1
|
Xiao F, Yang M, Lv J, Li J, Guo M, Duan W, Li H, An Z, Su Z, Li A, Liu Y, Lu J, Guo H. Association between per- and polyfluoroalkyl substances with serum hepatobiliary system function biomarkers in patients with acute coronary syndrome. J Environ Sci (China) 2025; 155:773-785. [PMID: 40246507 DOI: 10.1016/j.jes.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 04/19/2025]
Abstract
Previous studies have suggested that abnormal hepatobiliary system function may contribute to poor prognosis in patients with acute coronary syndrome (ACS) and that abnormal hepatobiliary system function may be associated with per- and polyfluoroalkyl substances (PFAS) exposure. However, there is limited evidence for this association in cardiovascular subpopulations, particularly in the ACS patients. Therefore, we performed this study to evaluate the association between plasma PFAS exposure and hepatobiliary system function biomarkers in patients with ACS. This study included 546 newly diagnosed ACS patients at the Second Hospital of Hebei Medical University, and data on 15 hepatobiliary system function biomarkers were obtained from medical records. Associations between single PFAS and hepatobiliary system function biomarkers were assessed using multiple linear regression models and restricted cubic spline model (RCS), and mixture effects were assessed using the Quantile g-computation model. The results showed that total bile acids (TBA) was negative associated with perfluorohexane sulfonic acid (PFHxS) (-7.69 %, 95 % CI: -12.15 %, -3.01 %). According to the RCS model, linear associations were found between TBA and PFHxS (P for overall = 0.003, P for non-linear = 0.234). We also have observed the association between between PFAS congeners and liver enzyme such as aspartate aminotransferase (AST) and α-l-Fucosidase (AFU), but it was not statistically significant after correction. In addition, Our results also revealed an association between prealbumin (PA) and PFAS congeners as well as mixtures. Our findings have provided a piece of epidemiological evidence on associations between PFAS congeners or mixture, and serum hepatobiliary system function biomarkers in ACS patients, which could be a basis for subsequent mechanism studies.
Collapse
Affiliation(s)
- Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Ming Yang
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Junli Lv
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Jing Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Mingmei Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - WenJing Duan
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Haoran Li
- Department of Pharmacy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Ziwen An
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhengyi Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Ang Li
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100005, China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China
| | - Jingchao Lu
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China.
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China; The Key Laboratory of Neural and Vascular Biology Ministry of Education, Shijiazhuang 050017, China.
| |
Collapse
|
2
|
Sun Y, Sun K, Ling H, Xia Q. Farnesoid X receptor‑driven metabolic plasticity: Bridging physiological adaptation and malignant transformation in lipid handling (Review). Int J Mol Med 2025; 56:110. [PMID: 40376981 PMCID: PMC12121986 DOI: 10.3892/ijmm.2025.5551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/13/2025] [Indexed: 05/18/2025] Open
Abstract
Metabolic reprogramming represents a hallmark of malignant tumors, manifested through progressive alterations in nutrient utilization patterns during oncogenesis. As fundamental constituents of biological membranes, essential components of signaling pathways, and critical energy substrates, lipids undergo comprehensive metabolic restructuring in neoplastic cells. This lipid remodeling confers enhanced adaptability to sustain uncontrolled proliferation while promoting aggressive migratory phenotypes. Farnesoid X receptor (FXR), a ligand‑activated nuclear receptor responsive to bile acid (BA) derivatives and cholesterol metabolites, orchestrates key aspects of lipid homeostasis. Its regulatory network encompasses cholesterol/BA metabolism, fatty acid (FA) metabolism and plasma lipoprotein trafficking pathways. Emerging evidence positions FXR as a pleiotropic modulator in oncogenesis, with dysregulated expression patterns documented across multiple tumor lineages and premalignant lesions. This mechanistic understanding has propelled FXR‑targeted therapeutics into the forefront of precision oncology development. The present review critically examines the FXR‑lipid axis in lipid‑enriched malignancies, with particular emphasis on its regulatory circuitry governing BA flux and FA turnover.
Collapse
Affiliation(s)
- Yanning Sun
- Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Kai Sun
- Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongju Ling
- Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
| | - Qinghua Xia
- Urology Department, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, P.R. China
- Urology Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
3
|
Suh JH, Cheon I, Jung HJ, Lee SH, Heo MJ, DeBerge M, Wooton-Kee CR, Kim KH. Bile acid regulation of xenobiotic nuclear receptors on the expressions of orosomucoids in the liver. Am J Physiol Endocrinol Metab 2025; 328:E940-E951. [PMID: 40327538 DOI: 10.1152/ajpendo.00417.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/03/2024] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
The constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are xenobiotic nuclear receptors activated by various xenobiotics, drugs, hormones, and bile acids (BAs). Upon activation, these nuclear receptors play critical roles in regulating systemic energy homeostasis. However, precise mechanisms through which CAR and PXR influence systemic metabolism remain incompletely understood. Here, we investigated the impact of CAR and PXR on the liver-secreted hormone (i.e., hepatokine) expressions in response to BA stress, such as cholic acid (CA) feeding. Our analysis revealed that several BA-activated genes, including the well-known CAR/PXR target, aldo-keto reductase family 1, member B7 (Akr1b7), were commonly increased by CAR- and PXR-agonist treatments. Notably, we identified a gene cluster encoding new BA-regulated hepatokines, orosomucoids (ORMs), as direct transcriptional targets of CAR and PXR. The Orm1 and Orm2 expressions were completely abolished in the absence of both CAR and PXR following CA feeding. In addition, we found that Orm transcriptions are dynamically regulated under various metabolic conditions, proposing a potential contribution of CAR/PXR. In conclusion, our study demonstrated that BA stress activates CAR and PXR, which play a key role in regulating hepatokine expression, including ORMs. This suggests a potential link between hepatic BA signaling, CAR/PXR activity, and systemic metabolic effects.NEW & NOTEWORTHY Hepatic bile acid signaling plays a crucial role in coordinating systemic metabolism between the liver and other peripheral tissues. Our report demonstrates that, under bile acid-enriched conditions, activation of nuclear receptors CAR and PXR stimulate the expression of several putative hepatokines, including the orosomucoid gene family, which may exert regulatory effects in the liver and adipose tissue against metabolic disorders.
Collapse
Affiliation(s)
- Ji Ho Suh
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Inyoung Cheon
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
- Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, South Korea
| | - Hyun-Jung Jung
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Sung Ho Lee
- Department of Biomedical Laboratory Science, Gwangju Health University, Gwangju, South Korea
| | - Mi Jeong Heo
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Matthew DeBerge
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - Clavia Ruth Wooton-Kee
- Department of Pediatrics-Nutrition, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas, United States
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States
| |
Collapse
|
4
|
Dąbrowska AM, Dudka J. Fexaramine as the intestine-specific farnesoid X receptor agonist: A promising agent to treat obesity and metabolic disorders. Drug Discov Today 2025; 30:104386. [PMID: 40409402 DOI: 10.1016/j.drudis.2025.104386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 05/08/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Fexaramine, a gut-restricted farnesoid X receptor (FXR) agonist, promotes glucose and lipid homeostasis, improves insulin sensitivity, promotes white adipose tissue browning, and stimulates nonshivering thermogenesis. Enhancement in energy expenditure due to an increase in amount of energy burned by brown and 'beige' adipocytes results in subsequent weight loss. Fexaramine is poorly absorbed into circulation when delivered orally, which limits systemic FXR activation and toxicity. An increase in β3-adrenoceptor signaling, activation of Takeda G protein-coupled receptor 5/glucagon-like peptide-1 (TGR5/GLP-1) signaling, and induction of fibroblast growth factor (FGF)-19/FGF-15 play crucial roles in fexaramine metabolic actions. Intestinal FXR activation is a promising, potentially safe approach for treating obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Anna Maria Dąbrowska
- Department of Toxicology, Medical University of Lublin, Poland, Jaczewskiego Street 8b, 20-090 Lublin, Poland; Endocrinology Outpatient Clinic, Lublin, Poland.
