1
|
Saadh MJ, Allela OQB, Kareem RA, Baldaniya L, Ballal S, Vashishth R, Parmar M, Sameer HN, Hamad AK, Athab ZH, Adil M. Prognostic gene expression profile of colorectal cancer. Gene 2025; 955:149433. [PMID: 40122415 DOI: 10.1016/j.gene.2025.149433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer is a major global health burden, with significant heterogeneity in clinical outcomes among patients. Identifying robust prognostic gene expression signatures can help stratify patients, guide treatment decisions, and improve clinical management. This review provides an overview of current prognostic gene expression profiles in colorectal cancer research. We have synthesized evidence from numerous published studies investigating the association between tumor gene expression patterns and patient survival outcomes. The reviewed literature reveals several promising gene signatures that have demonstrated the ability to predict disease-free survival and overall survival in CRC patients, independent of standard clinicopathological risk factors. These genes are crucial in fundamental biological processes, including cell cycle control, epithelial-mesenchymal transition, and immune regulation. The implementation of prognostic gene expression tests in clinical practice holds great potential for enabling more personalized management strategies for colorectal cancer.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan.
| | | | | | - Lalji Baldaniya
- Marwadi University Research Center, Department of Pharmacy, Faculty of Health Sciences, Marwadi University, Rajkot 360003 Gujarat, India.
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Raghav Vashishth
- Department of Surgery, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India.
| | - Manisha Parmar
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, India.
| | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar 64001, Iraq.
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq.
| | | |
Collapse
|
2
|
Qin J, Tan Y, Han Y, Yu L, Liu S, Zhao S, Wan H, Qu S. Interplay Between TGF-β Signaling and MicroRNA in Diabetic Cardiomyopathy. Cardiovasc Drugs Ther 2025; 39:633-641. [PMID: 38117422 DOI: 10.1007/s10557-023-07532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
In diabetic patients, concomitant cardiovascular disease is the main factor contributing to their morbidity and mortality. Diabetic cardiomyopathy (DCM) is a form of cardiovascular disease associated with diabetes that can result in heart failure. Transforming growth factor-β (TGF-β) isoforms play a crucial role in heart remodeling and repair and are elevated and activated in myocardial disorders. Alterations in certain microRNAs (miRNA) are closely related to diabetic cardiomyopathy. One or more miRNA molecules target the majority of TGF-β pathway components, and TGF-β directly or via SMADs controls miRNA synthesis. Based on these interactions, this review discusses potential cross-talk between TGF-β signaling and miRNA in DCM in order to investigate the creation of potential therapeutic targets.
Collapse
Affiliation(s)
- Jianning Qin
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Yao Tan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Yang Han
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Letian Yu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Shali Liu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Simin Zhao
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Hengquan Wan
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China
| | - Shunlin Qu
- Pathophysiology Department, Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hongxiang Street, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Kraus Z, Birla S, Powell T, Petrovskaya S, Mills F, Dement-Brown J, Culhane C, Dokhaee K, Tolnay M. Secretory IgA binding to FCRL3 triggers shared inflammatory cytokine secretion by human regulatory T cells and effector T cells. J Leukoc Biol 2025; 117:qiaf054. [PMID: 40313182 DOI: 10.1093/jleuko/qiaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/14/2025] [Accepted: 04/29/2025] [Indexed: 05/03/2025] Open
Abstract
Several human lymphocyte subsets express the novel secretory IgA receptor FCRL3 (Fc receptor-like 3). Secretory IgA binding to FCRL3 diminishes the inhibitory capacity of regulatory T cells and promotes a T helper 17-like phenotype. Here, we report that in CD4+ regulatory T cells and CD8+ terminal effector T cells secretory IgA induced a shared inflammatory gene signature that included PTGS2 encoding COX2, and the prototypic inflammatory cytokine genes IL1A, IL1B, and IL8. Secretory IgA in regulatory T cells also elevated gene transcripts required for lineage identity and function. Secretory IgA promoted interleukin (IL)-1β, IL-6, IL-8, IL-10, interferon γ, and tumor necrosis factor α protein secretion by both T cell types. Moreover, secretory IgA promoted NLRP3 inflammasome activation in regulatory T cells. Pharmacologic COX2 and NLRP3 inhibitors partially rescued the inhibitory competence of regulatory T cells, suggesting respective mechanistic roles. We propose that secretory IgA provokes a coordinated inflammatory response in regulatory and effector T cells to facilitate mucosal pathogen clearance.
Collapse
Affiliation(s)
- Zachary Kraus
- Office of Pharmaceutical Quality Assessment III, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Shama Birla
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Taylor Powell
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Svetlana Petrovskaya
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Frederick Mills
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Jessica Dement-Brown
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Casey Culhane
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Kimia Dokhaee
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| | - Mate Tolnay
- Office of Pharmaceutical Quality Research, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, United States
| |
Collapse
|
4
|
He Y, Gan M, Ma J, Liang S, Chen L, Niu L, Zhao Y, Wang Y, Zhu L, Shen L. TGF-β signaling in the ovary: Emerging roles in development and disease. Int J Biol Macromol 2025; 306:141455. [PMID: 40015411 DOI: 10.1016/j.ijbiomac.2025.141455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
The TGF-β superfamily plays a pivotal role in a wide array of cellular processes, including cell proliferation, differentiation, apoptosis, and migration. It is also critically involved in ovarian development and the pathogenesis of various diseases. Within the ovary, follicles act as the primary functional units, housing numerous members of the TGF-β superfamily that regulate follicular development and, consequently, overall ovarian function. Dysregulation of the TGF-β signaling pathway is associated with reproductive disorders and the development of ovarian diseases in female mammals, such as polycystic ovary syndrome (PCOS), premature ovarian aging, ovarian insufficiency, and ovarian cancer. This article highlights the significant contributions of key TGF-β signaling pathway members to follicular development and ovarian disease progression, aiming to deepen the understanding of TGF-β signaling's critical role in reproductive health.
Collapse
Affiliation(s)
- Yuxu He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Mailin Gan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianfeng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuang Liang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lei Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lili Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ye Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
5
|
Nie YM, Zhou WQ, Niu T, Mao MF, Zhan YX, Li Y, Wang KP, Li MX, Ding K. Peptidoglycan isolated from the fruit of Lycium barbarum alleviates liver fibrosis in mice by regulating the TGF-β/Smad7 signaling and gut microbiota. Acta Pharmacol Sin 2025; 46:1329-1344. [PMID: 39833303 PMCID: PMC12032012 DOI: 10.1038/s41401-024-01454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025]
Abstract
The hepatoprotective effect of the fruit of Lycium barbarum has been documented in China over millennia. Lycium barbarum polysaccharides (LBPs) were the first macromolecules reported to mitigate liver fibrosis in carbon tetrachloride (CCl4)-treated mice. Herein, a neutral peptidoglycan, named as LBPW, was extracted from the fruit of Lycium barbarum. In this study, we investigated the hepatoprotective mechanisms of LBPW. CCl4-induced liver fibrosis mice were administered LBPW (50, 100, 200 mg ·kg-1 ·d-1, i.p.) or (100, 200, 300 mg· kg-1 ·d-1, i.g.) for 6 weeks. We showed that either i.p. or i.g. administration of LBPW dose-dependently attenuated liver damage and fibrosis in CCl4-treated mice. Pharmacokinetic analysis showed that cyanine 5.5 amine (Cy5.5)-labeled LBPW (Cy5.5-LBPW) could be detected in the liver through i.p. and i.g. administration with i.g.-administered Cy5.5-LBPW mainly accumulating in the intestine. In TGF-β1-stimulated LX-2 cells as well as in the liver of CCl4-treated mice, we demonstrated that LBPW significantly upregulated Smad7, a negative regulator of TGF-β/Smad signaling, to retard the activation of hepatic stellate cells (HSCs) and prevent liver fibrosis. On the other hand, LBPW significantly boosted the abundance of Akkermansia muciniphila (A. muciniphila) and fortified gut barrier function. We demonstrated that A. muciniphila might be responsible for the efficacy of LBPW since decreasing the abundance of this bacterium by antibiotics (Abs) blocked the effectiveness of LBPW. Overall, our results show that LBPW may exert the hepatoprotective effect via rebalancing TGF-β/Smad7 signaling and propagating gut commensal A. muciniphila, suggesting that LBPW could be leading components to be developed as new drug candidates or nutraceuticals against liver fibrosis.
Collapse
Affiliation(s)
- Ying-Min Nie
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wan-Qi Zhou
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 201203, China
| | - Ting Niu
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pancreatic-biliary Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Meng-Fei Mao
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Xue Zhan
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yun Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai-Ping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Mei-Xia Li
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Kan Ding
- Carbohydrate-Based Drug Research Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Lingang Laboratory, Shanghai, 201203, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, SSIP Healthcare and Medicine Demonstration Zone, Zhongshan Tsuihang New District, Zhongshan, 528400, China.
| |
Collapse
|
6
|
Li X, Hayashi R, Imaizumi T, Harrington J, Kudo Y, Takayanagi H, Baba K, Nishida K. Extracellular vesicles from adipose-derived mesenchymal stem cells promote colony formation ability and EMT of corneal limbal epithelial cells. PLoS One 2025; 20:e0321579. [PMID: 40257992 PMCID: PMC12011229 DOI: 10.1371/journal.pone.0321579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/07/2025] [Indexed: 04/23/2025] Open
Abstract
Corneal diseases are a leading cause of visual impairment, and their treatment remains challenging. Corneal epithelial stem cells exist in the limbus, the peripheral region of the cornea, and play an important role in corneal regeneration. Here, we evaluated the effects of extracellular vesicles from human adipose-derived mesenchymal stem cells (AdMSC-EVs) on limbal epithelial cells (LECs). Colony formation assays showed that the colony-forming efficiency of LECs significantly increased in the presence of AdMSC-EVs. We next demonstrated that AdMSC-EVs accelerated the migration of LECs in a scratch assay, whereas the proliferation of LECs was decreased by AdMSC-EVs in the cell proliferation assay. RNA sequencing analysis of LECs indicated that AdMSC-EVs maintained their stem cell properties and improved epithelial-mesenchymal transition (EMT). Furthermore, after identifying the six most abundant microRNAs (miRNAs) in AdMSC-EVs, LEC transfection with miRNA mimics indicated that miR-25, miR-191, and miR-335 were the most probable miRNA factors within AdMSC-EVs at improving colony formation ability and EMT. Taken together, our findings indicated that AdMSC-EVs enhanced the colony formation ability and EMT of LECs, and the effects of AdMSC-EVs were in-part mediated by the miRNAs within the AdMSC-EVs.
Collapse
Affiliation(s)
- Xiaoqin Li
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| | - Tsutomu Imaizumi
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, Japan
| | - Jodie Harrington
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Faculty of Health, Medicine and Social Care, Medical Technology Research Centre, Anglia Ruskin University, Chelmsford Campus, England, United Kingdom
| | - Yuji Kudo
- Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Basic Research Development Division, ROHTO Pharmaceutical, Ikuno-ku, Osaka, Japan
| | - Hiroshi Takayanagi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Research, Development and Production Department of RAYMEI Inc, Suita, Osaka, Japan
| | - Koichi Baba
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Advanced Device Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Visual Regenerative Medicine, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
7
|
Chang X, Zhang Y, Deng M, Yang R, Zhang J, Hao M, Miao J. OTUD1 inhibits endometriosis fibrosis by deubiquitinating MADH7. Mol Hum Reprod 2025; 31:gaaf014. [PMID: 40279273 DOI: 10.1093/molehr/gaaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/12/2025] [Indexed: 04/27/2025] Open
Abstract
Fibrosis constitutes the principal pathophysiological mediator of pain and infertility manifestations in endometriosis, and the inhibitory factor of the TGF-β pathway, MADH7, makes a vital impact on the progression of fibrosis. Ovarian tumor domain-containing protein 1 (OTUD1) deubiquitinase binds to the MADH7 protein, although its specific role in endometriosis needs to be investigated. This study is the first to explore the role of OTUD1 in endometriosis and to investigate its impact on the growth of endometriosis lesions in vitro and in vivo, using C57BL/6N female mice and human primary stromal endometriosis cells (HEMCs). Moreover, the obtained results demonstrated that OTUD1 inhibited the expression of fibrosis-related proteins in HEMCs in vitro, and the mechanistic execution of this phenotype was achieved via coordinated deubiquitination coupled with MADH7-mediated transcriptional reprogramming. These events stopped the growth of lesions in vivo and reduced abdominal inflammation. The study demonstrated the critical role of the deubiquitinating enzyme OTUD1 in endometriosis, indicating its potential therapeutic effect on endometriosis.
