unit, Rheumatology Department, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, University Hospital, RESTORE, INSERM U1301, Toulouse, France
| | | | - Régis Coutant
- Department of Paediatrics and Endocrinology, CHU d'Angers, Angers, France
| | - Salima El Chehadeh
- Medical Genetics Department, Institut de Génétique Médicale d'alsace, CHU de Strasbourg, Strasbourg, France
| | - Mélanie Fradin
- Clinical Genetics Department, CHU Rennes, Sud Hospital, Rennes, France
| | - Aline Frazier
- Rheumatology Department, Inserm 1132, Univsersité Paris-Cité, Lariboisière Hospital, AP-HP, Paris, France
| | - Alice Goldenberg
- Medical Genetics Department, Charles- Nicolle Hospital, CHU de Rouen, Rouen, France
| | - Pascaline Guillot
- Rheumatology Department, CHU de Nantes, Hôpital Hôtel Dieu, Nantes, France
| | | | | | - Massimiliano Rossi
- Medical Genetics Department, Edouard Herriot Hospital, HCL, Lyon, France
| | - Élise Schaefer
- Medical Genetics Department, Institut de Génétique Médicale d'alsace, CHU de Strasbourg, Strasbourg, France
| | - Sabine Sigaudy
- Medical Genetics Department, CHU de Marseille, Timone Hospital, Marseille, France
| | - Valérie Porquet-Bordes
- Endocrine, Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Paediatric Research Unit, Children's Hospital, Toulouse University Hospital, RESTORE, INSERM U1301, Toulouse, France
| | - Élisabeth Fontanges
- Rheumatology and Bone Pathology Department, Inserm UMR 1033, Université de Lyon, Edouard Herriot Hospital, HCL, Lyon, France
| | - Pauline Letard
- Medical Genetics Department, CHU de Poitiers, Poitiers, France
| | - Thomas Edouard
- Endocrine, Bone Diseases and Genetics Unit, Reference Centre for Rare Diseases of Calcium and Phosphate Metabolism, ERN BOND, OSCAR Network, Paediatric Research Unit, Children's Hospital, Toulouse University Hospital, RESTORE, INSERM U1301, Toulouse, France
| | - Rose-Marie Javier
- Rheumatology Department, CHU de Strasbourg, Hautepierre Hospital, Strasbourg, France
| | - Martine Cohen-Solal
- Rheumatology Department, Inserm 1132, Univsersité Paris-Cité, Lariboisière Hospital, AP-HP, Paris, France
| | - Thomas Funck-Brentano
- Rheumatology Department, Inserm 1132, Univsersité Paris-Cité, Lariboisière Hospital, AP-HP, Paris, France
| | - Corinne Collet
- Rare Disease Genomic Medicine Department, CHU Necker-Enfants Malades, INSERM UMR1163, Institut Imagine, Université Paris-Cité, Paris, France.
| |
Collapse
|
21
|
Chen Y, Petho A, Ganapathy A, George A. DPP an extracellular matrix molecule induces Wnt5a mediated signaling to promote the differentiation of adult stem cells into odontogenic lineage. Sci Rep 2024; 14:26187. [PMID: 39478025 PMCID: PMC11525562 DOI: 10.1038/s41598-024-76069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Dentin phosphophoryn (DPP) an extracellular matrix protein activates Wnt signaling in DPSCs (dental pulp stem cells). Wnt/β catenin signaling is essential for tooth development but the role of DPP-mediated Wnt5a signaling in odontogenesis is not well understood. Wnt5a is typically considered as a non-canonical Wnt ligand that elicits intracellular signals through association with a specific cohort of receptors and co-receptors in a cell and context-dependent manner. In this study, DPP facilitated the interaction of Wnt5a with Frizzled 5 and LRP6 to induce nuclear translocation of β-catenin. β-catenin has several nuclear binding partners that promote the activation of Wnt target genes responsible for odontogenic differentiation. Interestingly, steady increase in the expression of Vangl2 receptor suggest planar cell polarity signaling during odontogenic differentiation. In vitro observations were further strengthened by the low expression levels of Wnt5a and β-catenin in the teeth of DSPP KO mice which exhibit impaired odontoblast differentiation and defective dentin mineralization. Together, this study suggests that the DPP-mediated Wnt5a signaling could be exploited as a therapeutic approach for the differentiation of dental pulp stem cells into functional odontoblasts and dentin regeneration.
Collapse
Affiliation(s)
- Yinghua Chen
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Adrienn Petho
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Amudha Ganapathy
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Anne George
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA.
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA.
| |
Collapse
|
22
|
Mehta P, Sharma A, Goswami A, Gupta SK, Singhal V, Srivastava KR, Chattopadhyay N, Singh R. Case report: exome sequencing identified mutations in the LRP5 and LGR4 genes in a case of osteoporosis with recurrent fractures and extraskeletal manifestations. Front Endocrinol (Lausanne) 2024; 15:1475446. [PMID: 39525853 PMCID: PMC11549668 DOI: 10.3389/fendo.2024.1475446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Background Genetic mutations have been reported in a number of bone disorders with or without extra-skeletal manifestations. The purpose of the present study was to investigate the genetic cause in a middle-aged woman with osteoporosis, recurrent fractures and extraskeletal manifestations. Methods A 56-year-old Indian woman presented to the clinic with complaints of difficulty in walking, recurrent fractures, limb bending, progressive skeletal deformities, and poor overall health. At the age of 37, she had experienced severe anemia with diarrhea, significant weight loss, knuckle pigmentation, and a significant loss of scalp hair. She had received multiple blood transfusions and parenteral iron supplementation with normalization of hemoglobin. Subsequently, she had premature menopause at the age of 37. She died at the age of 61 due to liver failure. Exome sequencing followed by Sanger sequencing were undertaken to identify the potential pathogenic mutations. Results Genetic investigation identified likely pathogenic mutations in the LRP5 and LGR4 genes. Out of the two mutations, the heterozygous mutation (c.1199C>T) in the LRP5 gene resulted in a non-synonymous substitution of alanine with valine at the 400th position, and the second mutation (c.1403A>C) in the LGR4 gene led to a non-synonymous substitution of tyrosine with serine at the 468th residue of the protein. The minor allele frequencies of the c.1199C>T (LRP5) substitution in the 1000 genomes and IndiGenomes databases are 0.0003 and 0.001, while the c.1403A>C (LGR4) substitution has not been reported in these databases. Various in silico prediction tools suggested LGR4 mutation to be pathogenic and LRP5 mutation to be likely pathogenic. Conclusion Heterozygous mutations in the LRP5 and LGR4 genes had additive deteriorative effects on BMD, resulting in recurrent fractures and bone deformities, and extended the effect to extraskeletal sites, contributing to the poor overall health in this patient.
Collapse
Affiliation(s)
- Poonam Mehta
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Aakriti Sharma
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Anupam Goswami
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Sushil Kumar Gupta
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Vaibhav Singhal
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Kinshuk Raj Srivastava
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| | - Rajender Singh
- Division of Endocrinology, The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), The Council of Scientific and Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
23
|
Vaghasia N, Dutta A, Mithal A. LRP5 Variant Without Pseudoglioma in a Young Man With Fragility Fractures. JCEM CASE REPORTS 2024; 2:luae163. [PMID: 39309619 PMCID: PMC11414401 DOI: 10.1210/jcemcr/luae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Indexed: 09/25/2024]
Abstract
Osteoporosis in children and young adults is relatively rare. Hereditary causes are often overlooked in the absence of a positive family history. We report a 29-year-old male presenting with recurrent fragility fractures since 6 years of age. Secondary causes, such as celiac disease, inflammatory disorders, and hypogonadism, were ruled out. Family history was negative for any bone disease. Exome sequencing revealed 2 variants of LRP5 gene-intron 5 c.1015 + 1G > A and exon 5 c.892C > T. Although the former variant has been described in literature as a cause of osteoporosis in homozygous state only, it manifested as osteoporosis in our patient, in the heterozygous state, in presence of a second variant of uncertain significance. However, eye involvement, which is classically seen in "osteoporosis-pseudoglioma syndrome" homozygote, was absent in our patient. Genetic analysis of the parents revealed father to be a carrier of intron 5 c.1015 + 1G > A and mother exon 5 c.892C > T variants of the LRP5 gene. However, none of them had osteoporosis on bone densitometry. The patient was subsequently treated with IV zoledronic acid (planned to be administered annually) and showed improvement in bone density by 11% at the spine and 9.5% at the left femur; there were no further fractures over 1 year of follow-up.