| | - Jarosław Dudka
- Department of Toxicology, Medical University of Lublin, Poland, Jaczewskiego Street 8b, 20-090 Lublin, Poland
| |
Collapse
|
5
|
Yu X, Cao T, Ipemba E, Bakala GB, Leveut LGD, Peng W, Ji F, Li H, Xu L, Wu H. Effects of dietary supplementation with bile acids on growth performance, antioxidant capacity, lipid metabolism, and cecal microbiota of Danzhou chickens. Poult Sci 2025; 104:105276. [PMID: 40373624 DOI: 10.1016/j.psj.2025.105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/17/2025] Open
Abstract
This study aimed to evaluate the effects of different bile acid levels in the diet on the growth performance, hepatic lipid metabolism, antioxidant capacity, and cecal microbiota of Danzhou chickens. 480 one-day-old male Danzhou chickens were randomly divided into four treatments and fed diets supplemented with 0, 200, 400, or 800 mg/kg bile acids. The trial lasted for 35 days. The results indicated that supplementing the diet with 400 mg/kg bile acids significantly increased average daily weight gain and reduced the feed conversion ratio (P < 0.05). Bile acid supplementation modulated serum lipid profiles, with 800 mg/kg increasing total bile acid levels, while 400 mg/kg reduced triglyceride and total cholesterol concentrations (P < 0.05). In the liver, 400 mg/kg bile acids increased total bile acid content, reduced triglycerides and total cholesterol accumulation, upregulated phospholipase C delta 1, acyl-CoA oxidase 1, and apolipoprotein A1 expression, and enhanced hepatic lipase and lipoprotein lipase activities (P < 0.05), indicating alleviated lipid deposition. All bile acids treatments improved antioxidant capacity by elevating total antioxidant capacity, catalase, superoxide dismutase, and glutathione peroxidase levels (P < 0.05) while reducing malondialdehyde (P < 0.05) in serum and liver, with optimal effects at 400 mg/kg. Bile acid supplementation increased levels of immunoglobulins (IgA and IgG) and the anti-inflammatory cytokine IL-10 (P < 0.05), while reducing levels of the pro-inflammatory cytokine IL-1β (P < 0.05). Morphological analysis of the intestine revealed that 400 mg/kg of bile acids significantly enhanced villus height and the villus height-to-crypt depth ratio (P < 0.05) in both the duodenum and ileum. Cecal microbiota analysis revealed that supplementation with 400 mg/kg bile acids increased microbial diversity and enriched Christensenellaceae_R-7_group and Weissella, whereas Barnesiellaceae_unclassified, Campylobacter, and Lactobacillus were predominant in the CON. In conclusion, the results suggest that dietary supplementation with 400 mg/kg of bile acids enhances antioxidant capacity and immune function in Danzhou chickens, potentially improving serum and hepatic lipid metabolism by modulating the cecal microbiota, thereby promoting growth performance.
Collapse
Affiliation(s)
- Xilong Yu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ting Cao
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Euphrème Ipemba
- National Centre for Crop Disease Control, Ministry of Agriculture, Animal Husbandry and Fisheries, Brazzaville 999059, Republic of Congo
| | - Ghislain Boungou Bakala
- National Centre for Crop Disease Control, Ministry of Agriculture, Animal Husbandry and Fisheries, Brazzaville 999059, Republic of Congo
| | | | - Weiqi Peng
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Fengjie Ji
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Hanfeng Li
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Liangmei Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Hongzhi Wu
- Tropical Crops Genetic Resources Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China.
| |
Collapse
|
6
|
Wei H, Suo C, Gu X, Shen S, Lin K, Zhu C, Yan K, Bian Z, Chen L, Zhang T, Yan R, Yang Z, Yu Y, Li Z, Liu R, He J, He Q, Zhong X, Jia W, Wong CM, Dong Z, Cao J, Sun L, Zhang H, Gao P. AKR1D1 suppresses liver cancer progression by promoting bile acid metabolism-mediated NK cell cytotoxicity. Cell Metab 2025; 37:1103-1118.e7. [PMID: 40010348 DOI: 10.1016/j.cmet.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/31/2024] [Accepted: 01/14/2025] [Indexed: 02/28/2025]
Abstract
Bile acid metabolism and antitumor immunity are both disrupted during liver cancer progression. However, the complex regulatory relationship between them remains largely unclear. Here, we find that loss of aldo-keto reductase 1D1 (AKR1D1) promotes the accumulation of isolithocholic acid (iso-LCA) through gut microbiome dysregulation, thereby impairing the cytotoxic function of natural killer (NK) cells and leading to the accelerated development of hepatocellular carcinoma (HCC). Mechanistically, AKR1D1 deficiency leads to an increased proportion of Bacteroidetes ovatus (B. ovatus), which breaks down chenodeoxycholic acid (CDCA) into iso-LCA. Moreover, accumulated iso-LCA impairs the antitumor activity of hepatic NK cells in a phosphorylated-CREB1 (p-CREB1)-dependent manner. The potassium-sparing diuretic spironolactone treatment significantly enhances the inhibitory effect of anti-PD1 antibody on HCC progression by targeting iso-LCA-mediated tumor immune escape. Taken together, our results uncover a previously unappreciated link between AKR1D1 and HCC and suggest that targeting iso-LCA produced by B. ovatus might be a promising strategy to activate NK cell cytotoxicity to treat HCC.
Collapse
Affiliation(s)
- Haoran Wei
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China; National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Caixia Suo
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xuemei Gu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kashuai Lin
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Chuxu Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Kai Yan
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenhua Bian
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Liang Chen
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Tong Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ronghui Yan
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhiyi Yang
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Yingxuan Yu
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhikun Li
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Rui Liu
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Junming He
- School of Medicine and Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Qiwei He
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiuying Zhong
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Weidong Jia
- Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Chun-Ming Wong
- State Key Laboratory of Liver Research, Department of Pathology, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Zhongjun Dong
- School of Medicine and Institute for Immunology, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Jie Cao
- Department of Colorectal Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Huafeng Zhang
- National Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Hepatopancreatobiliary Surgery, Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan 610212, China.
| |
Collapse
|
7
|
Miyata M, Maeno K, Takagi R, Sugiura Y. Sodium alginate improves lipid disruption and alters the composition of the gut microbiota in farnesoid X receptor-null mice. Int J Food Sci Nutr 2025; 76:304-314. [PMID: 40024913 DOI: 10.1080/09637486.2025.2471106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Seaweed-derived dietary fibre sodium alginate (SA) has been shown to present with health benefits in food-derived disease models. To determine whether SA improves the disease rather than merely suppressing its progression, we assessed its effects using farnesoid X receptor (FXR)-deficient mice to provide a model of advanced hyperlipidaemia. Fxr-null mice were fed with a 5% SA-supplemented diet for nine weeks and showed significant decreases in the levels of liver triglycerides (p < 0.05), total cholesterol (p < 0.05), serum low-density lipoprotein-cholesterol (p < 0.001). The expression levels of fatty acid-synthesizing genes (Fas and Scd1) and cholesterol-metabolizing genes (Hmgcr, Hmgcs, and Abca1), were significantly reduced. Furthermore, the SA supplementation has altered the gut microbiota and significantly increased the abundance of the genus Oscillospira (p < 0.001) and Parabacteroides (p < 0.01). These results suggest that SA improves lipid disruption and influences the composition of the gut microbiota in the Fxr-null mice.
Collapse
Affiliation(s)
- Masaaki Miyata
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Kouhei Maeno
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Reina Takagi
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| | - Yoshimasa Sugiura
- Department of Food Science and Technology, National Research and Development Agency, Japan Fisheries Research and Education Agency, National Fisheries University, Shimonoseki, Japan
| |
Collapse
|
8
|
Chen C, Liu X, Wang J, Wen X, Zhao H, Chen G, Wu K. Zinc-Mediated Deacetylation of Farnesoid X Receptor Activates the Adipose Triglyceride Lipase Pathway to Reduce Hepatic Lipid Accumulation and Enhance Lipolysis in Yellow Catfish. J Nutr 2025; 155:1350-1363. [PMID: 40089111 DOI: 10.1016/j.tjnut.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/17/2025] Open
Abstract
BACKGROUND High-fat diets (HFDs) can lead to excessive accumulation of lipids in the liver, leading to liver injury. Dietary zinc (Zn) has been shown to reduce HFD-induced lipid accumulation and improve lipid profiles in mammals, yet it remains unclear whether waterborne Zn maintains its lipid-lowering effects in osteichthyes. OBJECTIVES This study aimed to elucidate the regulatory role of Zn in HFD-induced hepatic lipid accumulation in yellow catfish (Pelteobagrus fulvidraco) and its potential mechanisms. METHODS Yellow catfish were fed a control diet (11.21% lipid concentration), HFD (16.10% lipid concentration), or HFD combined with waterborne Zn exposure (0.2 mg/L) for 8 wk. Various biochemical, genetic, histologic, and molecular techniques were conducted to evaluate hepatic lipid deposition and lipid metabolism and determine protein interactions between silent information regulator (SIRT) 1 and farnesoid X receptor (FXR), as well as protein-gene interactions between FXR and adipose triglyceride lipase (ATGL). RESULTS HFD feeding significantly increased liver fat content and induced hepatic damage in yellow catfish, but concurrent exposure to waterborne Zn alleviated these detrimental effects. Zn treatment increased mRNA and protein concentrations of SIRT1 (mean ± SEM; 97.19% ± 11.67% and 83.25% ± 28.60%, respectively) and FXR (163.90% ± 24.60% and 24.90% ± 11.12%, respectively) in yellow catfish liver (P < 0.05). Zn-activated FXR directly interacted with the promoter of ATGL, stimulating the expression of atgl (54.40% ± 16.33%; P < 0.05) and facilitating the hydrolysis of triglycerides and lipid droplets. Furthermore, Zn reduced the acetylation concentration of FXR by SIRT1 deacetylation of FXR protein K167. CONCLUSIONS The findings reveal that Zn protect against HFD-induced liver injury in yellow catfish by promoting the deacetylation of FXR protein K167 by SIRT1 and activating FXR, thereby promoting the transcriptional activation of ATGL to increase lipolysis.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou, China
| | - Xuebo Liu
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiawei Wang
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Xiaobo Wen
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou, China
| | - Huihong Zhao
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou, China
| | - Guanghui Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.