Collapse
Affiliation(s)
- Xiangyu Chang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Yanqin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Mengqi Deng
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Ruiye Yang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jiamin Zhang
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Menglin Hao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Jinwei Miao
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
8
|
Zhu S, Hu J, Lin J, Wang C, Wang E. Co-Expression of Dominant-Negative TGF-β Receptor 2 Enhances the Therapeutic Efficacy of Novel TREM1/DAP12-BB-Based CAR-T Cells in Solid Tumours. Immunology 2025; 174:310-321. [PMID: 39746895 DOI: 10.1111/imm.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has exhibited remarkable efficacy in the treatment of haematological malignancies, yet its application in solid tumours is hindered by the immunosuppressive tumour microenvironment (TME). In this study, a novel SS1-TREM1/DAP12-BB CAR-T cell was devised to target ovarian cancer and further engineered to co-express the dominant-negative TGF-β receptor 2 (DNR) to combat CAR-T cell exhaustion in TME. The incorporation of DNR effectively blocked TGF-β signalling, thereby enhancing CAR-T cell survival and antitumor activity in a TGF-β1-rich environment. In vivo evaluations demonstrated that DNR co-expression potentiated the antitumor efficacy of TREM1/DAP12-BB CAR-T cells and conferred resilience against tumour rechallenge. These findings underscore the broad potential of DNR co-expression in CAR design, presenting a novel therapeutic strategy for patients with recurrent ovarian cancer.
Collapse
MESH Headings
- Humans
- Female
- Animals
- Immunotherapy, Adoptive/methods
- Ovarian Neoplasms/therapy
- Ovarian Neoplasms/immunology
- Ovarian Neoplasms/pathology
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Mice
- Receptor, Transforming Growth Factor-beta Type II/genetics
- Receptor, Transforming Growth Factor-beta Type II/metabolism
- Cell Line, Tumor
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Triggering Receptor Expressed on Myeloid Cells-1/genetics
- Triggering Receptor Expressed on Myeloid Cells-1/immunology
- Triggering Receptor Expressed on Myeloid Cells-1/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- T-Lymphocytes/metabolism
- Xenograft Model Antitumor Assays
- Signal Transduction
Collapse
Affiliation(s)
- Sichao Zhu
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Jianping Hu
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Jie Lin
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
| | - Chen Wang
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co. Ltd., Nanjing, P.R. China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, P.R. China
- Clinical Pathological Diagnosis & Research Center, Youjiang Medical University for Nationalities, Baise, P.R. China
- The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise, P.R. China
| |
Collapse
|
9
|
Li Y, Xu F, Fang Y, Cui Y, Zhu Z, Wu Y, Tong Y, Hu J, Zhu L, Shen H. Inflammation-fibrosis interplay in inflammatory bowel disease: mechanisms, progression, and therapeutic strategies. Front Pharmacol 2025; 16:1530797. [PMID: 40093318 PMCID: PMC11906429 DOI: 10.3389/fphar.2025.1530797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Background The incidence of intestinal fibrosis in Inflammatory bowel disease has increased in recent years, and the repair process is complex, leading to substantial economic and social burdens. Therefore, understanding the pathogenesis of intestinal fibrosis and exploring potential therapeutic agents is crucial. Purpose This article reviews the pathogenesis of IBD-related intestinal fibrosis, potential therapeutic targets, and the progress of research on Traditional Chinese Medicine (TCM) in inhibiting intestinal fibrosis. It also provides foundational data for developing innovative drugs to prevent intestinal fibrosis. Methods This article reviews the literature from the past decade on advancements in the cellular and molecular mechanisms underlying intestinal fibrosis. Data for this systematic research were obtained from electronic databases including PubMed, CNKI, SciFinder, and Web of Science. Additionally, a comprehensive analysis was conducted on reports regarding the use of TCM for the treatment of intestinal fibrosis. The study synthesizes and summarizes the research findings, presenting key patterns and trends through relevant charts. Results This study reviewed recent advancements in understanding the cellular and molecular mechanisms of intestinal fibrosis, the active ingredients of TCM that inhibit intestinal fibrosis, the efficacy of TCM formulae in preventing intestinal fibrosis, and dietary modification that may contribute to the inhibition of intestinal fibrosis. Conclusion This article examines the cellular and molecular mechanisms that promote the development of intestinal fibrosis, as well as potential therapeutic targets for its treatment. It also provides a theoretical basis for exploring and utilizing TCM resources in the management of intestinal fibrosis. Through the analysis of various TCM medicines, this article underscores the clinical significance and therapeutic potential of TCM and dietary modifications in treating intestinal fibrosis.
Collapse
Affiliation(s)
- Yanan Li
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Gastroenterology, The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yulai Fang
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Cui
- Department of Gastroenterology, Ningxian second People's Hospital, Qing Yang, China
| | - Zhenxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuguang Wu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiheng Tong
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingyi Hu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lei Zhu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Shen
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Sheikh KA, Amjad M, Irfan MT, Anjum S, Majeed T, Riaz MU, Jassim AY, Sharif EAM, Ibrahim WN. Exploring TGF-β Signaling in Cancer Progression: Prospects and Therapeutic Strategies. Onco Targets Ther 2025; 18:233-262. [PMID: 39989503 PMCID: PMC11846535 DOI: 10.2147/ott.s493643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/19/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer persists as a ubiquitous global challenge despite the remarkable advances. It is caused by uncontrolled cell growth and metastasis. The Transforming Growth Factor-beta (TGF-β) signaling pathway is considered a primary regulator of various normal physiological processes in the human body. Recently, factors determining the nature of TGF-β response have received attention, specifically its signaling pathway which can be an attractive therapeutic target for various cancer treatments. The TGF-β receptor is activated by its ligands and undergoes transduction of signals via canonical (SMAD dependent) or non-canonical (SMAD independent) signaling pathways regulating several cellular functions. Furthermore, the cross talk of the TGF-β signaling pathway cross with other signaling pathways has shown the controlled regulation of cellular functions. This review highlights the cross talk between various major signaling pathways and TGF-β. These signaling pathways include Wnt, NF-κB, PI3K/Akt, and Hedgehog (Hh). TGF-β signaling pathway has a dual role at different stages. It can suppress tumor formation at early stages and promote progression at advanced stages. This complex behaviour of TGF-β has made it a promising target for therapeutic interventions. Moreover, many strategies have been designed to control TGF-β signaling pathways at different levels, inhibiting tumor-promoting while enhancing tumor-suppressive effects, each with unique molecular mechanisms and clinical implications. This review also discusses various therapeutic inhibitors including ligand traps, small molecule inhibitors (SMIs), monoclonal antibodies (mAbs), and antisense oligonucleotides which target specific components of TGF-β signaling pathway to inhibit TGF-β signaling and are studied in both preclinical and clinical trials for different types of cancer. The review also highlights the prospect of TGF-β signaling in normal physiology and in the case of dysregulation, TGF-β inhibitors, and different therapeutic effects in cancer therapy along with the perspective of combinational therapies to treat cancer.
Collapse
Affiliation(s)
- Khansa Ali Sheikh
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Momna Amjad
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | | | - Sumaira Anjum
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Tanveer Majeed
- Department of Biotechnology, Kinnaird College for Women, Lahore, Pakistan
| | - Muhammad Usman Riaz
- School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Elham Abdullatif M Sharif
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
11
|
Li S, Yan L, Li C, Lou L, Cui F, Yang X, He F, Jiang Y. NPC1 controls TGFBR1 stability in a cholesterol transport-independent manner and promotes hepatocellular carcinoma progression. Nat Commun 2025; 16:439. [PMID: 39762312 PMCID: PMC11704005 DOI: 10.1038/s41467-024-55788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
Niemann-Pick disease type C protein 1 (NPC1), classically associated with cholesterol transport and viral entry, has an emerging role in cancer biology. Here, we demonstrate that knockout of Npc1 in hepatocytes attenuates hepatocellular carcinoma (HCC) progression in both DEN (diethylnitrosamine)-CCl4 induced and MYC-driven HCC mouse models. Mechanistically, NPC1 significantly promotes HCC progression by modulating the TGF-β pathway, independent of its traditional role in cholesterol transport. We identify that the 692-854 amino acid region of NPC1's transmembrane domain is critical for its interaction with TGF-β receptor type-1 (TGFBR1). This interaction prevents the binding of SMAD7 and SMAD ubiquitylation regulatory factors (SMURFs) to TGFBR1, reducing TGFBR1 ubiquitylation and degradation, thus enhancing its stability. Notably, the NPC1 (P691S) mutant, which is defective in cholesterol transport, still binds TGFBR1, underscoring a cholesterol-independent mechanism. These findings highlight a cholesterol transport-independent mechanism by which NPC1 contributes to the stability of TGFBR1 in HCC and suggest potential therapeutic strategies targeting NPC1 for HCC treatment.
Collapse
Affiliation(s)
- Shuangyan Li
- School of Life Sciences, Tsinghua University, Beijing, China
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lishan Yan
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Chaoying Li
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Lijuan Lou
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fengjiao Cui
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiao Yang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China
| | - Fuchu He
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.
- Research Unit of Proteomics Dirven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Beijing, China.
- Anhui Medical University, Hefei, China.
| | - Ying Jiang
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences (Beijing), Beijing Proteome Research Center, Beijing Institute of Lifeomics, Beijing, China.
- Anhui Medical University, Hefei, China.
| |
Collapse
|
12
|
Oh S, Lee SY, Jang JW, Son KH, Byun K. Fermented Fish Collagen Diminished Photoaging-Related Collagen Decrease by Attenuating AGE-RAGE Binding Activity. Curr Issues Mol Biol 2024; 46:14351-14365. [PMID: 39727988 DOI: 10.3390/cimb46120860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Ultraviolet (UV) irradiation causes skin wrinkles and decreases elasticity. UV also increases binding between advanced glycation end products (AGEs) and the receptor for AGEs (RAGE), resulting in increased inflammation and activation of NF-κB. We evaluated whether fermented fish collagen (FC) could decrease photoaging via decreasing AGE-RAGE binding activity, which was associated with decreased TNF-α and NF-κB levels in UV-irradiated keratinocytes and animal skin. In the UV-irradiated keratinocytes, AGE-RAGE binding activity and TNF-α secretion levels were increased, and FC decreased these. Additionally, AGE-RAGE binding activity and TNF-α secretion levels were attenuated by soluble RAGE (RAGE inhibitor) in the UV-irradiated keratinocytes. FC decreased AGE-RAGE binding activity, TNF-α levels, and translocation of NF-κB in the UV-irradiated skin. Furthermore, FC decreased the expression of matrix metalloproteinases 1/3/9, which degrades collagen fibers, and Smad7, which inhibits Smad2/3, in UV-irradiated skin. FC increased Smad2/3 and collagen fiber accumulation. FC also increases skin moisture and elasticity. In conclusion, FC could attenuate skin photoaging via decreasing AGE-RAGE binding activity and its downstream signals such as TNF-α and NF-κB.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - So Young Lee
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Jong-Won Jang
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
13
|
Colin Waldo MD, Quintero-Millán X, Negrete-García MC, Ruiz V, Sommer B, Romero-Rodríguez DP, Montes-Martínez E. Circulating MicroRNAs in Idiopathic Pulmonary Fibrosis: A Narrative Review. Curr Issues Mol Biol 2024; 46:13746-13766. [PMID: 39727949 DOI: 10.3390/cimb46120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, deathly disease with no recognized effective cure as yet. Furthermore, its diagnosis and differentiation from other diffuse interstitial diseases remain a challenge. Circulating miRNAs have been measured in IPF and have proven to be an adequate option as biomarkers for this disease. These miRNAs, released into the circulation outside the cell through exosomes and proteins, play a crucial role in the pathogenic pathways and mechanisms involved in IPF development. This review focuses on the serum/plasma miRNAs reported in IPF that have been validated by real-time PCR and the published evidence regarding the fibrotic process. First, we describe the mechanisms by which miRNAs travel through the circulation (contained in exosomes and bound to proteins), as well as the mechanism by which miRNAs perform their function within the cell. Subsequently, we summarize the evidence concerning miRNAs reported in serum/plasma, where we find contradictory functions in some miRNAs (dual functions in IPF) when comparing the findings in vitro vs. in vivo. The most relevant finding, for instance, the levels of miRNAs let-7d and miR-21 reported in the serum/plasma in IPF, correspond to those found in studies in lung fibroblasts and the murine bleomycin model, reinforcing the usefulness of these miRNAs as future biomarkers in IPF.