Collapse
Affiliation(s)
- Nupoor Vaghasia
- Institute of Endocrinology and Diabetes, Max Healthcare, Saket, New Delhi 110017, India
| | - Aditya Dutta
- Institute of Endocrinology and Diabetes, Max Healthcare, Saket, New Delhi 110017, India
| | - Ambrish Mithal
- Institute of Endocrinology and Diabetes, Max Healthcare, Saket, New Delhi 110017, India
| |
Collapse
|
24
|
Fujii Y, Minami S, Hatori A, Kawase-Koga Y, Ogasawara T, Chikazu D. Integrated MicroRNA-mRNA Analyses of the Osteogenic Differentiation of Human Dental Pulp Stem Cells by a Helioxanthin Derivative. Curr Issues Mol Biol 2024; 46:10960-10968. [PMID: 39451531 PMCID: PMC11506632 DOI: 10.3390/cimb46100651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Dental pulp stem cells (DPSCs) demonstrate high proliferative and multilineage differentiation potential. As previously reported, the helioxanthin derivative 4-(4-methoxyphenyl)pyrido[40,30:4,5]thieno[2,3-b]pyridine-2-carboxamide (TH) has been demonstrated to induce the osteogenic differentiation of DPSCs. However, the mechanism of osteogenesis induced by TH in DPSCs remains unknown. The objective of this study was to identify functional extracellular vesicle (EV) microRNAs (miRNAs), and the principal genes involved in the TH-induced osteogenesis of DPSCs. DPSCs were derived from dental pulp extracted from the third molars of three healthy subjects, and were cultured with or without TH. miRNAs were extracted from DPSC-derived EVs. The gene expression patterns of mRNA and miRNA were compared using RNA-Seq and miRNA-Seq. To investigate miRNA/mRNA interacting networks, functional analyses were performed by Ingenuity Pathway Analysis. Alkaline phosphatase (ALP) staining demonstrated that treatment with TH resulted in enhanced ALP activity in DPSCs after 7 days. The expression levels of ALP and type 1 collagen alpha 1 were significantly higher in TH-induced DPSCs on day 7. RNA-Seq and miRNA-Seq analyses identified 869 differentially expressed genes (DEGs) and 18 miRNA-DEGs. Gene Ontology analysis of the mRNA-Seq results showed that TH induced several biological activities associated with signal transduction, cell adhesion, and cell differentiation. Integrated miRNA-mRNA analyses showed that these miRNAs contain the targeting information of 277 mRNAs of the DEGs. Among them, 17 target genes known to be involved in the differentiation of osteoblasts, and 24 target genes known to be involved in the differentiation of bone cells were identified. Quantitative real-time PCR showed that WNT5a expression in DPSCs was upregulated by 48 h of TH treatment. Upstream regulator analysis indicated that WNT3a, FOS, and RAC1 may be responsible for gene expression changes in DPSCs after TH treatment. EV miRNA regulatory networks might play crucial roles in TH-induced osteogenic differentiation of DPSCs. Our results presented herein offer valuable insights that will facilitate further research into the mechanism of osteogenesis of DPSCs, which is expected to lead to the clinical application of TH-induced DPSCs for bone regeneration. Furthermore, EVs derived from TH-induced DPSCs might be useful as therapeutic tools for bone defects.
Collapse
Affiliation(s)
- Yasuyuki Fujii
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.M.); (A.H.); (Y.K.-K.); (D.C.)
| | - Sakura Minami
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.M.); (A.H.); (Y.K.-K.); (D.C.)
| | - Ayano Hatori
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.M.); (A.H.); (Y.K.-K.); (D.C.)
| | - Yoko Kawase-Koga
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.M.); (A.H.); (Y.K.-K.); (D.C.)
- Department of Oral and Maxillofacial Surgery, School of Medicine, Tokyo Women’s Medical University, 8-1 Kawadachou, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Toru Ogasawara
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, 7-3-1 The Hongo, Bunkyo-ku, Tokyo 113-8655, Japan;
| | - Daichi Chikazu
- Department of Oral and Maxillofacial Surgery, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (S.M.); (A.H.); (Y.K.-K.); (D.C.)
| |
Collapse
|
25
|
Liu W, Li S, Yang M, Ma J, Liu L, Fei P, Xiang Q, Huang L, Zhao P, Yang Z, Zhu X. Dysfunction of Calcyphosine-Like gene impairs retinal angiogenesis through the MYC axis and is associated with familial exudative vitreoretinopathy. eLife 2024; 13:RP96907. [PMID: 39264149 PMCID: PMC11392532 DOI: 10.7554/elife.96907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a severe genetic disorder characterized by incomplete vascularization of the peripheral retina and associated symptoms that can lead to vision loss. However, the underlying genetic causes of approximately 50% of FEVR cases remain unknown. Here, we report two heterozygous variants in calcyphosine-like gene (CAPSL) that is associated with FEVR. Both variants exhibited compromised CAPSL protein expression. Vascular endothelial cell (EC)-specific inactivation of Capsl resulted in delayed radial/vertical vascular progression, compromised endothelial proliferation/migration, recapitulating the human FEVR phenotypes. CAPSL-depleted human retinal microvascular endothelial cells (HRECs) exhibited impaired tube formation, decreased cell proliferation, disrupted cell polarity establishment, and filopodia/lamellipodia formation, as well as disrupted collective cell migration. Transcriptomic and proteomic profiling revealed that CAPSL abolition inhibited the MYC signaling axis, in which the expression of core MYC targeted genes were profoundly decreased. Furthermore, a combined analysis of CAPSL-depleted HRECs and c-MYC-depleted human umbilical vein endothelial cells uncovered similar transcription patterns. Collectively, this study reports a novel FEVR-associated candidate gene, CAPSL, which provides valuable information for genetic counseling of FEVR. This study also reveals that compromised CAPSL function may cause FEVR through MYC axis, shedding light on the potential involvement of MYC signaling in the pathogenesis of FEVR.