| | - Kun Wu
- Department of Aquatic Animal Nutrition and Feed, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Fisheries Research Institute of South China Agricultural University, Nansha, Guangzhou, China.
| |
Collapse
|
9
|
Tastet V, Le Vée M, Carteret J, Malnoë D, Bruyère A, Fardel O. Repression of bile salt efflux pump expression by tri-ortho-cresyl phosphate in cultured human hepatic cells. Toxicol In Vitro 2025; 105:106021. [PMID: 39929294 DOI: 10.1016/j.tiv.2025.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Tri-ortho-cresyl phosphate (TOCP) is an environmental toxic pollutant, belonging to the chemical class of organophosphorus flame retardants and repressing hepatic membrane drug transporter expression. The present study investigated whether the liver canalicular bile salt efflux pump (BSEP) may also be targeted by TOCP. TOCP used at a non-cytotoxic concentration of 10 μM for 48 h was demonstrated to decrease BSEP mRNA expression in cultured hepatic HepaRG cells (by a 4.4-fold factor) and primary human hepatocytes (by a 2.5-fold factor). This effect was concentration-dependent (IC50 = 0.8 μM) and was associated with a significant reduction of canalicular taurocholate secretion in HepaRG cells. It was not impaired by TOCP metabolism inhibitors. TOCP also potently antagonized farnesoid-X-receptor (FXR) mediated-BSEP up-regulation. The specific FXR antagonist DY268 decreased constitutive BSEP expression in HepaRG cells, as TOCP, suggesting a major implication of FXR antagonism in TOCP effects towards BSEP. The TOCP-mediated BSEP repression was finally predicted to potentially occur in vivo in response to a neurotoxic dose or to acute or chronic safe doses of TOCP. Taken together, these data demonstrate that the major bile salt transporter BSEP is a target for TOCP, which may support deleterious hepatotoxic effects of this chemical.
Collapse
Affiliation(s)
- Valentin Tastet
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Jennifer Carteret
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - David Malnoë
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Arnaud Bruyère
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Olivier Fardel
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
10
|
Davis E, Ermi AG, Sarkar D. Astrocyte Elevated Gene-1/Metadherin (AEG-1/MTDH): A Promising Molecular Marker and Therapeutic Target for Hepatocellular Carcinoma. Cancers (Basel) 2025; 17:1375. [PMID: 40282551 PMCID: PMC12025727 DOI: 10.3390/cancers17081375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. The 5-year survival rate has been estimated to be less than 20% while its incidence rates have more than tripled since the 1980s. Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) has been demonstrated to have an influential role in HCC progression and the development of an aggressive phenotype. AEG-1 has been shown to be upregulated in many cancers, including HCC. Studies have shown that it plays a crucial role in the proliferation, invasion and metastasis, and evasion of apoptosis in HCC. Its relationship with proteins and pathways, such as MYC, SND1, PI3K/AKT, and other signaling pathways demonstrates its pertinent role in oncogenic development and relevance as a biomarker and therapeutic target. Recent studies have shown that AEG-1 is present in tumor tissues, and the anti-AEG-1 antibody is detected in the blood of cancer patients, demonstrating its viability as a diagnostic/prognostic marker. This review paper shines light on recent findings regarding the molecular implications of AEG-1, with emphasis on its role of regulating metabolic dysfunction-associated steatohepatitis (MASH), a key predisposing factor for HCC, new treatment strategies targeting AEG-1, and challenges associated with analyzing this intriguing molecule.
Collapse
Affiliation(s)
- Eva Davis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Ali Gawi Ermi
- Department of Cellular, Molecular and Genetic Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Department of Cellular, Molecular and Genetic Medicine, Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
11
|
Li O, Zhou Y, Kim D, Xu H, Bao Z, Yang F. Lactococcus petauri LZys1 modulates gut microbiota, diminishes ileal FXR-FGF15 signaling, and regulates hepatic function. Microbiol Spectr 2025:e0171624. [PMID: 40243350 DOI: 10.1128/spectrum.01716-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 03/10/2025] [Indexed: 04/18/2025] Open
Abstract
Recent studies have indicated that Lactococcus petauri LZys1 (L. petauri LZys1), isolated from healthy human feces, exhibits a promising probiotic profile in vitro. However, its impact on the physiological status of the host in vivo remains uncertain. The objective of our study was to investigate the effects and mechanisms of orally administering L. petauri LZys1 on gut microbiota and liver function in mice. We administered L. petauri LZys1 through daily oral gavage to C57BL/6 male mice. Subsequently, we analyzed changes in gut microbiota composition using 16S rRNA sequencing and quantified alterations in hepatic-intestinal bile acid (BA) profile. Serum biochemical parameters were assessed to evaluate liver function. Our findings revealed that L. petauri LZys1 led to an increase in body weight, liver mass, and serum aminotransferase levels. Oral administration altered the gut microbiota composition, resulting in reduced diversity and abundance of intestinal bacteria. Additionally, the profiles of BAs were suppressed across organs, associated with the downregulation of the ileum's farnesoid X receptor (FXR)/fibroblast growth factor 15 (FGF15) signaling pathway. The decrease in circulating FGF15 mediated the downregulation of hepatic fibroblast growth factor receptor 4 (FGFR4)/FXR, disrupting BA metabolism and fatty acid oxidation. Our findings suggest that L. petauri LZys1 may impact liver function by influencing the gut microbiota-mediated ileal FXR-FGF15 axis and inhibiting hepatic bile acid metabolism. IMPORTANCE This work elucidated the impact of L. petauri LZys1 on host gut microbiota metabolism and hepatic physiological metabolism. We observed that L. petauri LZys1 administration induced liver weight gain and biochemical parameters changes, in addition to a altered gut microbiota and suppressed bile acid (BA) profiles. Furthermore, we propose that changes in liver status are related to the enterohepatic farnesoid X receptor-fibroblast growth factor axis, which alters bile acid metabolism and disrupts liver function. The above findings suggest that attention should be paid to the effect of probiotics on liver function.
Collapse
Affiliation(s)
- Ouyang Li
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Digestive Endoscopy Center, Huadong Hospital, Fudan University, Shanghai, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, Public Center of Experimental Technology of Pathogen Biology Technology Platform, Southwest Medical University, Luzhou, Sichuan, China
| | - Dayoung Kim
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Han Xu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Zhijun Bao
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| | - Fan Yang
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
- Department of Gerontology, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Liu Y, Zhu J, Jin Y, Sun Z, Wu X, Zhou H, Yang Y. Disrupting bile acid metabolism by suppressing Fxr causes hepatocellular carcinoma induced by YAP activation. Nat Commun 2025; 16:3583. [PMID: 40234449 PMCID: PMC12000370 DOI: 10.1038/s41467-025-58809-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 04/03/2025] [Indexed: 04/17/2025] Open
Abstract
Disruption of bile acid (BA) metabolism causes various liver diseases including hepatocellular carcinoma (HCC). However, the underlying molecular mechanism remains elusive. Here, we report that BA metabolism is directly controlled by a repressor function of YAP, which induces cholestasis by altering BA levels and composition via inhibiting the transcription activity of Fxr, a key physiological BA sensor. Elevated BA levels further activate hepatic YAP, resulting in a feedforward cycle leading to HCC. Mechanistically, Teads are found to bind Fxr in a DNA-binding-independent manner and recruit YAP to epigenetically suppress Fxr. Promoting BA excretion, or alleviating YAP repressor function by pharmacologically activating Fxr and inhibiting HDAC1, or overexpressing an Fxr target gene Bsep to promote BA exportation, alleviate cholestasis and HCC caused by YAP activation. Our results identify YAP's transcriptional repressor role in BA metabolism as a key driver of HCC and suggest its potential as a therapeutic target.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Liver Neoplasms/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Humans
- Bile Acids and Salts/metabolism
- YAP-Signaling Proteins
- Animals
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Mice
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Male
- ATP Binding Cassette Transporter, Subfamily B, Member 11/metabolism
- ATP Binding Cassette Transporter, Subfamily B, Member 11/genetics
- Cell Line, Tumor
- Cell Cycle Proteins/metabolism
- Cholestasis/metabolism
- Cholestasis/genetics
- Gene Expression Regulation, Neoplastic
- Liver/metabolism
- Liver/pathology
- Hep G2 Cells
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Juanjuan Zhu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yu Jin
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Zhonghe Sun
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Frederick, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Frederick National Laboratory for Cancer, Frederick, MD, USA
| | - Huiping Zhou
- Department of Microbiology & Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, Boston, MA, USA.