Collapse
Affiliation(s)
- Marisa Denisse Colin Waldo
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Xochipilzihuitl Quintero-Millán
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Maria Cristina Negrete-García
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Víctor Ruiz
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Bettina Sommer
- Bronchial Hyperreactivity Research Department, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Dámaris P Romero-Rodríguez
- Conahcyt National Laboratory for Research and Diagnosis by Immunocytofluorometry (LANCIDI), National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| | - Eduardo Montes-Martínez
- Molecular Biology Laboratory, Department of Research in Pulmonary Fibrosis, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Col. Sección XVI, Mexico City 14080, Mexico
| |
Collapse
|
14
|
Cavusoglu Nalbantoglu I, Sevgi S, Kerimoglu G, Kadıoglu Duman M, Kalyoncu NI. Ursodeoxycholic acid ameliorates erectile dysfunction and corporal fibrosis in diabetic rats by inhibiting the TGF-β1/Smad2 pathway. Int J Impot Res 2024; 36:886-895. [PMID: 38454160 DOI: 10.1038/s41443-024-00868-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Corporal tissue fibrosis is critical in diabetes-associated erectile dysfunction. Transforming growth factor-β1/Small mothers against decapentaplegic-2 (TGF-β1/Smad2) contributes to the induction of fibrosis in corporal tissue. Smad7 is accepted as a general negative regulator of Smad signaling, although its role in corporal fibrosis is unknown. Ursodeoxycholic acid (UDCA) is a hydrophilic bile acid used for biliary and liver related disorders and has antifibrotic effects in the liver. This study investigated the effects of UDCA on diabetic erectile dysfunction. Forty-eight male Spraque Dawley rats were divided into six groups: nondiabetic (n = 6), nondiabetic+20 mg/kg UDCA (n = 6), nondiabetic+80 mg/kg UDCA (n = 6), diabetic (n = 10), diabetic+20 mg/kg UDCA (n = 10), diabetic+80 mg/kg UDCA (n = 10). Diabetes was induced by intraperitoneal injection of 60 mg/kg Streptozocin. UDCA (20 and 80 mg/kg/day) or saline was subsequently administered via oral gavage for 56 days. Erectile function was evaluated as measurement of maximum intracavernosal pressure (m-ICP)/mean arterial pressure (MAP) and total ICP/MAP. Corporal tissues were evaluated by Western blotting and Masson's trichrome staining. Electrical stimulation-induced m-ICP/MAP responses were higher in UDCA-treated diabetic rats compared to untreated diabetic rats, respectively (20 mg/kg; 4 V: 0.77 ± 0.11 vs 0.45 ± 0.09, p = 0.0001 and 80 mg/kg; 4 V: 0.78 ± 0.11 vs 0.45 ± 0.09, p = 0.0001) UDCA prevented the increase in phospho-Smad2 and fibronectin protein expressions in diabetic corporal tissue both at 20 mg/kg (p = 0.0002, p = 0.002 respectively) and 80 mg/kg doses (p < 0.0001 for both). Smad7 protein expressions were significantly increased in the UDCA-treated diabetic groups compared to the untreated diabetic group (20 mg/kg: p = 0.0079; 80 mg/kg: p = 0.004). Furthermore, UDCA significantly prevented diabetes-induced increase in collagen (20 mg/kg: p = 0.0172; 80 mg/kg: p = 0.0003) and smooth muscle loss (20 mg/kg: p = 0.044; 80 mg/kg: p = 0.039). In conclusion, UDCA has a potential protective effect on erectile function in diabetic rats by altering fibrotic pathways via inhibition of TGF-β1/Smad2 and activation of Smad7.
Collapse
Affiliation(s)
- Irem Cavusoglu Nalbantoglu
- Department of Pharmacology, Graduate School of Health Sciences, Karadeniz Technical University, Trabzon, Türkiye.
| | - Serhat Sevgi
- Department of Pharmacology, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Türkiye
| | - Gokcen Kerimoglu
- Department of Histology and Embryology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Mine Kadıoglu Duman
- Department of Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Nuri Ihsan Kalyoncu
- Department of Pharmacology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
15
|
Wits M, Haarmans N, Sanchez-Duffhues G, Goumans MJ. TGF-β receptor-specific NanoBRET Target Engagement in living cells for high-throughput kinase inhibitor screens. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100196. [PMID: 39542424 DOI: 10.1016/j.slasd.2024.100196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Targeting transforming growth factor-β (TGF-β) receptors is a promising pharmacological approach to normalize aberrant signaling in genetic and non-genetic TGF-β associated diseases including fibrosis, cancer, cardiovascular and musculoskeletal disorders. To identify novel TGF-β receptor kinase inhibitors, methods like in vitro kinase assays, western blot or transcriptional reporter assays are often used for screening purposes. While these methods may have certain advantages, the lack of integration of key features such as receptor specificity, high-throughput capability, and cellular context resemblance remains a major disadvantage. This deficiency could ultimately hinder the translation of study outcomes into later (clinical) stages of drug development. In this study, we introduce an adjusted and optimized live cell NanoBRET Target Engagement (TE)-based method to identify TGF-β receptor specific kinase inhibitors. This comprehensive toolkit contains various TGF-β type I and type II receptors, with corresponding nanoBRET tracers, and disease-related cell lines, including novel non-commercially available materials. The nanoBRET capacity and kinase inhibitory window can be significantly enhanced for functional measurements when stable expression cell lines and substantially low tracer concentrations are used. In addition, this system can be tailored to study TGF-β associated genetic disorders and possibly be used to screen for disease-specific therapeutics. Therefore, the use of this optimized, live cell, antibody-independent nanoBRET Target Engagement assay is highly encouraged for future high-throughput compound screens targeting TGF-β/BMP receptors.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Nicole Haarmans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands; Nanomaterials and Nanotechnology Research Center (CINN), Spanish National Research Council (CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Asturias, Spain.
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, the Netherlands.
| |
Collapse
|
16
|
Fink M, Njah K, Patel SJ, Cook DP, Man V, Ruso F, Rajan A, Narimatsu M, Obersterescu A, Pye MJ, Trcka D, Chan K, Ayyaz A, Wrana JL. Chromatin remodelling in damaged intestinal crypts orchestrates redundant TGFβ and Hippo signalling to drive regeneration. Nat Cell Biol 2024; 26:2084-2098. [PMID: 39548329 DOI: 10.1038/s41556-024-01550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 09/27/2024] [Indexed: 11/17/2024]
Abstract
Cell state dynamics underlying successful tissue regeneration are undercharacterized. In the intestine, damage prompts epithelial reprogramming into revival stem cells (revSCs) that reconstitute Lgr5+ intestinal stem cells (ISCs). Here single-nuclear multi-omics of mouse crypts regenerating from irradiation shows revSC chromatin accessibility overlaps with ISCs and differentiated lineages. While revSC genes themselves are accessible throughout homeostatic epithelia, damage-induced remodelling of chromatin in the crypt converges on Hippo and the transforming growth factor-beta (TGFβ) signalling pathway, which we show is transiently activated and directly induces functional revSCs. Combinatorial gene expression analysis further suggests multiple sources of revSCs, and we demonstrate TGFβ can reprogramme enterocytes, goblet and paneth cells into revSCs and show individual revSCs form organoids. Despite this, loss of TGFβ signalling yields mild regenerative defects, whereas interference in both Hippo and TGFβ leads to profound defects and death. Intestinal regeneration is thus poised for activation by a compensatory system of crypt-localized, transient morphogen cues that support epithelial reprogramming and robust intestinal repair.
Collapse
Affiliation(s)
- Mardi Fink
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Kizito Njah
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Shyam J Patel
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David P Cook
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Cancer Research Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Vanessa Man
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Ruso
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Arsheen Rajan
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Masahiro Narimatsu
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Andreea Obersterescu
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Melanie J Pye
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel Trcka
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kin Chan
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Network Biology Collaboration Centre, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Arshad Ayyaz
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jeffrey L Wrana
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Glueck NK, Xie X, Lin X. Alternative isoforms and phase separation of Ref1 repress morphogenesis in Cryptococcus. Cell Rep 2024; 43:114904. [PMID: 39475508 PMCID: PMC11661864 DOI: 10.1016/j.celrep.2024.114904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 12/01/2024] Open
Abstract
Cryptococcus neoformans, the causative agent of cryptococcosis and a representative of the Basidiomycota phylum of Fungi, is a valuable model for our understanding of eukaryotic/fungal biology. Negative feedback is a well-documented mechanism across Eukarya to regulate developmental transitions. Here, we describe a repressor of the yeast-to-hypha transition, Ref1, which completes a negative feedback loop driven by the master regulator of hyphal morphogenesis, Znf2, during sexual development. Alternative transcription of Ref1, driven by Znf2, produces a functionally distinct Ref1 isoform. Isoform-specific capacity for phase separation imparts this functional distinction, making Ref1 a stronger repressor and more vulnerable to proteolytic degradation. The multimodal nature of Ref1 provides versatility that allows cells to fine-tune Ref1 activity to suit developmental context. This work reveals a mechanism by which phase separation allows a transcriptional program to tailor its own repression to guide an organism through morphological transition.
Collapse
Affiliation(s)
- Nathan K Glueck
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Xiaofeng Xie
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
18
|
Fatehi Hassanabad A, Zarzycki AN, Patel VB, Fedak PWM. Current concepts in the epigenetic regulation of cardiac fibrosis. Cardiovasc Pathol 2024; 73:107673. [PMID: 38996851 DOI: 10.1016/j.carpath.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/14/2024] Open
Abstract
Cardiac fibrosis is a significant driver of congestive heart failure, a syndrome that continues to affect a growing patient population globally. Cardiac fibrosis results from a constellation of complex processes at the transcription, receptor, and signaling axes levels. Various mediators and signaling cascades, such as the transformation growth factor-beta pathway, have been implicated in the pathophysiology of cardiac tissue fibrosis. Our understanding of these markers and pathways has improved in recent years as more advanced technologies and assays have been developed, allowing for better delineation of the crosstalk between specific factors. There is mounting evidence suggesting that epigenetic modulation plays a pivotal role in the progression of cardiac fibrosis. Transcriptional regulation of key pro- and antifibrotic pathways can accentuate or blunt the rate and extent of fibrosis at the tissue level. Exosomes, micro-RNAs, and long noncoding RNAs all belong to factors that can impact the epigenetic signature in cardiac fibrosis. Herein, we comprehensively review the latest literature about exosomes, their contents, and cardiac fibrosis. In doing so, we highlight the specific transcriptional factors with pro- or antifibrotic properties. We also assimilate the data supporting these mediators' potential utility as diagnostic or prognostic biomarkers. Finally, we offer insight into where further work can be done to fill existing gaps to translate preclinical findings better and improve clinical outcomes.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna N Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vaibhav B Patel
- Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Science, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
19
|
Dalle S, Abderrahmani A. Receptors and Signaling Pathways Controlling Beta-Cell Function and Survival as Targets for Anti-Diabetic Therapeutic Strategies. Cells 2024; 13:1244. [PMID: 39120275 PMCID: PMC11311556 DOI: 10.3390/cells13151244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/10/2024] Open
Abstract
Preserving the function and survival of pancreatic beta-cells, in order to achieve long-term glycemic control and prevent complications, is an essential feature for an innovative drug to have clinical value in the treatment of diabetes. Innovative research is developing therapeutic strategies to prevent pathogenic mechanisms and protect beta-cells from the deleterious effects of inflammation and/or chronic hyperglycemia over time. A better understanding of receptors and signaling pathways, and of how they interact with each other in beta-cells, remains crucial and is a prerequisite for any strategy to develop therapeutic tools aimed at modulating beta-cell function and/or mass. Here, we present a comprehensive review of our knowledge on membrane and intracellular receptors and signaling pathways as targets of interest to protect beta-cells from dysfunction and apoptotic death, which opens or could open the way to the development of innovative therapies for diabetes.