Collapse
Affiliation(s)
- Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Shujin Li
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Mu Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jie Ma
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ping Fei
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianchun Xiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lulin Huang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenglin Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Jinfeng Laboratory, Chongqing, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Jinfeng Laboratory, Chongqing, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
26
|
Chang HH, Wang AG, Niu DM, Chen YR, Weng CC. Unveiling novel LRP5 pathogenic variant in familial exudative vitreoretinopathy: Diverse phenotypic expressions in a mother-daughter duo. Eur J Ophthalmol 2024; 34:NP8-NP12. [PMID: 38720524 DOI: 10.1177/11206721241254129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
PURPOSE This report aims to delineate distinct phenotypes of Familial Exudative Vitreoretinopathy (FEVR) observed in a mother and her daughter, both harboring a novel LRP5 pathogenic variation. METHODS The investigation involves a retrospective review of medical records accompanied by multimodal imaging. Molecular characterization was performed using whole exon sequencing, and the pathogenic variant was subsequently confirmed through Sanger sequencing. RESULT A 6-year-old girl diagnosed with anisometropic amblyopia exhibited macular dragging and peripheral avascular retina in her right eye. Whole exon sequencing identified a previously unreported heterozygous missense LRP5 pathogenic variation, Glu528Lys. Simultaneously, her 43-year-old mother also carried the same mutation, manifesting peripheral exudations, avascular areas, and multiple microaneurysms. Notably, both cases presented distinctive phenotypes of FEVR. CONCLUSION Our findings underscore the diversity in clinical presentations associated with FEVR, emphasizing the pivotal role of genetic evaluation. Despite variations in severity between the eyes of the same patient, it is crucial to remain vigilant for potential progression to a pathological status in the seemingly normal eye. Additionally, this study contributes to expanding the genetic spectrum of FEVR.
Collapse
Affiliation(s)
- Hsin-Ho Chang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - An-Guor Wang
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dau-Ming Niu
- Department of Pediatric, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ru Chen
- Department of Pediatric, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chang-Chi Weng
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
27
|
Kondo H, Tsukahara-Kawamura T, Matsushita I, Nagata T, Hayashi T, Nishina S, Higasa K, Uchio E, Kondo M, Sakamoto T, Kusaka S. Familial Exudative Vitreoretinopathy With and Without Pathogenic Variants of Norrin/β-Catenin Signaling Genes. OPHTHALMOLOGY SCIENCE 2024; 4:100514. [PMID: 38881609 PMCID: PMC11179410 DOI: 10.1016/j.xops.2024.100514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 06/18/2024]
Abstract
Purpose To determine the clinical characteristics of familial exudative vitreoretinopathy (FEVR) associated with or without pathogenic variants of the Norrin/β-catenin genes. Design This was a multicenter, cross-sectional, observational, and genetic study. Subjects Two-hundred eighty-one probands with FEVR were studied. Methods Whole-exome sequence and/or Sanger sequence was performed for the Norrin/β-catenin genes, the FZD4, LRP5, TSPAN12, and NDP genes on blood collected from the probands. The clinical symptoms of the probands with or without the pathogenic variants were assessed as well as differences in the inter Norrin/β-catenin genes. Main Outcome Measures The phenotype associated with or without pathogenic variants of the Norrin/β-catenin genes. Results One-hundred eight probands (38.4%) had 88 different pathogenic or likely pathogenic variants in the genes: 24 with the FZD4, 42 with the LRP5, 10 with the TSPAN12, and 12 with the NDP gene. Compared with the 173 probands without pathogenic variants, the 108 variant-positive probands had characteristics of familial predisposition (63.9% vs. 37.6%, P < 0.0001), progression during infancy (75.0% vs. 53.8%, P = 0.0004), asymmetrical severity between the 2 eyes (50.0% vs. 37.6%, P = 0.0472), and nonsyndromic characteristics (10.2% vs. 17.3%, P = 0.1185). The most frequent stage at which the more severe eye conditions was present was at stage 4 in both groups (40.7% vs. 34.7%). However, the advanced stages of 3 to 5 in the more severe eye were found more frequently in probands with variants than in those without variants (83.3% vs. 58.4%, P < 0.0001). Patients with rhegmatogenous retinal detachments progressed from stage 1 or 2 were found less frequently in the variant-positive probands (8.3% vs. 17.3%, P = 0.0346). Nine probands with NDP variants had features different from probands with typical Norrin/β-catenin gene variants including the sporadic, symmetrical, and systemic characteristics consistent with Norrie disease. Conclusions The results showed that the clinical characteristics of FEVR of patients with variants in the Norrin/β-catenin genes are different from those with other etiologies. We recommend that clinicians who diagnose a child with FEVR perform genetic testing so that the parents can be informed on the prognosis of the vision and general health in the child. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Hiroyuki Kondo
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | - Itsuka Matsushita
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsuo Nagata
- Department of Ophthalmology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sachiko Nishina
- Division of Ophthalmology, National Center for Child Health and Development, Tokyo, Japan
| | - Koichiro Higasa
- Department of Genome Analysis, Institute of Biomedical Science, Kansai Medical University, Osaka, Japan
| | - Eiichi Uchio
- Department of Ophthalmology, Fukuoka University, Fukuoka, Japan
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Faculty of Medicine, Tsu, Japan
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Faculty of Medicine, Kagoshima, Japan
| | - Shunji Kusaka
- Department of Ophthalmology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
28
|
Wade E, Mulholland K, Shaw I, Cundy T, Robertson S. Idiopathic juvenile osteoporosis-a polygenic disorder? JBMR Plus 2024; 8:ziae099. [PMID: 39193113 PMCID: PMC11347881 DOI: 10.1093/jbmrpl/ziae099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Idiopathic juvenile osteoporosis (IJO) is a rare condition presenting with vertebral and metaphyseal fractures that affects otherwise healthy prepubertal children. Bone mineral density (BMD) measurements are very low. The primary problem appears to be deficient bone formation, with a failure to accrue bone normally during growth. The onset in childhood suggests IJO is a genetic disorder, and a number of reports indicate that some children carry heterozygous pathogenic variants in genes known to be associated with defective osteoblast function and low bone mass, most commonly LRP5 or PLS3. However, a positive family history is unusual in IJO, suggesting the genetic background can be complex. We describe a young man with classical IJO who was investigated with a bone fragility gene panel and whole genome sequencing. The proband was found to carry four variants in three different genes potentially affecting osteoblast function. From his mother he had inherited mutations in ALPL (p.Asn417Ser) and LRP5 (p.Arg1036Gln), and from his father mutations in LRP5 (p.Asp1551Alsfs*13) and activating transcription factor 4 (ATF4) (p.Leu306Ile). His sister had also inherited the LRP5 (p.Asp1551Alsfs*13) from her father, but not the ATF4 mutation. Their spinal BMD z-scores differed substantially (sister -1.6, father -3.2) pointing to the potential importance of the ATF4 mutation. Activating transcription factor 4 acts downstream from RUNX2 and osterix and plays an important role in osteoblast differentiation and function. This case, together with others recently published, supports the view that IJO can result from clustering of mutations in genes related to osteoblast development and function. Novel genes in these pathways may be involved. Our case also emphasizes the value of detailed study of other family members. After a bone biopsy had excluded a mineralization defect due to hypophosphatasia, the proband was treated with zoledronate infusions with good clinical effect.