| |
Collapse
|
13
|
Jiang X, Ren J, Yu G, Wu W, Chen M, Zhao Y, He C. Targeting Bile-Acid Metabolism: Nutritional and Microbial Approaches to Alleviate Ulcerative Colitis. Nutrients 2025; 17:1174. [PMID: 40218932 PMCID: PMC11990178 DOI: 10.3390/nu17071174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease affecting the colorectum, posing a significant global health burden. Recent studies highlight the critical role of gut microbiota and its metabolites, particularly bile acids (BAs), in UC's pathogenesis. The relationship between BAs and gut microbiota is bidirectional: microbiota influence BA composition, while BAs regulate microbiota diversity and activity through receptors like Farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Targeting bile-acid metabolism to reshape gut microbiota presents a promising therapeutic strategy for UC. This review examines the classification and synthesis of BAs, their interactions with gut microbiota, and the potential of nutritional and microbial interventions. By focusing on these therapies, we aim to offer innovative approaches for effective UC management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Canxia He
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
14
|
Baumeister T, Proaño-Vasco A, Metwaly A, Kleigrewe K, Kuznetsov A, Schömig LR, Borgmann M, Khiat M, Anand A, Strangmann J, Böttcher K, Haller D, Dunkel A, Somoza V, Reiter S, Meng C, Thimme R, Schmid RM, Patil DT, Burgermeister E, Huang Y, Sun Y, Wang HH, Wang TC, Abrams JA, Quante M. Loss of FXR or Bile Acid-dependent Inhibition Accelerate Carcinogenesis of Gastroesophageal Adenocarcinoma. Cell Mol Gastroenterol Hepatol 2025; 19:101505. [PMID: 40139565 DOI: 10.1016/j.jcmgh.2025.101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND & AIMS The incidence of Barrett esophagus (BE) and gastroesophageal adenocarcinoma (GEAC) correlates with obesity and a diet rich in fat. Bile acids (BAs) support fat digestion and undergo microbial metabolism in the gut. The farnesoid X receptor (FXR) is an important modulator of the BA homeostasis. When activated, FXR can inhibit cancer-related processes, and thus, it is an appealing therapeutic target. Here, we assess the effect of diet on the microbiota-BA axis and evaluate the role of FXR in disease progression. METHODS L2-IL1B mice (mouse model of BE and GEAC) under different diets, and L2-IL1B-FXR KO-mice were characterized. L2-IL1B-derived organoids were exposed to different BAs and to the FXR agonist obeticholic acid (OCA). The BA profile in serum and stool of healthy controls and patients with BE and GEAC was assessed. RESULTS Here we show that a high-fat diet accelerated tumorigenesis in L2-IL1B mice while increasing BA levels and altering the composition of the gut microbiota. Although upregulated in BE, expression of FXR was downregulated in GEAC in mice and humans. In L2-IL1B mice, FXR knockout enhanced the dysplastic phenotype and increased Lgr5 progenitor cell numbers. Treatment of murine BE organoids and L2-IL1B mice with OCA notably ameliorated the phenotype. CONCLUSION GEAC carcinogenesis appears to be partially driven via loss or inhibition of FXR on progenitor cells at the gastroesophageal junction. Considering that the resulting aggravation in the phenotype could be reversed with OCA treatment, we suggest that FXR agonists have great potential as a preventive strategy against GEAC progression.
Collapse
Affiliation(s)
- Theresa Baumeister
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany; Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Andrea Proaño-Vasco
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Amira Metwaly
- Department of Nutrition and Immunology, Technical University of Munich, Munich, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Alexander Kuznetsov
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Linus R Schömig
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Martin Borgmann
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Mohammed Khiat
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Akanksha Anand
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Julia Strangmann
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Katrin Böttcher
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Dirk Haller
- Department of Nutrition and Immunology, Technical University of Munich, Munich, Germany
| | - Andreas Dunkel
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Munich, Germany; Department of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Veronika Somoza
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Munich, Germany
| | - Sinah Reiter
- Department of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Munich, Germany
| | - Robert Thimme
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany
| | - Roland M Schmid
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich, Munich, Germany
| | - Deepa T Patil
- Department of Pathology, School of Medicine, Digestive Health Research Institute, Case Western Reserve University; Cleveland, Ohio
| | - Elke Burgermeister
- Department of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Yiming Huang
- Systems and Synthetic Biology, Columbia University Medical Center, New York, New York
| | - Yiwei Sun
- Systems and Synthetic Biology, Columbia University Medical Center, New York, New York
| | - Harris H Wang
- Systems and Synthetic Biology, Columbia University Medical Center, New York, New York
| | - Timothy C Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Julian A Abrams
- Department of Medicine, Columbia University Irving Medical Center, New York, New York; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Michael Quante
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
15
|
Fiorucci S, Marchianò S, Distrutti E, Biagioli M. Bile acids and their receptors in hepatic immunity. LIVER RESEARCH (BEIJING, CHINA) 2025; 9:1-16. [PMID: 40206435 PMCID: PMC11977286 DOI: 10.1016/j.livres.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/05/2024] [Accepted: 01/23/2025] [Indexed: 04/11/2025]
Abstract
Similarly to conventional steroids, bile acids function as signaling molecules, acting on a family of membrane and nuclear receptors. The best-characterized bile acid-regulated receptors are the farnesoid X receptor, activated by primary bile acids, and the G-protein-coupled bile acid receptor 1 (also known as Takeda G protein-coupled receptor 5), which is activated by secondary bile acids, such as lithocholic acid (LCA) and deoxycholic acid. Both the farnesoid X receptor and G-protein-coupled bile acid receptor 1 are expressed in cells of innate immunity, monocytes/macrophages, and natural killer cells. Their activation in these cells provides counter-regulatory signals that are inhibitory in nature and attenuate inflammation. In recent years, however, it has been increasingly appreciated that bile acids biotransformations by intestinal microbiota result in the formation of chemically different secondary bile acids that potently regulate adaptive immunity. The 3-oxoLCA and isoalloLCA, two LCA derivatives, bind receptors such as the retinoic acid receptor-related orphan receptor gamma t (RORγt) and the vitamin D receptor (VDR) that are expressed only by lymphoid cells, extending the regulatory role of bile acids to T cells, including T-helper 17 cells and type 3 innate lymphoid cells (ILC3). In this novel conceptual framework, bile acids have emerged as one of the main components of the postbiota, the waste array of chemical mediators generated by the intestinal microbiota. Deciphering the interaction of these mediators with the immune system in the intestine and liver is a novel and fascinating area of bile acid renaissance.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Marchianò
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Michele Biagioli
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
16
|
Ahmed Taher H, Zalzala MH. Ellagic acid mitigates alpha-naphthyl isothiocyanate-induced cholestasis in rats via FXR activation and inflammatory pathway modulation. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2025:jcim-2024-0425. [PMID: 39924693 DOI: 10.1515/jcim-2024-0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/07/2025] [Indexed: 02/11/2025]
Abstract
OBJECTIVES The liver is vital for metabolism, detoxification, storage, and secretion. Cholestasis, in which bile flow is hindered, can cause serious harm to the liver. This study examines the potential of ellagic acid to prevent cholestasis in male rats that has been caused by alpha-naphthyl isothiocyanate (ANIT). METHOD Male rats were divided into four groups for an 8-day study. The control group received 5 % dimethyl sulfoxide (DMSO) orally for eight days and maize oil (1 mL/kg, orally) 48 h before sacrifice. The ANIT Group received 5 % DMSO orally for 8 days, the ANIT (100 mg/kg, orally) administered on the 6th day, 48 h before sacrifice. The low-Dose Ellagic Acid + ANIT Group was given ellagic acid (5 mg/kg, orally) for eight days, with ANIT (100 mg/kg, orally) on the 6th day, 48 h prior to sacrifice. The high-Dose Ellagic Acid + ANIT Group received ellagic acid (10 mg/kg, orally) for eight days, the ANIT (100 mg/kg, orally) on the 6th day, 48 h before sacrifice. Different biochemical and histopathological analyses were conducted to assess the protective effects of ellagic acid on ANIT-induced liver injury. RESULTS ANIT significantly elevated serum of liver enzymes. It caused severe bile duct inflammation and reduced bile salt export pump (BSEP) and Na+-taurocholate cotransporting polypeptide (NTCP) expression, indicating liver injury. Ellagic acid treatment mitigated these changes, improving biochemical parameters and reducing liver damage. ANIT-induced cholestasis results in bile acid accumulation due to decreased BSEP and NTCP expression linked to impaired farnesoid X receptor (FXR) signaling. Ellagic acid restored BSEP and NTCP levels via FXR activation, reducing bile acids and inflammatory markers IL-1β and TNF-α. Ellagic acid also enhanced SIRT1 activity, further improving FXR function and bile acid homeostasis. CONCLUSIONS Ellagic acid exhibits protective effects against cholestasis by enhancing the FXR signaling and ntcp and bsep expression with mitigating liver damage and inflammation.