Collapse
Affiliation(s)
- Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), 34094 Montpellier, France
| | - Amar Abderrahmani
- Université Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université Polytechnique Hauts-de-France, UMR 8520, IEMN, F59000 Lille, France
| |
Collapse
|
20
|
Saito T, Fujino N, Kyogoku Y, Yamada M, Okutomo K, Ono Y, Konno S, Endo T, Itakura K, Matsumoto S, Sano H, Aizawa H, Numakura T, Onodera K, Okada Y, Hussell T, Ichinose M, Sugiura H. Identification of Siglec-1-negative alveolar macrophages with proinflammatory phenotypes in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2024; 326:L672-L686. [PMID: 38530936 DOI: 10.1152/ajplung.00303.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/28/2024] Open
Abstract
Alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD) orchestrate persistent inflammation in the airway. However, subpopulations of AMs participating in chronic inflammation have been poorly characterized. We previously reported that Siglec-1 expression on AMs, which is important for bacteria engulfment, was decreased in COPD. Here, we show that Siglec-1-negative AMs isolated from COPD lung tissues exhibit a proinflammatory phenotype and are associated with poor clinical outcomes in patients with COPD. Using flow cytometry, we segregated three subsets of AMs based on the expression of Siglec-1 and their side scattergram (SSC) and forward scattergram (FSC) properties: Siglec-1+SSChiFSChi, Siglec-1-SSChiFSChi, and Siglec-1-SSCloFSClo subsets. The Siglec-1-SSCloFSClo subset number was increased in COPD. RNA sequencing revealed upregulation of multiple proinflammatory signaling pathways and emphysema-associated matrix metalloproteases in the Siglec-1-SSCloFSClo subset. Gene set enrichment analysis indicated that the Siglec-1-SSCloFSClo subset adopted intermediate phenotypes between monocytes and mature alveolar macrophages. Functionally, these cells produced TNF-α, IL-6, and IL-8 at baseline, and these cytokines were significantly increased in response to viral RNA. The increase in Siglec-1-negative AMs in induced sputum is associated with future exacerbation risk and lung function decline in patients with COPD. Collectively, the novel Siglec-1-SSCloFSClo subset of AMs displays proinflammatory properties, and their emergence in COPD airways may be associated with poor clinical outcomes.NEW & NOTEWORTHY Alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD) orchestrate persistent inflammation in the airway. We find that Siglec-1-negative alveolar macrophages have a wide range of proinflammatory landscapes and a protease-expressing phenotype. Moreover, this subset is associated with the pathogenesis of COPD and responds to viral stimuli.
Collapse
Affiliation(s)
- Takuya Saito
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Naoya Fujino
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yorihiko Kyogoku
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mitsuhiro Yamada
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Okutomo
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshinao Ono
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichi Konno
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuto Endo
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Itakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuichiro Matsumoto
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirohito Sano
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Aizawa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tadahisa Numakura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katsuhiro Onodera
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshinori Okada
- Department of Thoracic Surgery, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, United Kingdom
| | | | - Hisatoshi Sugiura
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Shah U, Patel N, Patel M, Rohit S, Solanki N, Patel A, Patel S, Patel V, Patel R, Jawarkar RD. Computational Exploration of Naturally Occurring Flavonoids as TGF-β Inhibitors in Breast Cancer: Insights from Docking and Molecular Dynamics Simulations and In-vitro Cytotoxicity Study. Chem Biodivers 2024; 21:e202301903. [PMID: 38623839 DOI: 10.1002/cbdv.202301903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Breast cancer is a global health concern, demanding innovative treatments. Targeting the Transforming Growth Factor-beta (TGF-β) signaling pathway, pivotal in breast cancer, is a promising approach. TGF-β inhibits proliferation via G1 phase cell cycle arrest, acting as a suppressor initially, but in later stages, it promotes progression by enhancing motility, invasiveness, and metastasis formation. This study explores naturally occurring flavonoids' interactions with TGF-β. Using molecular docking against the protein's crystal structure (PDB Id: 1PY5), Gossypin showed the highest docking score and underwent molecular dynamics simulation, revealing complex flexibility and explaining how flavonoids impede TGF-β signaling in breast cancer. ADMET predictions adhered to Lipinski's rule of Five. Insights into flavonoid-TGF-β binding offer a novel angle for breast cancer treatment. Flavonoids having a good docking score like gossypin, morin, luteolin and taxifolin shown potent cytotoxic effect on breast cancer cell line, MCF-7. Understanding these interactions could inspire flavonoid-based therapies targeting TGF-β to halt breast cancer growth. These findings pave the way for personalized, targeted breast cancer therapies, offering hope against this formidable disease.
Collapse
Affiliation(s)
- Umang Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Niyati Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Shishir Rohit
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
- Kashiv Biosciences Pvt. Ltd., Ahmedabad, India
| | - Nilay Solanki
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Swayamprakash Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Vishwa Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Rajvi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology (CHARUSAT), CHARUSAT Campus, Changa, 388421, India
| | - Rahul D Jawarkar
- Department of Pharmaceutical Chemistry, Dr Rajendra Gode Institute of Pharmacy, Mardi Road, Amravati, Maharashtra, India, 444602
| |
Collapse
|
22
|
Muñoz Forti K, Weisman GA, Jasmer KJ. Cell type-specific transforming growth factor-β (TGF-β) signaling in the regulation of salivary gland fibrosis and regeneration. J Oral Biol Craniofac Res 2024; 14:257-272. [PMID: 38559587 PMCID: PMC10979288 DOI: 10.1016/j.jobcr.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/13/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
Salivary gland damage and hypofunction result from various disorders, including autoimmune Sjögren's disease (SjD) and IgG4-related disease (IgG4-RD), as well as a side effect of radiotherapy for treating head and neck cancers. There are no therapeutic strategies to prevent the loss of salivary gland function in these disorders nor facilitate functional salivary gland regeneration. However, ongoing aquaporin-1 gene therapy trials to restore saliva flow show promise. To identify and develop novel therapeutic targets, we must better understand the cell-specific signaling processes involved in salivary gland regeneration. Transforming growth factor-β (TGF-β) signaling is essential to tissue fibrosis, a major endpoint in salivary gland degeneration, which develops in the salivary glands of patients with SjD, IgG4-RD, and radiation-induced damage. Though the deposition and remodeling of extracellular matrix proteins are essential to repair salivary gland damage, pathological fibrosis results in tissue hardening and chronic salivary gland dysfunction orchestrated by multiple cell types, including fibroblasts, myofibroblasts, endothelial cells, stromal cells, and lymphocytes, macrophages, and other immune cell populations. This review is focused on the role of TGF-β signaling in the development of salivary gland fibrosis and the potential for targeting TGF-β as a novel therapeutic approach to regenerate functional salivary glands. The studies presented highlight the divergent roles of TGF-β signaling in salivary gland development and dysfunction and illuminate specific cell populations in damaged or diseased salivary glands that mediate the effects of TGF-β. Overall, these studies strongly support the premise that blocking TGF-β signaling holds promise for the regeneration of functional salivary glands.
Collapse
Affiliation(s)
- Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Gary A. Weisman
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| | - Kimberly J. Jasmer
- Christopher S. Bond Life Sciences Center and Department of Biochemistry, University of Missouri, United States
| |
Collapse
|
23
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
24
|
Pleskač P, Fargeas CA, Veselska R, Corbeil D, Skoda J. Emerging roles of prominin-1 (CD133) in the dynamics of plasma membrane architecture and cell signaling pathways in health and disease. Cell Mol Biol Lett 2024; 29:41. [PMID: 38532366 DOI: 10.1186/s11658-024-00554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 03/28/2024] Open
Abstract
Prominin-1 (CD133) is a cholesterol-binding membrane glycoprotein selectively associated with highly curved and prominent membrane structures. It is widely recognized as an antigenic marker of stem cells and cancer stem cells and is frequently used to isolate them from biological and clinical samples. Recent progress in understanding various aspects of CD133 biology in different cell types has revealed the involvement of CD133 in the architecture and dynamics of plasma membrane protrusions, such as microvilli and cilia, including the release of extracellular vesicles, as well as in various signaling pathways, which may be regulated in part by posttranslational modifications of CD133 and its interactions with a variety of proteins and lipids. Hence, CD133 appears to be a master regulator of cell signaling as its engagement in PI3K/Akt, Src-FAK, Wnt/β-catenin, TGF-β/Smad and MAPK/ERK pathways may explain its broad action in many cellular processes, including cell proliferation, differentiation, and migration or intercellular communication. Here, we summarize early studies on CD133, as they are essential to grasp its novel features, and describe recent evidence demonstrating that this unique molecule is involved in membrane dynamics and molecular signaling that affects various facets of tissue homeostasis and cancer development. We hope this review will provide an informative resource for future efforts to elucidate the details of CD133's molecular function in health and disease.
Collapse
Affiliation(s)
- Petr Pleskač
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Christine A Fargeas
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307, Dresden, Germany.
- Tissue Engineering Laboratories, Medizinische Fakultät der Technischen Universität Dresden, Dresden, Germany.
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| |
Collapse
|
25
|
Hu X, Li E, Zhou Y, You Q, Jiang Z. Casitas b cell lymphoma‑B (Cbl-b): A new therapeutic avenue for small-molecule immunotherapy. Bioorg Med Chem 2024; 102:117677. [PMID: 38457911 DOI: 10.1016/j.bmc.2024.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Immunotherapy has revolutionized the area of cancer treatment. Although most immunotherapies now are antibodies targeting membrane checkpoint molecules, there is an increasing demand for small-molecule drugs that address intracellular pathways. The E3 ubiquitin ligase Casitas B cell lymphoma‑b (Cbl-b) has been regarded as a promising intracellular immunotherapy target. Cbl-b regulates the downstream proteins of multiple membrane receptors and co-receptors, restricting the activation of the innate and adaptive immune system. Recently, Cbl-b inhibitors have been reported with promising effects on immune surveillance activation and anti-tumor efficacy. Several molecules have entered phase Ⅰ clinical trials. In this review, the biological rationale of Cbl-b as a promising target for cancer immunotherapy and the latest research progress of Cbl-b are summarized, with special emphasis on the allosteric small-molecule inhibitors of Cbl-b.