Collapse
Affiliation(s)
- Emma Wade
- Department of Women’s & Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - Katie Mulholland
- Department of Women’s & Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| | - Ian Shaw
- Department of Pediatrics, Southland Hospital, Invercargill, 9812, New Zealand
| | - Tim Cundy
- Department of Medicine, Faculty of Medical & Health Sciences, University of Auckland, Auckland, 1023, New Zealand
| | - Stephen Robertson
- Department of Women’s & Children’s Health, Dunedin School of Medicine, University of Otago, Dunedin, 9016, New Zealand
| |
Collapse
|
29
|
Wang K. The potential therapeutic role of curcumin in osteoporosis treatment: based on multiple signaling pathways. Front Pharmacol 2024; 15:1446536. [PMID: 39175539 PMCID: PMC11338871 DOI: 10.3389/fphar.2024.1446536] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/24/2024] Open
Abstract
Osteoporosis is a common chronic metabolic bone disease caused by disturbances in normal bone metabolism and an imbalance between osteoblasts and osteoclasts. Osteoporosis is characterized by a decrease in bone mass and bone density, leading to increased bone fragility. Osteoporosis is usually treated with medications and surgical methods, but these methods often produce certain side effects. Therefore, the use of traditional herbal ingredients for the treatment of osteoporosis has become a focus of attention and a hot topic in recent years. Curcumin, widely distributed among herbs such as turmeric, tulip, and curcuma longa, contains phenolic, terpenoid, and flavonoid components. Modern pharmacological studies have confirmed that curcumin has a variety of functions including antioxidant and anti-inflammatory properties. In addition, curcumin positively regulates the differentiation and promotes the proliferation of osteoblasts, which play a crucial role in bone formation. Multiple studies have shown that curcumin is effective in the treatment of osteoporosis as it interacts with a variety of signaling pathway targets, thereby interfering with the formation of osteoblasts and osteoclasts and regulating the development of osteoporosis. This review summarized the key signaling pathways and their mechanisms of action of curcumin in the prevention and treatment of osteoporosis and analyzed their characteristics and their relationship with osteoporosis and curcumin. This not only proves the medicinal value of curcumin as a traditional herbal ingredient but also further elucidates the molecular mechanism of curcumin's anti-osteoporosis effect, providing new perspectives for the prevention and treatment of osteoporosis through multiple pathways.
Collapse
Affiliation(s)
- Keyu Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
30
|
Ren N, Lv S, Li X, Shao C, Wang Z, Mei Y, Yang W, Fu W, Hu Y, Sha L, Hu W, Zhang Z, Wang C. Clinical features, treatment, and follow-up of OPPG and high-bone-mass disorders: LRP5 is a key regulator of bone mass. Osteoporos Int 2024; 35:1395-1406. [PMID: 38625381 PMCID: PMC11281985 DOI: 10.1007/s00198-024-07080-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/30/2024] [Indexed: 04/17/2024]
Abstract
Osteoporosis-pseudoglioma syndrome (OPPG) and LRP5 high bone mass (LRP5-HBM) are two rare bone diseases with opposite clinical symptoms caused by loss-of-function and gain-of-function mutations in LRP5. Bisphosphonates are an effective treatment for OPPG patients. LRP5-HBM has a benign course, and age-related bone loss is found in one LRP5-HBM patient. PURPOSE Low-density lipoprotein receptor-related protein 5 (LRP5) is involved in the canonical Wnt signaling pathway. The gain-of-function mutation leads to high bone mass (LRP5-HBM), while the loss-of-function mutation leads to osteoporosis-pseudoglioma syndrome (OPPG). In this study, the clinical manifestations, disease-causing mutations, treatment, and follow-up were summarized to improve the understanding of these two diseases. METHODS Two OPPG patients and four LRP5-HBM patients were included in this study. The clinical characteristics, biochemical and radiological examinations, pathogenic mutations, and structural analysis were summarized. Furthermore, several patients were followed up to observe the treatment effect and disease progress. RESULTS Congenital blindness, persistent bone pain, low bone mineral density (BMD), and multiple brittle fractures were the main clinical manifestations of OPPG. Complex heterozygous mutations were detected in two OPPG patients. The c.1455G > T mutation in exon 7 was first reported. During the follow-up, BMD of two patients was significantly improved after bisphosphonate treatment. On the contrary, typical clinical features of LRP5-HBM included extremely high BMD without fractures, torus palatinus and normal vision. X-ray showed diffuse osteosclerosis. Two heterozygous missense mutations were detected in four patients. In addition, age-related bone loss was found in one LRP5-HBM patient after 12-year of follow-up. CONCLUSION This study deepened the understanding of the clinical characteristics, treatment, and follow-up of OPPG and LRP5-HBM; expanded the pathogenic gene spectrum of OPPG; and confirmed that bisphosphonates were effective for OPPG. Additionally, it was found that Ala242Thr mutation could not protect LRP5-HBM patients from age-related bone loss. This phenomenon deserves further study.
Collapse
Affiliation(s)
- Na Ren
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Shanshan Lv
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Xiang Li
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Chong Shao
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Ziyuan Wang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Yazhao Mei
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Wendi Yang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Wenzhen Fu
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Yunqiu Hu
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Ling Sha
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Weiwei Hu
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China
| | - Zhenlin Zhang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
| | - Chun Wang
- Department of Osteoporosis and Bone Disease, Shanghai Clinical Research Center of Bone Disease, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai, 200233, China.
| |
Collapse
|
31
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
32
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
33
|
Hansdah K, Lui JC. Emerging Insights into the Endocrine Regulation of Bone Homeostasis by Gut Microbiome. J Endocr Soc 2024; 8:bvae117. [PMID: 38957653 PMCID: PMC11215793 DOI: 10.1210/jendso/bvae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 07/04/2024] Open
Abstract
Gut microbiota plays an important role in the regulation of bone homeostasis and bone health. Recent studies showed that these effects could be mediated through microbial metabolites released by the microbiota like short-chain fatty acids, metabolism of endogenous molecules such as bile acids, or a complex interplay between microbiota, the endocrine system, and the immune system. Importantly, some studies showed a reciprocal relationship between the endocrine system and gut microbiota. For instance, postmenopausal estrogen deficiency could lead to dysbiosis of the gut microbiota, which could in turn affect various immune response and bone remodeling. In addition, evidence showed that shift in the indigenous gut microbiota caused by antibiotics treatment may also impact normal skeletal growth and maturation. In this mini-review, we describe recent findings on the role of microbiome in bone homeostasis, with a particular focus on molecular mechanisms and their interactions with the endocrine and immune system. We will also discuss the recent findings on estrogen deficiency and microbiota dysbiosis, and the clinical implications for the development of new therapeutic strategies for osteoporosis and other bone disorders.
Collapse
Affiliation(s)
- Kirtal Hansdah
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Julian C Lui
- Section on Growth and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
34
|
Bell I, Khan H, Stutt N, Horn M, Hydzik T, Lum W, Rea V, Clapham E, Hoeg L, Van Raay TJ. Nkd1 functions downstream of Axin2 to attenuate Wnt signaling. Mol Biol Cell 2024; 35:ar93. [PMID: 38656801 PMCID: PMC11244159 DOI: 10.1091/mbc.e24-02-0059-t] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
Wnt signaling is a crucial developmental pathway involved in early development as well as stem-cell maintenance in adults and its misregulation leads to numerous diseases. Thus, understanding the regulation of this pathway becomes vitally important. Axin2 and Nkd1 are widely utilized negative feedback regulators in Wnt signaling where Axin2 functions to destabilize cytoplasmic β-catenin, and Nkd1 functions to inhibit the nuclear localization of β-catenin. Here, we set out to further understand how Axin2 and Nkd1 regulate Wnt signaling by creating axin2gh1/gh1, nkd1gh2/gh2 single mutants and axin2gh1/gh1;nkd1gh2/gh2 double mutant zebrafish using sgRNA/Cas9. All three Wnt regulator mutants were viable and had impaired heart looping, neuromast migration defects, and behavior abnormalities in common, but there were no signs of synergy in the axin2gh1/gh1;nkd1gh2/gh2 double mutants. Further, Wnt target gene expression by qRT-PCR and RNA-seq, and protein expression by mass spectrometry demonstrated that the double axin2gh1/gh1;nkd1gh2/gh2 mutant resembled the nkd1gh2/gh2 phenotype demonstrating that Nkd1 functions downstream of Axin2. In support of this, the data further demonstrates that Axin2 uniquely alters the properties of β-catenin-dependent transcription having novel readouts of Wnt activity compared with nkd1gh2/gh2 or the axin2gh1/gh1;nkd1gh2/gh2 double mutant. We also investigated the sensitivity of the Wnt regulator mutants to exacerbated Wnt signaling, where the single mutants displayed characteristic heightened Wnt sensitivity, resulting in an eyeless phenotype. Surprisingly, this phenotype was rescued in the double mutant, where we speculate that cross-talk between Wnt/β-catenin and Wnt/Planar Cell Polarity pathways could lead to altered Wnt signaling in some scenarios. Collectively, the data emphasizes both the commonality and the complexity in the feedback regulation of Wnt signaling.