Collapse
Affiliation(s)
| | - Munaf Hashim Zalzala
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
17
|
Zhou M, Luo Y, Qiu J, Wang H, Li X, Zhang K, Li X, Yaqoob MU, Wang M. Effects of dietary supplementation with butyrate glycerides on lipid metabolism, intestinal morphology, and microbiota population in laying hens. Poult Sci 2025; 104:104755. [PMID: 39862486 PMCID: PMC11803851 DOI: 10.1016/j.psj.2024.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
The present study investigated the impact of butyrate glycerides (BG) on lipid metabolism, intestinal morphology, and microbiota of laying hens. Four hundred eighty 54-week-old Hy-line Brown laying hens were randomly selected and divided into five groups. The control group (ND) was fed a basal diet. Meanwhile, the remaining groups were given a basal supplemented with 0.5, 1, 2, and 4 g/kg of the product containing BG and were designated as BG-0.5, BG-1, BG-2, and BG-4 groups, respectively. The findings showed that: (1) BG supplementation significantly decreased (P < 0.001) the blood Glu levels (BG-0.5, BG-1, BG-2, and BG-4) and increased (P < 0.001) the serum HDL-C levels (BG-2, and BG-4). (2) The BG-2 and BG-4 groups showed an increase (P < 0.01) in abdominal lipid HSL activity. (3) The levels of hepatic TC and TG in all BG groups were significantly decreased (P < 0.05). (4) The addition of BG resulted in a significant reduction in the mRNA expression of the liver X receptor alpha (LXRα) (P < 0.05). (5) All BG groups presented a substantial reduction in duodenal crypt depth and a notable increase in the ratio of villus height to crypt depth (V/C) (P < 0.01). Additionally, all BG groups exhibited a significant increase in villus height in the ileum (P < 0.001). (6) Both the BG-1 and BG-4 groups exhibited a significant reduction in the amounts of n-butyric and n-glutaric acids in the cecum contents (P < 0.05). (7) The inclusion of BG did not substantially impact the diversity of cecal microbiota in laying hens. However, it dramatically boosted the proportion of the beneficial bacterium Alistipes (P < 0.05) and reduced the abundance of the harmful bacterium Verrucomicrobiota (P < 0.05). Overall, incorporating BG with glycerol monobutyrate as the diet's primary active component reduces fat accumulation in laying hens' blood and liver. It potentially regulates lipid metabolism via the PPARγ-LXRα-SREBP1c pathway. Additionally, BG has the potential to enhance the structure of the small intestine's mucous membrane and increase the presence of beneficial bacteria. Under the experimental conditions, late-laying hens supplemented with 4 g/kg BG performed best overall.
Collapse
Affiliation(s)
- Minyao Zhou
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yanqiu Luo
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Ji Qiu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Haidong Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Kexin Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoteng Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | | | - Minqi Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Frericks N, Klöhn M, Lange F, Pottkämper L, Carpentier A, Steinmann E. Host-targeting antivirals for chronic viral infections of the liver. Antiviral Res 2025; 234:106062. [PMID: 39716667 DOI: 10.1016/j.antiviral.2024.106062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/25/2024]
Abstract
Infection with one or several of the five known hepatitis viruses is a leading cause of liver disease and poses a high risk of developing hepatocellular carcinoma upon chronic infection. Chronicity is primarily caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) and poses a significant health burden worldwide. Co-infection of chronic HBV infected patients with hepatitis D virus (HDV) is less common but is marked as the most severe form of chronic viral hepatitis. Hepatitis A virus (HAV) and hepatitis E virus (HEV) primarily cause self-limiting acute hepatitis. However, studies have also reported chronic progression of HEV disease in immunocompromised patients. While considerable progress has been made in the treatment of HCV and HBV through the development of direct-acting antivirals (DAAs), challenges including drug resistance, incomplete viral suppression resulting in failure to achieve clearance and the lack of effective treatment options for HDV and HEV remain. Host-targeting antivirals (HTAs) have emerged as a promising alternative approach to DAAs and aim to disrupt virus-host interactions by modulating host cell pathways that are hijacked during the viral replication cycle. The aim of this review is to provide a comprehensive overview about the major milestones in research and development of HTAs for chronic HBV/HDV and HCV infections. It also summarizes the current state of knowledge on promising host-targeting therapeutic options against HEV infection.
Collapse
Affiliation(s)
- Nicola Frericks
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Mara Klöhn
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Frauke Lange
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Lilli Pottkämper
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arnaud Carpentier
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between Hannover Medical School (MHH) and Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany; German Centre for Infection Research (DZIF), External Partner Site, Bochum, Germany.
| |
Collapse
|
19
|
Ferraz ÁAB, Vianna CFM, Henriques DF, Gorgulho GCF, Santa-Cruz F, Siqueira LT, Kreimer F. The Impact of Cholecystectomy on the Metabolic Profile of Patients Previously Submitted to Bariatric Surgery. Surg Laparosc Endosc Percutan Tech 2025; 35:e1348. [PMID: 39618187 DOI: 10.1097/sle.0000000000001348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE To evaluate the influence of late cholecystectomy following bariatric surgery on the postoperative evolution of weight loss and biochemical, metabolic, and micronutrient parameters. METHODS A retrospective study that assessed 86 patients who underwent cholecystectomy after at least 18 months of bariatric surgery. The analyzed variables included demographic data, comorbidities, weight loss, and biochemical, metabolic, and micronutrient parameters. RESULTS Among the analyzed patients, 20 underwent gastric bypass (GB) and 66 underwent sleeve gastrectomy (SG). The GB group comprised 55% of women, with a mean age of 54.4 years and a mean preoperative body mass index (BMI) of 29.2 kg/m 2 . The mean time elapsed between GB and cholecystectomy was 118.3±43.9 months. The sample of SG comprised 83.3% of women, with a mean age of 41.1 years and a mean preoperative BMI of 28.7 kg/m 2 . The mean time elapsed between SG and cholecystectomy was 26.1±17.5 months. Both SG and GB groups showed a reduction in the mean BMI, but it was not statistically significant after cholecystectomy. In the metabolic, biochemical, and micronutrient evaluation, there was no statistically significant difference, except in the GB group, where an increase in vitamin D was observed after cholecystectomy with statistical significance. CONCLUSION Cholecystectomy does not negatively impact the clinical and anthropometric evolution of patients previously submitted to bariatric surgery.
Collapse
Affiliation(s)
| | - Cassio F M Vianna
- Medical School, Federal University of Pernambuco, Recife, PE, Brazil
| | | | | | | | | | | |
Collapse
|
20
|
Sheng L, Gao J, Wei Q, Gong Y, Xu ZX. The glial UDP-glycosyltransferase Ugt35b regulates longevity by maintaining lipid homeostasis in Drosophila. Cell Rep 2025; 44:115099. [PMID: 39723892 DOI: 10.1016/j.celrep.2024.115099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Lipid droplets (LDs) are dynamic organelles essential for lipid storage and organismal survival. Studies have highlighted the importance of glial function in brain LD formation during aging; however, the genes and mechanisms involved remain elusive. Here, we found that Ugt35b, a member of the uridine diphosphate (UDP)-glycosyltransferases that catalyze the transfer of glycosyl groups to acceptors, is highly expressed in glia and crucial for Drosophila lifespan. By integrating multiomics data, we demonstrated that glial Ugt35b plays key roles in regulating glycerolipid and glycerophospholipid metabolism in the brain. Notably, we found that Ugt35b and Lsd-2 are co-expressed in glia and confirmed their protein interaction in vivo. Knockdown of Ugt35b significantly reduced LD formation by downregulating Lsd-2 expression, while overexpression of Lsd-2 partially rescued the shortened lifespan in glial Ugt35b RNAi flies. Our findings reveal the crucial role of glial Ugt35b in regulating LD formation to maintain brain lipid homeostasis and support Drosophila lifespan.