Collapse
Affiliation(s)
- Xiuqi Hu
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Erdong Li
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yangguo Zhou
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
26
|
Gaikwad AV, Eapen MS, Dey S, Bhattarai P, Shahzad AM, Chia C, Jaffar J, Westall G, Sutherland D, Singhera GK, Hackett TL, Lu W, Sohal SS. TGF-β1, pSmad-2/3, Smad-7, and β-Catenin Are Augmented in the Pulmonary Arteries from Patients with Idiopathic Pulmonary Fibrosis (IPF): Role in Driving Endothelial-to-Mesenchymal Transition (EndMT). J Clin Med 2024; 13:1160. [PMID: 38398472 PMCID: PMC10888973 DOI: 10.3390/jcm13041160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Background: We have previously reported that endothelial-to-mesenchymal transition (EndMT) is an active process in patients with idiopathic pulmonary fibrosis (IPF) contributing to arterial remodelling. Here, we aim to quantify drivers of EndMT in IPF patients compared to normal controls (NCs). Methods: Lung resections from thirteen IPF patients and eleven NCs were immunohistochemically stained for EndMT drivers, including TGF-β1, pSmad-2/3, Smad-7, and β-catenin. Intima, media, and adventitia were analysed for expression of each EndMT driver in pulmonary arteries. Computer- and microscope-assisted Image ProPlus7.0 image analysis software was used for quantifications. Results: Significant TGF-β1, pSmad-2/3, Smad-7, and β-catenin expression was apparent across all arterial sizes in IPF (p < 0.05). Intimal TGF-β1, pSmad-2/3, Smad-7, and β-catenin were augmented in the arterial range of 100-1000 μm (p < 0.001) compared to NC. Intimal TGF-β1 and β-catenin percentage expression showed a strong correlation with the percentage expression of intimal vimentin (r' = 0.54, p = 0.05 and r' = 0.61, p = 0.02, respectively) and intimal N-cadherin (r' = 0.62, p = 0.03 and r' = 0.70, p = 0.001, respectively). Intimal TGF-β1 and β-catenin expression were significantly correlated with increased intimal thickness as well (r' = 0.52, p = 0.04; r' = 0.052, p = 0.04, respectively). Moreover, intimal TGF-β1 expression was also significantly associated with increased intimal elastin deposition (r' = 0.79, p = 0.002). Furthermore, total TGF-β1 expression significantly impacted the percentage of DLCO (r' = -0.61, p = 0.03). Conclusions: This is the first study to illustrate the involvement of active TGF-β/Smad-2/3-dependent and β-catenin-dependent Wnt signalling pathways in driving EndMT and resultant pulmonary arterial remodelling in patients with IPF. EndMT is a potential therapeutic target for vascular remodelling and fibrosis in general in patients with IPF.
Collapse
Affiliation(s)
- Archana Vijay Gaikwad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Mathew Suji Eapen
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Surajit Dey
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Prem Bhattarai
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Affan Mahmood Shahzad
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
| | - Collin Chia
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
- Department of Respiratory Medicine, Launceston General Hospital, Launceston, TAS 7250, Australia
| | - Jade Jaffar
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Glen Westall
- Department of Allergy, Immunology and Respiratory Medicine, The Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Darren Sutherland
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Gurpreet Kaur Singhera
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Tillie-Louise Hackett
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Wenying Lu
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
| | - Sukhwinder Singh Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, College of Health and Medicine, University of Tasmania, Launceston, TAS 7248, Australia
- National Health and Medical Research Council (NHMRC) Centre of Research Excellence (CRE) in Pulmonary Fibrosis, Respiratory Medicine and Sleep Unit, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Launceston Respiratory and Sleep Centre, Launceston, TAS 7250, Australia
| |
Collapse
|
27
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
28
|
Nakato E, Kamimura K, Knudsen C, Masutani S, Takemura M, Hayashi Y, Akiyama T, Nakato H. Differential heparan sulfate dependency of the Drosophila glypicans. J Biol Chem 2024; 300:105544. [PMID: 38072044 PMCID: PMC10796981 DOI: 10.1016/j.jbc.2023.105544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are composed of a core protein and glycosaminoglycan (GAG) chains and serve as coreceptors for many growth factors and morphogens. To understand the molecular mechanisms by which HSPGs regulate morphogen gradient formation and signaling, it is important to determine the relative contributions of the carbohydrate and protein moieties to the proteoglycan function. To address this question, we generated ΔGAG alleles for dally and dally-like protein (dlp), two Drosophila HSPGs of the glypican family, in which all GAG-attachment serine residues are substituted to alanine residues using CRISPR/Cas9 mutagenesis. In these alleles, the glypican core proteins are expressed from the endogenous loci with no GAG modification. Analyses of the dallyΔGAG allele defined Dally functions that do not require heparan sulfate (HS) chains and that need both core protein and HS chains. We found a new, dallyΔGAG-specific phenotype, the formation of a posterior ectopic vein, which we have never seen in the null mutants. Unlike dallyΔGAG, dlpΔGAG mutants do not show most of the dlp null mutant phenotypes, suggesting that HS chains are dispensable for these dlp functions. As an exception, HS is essentially required for Dlp's activity at the neuromuscular junction. Thus, Drosophila glypicans show strikingly different levels of HS dependency. The ΔGAG mutant alleles of the glypicans serve as new molecular genetic toolsets highly useful to address important biological questions, such as molecular mechanisms of morphogen gradient formation.
Collapse
Affiliation(s)
- Eriko Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Collin Knudsen
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Suzuka Masutani
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Masahiko Takemura
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yoshiki Hayashi
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Takuya Akiyama
- Department of Biology, Indiana State University, Terre Haute, Indiana, USA
| | - Hiroshi Nakato
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, USA.
| |
Collapse
|
29
|
Desmond LW, Holbrook EM, Wright CTO, Zambrano CA, Stamper CE, Bohr AD, Frank MG, Podell BK, Moreno JA, MacDonald AS, Reber SO, Hernández-Pando R, Lowry CA. Effects of Mycobacterium vaccae NCTC 11659 and Lipopolysaccharide Challenge on Polarization of Murine BV-2 Microglial Cells. Int J Mol Sci 2023; 25:474. [PMID: 38203645 PMCID: PMC10779110 DOI: 10.3390/ijms25010474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Previous studies have shown that the in vivo administration of soil-derived bacteria with anti-inflammatory and immunoregulatory properties, such as Mycobacterium vaccae NCTC 11659, can prevent a stress-induced shift toward an inflammatory M1 microglial immunophenotype and microglial priming in the central nervous system (CNS). It remains unclear whether M. vaccae NCTC 11659 can act directly on microglia to mediate these effects. This study was designed to determine the effects of M. vaccae NCTC 11659 on the polarization of naïve BV-2 cells, a murine microglial cell line, and BV-2 cells subsequently challenged with lipopolysaccharide (LPS). Briefly, murine BV-2 cells were exposed to 100 µg/mL whole-cell, heat-killed M. vaccae NCTC 11659 or sterile borate-buffered saline (BBS) vehicle, followed, 24 h later, by exposure to 0.250 µg/mL LPS (Escherichia coli 0111: B4; n = 3) in cell culture media vehicle (CMV) or a CMV control condition. Twenty-four hours after the LPS or CMV challenge, cells were harvested to isolate total RNA. An analysis using the NanoString platform revealed that, by itself, M. vaccae NCTC 11659 had an "adjuvant-like" effect, while exposure to LPS increased the expression of mRNAs encoding proinflammatory cytokines, chemokine ligands, the C3 component of complement, and components of inflammasome signaling such as Nlrp3. Among LPS-challenged cells, M. vaccae NCTC 11659 had limited effects on differential gene expression using a threshold of 1.5-fold change. A subset of genes was assessed using real-time reverse transcription polymerase chain reaction (real-time RT-PCR), including Arg1, Ccl2, Il1b, Il6, Nlrp3, and Tnf. Based on the analysis using real-time RT-PCR, M. vaccae NCTC 11659 by itself again induced "adjuvant-like" effects, increasing the expression of Il1b, Il6, and Tnf while decreasing the expression of Arg1. LPS by itself increased the expression of Ccl2, Il1b, Il6, Nlrp3, and Tnf while decreasing the expression of Arg1. Among LPS-challenged cells, M. vaccae NCTC 11659 enhanced LPS-induced increases in the expression of Nlrp3 and Tnf, consistent with microglial priming. In contrast, among LPS-challenged cells, although M. vaccae NCTC 11659 did not fully prevent the effects of LPS relative to vehicle-treated control conditions, it increased Arg1 mRNA expression, suggesting that M. vaccae NCTC 11659 induces an atypical microglial phenotype. Thus, M. vaccae NCTC 11659 acutely (within 48 h) induced immune-activating and microglial-priming effects when applied directly to murine BV-2 microglial cells, in contrast to its long-term anti-inflammatory and immunoregulatory effects observed on the CNS when whole-cell, heat-killed preparations of M. vaccae NCTC 11659 were given peripherally in vivo.
Collapse
Affiliation(s)
- Luke W. Desmond
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Evan M. Holbrook
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Caelan T. O. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Cristian A. Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Christopher E. Stamper
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Adam D. Bohr
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Matthew G. Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Brendan K. Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Julie A. Moreno
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK;
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
30
|
Zhang Y, Wang J, Wang X, Li A, Lei Z, Li D, Xing D, Zhang Y, Su W, Jiao X. TXNIP aggravates cardiac fibrosis and dysfunction after myocardial infarction in mice by enhancing the TGFB1/Smad3 pathway and promoting NLRP3 inflammasome activation. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1950-1960. [PMID: 37850269 PMCID: PMC10753373 DOI: 10.3724/abbs.2023150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 07/11/2023] [Indexed: 10/19/2023] Open
Abstract
Myocardial infarction (MI) results in high mortality. The size of fibrotic scar tissue following MI is an independent predictor of MI outcomes. Thioredoxin-interacting protein (TXNIP) is involved in various fibrotic diseases. Its role in post-MI cardiac fibrosis, however, remains poorly understood. In the present study, we investigate the biological role of TXNIP in post-MI cardiac fibrosis and the underlying mechanism using mouse MI models of the wild-type (WT), Txnip-knockout ( Txnip-KO) type and Txnip-knock-in ( Txnip-KI) type. After MI, the animals present with significantly upregulated TXNIP levels, and their fibrotic areas are remarkably expanded with noticeably impaired cardiac function. These changes are further aggravated under Txnip-KI conditions but are ameliorated in Txnip-KO animals. MI also leads to increased protein levels of the fibrosis indices Collagen I, Collagen III, actin alpha 2 (ACTA2), and connective tissue growth factor (CTGF). The Txnip-KI group exhibits the highest levels of these proteins, while the lowest levels are observed in the Txnip-KO mice. Furthermore, Txnip-KI significantly upregulates the levels of transforming growth factor (TGF)B1, p-Smad3, NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), Cleaved Caspase-1, and interleukin (IL)1B after MI, but these effects are markedly offset by Txnip-KO. In addition, after MI, the Smad7 level significantly decreases, particularly in the Txnip-KI mice. TXNIP may aggravate the progression of post-MI fibrosis and cardiac dysfunction by activating the NLRP3 inflammasome, followed by IL1B generation and then the enhancement of the TGFB1/Smad3 pathway. As such, TXNIP might serve as a novel potential therapeutic target for the treatment of post-MI cardiac fibrosis.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
- Department of Foreign LanguagesChangzhi Medical CollegeChangzhi046000China
| | - Jin Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Xuejiao Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Aiyun Li
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Zhandong Lei
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Dongxue Li
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Dehai Xing
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Yichao Zhang
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Wanzhen Su
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| | - Xiangying Jiao
- Key Laboratory of Cellular Physiology (Shanxi Medical University)Ministry of Educationand Department of PhysiologyShanxi Medical UniversityTaiyuan030001China
| |
Collapse
|
31
|
Wang Z, Liang W, Yan D, Tian H, Dong B, Zhao W, Chang G, Chen G. Identification of genes related to growth traits from transcriptome profiles of duck breast muscle tissue. Anim Biotechnol 2023; 34:1239-1246. [PMID: 34965198 DOI: 10.1080/10495398.2021.2018333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The growth and development of duck skeletal muscle is an important economic trait that is genetically regulated. The internal mechanism underlying the regulation of skeletal muscle growth and development in ducks remains unclear. The purpose of this study was to identify candidate genes related to the growth of duck skeletal muscle. RNA-sequencing technology was used to compare the transcriptome of duck breast muscles in an F2 population with the high breast muscle rate (HB) and the low breast muscle rate (LB). A total of 14,522 genes were confirmed to be expressed in the breast muscle, and 173 differentially expressed genes (DEGs) were identified between the HB and LB groups. Functional analysis showed that these DEGs were mainly involved in biological processes and pathways of fat metabolism and muscle growth, especially the FABP3 and MYL4 involved in the PPAR signaling pathway and cardiac muscle contraction pathway. These findings deepened our understanding of the molecular mechanisms involved in muscle growth in ducks and provided a theoretical basis for improving duck production and breeding of ducks.