Collapse
Affiliation(s)
- Ian Bell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Haider Khan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Nathan Stutt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Matthew Horn
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Teesha Hydzik
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Whitney Lum
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Victoria Rea
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Emma Clapham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| | - Lisa Hoeg
- Department of Bioinformatics, University of Guelph, Guelph, Ontario, N1G 2W1 Canada
| | - Terence J. Van Raay
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, N1G 2W1 Ontario, Canada
| |
Collapse
|
35
|
Post Y, Lu C, Fletcher RB, Yeh WC, Nguyen H, Lee SJ, Li Y. Design principles and therapeutic applications of novel synthetic WNT signaling agonists. iScience 2024; 27:109938. [PMID: 38832011 PMCID: PMC11145361 DOI: 10.1016/j.isci.2024.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Wingless-related integration site or Wingless and Int-1 or Wingless-Int (WNT) signaling is crucial for embryonic development, and adult tissue homeostasis and regeneration, through its essential roles in cell fate, patterning, and stem cell regulation. The biophysical characteristics of WNT ligands have hindered efforts to interrogate ligand activity in vivo and prevented their development as therapeutics. Recent breakthroughs have enabled the generation of synthetic WNT signaling molecules that possess characteristics of natural ligands and potently activate the pathway, while also providing distinct advantages for therapeutic development and manufacturing. This review provides a detailed discussion of the protein engineering of these molecular platforms for WNT signaling agonism. We discuss the importance of WNT signaling in several organs and share insights from the initial application of these new classes of molecules in vitro and in vivo. These molecules offer a unique opportunity to enhance our understanding of how WNT signaling agonism promotes tissue repair, enabling targeted development of tailored therapeutics.
Collapse
Affiliation(s)
- Yorick Post
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Chenggang Lu
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Russell B. Fletcher
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Wen-Chen Yeh
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Huy Nguyen
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Sung-Jin Lee
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| | - Yang Li
- Surrozen, Inc., 171 Oyster Point Blvd, Suite 400, South San Francisco, CA 94080, USA
| |
Collapse
|
36
|
Gou Y, Li H, Sun X, Chen D, Tian F. Parathyroid hormone (1-34) retards the lumbar facet joint degeneration and activates Wnt/β-catenin signaling pathway in ovariectomized rats. J Orthop Surg Res 2024; 19:352. [PMID: 38877549 PMCID: PMC11177467 DOI: 10.1186/s13018-024-04817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
PURPOSE Facet joint degeneration (FJD) is a major cause of low back pain. Parathyroid hormone (PTH) (1-34) is commonly used to treat osteoporosis. However, little is known about its effects on FJD induced by estrogen deficiency. This study aims to investigate the effects of PTH (1-34) on FJD induced by estrogen deficiency and the underlying pathogenesis of the disease. METHODS Forty 3-month-old female Sprague-Dawley rats were randomly divided into four groups: 30 received bilateral ovariectomy (OVX) followed by 12 weeks of treatment with normal saline, PTH (1-34) or 17β-estradiol (E2), and 10 received sham surgery followed by administration of normal saline. Status and Wnt/β-catenin signaling activity in the cartilage and subchondral bone of the L4-L5 FJs and serum biomarkers were analyzed. RESULTS Administration of PTH (1-34) and E2 ameliorated cartilage lesions, and significantly decreased MMP-13 and caspase-3 levels and chondrocyte apoptosis. PTH (1-34) but not E2 significantly increased cartilage thickness, number of chondrocytes, and the expression of aggrecan. PTH (1-34) significantly improved microarchitecture parameters of subchondral bone, increased the expression of collagen I and osteocalcin, and decreased RANKL/OPG ratio. E2 treatment significantly increased the OPG level and decreased the RANKL/OPG ratio in the subchondral bone of ovariectomized rats, but it did not significantly improve the microarchitecture parameters of subchondral bone. Wnt3a and β-catenin expression was significantly reduced in the articular cartilage and subchondral bone in OVX rats, but PTH (1-34) could increase the expression of these proteins. E2 significantly increased the activity of Wnt/β-catenin pathway only in cartilage, but not in subchondral bone. The restoration of Wnt/β-catenin signaling had an obvious correlation with the improvement of some parameters associated with the FJs status. CONCLUSION Wnt/β-catenin signaling may be a potential therapeutic target for FJD induced by estrogen deficiency. PTH (1-34) is effective in treating this disease with better efficacy than 17β-estradiol, and the efficacy may be attributed to its restoration of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Hetong Li
- Department of Orthopaedics, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Xun Sun
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China
| | - Desheng Chen
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, China.
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
37
|
Feng J, Zhang Q, Pu F, Zhu Z, Lu K, Lu WW, Tong L, Yu H, Chen D. Signalling interaction between β-catenin and other signalling molecules during osteoarthritis development. Cell Prolif 2024; 57:e13600. [PMID: 38199244 PMCID: PMC11150147 DOI: 10.1111/cpr.13600] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/29/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Osteoarthritis (OA) is the most prevalent disorder of synovial joint affecting multiple joints. In the past decade, we have witnessed conceptual switch of OA pathogenesis from a 'wear and tear' disease to a disease affecting entire joint. Extensive studies have been conducted to understand the underlying mechanisms of OA using genetic mouse models and ex vivo joint tissues derived from individuals with OA. These studies revealed that multiple signalling pathways are involved in OA development, including the canonical Wnt/β-catenin signalling and its interaction with other signalling pathways, such as transforming growth factor β (TGF-β), bone morphogenic protein (BMP), Indian Hedgehog (Ihh), nuclear factor κB (NF-κB), fibroblast growth factor (FGF), and Notch. The identification of signalling interaction and underlying mechanisms are currently underway and the specific molecule(s) and key signalling pathway(s) playing a decisive role in OA development need to be evaluated. This review will focus on recent progresses in understanding of the critical role of Wnt/β-catenin signalling in OA pathogenesis and interaction of β-catenin with other pathways, such as TGF-β, BMP, Notch, Ihh, NF-κB, and FGF. Understanding of these novel insights into the interaction of β-catenin with other pathways and its integration into a complex gene regulatory network during OA development will help us identify the key signalling pathway of OA pathogenesis leading to the discovery of novel therapeutic strategies for OA intervention.
Collapse
Affiliation(s)
- Jing Feng
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Qing Zhang
- Department of EmergencyRenmin Hospital, Wuhan UniversityWuhanHubeiChina
| | - Feifei Pu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Zhenglin Zhu
- Department of Orthopedic Surgerythe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ke Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - William W. Lu
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Liping Tong
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Huan Yu
- Department of Orthopedics, Traditional Chinese and Western Medicine Hospital of WuhanTongji Medical College, Huazhong University of Science and TechnologyWuhanHubeiChina
- Department of OrthopedicsWuhan No. 1 HospitalWuhanHubeiChina
| | - Di Chen
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Research Center for Computer‐aided Drug DiscoveryShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
38
|
Kondo T, Okada Y, Shizuya S, Yamaguchi N, Hatakeyama S, Maruyama K. Neuroimmune modulation by tryptophan derivatives in neurological and inflammatory disorders. Eur J Cell Biol 2024; 103:151418. [PMID: 38729083 DOI: 10.1016/j.ejcb.2024.151418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
The nervous and immune systems are highly developed, and each performs specialized physiological functions. However, they work together, and their dysfunction is associated with various diseases. Specialized molecules, such as neurotransmitters, cytokines, and more general metabolites, are essential for the appropriate regulation of both systems. Tryptophan, an essential amino acid, is converted into functional molecules such as serotonin and kynurenine, both of which play important roles in the nervous and immune systems. The role of kynurenine metabolites in neurodegenerative and psychiatric diseases has recently received particular attention. Recently, we found that hyperactivity of the kynurenine pathway is a critical risk factor for septic shock. In this review, we first outline neuroimmune interactions and tryptophan derivatives and then summarized the changes in tryptophan metabolism in neurological disorders. Finally, we discuss the potential of tryptophan derivatives as therapeutic targets for neuroimmune disorders.