Collapse
Affiliation(s)
- Lihong Sheng
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Jianpeng Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Qingyuan Wei
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhi-Xiang Xu
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
21
|
Sun S, Zhao Y, Pang Z, Wan B, Wang J, Wu Z, Wang Q. Effects of Enterococcus faecalis Supplementation on Growth Performance, Hepatic Lipid Metabolism, and mRNA Expression of Lipid Metabolism Genes and Intestinal Flora in Geese. Animals (Basel) 2025; 15:268. [PMID: 39858268 PMCID: PMC11759150 DOI: 10.3390/ani15020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The effects of Enterococcus faecalis (E. faecalis) at a concentration of 1.0 × 108 CFU/mL on growth performance, hepatic lipid metabolism, and mRNA expression related to lipid metabolism, intestinal morphology, and intestinal flora were investigated in geese. A total of 60 male geese, aged 30 days and of similar weight, were randomly assigned to 2 groups. Each group was divided into six replicates, with five geese per replicate. During the 45-day experiment, the control group received a basal diet, while the experimental group was provided with the same basal diet supplemented with E. faecalis in drinking water at a concentration of 1.0 × 108 CFU/mL. E. faecalis significantly increased the half-eviscerated weight of geese and improved ileal intestinal morphology (p < 0.05). Serum triglyceride (TG) levels were significantly reduced on day 5, while serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels were significantly decreased on day 25 (p < 0.05). By day 45, serum TG and free fatty acid (FFA) levels were also significantly reduced (p < 0.05). Additionally, E. faecalis significantly increased the HDL/LDL ratio and serum high-density lipoprotein cholesterol (HDL-C) levels (p < 0.05). Serum insulin levels were significantly elevated on day 25, and glucagon-like peptide-1 (GLP-1) levels were significantly increased on day 45 (p < 0.05). On day 25 of the trial, hepatic TG levels, FFA levels, and Oil Red O-stained areas in the liver were significantly reduced (p < 0.05), accompanied by significantly decreased mRNA expression of hepatic acetyl-CoA carboxylase (ACCA) (p < 0.05). Conversely, the mRNA expression levels of fatty acid synthase (FASN), farnesoid X receptor (FXR), sterol regulatory element-binding protein 1 (SREBP-1), and peroxisome proliferator-activated receptor-α (PPARα) were significantly elevated (p < 0.05). A 16S rRNA diversity analysis of ileal contents on day 25 revealed significant differences in intestinal flora composition between the control and E. faecalis groups. The 16S rRNA data demonstrated a strong correlation between microbial communities and lipid-related physiological and biochemical indicators (p < 0.05). In conclusion, E. faecalis supplementation promoted fatty acid oxidation, reduced blood lipid levels, alleviated hepatic lipid accumulation, and improved ileal morphology and intestinal flora diversity, thereby enhancing growth performance and lipid metabolism in geese. These findings suggest that E. faecalis is a promising probiotic candidate for development as a feed additive.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiuju Wang
- Heilongjiang Provinal Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in Cold Region, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (S.S.); (Y.Z.); (Z.P.); (B.W.); (J.W.); (Z.W.)
| |
Collapse
|
22
|
Du Y, Huo Y, Yang Y, Lin P, Liu W, Wang Z, Zeng W, Li J, Liang Z, Yuan C, Zhu J, Luo Z, Liu Y, Ma C, Yang C. Role of sirtuins in obesity and osteoporosis: molecular mechanisms and therapeutic targets. Cell Commun Signal 2025; 23:20. [PMID: 39799353 PMCID: PMC11724515 DOI: 10.1186/s12964-024-02025-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/30/2024] [Indexed: 01/15/2025] Open
Abstract
The prevalence of obesity and osteoporosis (OP) represents a significant public health concern on a global scale. A substantial body of evidence indicates that there is a complex relationship between obesity and OP, with a correlation between the occurrence of OP and obesity. In recent years, sirtuins have emerged as a prominent area of interest in the fields of aging and endocrine metabolism. Among the various research avenues exploring the potential of sirtuins, the effects of these proteins on obesity and OP have garnered significant attention from numerous researchers. Sirtuins regulate energy balance and lipid balance, which in turn inhibit the process of adipogenesis. Additionally, sirtuins regulate the balance between osteogenic and osteoblastic activity, which protects against the development of OP. However, no study has yet provided a comprehensive discussion of the relationship between the three: sirtuins, obesity, and OP. This paper will therefore describe the relationship between sirtuins and obesity, the relationship between sirtuins and OP, and a discussion focusing on the possibility of treating OP caused by obesity by targeting sirtuins. This will be based on the common influences on the occurrence of obesity and OP (such as mesenchymal stem cells, gut microbiota, and insulin). Finally, the potential of SIRT1, an important member of sirtuins, in polyphenolic natural products for the treatment of obesity and OP will be presented. This will contribute to a better understanding of the interactions between sirtuins and obesity and bone, which will facilitate the development of new therapeutic strategies for obesity and OP in the future.
Collapse
Grants
- Nos. 2021B1515140012, 2023A1515010083 the Natural Science Foundation of Guangdong Province
- No. 20211800905342 the Dongguan Science and Technology of Social Development Program
- No. A2024398 the Medical Scientific Research Foundation of Guangdong Province
- No. k202005 the Research and Development Fund of Dongguan People' s Hospital
- Nos. GDMU2021003, GDMU2021049, GDMU2022031, GDMU2022047, GDMU2022063, GDMU2022077, GDMU2022078, GDMU2023008, GDMU2023015, GDMU2023026, GDMU2023042, GDMU2023102 the Guangdong Medical University Students' Innovation and Entrepreneurship Training Program
- Nos. 202210571008, S202210571075, 202310571031, S202310571047, S202310571078, S202310571063, S202310571077 the Provincial and National College Students' Innovation and Entrepreneurship Training Program
- No. 4SG24028G the Guangdong Medical University-Southern Medical University twinning research team project
- No. PF100-2-01 "Climbing 100" Joint Merit Training Program Funded Project
- Nos. 2023ZYDS001, 2023FZDS001, 2023FYDB010 the Guangdong Medical University Students' Innovation Experiment Program
- the Research and Development Fund of Dongguan People’ s Hospital
- the Guangdong Medical University Students’ Innovation and Entrepreneurship Training Program
- the Provincial and National College Students’ Innovation and Entrepreneurship Training Program
- the Cai Limin National Traditional Chinese Medicine Inheritance Studio
- the Guangdong Medical University Students’ Innovation Experiment Program
Collapse
Affiliation(s)
- Yikuan Du
- Central Laboratory, The Tenth Affiliated Hospital of Southern Medical University, Dongguan, 523059, China
| | - Yuying Huo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Yujia Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Peiqi Lin
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Wuzheng Liu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Ziqin Wang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Wenqi Zeng
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Jiahui Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Zhonghan Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Chenyue Yuan
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Jinfeng Zhu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Ziyi Luo
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Yi Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Chunling Ma
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, China
| | - Chun Yang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
23
|
Fraser K, James SC, Young W, Gearry RB, Heenan PE, Keenan JI, Talley NJ, McNabb WC, Roy NC. Characterisation of the Plasma and Faecal Metabolomes in Participants with Functional Gastrointestinal Disorders. Int J Mol Sci 2024; 25:13465. [PMID: 39769229 PMCID: PMC11677738 DOI: 10.3390/ijms252413465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
There is evidence of perturbed microbial and host processes in the gastrointestinal tract of individuals with functional gastrointestinal disorders (FGID) compared to healthy controls. The faecal metabolome provides insight into the metabolic processes localised to the intestinal tract, while the plasma metabolome highlights the overall perturbances of host and/or microbial responses. This study profiled the faecal (n = 221) and plasma (n = 206) metabolomes of individuals with functional constipation (FC), constipation-predominant irritable bowel syndrome (IBS-C), functional diarrhoea (FD), diarrhoea-predominant IBS (IBS-D) and healthy controls (identified using the Rome Criteria IV) using multimodal LC-MS technologies. Discriminant analysis separated patients with the 'all constipation' group (FC and IBS-C) from the healthy control group and 'all diarrhoea' group (FD and IBS-D) from the healthy control group in both sample types. In plasma, almost all multimodal metabolite analyses separated the 'all constipation' or 'all diarrhoea' group from the healthy controls, and the IBS-C or IBS-D group from the healthy control group. Plasma phospholipids and metabolites linked to several amino acid and nucleoside pathways differed (p < 0.05) between healthy controls and IBS-C. In contrast, metabolites involved in bile acid and amino acid metabolism were the key differentiating classes in the plasma of subjects with IBS-D from healthy controls. Faecal lipids, particularly ceramides, diglycerides, and triglycerides, varied (p < 0.05) between healthy controls and the 'all constipation' group and between healthy controls and 'all diarrhoea' group. The faecal and plasma metabolomes showed perturbations between constipation, diarrhoea and healthy control groups that may reflect processes and mechanisms linked to FGIDs.