Collapse
Affiliation(s)
- Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Wenshuang Liang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Dan Yan
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Huiyue Tian
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Bingqiang Dong
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Wenming Zhao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Guobin Chang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
32
|
Laudisi F, Stolfi C, Monteleone I, Monteleone G. TGF-β1 signaling and Smad7 control T-cell responses in health and immune-mediated disorders. Eur J Immunol 2023; 53:e2350460. [PMID: 37611637 DOI: 10.1002/eji.202350460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 08/25/2023]
Abstract
Transforming growth factor (TGF)-β1, a member of the TGF-β superfamily, is produced by many immune and nonimmune cells and has pleiotropic effects on both innate and adaptive immunity, especially in the control of T-cell differentiation and function. Consistently, loss of TGF-β1 function is associated with exacerbated T-cell-dependent inflammatory responses that culminate in pathological processes in allergic and immune-mediated diseases. In this review, we highlight the roles of TGF-β1 in immunity, focusing mainly on its ability to promote differentiation of regulatory T cells, T helper (Th)-17, and Th9 cells, thus contributing to amplifying or restricting T-cell responses in health and human diseases (e.g., inflammatory bowel diseases, type 1 diabetes, asthma, and MS). In addition, we discuss the involvement of Smad7, an inhibitor of TGF-β1 signaling, in immune-mediated disorders (e.g., psoriasis, rheumatoid arthritis, MS, and inflammatory bowel diseases), as well as the discordant results of clinical trials with mongersen, an oral pharmaceutical compound containing a Smad7 antisense oligonucleotide, in patients with Crohn's disease. Further work is needed to ascertain the reasons for such a discrepancy as well as to identify better candidates for treatment with Smad7 inhibitors.
Collapse
Affiliation(s)
- Federica Laudisi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Carmine Stolfi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Ivan Monteleone
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Gastroenterology Unit, Azienda Ospedaliera Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
33
|
Wits M, Becher C, de Man F, Sanchez-Duffhues G, Goumans MJ. Sex-biased TGFβ signalling in pulmonary arterial hypertension. Cardiovasc Res 2023; 119:2262-2277. [PMID: 37595264 PMCID: PMC10597641 DOI: 10.1093/cvr/cvad129] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/21/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare cardiovascular disorder leading to pulmonary hypertension and, often fatal, right heart failure. Sex differences in PAH are evident, which primarily presents with a female predominance and increased male severity. Disturbed signalling of the transforming growth factor-β (TGFβ) family and gene mutations in the bone morphogenetic protein receptor 2 (BMPR2) are risk factors for PAH development, but how sex-specific cues affect the TGFβ family signalling in PAH remains poorly understood. In this review, we aim to explore the sex bias in PAH by examining sex differences in the TGFβ signalling family through mechanistical and translational evidence. Sex hormones including oestrogens, progestogens, and androgens, can determine the expression of receptors (including BMPR2), ligands, and soluble antagonists within the TGFβ family in a tissue-specific manner. Furthermore, sex-related genetic processes, i.e. Y-chromosome expression and X-chromosome inactivation, can influence the TGFβ signalling family at multiple levels. Given the clinical and mechanistical similarities, we expect that the conclusions arising from this review may apply also to hereditary haemorrhagic telangiectasia (HHT), a rare vascular disorder affecting the TGFβ signalling family pathway. In summary, we anticipate that investigating the TGFβ signalling family in a sex-specific manner will contribute to further understand the underlying processes leading to PAH and likely HHT.
Collapse
Affiliation(s)
- Marius Wits
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Clarissa Becher
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Frances de Man
- Department of Pulmonary Medicine, Amsterdam University Medical Center (UMC) (Vrije Universiteit), 1081 HV Amsterdam, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
34
|
Yang H, Cheng H, Dai R, Shang L, Zhang X, Wen H. Macrophage polarization in tissue fibrosis. PeerJ 2023; 11:e16092. [PMID: 37849830 PMCID: PMC10578305 DOI: 10.7717/peerj.16092] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 10/19/2023] Open
Abstract
Fibrosis can occur in all major organs with relentless progress, ultimately leading to organ failure and potentially death. Unfortunately, current clinical treatments cannot prevent or reverse tissue fibrosis. Thus, new and effective antifibrotic therapeutics are urgently needed. In recent years, a growing body of research shows that macrophages are involved in fibrosis. Macrophages are highly heterogeneous, polarizing into different phenotypes. Some studies have found that regulating macrophage polarization can inhibit the development of inflammation and cancer. However, the exact mechanism of macrophage polarization in different tissue fibrosis has not been fully elucidated. This review will discuss the major signaling pathways relevant to macrophage-driven fibrosis and profibrotic macrophage polarization, the role of macrophage polarization in fibrosis of lung, kidney, liver, skin, and heart, potential therapeutics targets, and investigational drugs currently in development, and hopefully, provide a useful review for the future treatment of fibrosis.
Collapse
Affiliation(s)
- Huidan Yang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Hao Cheng
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Rongrong Dai
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Lili Shang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Xiaoying Zhang
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| | - Hongyan Wen
- Department of Rheumatology, Shanxi Medical University Second Affiliated Hospital, Taiyuan, Shanxi Province, China
| |
Collapse
|
35
|
Wu S, Luwor RB, Zhu HJ. Dynamics of transforming growth factor β signaling and therapeutic efficacy. Growth Factors 2023; 41:82-100. [PMID: 37229558 DOI: 10.1080/08977194.2023.2215335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Transforming growth factor β (TGFβ) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFβ signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFβ as a therapeutic target led to emerging development of anti-TGFβ reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings. In this review, possible reasons for this inconsistency are discussed, addressing the knowledge gap between theoretical and actual behaviours of TGFβ signalling. Previous studies on oncogenic cells have demonstrated the spatiotemporal heterogeneity of TGFβ signalling intensity. Under feedback mechanisms and exosomal ligand recycling, cancer cells may achieve cyclic TGFβ signalling to facilitate dissemination and colonisation. This challenges the current presumption of persistently high TGFβ signalling in cancer, pointing to a new direction of research on TGFβ-targeted therapeutics.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Rodney Brian Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
36
|
Ghosh A, Chakraborty P, Biswas D. Fine tuning of the transcription juggernaut: A sweet and sour saga of acetylation and ubiquitination. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194944. [PMID: 37236503 DOI: 10.1016/j.bbagrm.2023.194944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Among post-translational modifications of proteins, acetylation, phosphorylation, and ubiquitination are most extensively studied over the last several decades. Owing to their different target residues for modifications, cross-talk between phosphorylation with that of acetylation and ubiquitination is relatively less pronounced. However, since canonical acetylation and ubiquitination happen only on the lysine residues, an overlap of the same lysine residue being targeted for both acetylation and ubiquitination happens quite frequently and thus plays key roles in overall functional regulation predominantly through modulation of protein stability. In this review, we discuss the cross-talk of acetylation and ubiquitination in the regulation of protein stability for the functional regulation of cellular processes with an emphasis on transcriptional regulation. Further, we emphasize our understanding of the functional regulation of Super Elongation Complex (SEC)-mediated transcription, through regulation of stabilization by acetylation, deacetylation and ubiquitination and associated enzymes and its implication in human diseases.
Collapse
Affiliation(s)
- Avik Ghosh
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Poushali Chakraborty
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
37
|
Geiduschek EK, McDowell CM. The Fibro-Inflammatory Response in the Glaucomatous Optic Nerve Head. Int J Mol Sci 2023; 24:13240. [PMID: 37686046 PMCID: PMC10487997 DOI: 10.3390/ijms241713240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Glaucoma is a progressive disease and the leading cause of irreversible blindness. The limited therapeutics available are only able to manage the common risk factor of glaucoma, elevated intraocular pressure (IOP), indicating a great need for understanding the cellular mechanisms behind optic nerve head (ONH) damage during disease progression. Here we review the known inflammatory and fibrotic changes occurring in the ONH. In addition, we describe a novel mechanism of toll-like receptor 4 (TLR4) and transforming growth factor beta-2 (TGFβ2) signaling crosstalk in the cells of the ONH that contribute to glaucomatous damage. Understanding molecular signaling within and between the cells of the ONH can help identify new drug targets and therapeutics.
Collapse
Affiliation(s)
| | - Colleen M. McDowell
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
38
|
Fathy MA, Alsemeh AE, Habib MA, Abdel-nour HM, Hendawy DM, Eltaweel AM, Abdelkhalek A, Ahmed MM, Desouky MK, Hua J, Fericean LM, Banatean-Dunea I, Arisha AH, Khamis T. Liraglutide ameliorates diabetic-induced testicular dysfunction in male rats: role of GLP-1/Kiss1/GnRH and TGF-β/Smad signaling pathways. Front Pharmacol 2023; 14:1224985. [PMID: 37497106 PMCID: PMC10367011 DOI: 10.3389/fphar.2023.1224985] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
Introduction: Glucagon-like peptide -1 (GLP-1) is released by intestinal cells to stimulate glucose-dependent insulin release from the pancreas. GLP-1 has been linked to ameliorating obesity and/or diabetic complications as well as controlling reproductive function. Liraglutide is a GLP-1 receptor agonist (GLP-1RA) with 97% homology with GLP-1. The main objective of this study was to investigate the ameliorative role of liraglutide in diabetic-induced reproductive dysfunction in male rats. Methods: Rats were randomly allocated into 3 groups; a control group, a diabetic group, and a liraglutide-treated diabetic group. Results: In the diabetic group, a significant increase in BMI, FBG, HbA1c, HOMA-IR, TC, TAG, LDL, IL6, TNFα, and MDA, as well as decreased serum insulin, HDL, GSH, total testosterone, LH, and FSH, were shown compared to the control group. Furthermore, A significant downregulation in relative hypothalamic gene expression of GLP-1R, PPAR-α, PGC-1α, kiss, kiss1R, leptin, leptin R, GnRH GLP-1R, testicular PGC-1α, PPARα, kiss1, kiss1R, STAR, CYP17A1, HSD17B3, CYP19A, CYP11A1, and Smad7, as well as upregulation in hypothalamic GnIH and testicular TGF- β and Smad2 expression, were noticed compared to the control group. Liraglutide treatment significantly improved such functional and structural reproductive disturbance in diabetic rats. Conclusion: GLP-1RAs ameliorated the deleterious effects of diabetes on reproductive function by targeting GLP-1/leptin/kiss1/GnRH, steroidogenesis, and TGF- β/Smad pathways.
Collapse
Affiliation(s)
- Maha Abdelhamid Fathy
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Amira Ebrahim Alsemeh
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa A. Habib
- Medical Physiology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanim M. Abdel-nour
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Doaa M. Hendawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Asmaa Monir Eltaweel
- Basic Medical Science Department of Anatomy and Embryology, College of Medicine-King Saud Abdulaziz, University for Health Sciences—Kingdom of Saudi Arabia, Jeddah, Saudi Arabia
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
| | - Mona M. Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Maha K. Desouky
- Department of Anatomy, Faculty of Medicine, Minia University, Minia, Egypt
| | - Jinlian Hua
- College of Veterinary Medicine/Shaanxi Centre of Stem Cells Engineering and Technology, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Liana Mihaela Fericean
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I” from Timisoara [ULST], Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr, Egypt
- Department of Physiology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
39
|
Yu J, Zhao X, Yan X, Li W, Liu Y, Wang J, Wang J, Yang Y, Hao Y, Liang Z, Tao Y, Yuan Y, Du Z. Aloe-emodin ameliorated MI-induced cardiac remodeling in mice via inhibiting TGF-β/SMAD signaling via up-regulating SMAD7. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154793. [PMID: 37011420 DOI: 10.1016/j.phymed.2023.154793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Aloe-emodin (AE), a natural anthraquinone extract from traditional Chinese medicinal plants, has been certified to protect against acute myocardial ischemia. However, its effect on cardiac remodeling after chronic myocardial infarction (MI) and the possible mechanism remain unclear. PURPOSE This study investigated the effect of AE on cardiac remodeling and oxidative damage induced by myocardial infarction (MI) in vitro and explored the underlying mechanisms. METHODS Echocardiography and Masson staining were used to demonstrate myocardial dysfunction and fibrosis. Cell apoptosis was detected by TUNEL staining. The expressions of fibrosis-related factors such as type I collagen, α-smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF) were detected by Western blot. RESULTS Our data demonstrated that AE treatment significantly improved cardiac function, reduced structural remodeling, and reduced cardiac apoptosis and oxidative stress in mice with myocardial infarction. In vitro, AE could protect neonatal mouse cardiomyocytes (NMCM) from angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and apoptosis, and significantly inhibited (p < 0.05) Ang II-induced reactive oxygen species (ROS) increase. Furthermore, AE treatment significantly reversed the Ang ii-induced upregulation. CONCLUSION In summary, our work reveals for the first time that AE activates the TGF-β signaling pathway by up-regulating Smad7 expression, which in turn regulates the expression of fibrosis-related genes, ultimately improving cardiac function, inhibiting the development of cardiac fibrosis and hypertrophy in rats with chronic MI.