Collapse
Affiliation(s)
- Takeshi Kondo
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Saika Shizuya
- Department of Ophthalmology, Wakayama Medical University School of Medicine, Wakayama 641-0012, Japan
| | - Naoko Yamaguchi
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Hokkaido 060-8636, Japan
| | - Kenta Maruyama
- Department of Pharmacology, School of Medicine, Aichi Medical University, Aichi 480-1195, Japan.
| |
Collapse
|
39
|
Xiong L, Guo HH, Pan JX, Ren X, Lee D, Chen L, Mei L, Xiong WC. ATP6AP2, a regulator of LRP6/β-catenin protein trafficking, promotes Wnt/β-catenin signaling and bone formation in a cell type dependent manner. Bone Res 2024; 12:33. [PMID: 38811544 PMCID: PMC11137048 DOI: 10.1038/s41413-024-00335-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/06/2024] [Accepted: 04/08/2024] [Indexed: 05/31/2024] Open
Abstract
Wnt/β-catenin signaling is critical for various cellular processes in multiple cell types, including osteoblast (OB) differentiation and function. Exactly how Wnt/β-catenin signaling is regulated in OBs remain elusive. ATP6AP2, an accessory subunit of V-ATPase, plays important roles in multiple cell types/organs and multiple signaling pathways. However, little is known whether and how ATP6AP2 in OBs regulates Wnt/β-catenin signaling and bone formation. Here we provide evidence for ATP6AP2 in the OB-lineage cells to promote OB-mediated bone formation and bone homeostasis selectively in the trabecular bone regions. Conditionally knocking out (CKO) ATP6AP2 in the OB-lineage cells (Atp6ap2Ocn-Cre) reduced trabecular, but not cortical, bone formation and bone mass. Proteomic and cellular biochemical studies revealed that LRP6 and N-cadherin were reduced in ATP6AP2-KO BMSCs and OBs, but not osteocytes. Additional in vitro and in vivo studies revealed impaired β-catenin signaling in ATP6AP2-KO BMSCs and OBs, but not osteocytes, under both basal and Wnt stimulated conditions, although LRP5 was decreased in ATP6AP2-KO osteocytes, but not BMSCs. Further cell biological studies uncovered that osteoblastic ATP6AP2 is not required for Wnt3a suppression of β-catenin phosphorylation, but necessary for LRP6/β-catenin and N-cadherin/β-catenin protein complex distribution at the cell membrane, thus preventing their degradation. Expression of active β-catenin diminished the OB differentiation deficit in ATP6AP2-KO BMSCs. Taken together, these results support the view for ATP6AP2 as a critical regulator of both LRP6 and N-cadherin protein trafficking and stability, and thus regulating β-catenin levels, demonstrating an un-recognized function of osteoblastic ATP6AP2 in promoting Wnt/LRP6/β-catenin signaling and trabecular bone formation.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Li Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
40
|
Ke KX, Gao X, Liu L, He WG, Jiang Y, Long CB, Zhong G, Xu ZH, Deng ZL, He BC, Hu N. Leptin attenuates the osteogenic induction potential of BMP9 by increasing β-catenin malonylation modification via Sirt5 down-regulation. Aging (Albany NY) 2024; 16:7870-7888. [PMID: 38709288 PMCID: PMC11131982 DOI: 10.18632/aging.205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/29/2024] [Indexed: 05/07/2024]
Abstract
BMP9 has demonstrated significant osteogenic potential. In this study, we investigated the effect of Leptin on BMP9-induced osteogenic differentiation. Firstly, we found Leptin was decreased during BMP9-induced osteogenic differentiation and serum Leptin concentrations were increased in the ovariectomized (OVX) rats. Both in vitro and in vivo, exogenous expression of Leptin inhibited the process of osteogenic differentiation, whereas silencing Leptin enhanced. Exogenous Leptin could increase the malonylation of β-catenin. However, BMP9 could increase the level of Sirt5 and subsequently decrease the malonylation of β-catenin; the BMP9-induced osteogenic differentiation was inhibited by silencing Sirt5. These data suggested that Leptin can inhibit the BMP9-induced osteogenic differentiation, which may be mediated through reducing the activity of Wnt/β-catenin signalling via down-regulating Sirt5 to increase the malonylation level of β-catenin partly.
Collapse
Affiliation(s)
- Kai-Xin Ke
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Xiang Gao
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The second affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Wen-Ge He
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Cheng-Bin Long
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, Bishan Hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Gan Zhong
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Zheng-Hao Xu
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Zhong-Liang Deng
- Department of Orthopaedics, The second affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Bai-Cheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People’s Republic of China
- Key Laboratory of Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Ning Hu
- Department of Orthopaedics, The first affiliated hospital of Chongqing Medical University, Chongqing 400016, People’s Republic of China
| |
Collapse
|
41
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
42
|
Kawaue H, Rojasawasthien T, Dusadeemeelap C, Matsubara T, Kokabu S, Addison WN. PI15, a novel secreted WNT-signaling antagonist, regulates chondrocyte differentiation. Connect Tissue Res 2024; 65:237-252. [PMID: 38739041 DOI: 10.1080/03008207.2024.2349818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE/AIM OF STUDY During the development of the vertebrate skeleton, the progressive differentiation and maturation of chondrocytes from mesenchymal progenitors is precisely coordinated by multiple secreted factors and signaling pathways. The WNT signaling pathway has been demonstrated to play a major role in chondrogenesis. However, the identification of secreted factors that fine-tune WNT activity has remained elusive. Here, in this study, we have identified PI15 (peptidase inhibitor 15, protease Inhibitor 15, SugarCrisp), a member of the CAP (cysteine rich secretory proteins, antigen 5, and pathogenesis related 1 proteins) protein superfamily, as a novel secreted WNT antagonist dynamically upregulated during chondrocyte differentiation. MATERIALS AND METHODS ATDC5 cells, C3H10T1/2 micromass cultures and primary chondrocyte cells were used as in vitro models of chondrogenesis. PI15 levels were stably depleted or overexpressed by viral shRNA or expression vectors. Chondrogenesis was evaluated by qPCR gene expression analysis and Alcian blue staining. Protein interactions were determined by coimmunoprecipitation assays. RESULTS AND CONCLUSIONS shRNA-mediated knockdown of PI15 in ATDC5 cells, C3H10T1/2 cells or primary chondrocytes inhibits chondrogenesis, whereas the overexpression of PI15 strongly enhances chondrogenic potential. Mechanistically, PI15 binds to the LRP6 WNT co-receptor and blocks WNT-induced LRP6 phosphorylation, thus repressing WNT-induced transcriptional activity and alleviating the inhibitory effect of WNT signaling on chondrogenesis. Altogether, our findings suggest that PI15 acts as a key regulator of chondrogenesis and unveils a mechanism through which chondrocyte-derived molecules can modulate WNT activity as differentiation proceeds, thereby creating a positive feedback loop that further drives differentiation.