Collapse
Affiliation(s)
- Karl Fraser
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Shanalee C. James
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- School of Food and Advanced Technology, Massey University, Palmerston North 4472, New Zealand
| | - Wayne Young
- AgResearch, Tennent Drive, Palmerston North 4442, New Zealand
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Richard B. Gearry
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Phoebe E. Heenan
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | | | - Nicholas J. Talley
- School of Medicine and Public Health, The University of Newcastle, Callaghan, Newcastle 2308, Australia
| | - Warren C. McNabb
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
| | - Nicole C. Roy
- The Riddet Institute, Massey University, Palmerston North 4474, New Zealand
- High-Value Nutrition National Science Challenge, Auckland 1023, New Zealand
- Department of Human Nutrition, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
24
|
Angendohr C, Missing L, Ehlting C, Wolf SD, Lang KS, Vucur M, Luedde T, Bode JG. Interleukin 1 β suppresses bile acid-induced BSEP expression via a CXCR2-dependent feedback mechanism. PLoS One 2024; 19:e0315243. [PMID: 39680527 DOI: 10.1371/journal.pone.0315243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Inflammation-induced cholestasis is a common problem in septic patients and results from cytokine-mediated inhibition of bile acid export including impaired expression of the bile salt export pump (BSEP) with a consecutive increase in intracellular bile acids mediating cell damage. The present study focuses on the mechanisms by which interleukin 1 β (IL-1β), as a critical mediator of sepsis-induced cholestasis, controls the expression of BSEP in hepatocytes. Notably, the treatment of hepatocytes with IL-1β leads to the upregulation of a broad chemokine pattern. Thereby, the IL-1β -induced expression of in particular the CXCR2 ligands CXCL1 and 2 is further enhanced by bile acids, whereas the FXR-mediated upregulation of BSEP induced by bile acids is inhibited by IL-1β. In this context, it is interesting to note that inhibitor studies indicate that IL-1β mediates its inhibitory effects on bile acid-induced expression of BSEP indirectly via CXCR2 ligands. Consistently, inhibition of CXCR2 with the inhibitor SB225002 significantly attenuated of the inhibitory effect of IL-1β on BSEP expression. These data suggest that part of the cholestasis-inducing effect of IL-1β is mediated via a CXCR2-dependent feedback mechanism.
Collapse
Affiliation(s)
- Carolin Angendohr
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Leah Missing
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christian Ehlting
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephanie D Wolf
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Karl S Lang
- Department of Immunology, University of Essen, Essen, Germany
| | - Mihael Vucur
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tom Luedde
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes G Bode
- Faculty of Medicine & Düsseldorf University Hospital, Department of Gastroenterology, Hepatology and Infectious Disease, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
25
|
Schweiger M, Arredondo-Lasso MN, Friano ME, Gil-Lozano M, Herzig S, Uhlenhaut NH. Lipid sensing nuclear receptors involved in the pathogenesis of fatty liver disease. FEBS Lett 2024; 598:2854-2855. [PMID: 38348593 PMCID: PMC11626999 DOI: 10.1002/1873-3468.14818] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 12/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) begins with lipid accumulation and progresses toward inflammation and fibrosis. Nuclear receptors (NRs), like the Peroxisome Proliferator-Activated Receptors alpha and gamma (PPARα and PPARy), the Farnesoid X Receptor (FXR), and the Liver X receptor (LXR), regulate genes by heterodimerizing with Retinoid X receptor (RXR). These receptors are emerging targets for pharmaceutical intervention for metabolic diseases.
Collapse
Affiliation(s)
- Marion Schweiger
- Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Maria Nieves Arredondo-Lasso
- Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Marika E Friano
- Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Manuel Gil-Lozano
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer (IDC), Helmholtz Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Nina Henriette Uhlenhaut
- Metabolic Programming, TUM School of Life Sciences & ZIEL Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Munich, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
26
|
Taylor R, Basaly V, Kong B, Yang I, Brinker AM, Capece G, Bhattacharya A, Henry ZR, Otersen K, Yang Z, Meadows V, Mera S, Joseph LB, Zhou P, Aleksunes LM, Roepke T, Buckley B, Guo GL. Effects of therapeutically approved individual bile acids on the development of metabolic dysfunction-associated steatohepatitis a low bile acid mouse model. Toxicol Sci 2024; 202:179-195. [PMID: 39302723 DOI: 10.1093/toxsci/kfae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Bile acid (BA) signaling dysregulation is an important etiology for the development of metabolic dysfunction-associated steatotic liver disease (MASLD). As diverse signaling molecules synthesized in the liver by pathways initiated with CYP7A1 and CYP27A1, BAs are endogenous modulators of farnesoid x receptor (FXR). FXR activation is crucial in maintaining BA homeostasis, regulating lipid metabolism, and suppressing inflammation. Additionally, BAs interact with membrane receptors and gut microbiota to regulate energy expenditure and intestinal health. Complex modulation of BAs in vivo and the lack of suitable animal models impede our understanding of the functions of individual BAs, especially during MASLD development. Previously, we determined that acute feeding of individual BAs differentially affects lipid, inflammation, and oxidative stress pathways in a low-BA mouse model, Cyp7a1/Cyp27a1 double knockout (DKO) mice. Currently, we investigated to what degree cholic acid (CA), deoxycholic acid (DCA), or ursodeoxycholic acid (UDCA) at physiological concentrations impact MASLD development in DKO mice. The results showed that these 3 BAs varied in the ability to activate hepatic and intestinal FXR, disrupt lipid homeostasis, and modulate inflammation and fibrosis. Additionally, UDCA activated intestinal FXR in these low-BA mice. Significant alterations in lipid uptake and metabolism in DKO mice following CA and DCA feeding indicate differences in cholesterol and lipid handling across genotypes. Overall, the DKO were less susceptible to weight gain, but more susceptible to MASH diet induced inflammation and fibrosis on CA and DCA supplements, whereas WT mice were more vulnerable to CA-induced fibrosis on the control diet.
Collapse
Affiliation(s)
- Rulaiha Taylor
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ 07017, United States
| | - Veronia Basaly
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Ill Yang
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Anita M Brinker
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Gina Capece
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Anisha Bhattacharya
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Zakiyah R Henry
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ 07017, United States
| | - Katherine Otersen
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Zhenning Yang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ 07017, United States
| | - Vik Meadows
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Stephanie Mera
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Laurie B Joseph
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Peihong Zhou
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Troy Roepke
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| | - Brian Buckley
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ 08854, United States
- VA New Jersey Health Care System, Veterans Administration Medical Center, East Orange, NJ 07017, United States
- Rutgers Center for Lipid Research, Rutgers University, New Brunswick, NJ 08901, United States
| |
Collapse
|
27
|
Zhong K, Du X, Niu Y, Li Z, Tao Y, Wu Y, Zhang R, Guo L, Bi Y, Tang L, Dou T, Wang L. Progress in the mechanism of functional dyspepsia: roles of mitochondrial autophagy in duodenal abnormalities. Front Med (Lausanne) 2024; 11:1491009. [PMID: 39655235 PMCID: PMC11627220 DOI: 10.3389/fmed.2024.1491009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
Mitochondria are the main source of energy for cellular activity. Their functional damage or deficiency leads to cellular deterioration, which in turn triggers autophagic reactions. Taking mitochondrial autophagy as a starting point, the present review explored the mechanisms of duodenal abnormalities in detail, including mucosal barrier damage, release of inflammatory factors, and disruption of intracellular signal transduction. We summarized the key roles of mitochondrial autophagy in the abnormal development of the duodenum and examined the in-depth physiological and pathological mechanisms involved, providing a comprehensive theoretical basis for understanding the pathogenesis of functional dyspepsia. At present, it has been confirmed that an increase in the eosinophil count and mast cell degranulation in the duodenum can trigger visceral hypersensitive reactions and cause gastrointestinal motility disorders. In the future, it is necessary to continue exploring the molecular mechanisms and signaling pathways of mitochondrial autophagy in duodenal abnormalities. A deeper understanding of mitochondrial autophagy provides important references for developing treatment strategies for functional dyspepsia, thereby improving clinical efficacy and patient quality of life.