Collapse
Affiliation(s)
- Jie Yu
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuye Zhao
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiuqing Yan
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen Li
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yunqi Liu
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jiapan Wang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jia Wang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yilian Yang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Hao
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhen Liang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yiping Tao
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ye Yuan
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; National key laboratory of frigid cardiovascular disease, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Zhimin Du
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China; National key laboratory of frigid cardiovascular disease, Harbin, China; Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China; State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
40
|
Tian H, Liu C, Yu J, Han J, Du J, Liang S, Wang W, Liu Q, Lian R, Zhu T, Wu S, Tao T, Ye Y, Zhao J, Yang Y, Zhu X, Cai J, Wu J, Li M. PHF14 enhances DNA methylation of SMAD7 gene to promote TGF-β-driven lung adenocarcinoma metastasis. Cell Discov 2023; 9:41. [PMID: 37072414 PMCID: PMC10113255 DOI: 10.1038/s41421-023-00528-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 02/07/2023] [Indexed: 04/20/2023] Open
Abstract
Aberrant activation of TGF-β signaling plays a pivotal role in cancer metastasis and progression. However, molecular mechanisms underlying the dysregulation of TGF-β pathway remain to be understood. Here, we found that SMAD7, a direct downstream transcriptional target and also a key antagonist of TGF-β signaling, is transcriptionally suppressed in lung adenocarcinoma (LAD) due to DNA hypermethylation. We further identified that PHF14 binds DNMT3B and serves as a DNA CpG motif reader, recruiting DNMT3B to the SMAD7 gene locus, resulting in DNA methylation and transcriptional suppression of SMAD7. Our in vitro and in vivo experiments showed that PHF14 promotes metastasis through binding DNMT3B to suppress SMAD7 expression. Moreover, our data revealed that PHF14 expression correlates with lowered SMAD7 level and shorter survival of LAD patients, and importantly that SMAD7 methylation level of circulating tumor DNA (ctDNA) can potentially be used for prognosis prediction. Together, our present study illustrates a new epigenetic mechanism, mediated by PHF14 and DNMT3B, in the regulation of SMAD7 transcription and TGF-β-driven LAD metastasis, and suggests potential opportunities for LAD prognosis.
Collapse
Affiliation(s)
- Han Tian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Chenying Liu
- Department of Breast Pathology and Lab, Key Laboratory of Breast Cancer of Breast Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jianchen Yu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- School of Chemistry, South China Normal University, Guangzhou, Guangdong, China
| | - Jian Han
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Du
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shujun Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenting Wang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qin Liu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rong Lian
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Zhu
- Department of Laboratory Medicine, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Tianyu Tao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yaokai Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingjing Zhao
- Department of Cardiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Yang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xun Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Junchao Cai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jueheng Wu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Mengfeng Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Cancer Institute, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
41
|
Xu Y, Wang AT, Xiao JH. CD44 mediates hyaluronan to promote the differentiation of human amniotic mesenchymal stem cells into chondrocytes. Biotechnol Lett 2023; 45:411-422. [PMID: 36680638 DOI: 10.1007/s10529-022-03322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 01/22/2023]
Abstract
OBJECTIVES CD44 is the major receptor for hyaluronan (HA), but its effect on HA-induced differentiation of human amnion mesenchymal stem cells into chondrocytes is unclear. This study aimed to investigate the effects and mechanisms of CD44 in HA-induced chondrogenesis. METHODS Immunocytochemistry and toluidine blue staining were used to assess the secretion of type II collagen and aggrecan, respectively. qRT-PCR and western blotting were performed to evaluate the expression of key genes and proteins. RESULTS The expression of aggrecan and type II collagen was downregulated after using the anti-CD44 antibody (A3D8). The transcriptional levels of chondrocytes‑associated genes SRY‑box transcription factor 9, aggrecan, and collagen type II alpha 1 chain were also decreased. Thus, CD44 may mediate HA-induced differentiation of hAMSCs into chondrocytes. Further investigation indicated that expression of phosphorylated (p)‑Erk1/2 and p‑Smad2 decreased following CD44 inhibition. The changes in the expression of p-Erk1/2 and p-Smad2 were consistent after using the ERK1/2 inhibitor (U0126) and agonist (EGF), respectively. After administering the p-Smad2 inhibitor, the expression levels of p-ERK1/2 and p-Smad2 appeared downregulated. The results showed crosstalk between Erk1/2 and Smad2. Moreover, inhibition of p-Erk1/2 and p-Smad2 significantly reduced the accumulation of aggrecan and type II collagen. CONCLUSION These data indicate that CD44 mediates HA-induced differentiation of hAMSCs into chondrocytes by regulating Erk1/2 and Smad2 signaling.
Collapse
Affiliation(s)
- Yan Xu
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
- Department of Orthopaedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ai-Tong Wang
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, China.
- Department of Orthopaedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
42
|
Shao CG, Sinha NR, Mohan RR, Webel AD. Novel Therapies for the Prevention of Fibrosis in Glaucoma Filtration Surgery. Biomedicines 2023; 11:657. [PMID: 36979636 PMCID: PMC10045591 DOI: 10.3390/biomedicines11030657] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Conjunctival fibrosis remains the major impediment to the success of glaucoma filtration surgery. Anti-metabolites remain the gold standard for mitigating post-surgical fibrosis, but they are associated with high complication rates and surgical failure rates. Establishing a more targeted approach to attenuate conjunctival fibrosis may revolutionize the surgical approach to glaucoma. A new strategy is needed to prevent progressive tissue remodeling and formation of a fibrotic scar, subsequently increasing surgical success and reducing the prevalence of glaucoma-related vision loss. Advancements in our understanding of molecular signaling and biomechanical cues in the conjunctival tissue architecture are broadening the horizon for new therapies and biomaterials for the mitigation of fibrosis. This review aims to highlight the strategies and current state of promising future approaches for targeting fibrosis in glaucoma filtration surgery.
Collapse
Affiliation(s)
| | - Nishant R. Sinha
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Rajiv R. Mohan
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 65212, USA
- One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO 65212, USA
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Aaron D. Webel
- Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
43
|
Ahmad N, de la Serna IL, Marathe HG, Fan X, Dube P, Zhang S, Haller ST, Kennedy DJ, Pestov NB, Modyanov NN. Eutherian-Specific Functions of BetaM Acquired through Atp1b4 Gene Co-Option in the Regulation of MyoD Expression. Life (Basel) 2023; 13:414. [PMID: 36836771 PMCID: PMC9962273 DOI: 10.3390/life13020414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Vertebrate ATP1B4 genes represent a rare instance of orthologous gene co-option, resulting in radically different functions of the encoded BetaM proteins. In lower vertebrates, BetaM is a Na, K-ATPase β-subunit that is a component of ion pumps in the plasma membrane. In placental mammals, BetaM lost its ancestral role and, through structural alterations of the N-terminal domain, became a skeletal and cardiac muscle-specific protein of the inner nuclear membrane, highly expressed during late fetal and early postnatal development. We previously determined that BetaM directly interacts with the transcriptional co-regulator SKI-interacting protein (SKIP) and is implicated in the regulation of gene expression. This prompted us to investigate a potential role for BetaM in the regulation of muscle-specific gene expression in neonatal skeletal muscle and cultured C2C12 myoblasts. We found that BetaM can stimulate expression of the muscle regulatory factor (MRF), MyoD, independently of SKIP. BetaM binds to the distal regulatory region (DRR) of MyoD, promotes epigenetic changes associated with activation of transcription, and recruits the SWI/SNF chromatin remodeling subunit, BRG1. These results indicate that eutherian BetaM regulates muscle gene expression by promoting changes in chromatin structure. These evolutionarily acquired new functions of BetaM might be very essential and provide evolutionary advantages to placental mammals.
Collapse
Affiliation(s)
- Nisar Ahmad
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Ivana L. de la Serna
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Himangi G. Marathe
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Xiaoming Fan
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Prabhatchandra Dube
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Shungang Zhang
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Steven T. Haller
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - David J. Kennedy
- Department of Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Nikolay B. Pestov
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Nikolai N. Modyanov
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
44
|
Zhang JM, Au DT, Sawada H, Franklin MK, Moorleghen JJ, Howatt DA, Wang P, Aicher BO, Hampton B, Migliorini M, Ni F, Mullick AE, Wani MM, Ucuzian AA, Lu HS, Muratoglu SC, Daugherty A, Strickland DK. LRP1 protects against excessive superior mesenteric artery remodeling by modulating angiotensin II-mediated signaling. JCI Insight 2023; 8:e164751. [PMID: 36472907 PMCID: PMC9977308 DOI: 10.1172/jci.insight.164751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Vascular smooth muscle cells (vSMCs) exert a critical role in sensing and maintaining vascular integrity. These cells abundantly express the low-density lipoprotein receptor-related protein 1 (LRP1), a large endocytic signaling receptor that recognizes numerous ligands, including apolipoprotein E-rich lipoproteins, proteases, and protease-inhibitor complexes. We observed the spontaneous formation of aneurysms in the superior mesenteric artery (SMA) of both male and female mice in which LRP1 was genetically deleted in vSMCs (smLRP1-/- mice). Quantitative proteomics revealed elevated abundance of several proteins in smLRP1-/- mice that are known to be induced by angiotensin II-mediated (AngII-mediated) signaling, suggesting that this pathway was dysregulated. Administration of losartan, an AngII type I receptor antagonist, or an angiotensinogen antisense oligonucleotide to reduce plasma angiotensinogen concentrations restored the normal SMA phenotype in smLRP1-/- mice and prevented aneurysm formation. Additionally, using a vascular injury model, we noted excessive vascular remodeling and neointima formation in smLRP1-/- mice that was restored by losartan administration. Together, these findings reveal that LRP1 regulates vascular integrity and remodeling of the SMA by attenuating excessive AngII-mediated signaling.