Collapse
Affiliation(s)
- Hiroka Kawaue
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
- Division of Oral Functional Development, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Thira Rojasawasthien
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Chirada Dusadeemeelap
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - William N Addison
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
43
|
An F, Song J, Chang W, Zhang J, Gao P, Wang Y, Xiao Z, Yan C. Research Progress on the Mechanism of the SFRP-Mediated Wnt Signalling Pathway Involved in Bone Metabolism in Osteoporosis. Mol Biotechnol 2024; 66:975-990. [PMID: 38194214 DOI: 10.1007/s12033-023-01018-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
Osteoporosis (OP) is a metabolic bone disease linked to an elevated fracture risk, primarily stemming from disruptions in bone metabolism. Present clinical treatments for OP merely alleviate symptoms. Hence, there exists a pressing need to identify novel targets for the clinical treatment of OP. Research indicates that the Wnt signalling pathway is modulated by serum-secreted frizzled-related protein 5 (SFRP5), potentially serving as a pivotal regulator in bone metabolism disorders. Moreover, studies confirm elevated SFRP5 expression in OP, with SFRP5 overexpression leading to the downregulation of Wnt and β-catenin proteins in the Wnt signalling pathway, as well as the expression of osteogenesis-related marker molecules such as RUNX2, ALP, and OPN. Conversely, the opposite has been reported when SFRP5 is knocked out, suggesting that SFRP5 may be a key factor involved in the regulation of bone metabolism via the Wnt signalling axis. However, the molecular mechanisms underlying the action of SFRP5-induced OP have yet to be comprehensively elucidated. This review focusses on the molecular structure and function of SFRP5 and the potential molecular mechanisms of the SFRP5-mediated Wnt signalling pathway involved in bone metabolism in OP, providing reasonable evidence for the targeted therapy of SFRP5 for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yujie Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Zhipan Xiao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
44
|
Ozgurel SU, Reyes Fernandez PC, Chanpaisaeng K, Fleet JC. Male Lrp5A214V mice maintain high bone mass during dietary calcium restriction by altering the vitamin D endocrine system. J Bone Miner Res 2024; 39:315-325. [PMID: 38477773 PMCID: PMC11240165 DOI: 10.1093/jbmr/zjae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/20/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
Environmental factors and genetic variation individually impact bone. However, it is not clear how these factors interact to influence peak bone mass accrual. Here we tested whether genetically programmed high bone formation driven by missense mutations in the Lrp5 gene (Lrp5A214V) altered the sensitivity of mice to an environment of inadequate dietary calcium (Ca) intake. Weanling male Lrp5A214V mice and wildtype littermates (control) were fed AIN-93G diets with 0.125%, 0.25%, 0.5% (reference, basal), or 1% Ca from weaning until 12 weeks of age (ie, during bone growth). Urinary Ca, serum Ca, Ca regulatory hormones (PTH, 1,25 dihydroxyvitamin D3 (1,25(OH)2D3)), bone parameters (μCT, ash), and renal/intestinal gene expression were analyzed. As expected, low dietary Ca intake negatively impacted bones and Lrp5A214V mice had higher bone mass and ash content. Although bones of Lrp5A214V mice have more matrix to mineralize, their bones were not more susceptible to low dietary Ca intake. In control mice, low dietary Ca intake exerted expected effects on serum Ca (decreased), PTH (increased), and 1,25(OH)2D3 (increased) as well as their downstream actions (ie, reducing urinary Ca, increasing markers of intestinal Ca absorption). In contrast, Lrp5A214V mice had elevated serum Ca with a normal PTH response but a blunted 1,25(OH)2D3 response to low dietary Ca that was reflected in the renal 1,25(OH)2D3 producing/degrading enzymes, Cyp27b1 and Cyp24a1. Despite elevated serum Ca in Lrp5A214V mice, urinary Ca was not elevated. Despite an abnormal serum 1,25(OH)2D3 response to low dietary Ca, intestinal markers of Ca absorption (Trpv6, S100g mRNA) were elevated in Lrp5A214V mice and responded to low Ca intake. Collectively, our data indicate that the Lrp5A214V mutation induces changes in Ca homeostasis that permit mice to retain more Ca and support their high bone mass phenotype.
Collapse
Affiliation(s)
- Serra Ucer Ozgurel
- Department of Nutritional Sciences, University of Texas, Austin, TX 78723, United States
| | - Perla C Reyes Fernandez
- Department of Physical Therapy, Indiana University –Purdue University, Indianapolis, IN 46202, United States
| | - Krittikan Chanpaisaeng
- National Center for Genetic Engineering and Biotechnology, Pathum Thani 12120, Thailand
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James C Fleet
- Department of Nutritional Sciences, University of Texas, Austin, TX 78723, United States
| |
Collapse
|
45
|
Emam SM, Moussa N. Signaling pathways of dental implants' osseointegration: a narrative review on two of the most relevant; NF-κB and Wnt pathways. BDJ Open 2024; 10:29. [PMID: 38580623 PMCID: PMC10997788 DOI: 10.1038/s41405-024-00211-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024] Open
Abstract
INTRODUCTION Cell signaling pathways are the biological reactions that control cell functions and fate. They also directly affect the body reactions to implanted biomaterials. It is well-known that dental implants success depends on a successful integration with the alveolar bone: "osseointegration" which events comprise early and later responses to the implanted biomaterials. The early events are mainly immune-inflammatory responses to the implant considered by its microenvironment as a foreign body. Later reactions are osteogenic aiming to regulate bone formation and remodeling. All these events are controlled by the cell signaling pathways in an incredible harmonious coordination. AIM The number of pathways having a role in osseointegration is so big to be reviewed in a single article. So the aim of this review was to study only two of the most relevant ones: the inflammatory Nuclear Factor Kappa B (NF-κB) pathway regulating the early osseointegration events and the osteogenic Wnt pathway regulating later events. METHODS We conducted a literature review using key databases to provide an overview about the NF-κB and Wnt cell signaling pathways and their mutual relationship with dental implants. A simplified narrative approach was conducted to explain these cell signaling pathways, their mode of activation and how they are related to the cellular events of osseointegration. RESULTS AND CONCLUSION NF-κB and Wnt cell signaling pathways are important cross-talking pathways that are affected by the implant's material and surface characteristics. The presence of the implant itself in the bone alters the intracellular events of both pathways in the adjacent implant's cellular microenvironment. Both pathways have a great role in the success or failure of osseointegration. Such knowledge can offer a new hope to treat failed implants and enhance osseointegration in difficult cases. This is consistent with advances in Omics technologies that can change the paradigm of dental implant therapy.
Collapse
Affiliation(s)
- Samar Mohamed Emam
- Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt.
| | - Nermine Moussa
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
46
|
Stringer F, Sims NA, Sachithanandan N, Aleksova J. Severe Osteoporosis With Pathogenic LRP5 Variant. JCEM CASE REPORTS 2024; 2:luae021. [PMID: 38404691 PMCID: PMC10888517 DOI: 10.1210/jcemcr/luae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 02/27/2024]
Abstract
A 24-year-old female patient was diagnosed with osteoporosis after presenting with numerous fractures throughout her childhood and adolescence. Risk factors included chronic constipation, severe vitamin D deficiency, and long-term high-dose steroid use for severe eczema. Metabolic bone disorder clinical exome screening (limited panel of metabolic bone disorders and gastrointestinal disorders) was undertaken and revealed a class 4 likely pathogenic variant in the LRP5 gene known to cause osteoporosis. Optimal treatment for patients with this variant is not well defined. A literature review of the condition and potential treatment options is discussed.