Collapse
Affiliation(s)
- Jackie M Zhang
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dianaly T Au
- Center for Vascular and Inflammatory Diseases and
| | - Hisashi Sawada
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | | | | | - Pengjun Wang
- Saha Cardiovascular Research Center and Saha Aortic Center and
| | - Brittany O Aicher
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Fenge Ni
- Center for Vascular and Inflammatory Diseases and
| | | | | | - Areck A Ucuzian
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Vascular Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland, USA
| | - Hong S Lu
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | | | - Alan Daugherty
- Saha Cardiovascular Research Center and Saha Aortic Center and
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases and
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
45
|
Monteleone G, Laudisi F, Stolfi C. Smad7 as a positive regulator of intestinal inflammatory diseases. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100055. [PMID: 36714553 PMCID: PMC9881044 DOI: 10.1016/j.crimmu.2023.100055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
In physiological conditions, the human gut contains more immune cells than the rest of the body, but no overt tissue damage occurs, because several regulatory mechanisms control the activity of such cells thus preventing excessive and detrimental responses. One such mechanism relies on the action of transforming growth factor (TGF)-β1, a cytokine that targets both epithelial cells and many immune cell types. Loss of TGF-β1 function leads to intestinal pathology in both mice and humans. For instance, disruption of TGF-β1 signaling characterizes the destructive immune-inflammatory response in patients with Crohn's disease and patients with ulcerative colitis, the major human inflammatory bowel disease (IBD) entities. In these pathologies, the defective TGF-β1-mediated anti-inflammatory response is associated with elevated intestinal levels of Smad7, an antagonist of TGF-β1 signaling. Consistently, knockdown of Smad7 restores TGF-β1 function thereby attenuating intestinal inflammation in patients with IBD as well as in mice with IBD-like colitis. Up-regulation of Smad7 and reduced TGF-β1 signaling occurs also in necrotizing enterocolitis, environmental enteropathy, refractory celiac disease, and cytomegalovirus-induced colitis. In this article, we review the available data supporting the pathogenic role of Smad7 in the gastrointestinal tract and discuss whether and how targeting Smad7 can help attenuate detrimental immuno-inflammatory responses in the gut.
Collapse
Affiliation(s)
- Giovanni Monteleone
- Corresponding author. Dipartimento di Medicina dei Sistemi, Università di Roma “Tor Vergata”, Via Montpellier 1, 00133, Rome, Italy.
| | | | | |
Collapse
|
46
|
Zhang J, van der Zon G, Ma J, Mei H, Cabukusta B, Agaser CC, Madunić K, Wuhrer M, Zhang T, Ten Dijke P. ST3GAL5-catalyzed gangliosides inhibit TGF-β-induced epithelial-mesenchymal transition via TβRI degradation. EMBO J 2023; 42:e110553. [PMID: 36504224 PMCID: PMC9841337 DOI: 10.15252/embj.2021110553] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is pivotal in the initiation and development of cancer cell metastasis. We observed that the abundance of glycosphingolipids (GSLs), especially ganglioside subtypes, decreased significantly during TGF-β-induced EMT in NMuMG mouse mammary epithelial cells and A549 human lung adenocarcinoma cells. Transcriptional profiling showed that TGF-β/SMAD response genes and EMT signatures were strongly enriched in NMuMG cells, along with depletion of UDP-glucose ceramide glucosyltransferase (UGCG), the enzyme that catalyzes the initial step in GSL biosynthesis. Consistent with this finding, genetic or pharmacological inhibition of UGCG promoted TGF-β signaling and TGF-β-induced EMT. UGCG inhibition promoted A549 cell migration, extravasation in the zebrafish xenograft model, and metastasis in mice. Mechanistically, GSLs inhibited TGF-β signaling by promoting lipid raft localization of the TGF-β type I receptor (TβRI) and by increasing TβRI ubiquitination and degradation. Importantly, we identified ST3GAL5-synthesized a-series gangliosides as the main GSL subtype involved in inhibition of TGF-β signaling and TGF-β-induced EMT in A549 cells. Notably, ST3GAL5 is weakly expressed in lung cancer tissues compared to adjacent nonmalignant tissues, and its expression correlates with good prognosis.
Collapse
Affiliation(s)
- Jing Zhang
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Gerard van der Zon
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jin Ma
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Birol Cabukusta
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Cedrick C Agaser
- Sequencing Analysis Support Core, Leiden University Medical Center, Leiden, The Netherlands
| | - Katarina Madunić
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Tao Zhang
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Xiao Q, Chen J, Zhu J, Zeng S, Cai H, Zhu G. Association of several loci of SMAD7 with colorectal cancer: A meta-analysis based on case-control studies. Medicine (Baltimore) 2023; 102:e32631. [PMID: 36607878 PMCID: PMC9829263 DOI: 10.1097/md.0000000000032631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Sma-and mad-related protein 7 (SMAD7) can affect tumor progression by closing transforming growth factor-beta intracellular signaling channels. Despite the extensive research on the correlation between SMAD7 polymorphisms and colorectal cancer (CRC), the conclusions of studies are still contradictory. We conducted a study focusing on the association of SMAD7 polymorphisms rs4939827, rs4464148, and rs12953717 with CRC. METHODS We searched through 5 databases for articles and used odd ratios (ORs) and 95% confidence intervals (CIs) to discuss the correlation of SMAD7 polymorphisms with CRC risk. The heterogeneity will be appraised by subgroup analysis and meta-regression. Contour-enhanced funnel plot, Begg test and Egger test were utilized to estimate publication bias, and the sensitivity analysis illustrates the reliability of the outcomes. We performed False-positive report probability and trial sequential analysis methods to verify results. We also used public databases for bioinformatics analysis. RESULTS We conclusively included 34 studies totaling 173251 subjects in this study. The minor allele (C) of rs4939827 is a protective factor of CRC (dominant, OR/[95% CI] = 0.89/[0.83-0.97]; recessive, OR/[95% CI] = 0.89/[0.83-0.96]; homozygous, OR/[95% CI] = 0.84/[0.76-0.93]; heterozygous, OR/[95% CI] = 0.91/[0.85-0.97]; additive, OR/[95% CI] = 0.91/[0.87-0.96]). the T allele of rs12953717 (recessive, OR/[95% CI] = 1.22/[1.15-1.28]; homozygous, OR/[95% CI] = 1.25/[1.13-1.38]; additive, OR/[95% CI] = 1.11/[1.05-1.17]) and the C allele of rs4464148 (heterozygous, OR/[95% CI] = 1.13/[1.04-1.24]) can enhance the risk of CRC. CONCLUSION Rs4939827 (T > C) can decrease the susceptibility to CRC. However, the rs4464148 (T > C) and rs12953717 (C > T) variants were connected with an enhanced risk of CRC.
Collapse
Affiliation(s)
- Qiang Xiao
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jian Chen
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Jia Zhu
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Shukun Zeng
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Hu Cai
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Guomin Zhu
- General Surgery Department, First Affiliated Hospital of Nanchang University, Jiangxi, China
- * Correspondence: Guomin Zhu, First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China (e-mail: )
| |
Collapse
|
48
|
Gao W, Yuan LM, Zhang Y, Huang FZ, Gao F, Li J, Xu F, Wang H, Wang YS. miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-β/Smad and attenuation of MAPK/AP-1 pathway. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023; 22:135-146. [PMID: 36114328 DOI: 10.1007/s43630-022-00304-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/08/2022] [Indexed: 01/12/2023]
Abstract
Stem cell therapy is widely employed for the treatment of skin diseases, especially in skin rejuvenation. Exosomes derived from stem cells have been demonstrated to possess anti-photoaging effects; however, the precise components within exosomes that are responsible for this effect remain unknown. Previously, miR-1246 was found to be one of the most abundant nucleic acids in adipose-derived stem cells (ADSCs)-derived exosomes. This study examined whether miR-1246 was the major therapeutic agent employed by ADSCs to protect against UVB-induced photoaging. Lentivirus infection was used to obtain miR-1246-overexpressing ADSCs and exosomes. We then determined the anti-photoaging effects of miR-1246-overexpressing exosomes (OE-EX) on both UVB-irradiated human skin fibroblasts (HSFs) and Kunming mice. The results showed that OE-EX could significantly decrease MMP-1 by inhibiting the MAPK/AP-1 signaling pathway. Meanwhile, OE-EX markedly increased procollagen type I secretion by activating the TGF-β/Smad pathway. OE-EX also exhibited an anti-inflammatory effect by preventing the UVB-induced degradation of IκB-α and NF-κB overexpression. Animal experiments demonstrated that OE-EX could reduce UVB-induced wrinkle formation, epidermis thickening, and the loss of collagen fibers reduction in Kunming mice. The combined results suggested that miR-1246 is the key component within ADSCs-derived exosomes that protects against UVB-induced skin photoaging.
Collapse
Affiliation(s)
- Wei Gao
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Li-Min Yuan
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yue Zhang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fang-Zhou Huang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fei Gao
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Jian Li
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Feng Xu
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Wang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yu-Shuai Wang
- Department of Pharmacy, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China.
| |
Collapse
|
49
|
Monteleone G, Stolfi C. Smad7 Antisense Oligonucleotide in Crohn's Disease: A Re-Evaluation and Explanation for the Discordant Results of Clinical Trials. Pharmaceutics 2022; 15:pharmaceutics15010095. [PMID: 36678723 PMCID: PMC9864707 DOI: 10.3390/pharmaceutics15010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
In Crohn's disease (CD) and ulcerative colitis (UC), the major inflammatory bowel diseases (IBD) in human beings, the tissue-damaging inflammatory response is characterized by elevated levels of Suppressor of Mothers Against Decapentaplegic (Smad)7, an inhibitor of the immunosuppressive cytokine Transforming Growth Factor (TGF)-β1. Consistently, preclinical work in mouse models of IBD-like colitis showed that the knockdown of Smad7 with an antisense oligonucleotide (AS) attenuated the mucosal inflammation, thus paving the way for the development of an AS-containing pharmaceutical compound, named mongersen, for clinical use. The initial phase 1 and phase 2 studies showed that oral administration of mongersen was safe and effective in inducing clinical remission in active CD patients. However, subsequently, a large multicentered, randomized, double-blind, placebo-controlled, phase 3 trial was prematurely discontinued because of an interim analysis showing no effect of mongersen on the activity of CD. In this study we will discuss recent data showing that the majority of the batches of mongersen used in the phase 3 study were chemically different from those used in the previous clinical trials, with some of them being unable to knockdown Smad7 in cultured cells. The accumulating evidence highlights the need to maintain consistent manufacturing requirements for clinical AS, as well as the potential benefits of in vitro bioassays as a part of quality control. New clinical trials evaluating mongersen's impact on IBD using chemically homogenous batches will be needed to ascertain the therapeutic efficacy of such a drug.
Collapse
|
50
|
Tang L, Zhu M, Che X, Yang X, Xu Y, Ma Q, Zhang M, Ni Z, Shao X, Mou S. Astragaloside IV Targets Macrophages to Alleviate Renal Ischemia-Reperfusion Injury via the Crosstalk between Hif-1α and NF-κB (p65)/Smad7 Pathways. J Pers Med 2022; 13:jpm13010059. [PMID: 36675720 PMCID: PMC9863138 DOI: 10.3390/jpm13010059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
(1) Background: Astragaloside IV (AS-IV) is derived from Astragalus membranous (AM), which is used to treat kidney disease. Macrophages significantly affect the whole process of renal ischemia-reperfusion (I/R). The regulation of macrophage polarization in kidneys by AS-IV was the focus. (2) Methods: Renal tubular injury and fibrosis in mice were detected by Hematoxylin and Eosin staining and Masson Trichrome Staining, separately. An ELISA and quantitative real-time polymerase chain reaction were used to explore the cytokine and mRNA expression. Western blot was used to determine protein expression and siRNA technology was used to reveal the crosstalk of signal pathways in RAW 264.7 under hypoxia. (3) Results: In the early stages of I/R injury, AS-IV reduced renal damage and macrophage infiltration. M1-associated markers were decreased, while M2 biomarkers were increased. The NF-κB (p65)/Hif-1α pathway was suppressed by AS-IV in M1. Moreover, p65 dominated the expression of Hif-1α. In the late stages of I/R injury, renal fibrosis was alleviated, and M2 infiltration also decreased after AS-IV treatment. Hif-1α expression was reduced by AS-IV, while Smad7 expression was enhanced. Hif-1α interferes with the expression of Smad7 in M2. (4) Conclusions: AS-IV promoted the differentiation of M1 to M2, relieving the proinflammatory response to alleviate the kidney injury during the early stages. AS-IV attenuated M2 macrophage infiltration to prevent kidney fibrosis during the later stages.
Collapse
Affiliation(s)
- Lumin Tang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Minyan Zhu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiajing Che
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoqian Yang
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yao Xu
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing Ma
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ming Zhang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xinghua Shao
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shan Mou
- Department of Nephrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Correspondence:
| |
Collapse
|