Collapse
Affiliation(s)
- Felicity Stringer
- Department of Endocrinology, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - Natalie A Sims
- St Vincent's Institute of Medical Research, Fitzroy, Melbourne, VIC 3065, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Nirupa Sachithanandan
- Department of Endocrinology, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Jasna Aleksova
- Department of Endocrinology, St Vincent's Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
- Department of Medicine, Monash University, Clayton, VIC 3168, Australia
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
47
|
Zhang YY, Xie N, Sun XD, Nice EC, Liou YC, Huang C, Zhu H, Shen Z. Insights and implications of sexual dimorphism in osteoporosis. Bone Res 2024; 12:8. [PMID: 38368422 PMCID: PMC10874461 DOI: 10.1038/s41413-023-00306-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/04/2023] [Accepted: 11/27/2023] [Indexed: 02/19/2024] Open
Abstract
Osteoporosis, a metabolic bone disease characterized by low bone mineral density and deterioration of bone microarchitecture, has led to a high risk of fatal osteoporotic fractures worldwide. Accumulating evidence has revealed that sexual dimorphism is a notable feature of osteoporosis, with sex-specific differences in epidemiology and pathogenesis. Specifically, females are more susceptible than males to osteoporosis, while males are more prone to disability or death from the disease. To date, sex chromosome abnormalities and steroid hormones have been proven to contribute greatly to sexual dimorphism in osteoporosis by regulating the functions of bone cells. Understanding the sex-specific differences in osteoporosis and its related complications is essential for improving treatment strategies tailored to women and men. This literature review focuses on the mechanisms underlying sexual dimorphism in osteoporosis, mainly in a population of aging patients, chronic glucocorticoid administration, and diabetes. Moreover, we highlight the implications of sexual dimorphism for developing therapeutics and preventive strategies and screening approaches tailored to women and men. Additionally, the challenges in translating bench research to bedside treatments and future directions to overcome these obstacles will be discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Na Xie
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Sun
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Republic of Singapore
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Huili Zhu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, Department of Reproductive Medicine, West China Second University Hospital of Sichuan University, Chengdu, China.
| | - Zhisen Shen
- Department of Otorhinolaryngology and Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, 315040, Ningbo, Zhejiang, China.
| |
Collapse
|
48
|
Wang L, Kulaixi G, Zaiyinati J, Aibai G, Du D, Guo Y. Family analysis and literature study of hereditary hypophosphatemic rickets with hypercalciuria. BMC Pediatr 2024; 24:121. [PMID: 38355430 PMCID: PMC10865686 DOI: 10.1186/s12887-024-04589-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Hereditary hypophosphatemia rickets with hypercalciuria (HHRH) is a rare autosomal recessive disorder characterised by reduced renal phosphate reabsorption leading to hypophosphataemia, rickets and bone pain. Here, we present a case of HHRH in a Chinese boy. CASE PRESENTATION We report a 11-year-old female proband, who was admitted to our hospital with bilateral genuvarum deformity and short stature. Computed Tomography (CT) showed kidney stones, blood tests showed hypophosphatemia, For a clear diagnosis, we employed high-throughput sequencing technology to screen for variants. Our gene sequencing approach encompassed whole exome sequencing, detection of exon and intron junction regions, and examination of a 20 bp region of adjacent introns. Flanking sequences are defined as ±50 bp upstream and downstream of the 5' and 3' ends of the coding region.The raw sequence data were compared to the known gene sequence data in publicly available sequence data bases using Burrows-Wheeler Aligner software (BWA, 0.7.12-r1039), and the pathogenic variant sites were annotated using Annovar. Subsequently, the suspected pathogenic variants were classified according to ACMG's gene variation classification system. Simultaneously, unreported or clinically ambiguous pathogenic variants were predicted and annotated based on population databases. Any suspected pathogenic variants identified through this analysis were then validated using Sanger sequencing technology. At last, the proband and her affected sister carried pathogenic homozygous variant in the geneSLC34A3(exon 13, c.1402C > T; p.R468W). Their parents were both heterozygous carriers of the variant. Genetic testing revealed that the patient has anLRP5(exon 18, c.3917C > T; p.A1306V) variant of Uncertain significance, which is a rare homozygous variant. CONCLUSION This case report aims to raise awareness of the presenting characteristics of HHRH. The paper describes a unique case involving variants in both theSLC34A3andLRP5genes, which are inherited in an autosomal recessive manner. This combination of gene variants has not been previously reported in the literature. It is uncertain whether the presence of these two mutated genes in the same individual will result in more severe clinical symptoms. This report shows that an accurate diagnosis is critical, and with early diagnosis and correct treatment, patients will have a better prognosis.
Collapse
Affiliation(s)
- Lufeng Wang
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China
| | - Gulimire Kulaixi
- Department of Endocrinology, Yecheng County, Kashi City of Xinjiang Uygur Autonomous Region, Kashi City, 832000, China
| | - Jiazireya Zaiyinati
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China
| | - Guzhalikezi Aibai
- Department of Endocrinology, Yecheng County, Kashi City of Xinjiang Uygur Autonomous Region, Kashi City, 832000, China
| | - Danyang Du
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China
| | - Yanying Guo
- Department of Endocrinology, People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang Clinical Research Center for Diabetes, Urumqi, 830000, China.
| |
Collapse
|
49
|
Du Y, Xu B, Li Q, Peng C, Yang K. The role of mechanically sensitive ion channel Piezo1 in bone remodeling. Front Bioeng Biotechnol 2024; 12:1342149. [PMID: 38390363 PMCID: PMC10882629 DOI: 10.3389/fbioe.2024.1342149] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Piezo1 (2010) was identified as a mechanically activated cation channel capable of sensing various physical forces, such as tension, osmotic pressure, and shear force. Piezo1 mediates mechanosensory transduction in different organs and tissues, including its role in maintaining bone homeostasis. This review aimed to summarize the function and possible mechanism of Piezo1 in the mechanical receptor cells in bone tissue. We found that it is a potential therapeutic target for the treatment of bone diseases.
Collapse
Affiliation(s)
| | | | | | | | - Kai Yang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Zhang M, Xu H, Lou Q, Yin F, Guo N, Wu L, Huang W, Ji Y, Yang L, Li Q, Wang S, Guan Z, Yang Y, Gao Y. LDL receptor-related protein 5 rs648438 polymorphism is associated with the risk of skeletal fluorosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:687-696. [PMID: 36617395 DOI: 10.1080/09603123.2022.2163989] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
To investigate the potential association between LRP5 rs648438 polymorphism and the risk of skeletal fluorosis (SF) was evaluated in a cross-sectional case-control study conducted in Shanxi, China, in 2019. A total of 973 individuals were enrolled in this study, in which cases and controls were 346 and 627, respectively. SF was diagnosed according to the standard WS/192-2008 (China). The LRP5 rs648438 was detected by the multiple PCR and sequencing. LRP5 rs648438 was found to follow a dominant genetic model using a web-based SNP-STATS software. Logistic regression analysis found that the TC/CC genotype of LRP5 rs648438 might be a protective factor for SF. When stratified by gender, this protective effect of TC/CC genotype in rs648438 was pronounced in males. There was an interaction between gender and rs648438 on risk of SF. Our study suggested that TC/CC genotype of rs648438 might be a protective factor for water-drinking-type skeletal fluorosis, especially in male participants.
Collapse
Affiliation(s)
- Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Haili Xu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qun Lou
- Xiamen Center for Disease Control and Prevention, Xiamen, Fujian, China
| | - Fanshuo Yin
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liaowei Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi Ji
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Liu Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Qiao Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Sa Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhizhong Guan
- Department of Pathology and Key Lab of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|