Collapse
Affiliation(s)
- Kexin Zhong
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xiaojuan Du
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuanyuan Niu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zhengju Li
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yongbiao Tao
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yuqian Wu
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Ruiting Zhang
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Linjing Guo
- Clinical College of Traditional Chinese Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Yurong Bi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lijuan Tang
- College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tianyu Dou
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Longde Wang
- Department of Gastroenterology, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
28
|
Joyce SA, O'Malley D. Regional and conditional variability of FXR: new lessons on ileal inflammation and gut barrier functions. Am J Physiol Gastrointest Liver Physiol 2024; 327:G626-G628. [PMID: 39189790 DOI: 10.1152/ajpgi.00226.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Affiliation(s)
- Susan A Joyce
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dervla O'Malley
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Physiology, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
29
|
Fang Z, Zhou Z, Ju L, Shao Q, Xu Y, Song Y, Gao W, Lei L, Liu G, Du X, Li X. Free fatty acids induce bile acids overproduction and oxidative damage of bovine hepatocytes via inhibiting FXR/SHP signaling. J Steroid Biochem Mol Biol 2024; 244:106589. [PMID: 39053701 DOI: 10.1016/j.jsbmb.2024.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Hepatic oxidative injury induced by free fatty acids (FFA) and metabolic disorders of bile acids (BA) increase the risk of metabolic diseases in dairy cows during perinatal period. However, the effects of FFA on BA metabolism remained poorly understood. In present study, high concentrations of FFA caused cell impairment, oxidative stress and BA overproduction. FFA treatment increased the expression of BA synthesis-related genes [cholesterol 7a-hydroxylase (CYP7A1), hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7, sterol 12α-hydroxylase, sterol 27-hydroxylase and oxysterol 7α-hydroxylase], whereas reduced BA exportation gene (ATP binding cassette subfamily C member 1) and inhibited farnesoid X receptor/small heterodimer partner (FXR/SHP) pathway in bovine hepatocytes. Knockdown of nuclear receptor subfamily 1 group H member 4 (NR1H4) worsened FFA-caused oxidative damage and BA production, whereas overexpression NR1H4 ameliorated FFA-induced BA production and cell oxidative damage. Besides, reducing BA synthesis through knockdown of CYP7A1 can alleviate oxidative stress and hepatocytes impairment caused by FFA. In summary, these data demonstrated that regulation of FXR/SHP-mediated BA metabolism may be a promising target in improving hepatic oxidative injury of dairy cows during high levels of FFA challenges.
Collapse
Affiliation(s)
- Zhiyuan Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhiru Zhou
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lingxue Ju
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qi Shao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yongwei Xu
- Animal Husbandry and Veterinary Development Center, Xinjiang Uygur Autonomous Region, Xinyuan county 835800, China
| | - Yuxiang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenwen Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lin Lei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Guowen Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiliang Du
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xinwei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
30
|
Lee MH, Nuccio SP, Mohanty I, Hagey LR, Dorrestein PC, Chu H, Raffatellu M. How bile acids and the microbiota interact to shape host immunity. Nat Rev Immunol 2024; 24:798-809. [PMID: 39009868 DOI: 10.1038/s41577-024-01057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/17/2024]
Abstract
Bile acids are increasingly appearing in the spotlight owing to their novel impacts on various host processes. Similarly, there is growing attention on members of the microbiota that are responsible for bile acid modifications. With recent advances in technology enabling the discovery and continued identification of microbially conjugated bile acids, the chemical complexity of the bile acid landscape in the body is increasing at a rapid pace. In this Review, we summarize our current understanding of how bile acids and the gut microbiota interact to modulate immune responses during homeostasis and disease, with a particular focus on the gut.
Collapse
Affiliation(s)
- Michael H Lee
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Sean-Paul Nuccio
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA
| | - Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Hiutung Chu
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA
| | - Manuela Raffatellu
- Division of Host-Microbe Systems and Therapeutics, Department of Paediatrics, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy and Vaccines (CU-UCSD cMAV), La Jolla, CA, USA.
| |
Collapse
|
31
|
Wen YQ, Zou ZY, Zhao GG, Zhang MJ, Zhang YX, Wang GH, Shi JJ, Wang YY, Song YY, Wang HX, Chen RY, Zheng DX, Duan XQ, Liu YM, Gonzalez FJ, Fan JG, Xie C. FXR activation remodels hepatic and intestinal transcriptional landscapes in metabolic dysfunction-associated steatohepatitis. Acta Pharmacol Sin 2024; 45:2313-2327. [PMID: 38992119 PMCID: PMC11489735 DOI: 10.1038/s41401-024-01329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Abstract
The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Ying-Quan Wen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zi-Yuan Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Guan-Guan Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Meng-Jiao Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gai-Hong Wang
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Jing-Jing Shi
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Yuan-Yang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Ye-Yu Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Hui-Xia Wang
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Ru-Ye Chen
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | | | - Xiao-Qun Duan
- Industrial Technology Research Institute of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Ya-Meng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Gao Fan
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China.
| | - Cen Xie
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
32
|
Antelo-Cea DA, Martínez-Rojas L, Cabrerizo-Ibáñez I, Roudi Rashtabady A, Hernández-Alvarez MI. Regulation of Mitochondrial and Peroxisomal Metabolism in Female Obesity and Type 2 Diabetes. Int J Mol Sci 2024; 25:11237. [PMID: 39457018 PMCID: PMC11508381 DOI: 10.3390/ijms252011237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Obesity and type 2 diabetes (T2D) are widespread metabolic disorders that significantly impact global health today, affecting approximately 17% of adults worldwide with obesity and 9.3% with T2D. Both conditions are closely linked to disruptions in lipid metabolism, where peroxisomes play a pivotal role. Mitochondria and peroxisomes are vital organelles responsible for lipid and energy regulation, including the β-oxidation and oxidation of very long-chain fatty acids (VLCFAs), cholesterol biosynthesis, and bile acid metabolism. These processes are significantly influenced by estrogens, highlighting the interplay between these organelles' function and hormonal regulation in the development and progression of metabolic diseases, such as obesity, metabolic dysfunction-associated fatty liver disease (MAFLD), and T2D. Estrogens modulate lipid metabolism through interactions with nuclear receptors, like peroxisome proliferator-activated receptors (PPARs), which are crucial for maintaining metabolic balance. Estrogen deficiency, such as in postmenopausal women, impairs PPAR regulation, leading to lipid accumulation and increased risk of metabolic disorders. The disruption of peroxisomal-mitochondrial function and estrogen regulation exacerbates lipid imbalances, contributing to insulin resistance and ROS accumulation. This review emphasizes the critical role of these organelles and estrogens in lipid metabolism and their implications for metabolic health, suggesting that therapeutic strategies, including hormone replacement therapy, may offer potential benefits in treating and preventing metabolic diseases.
Collapse
Affiliation(s)
- Damián A. Antelo-Cea
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - Laura Martínez-Rojas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
| | - Izan Cabrerizo-Ibáñez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
| | - Ayda Roudi Rashtabady
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
| | - María Isabel Hernández-Alvarez
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain; (D.A.A.-C.); (L.M.-R.); (I.C.-I.); (A.R.R.)
- IBUB Universitat de Barcelona—Institut de Biomedicina de la Universitat de Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
33
|
Li T, Chiang JYL. Bile Acid Signaling in Metabolic and Inflammatory Diseases and Drug Development. Pharmacol Rev 2024; 76:1221-1253. [PMID: 38977324 PMCID: PMC11549937 DOI: 10.1124/pharmrev.124.000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
Bile acids are the end products of cholesterol catabolism. Hepatic bile acid synthesis accounts for a major fraction of daily cholesterol turnover in humans. Biliary secretion of bile acids generates bile flow and facilitates biliary secretion of lipids, endogenous metabolites, and xenobiotics. In intestine, bile acids facilitate the digestion and absorption of dietary lipids and fat-soluble vitamins. Through activation of nuclear receptors and G protein-coupled receptors and interaction with gut microbiome, bile acids critically regulate host metabolism and innate and adaptive immunity and are involved in the pathogenesis of cholestasis, metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, type-2 diabetes, and inflammatory bowel diseases. Bile acids and their derivatives have been developed as potential therapeutic agents for treating chronic metabolic and inflammatory liver diseases and gastrointestinal disorders. SIGNIFICANCE STATEMENT: Bile acids facilitate biliary cholesterol solubilization and dietary lipid absorption, regulate host metabolism and immunity, and modulate gut microbiome. Targeting bile acid metabolism and signaling holds promise for treating metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| | - John Y L Chiang
- Department of Biochemistry and Physiology, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma (T.L.); and Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio (J.Y.L.C.)
| |
Collapse
|
34
|
Wang Z, Wang X, Fu L, Xu S, Wang X, Liao Q, Zhuang T, Liu L, Zhang H, Li W, Xiong A, Gu L, Wang Z, Wang R, Tao F, Yang L, Ding L. Shengmai San formula alleviates high-fat diet-induced obesity in mice through gut microbiota-derived bile acid promotion of M2 macrophage polarization and thermogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155938. [PMID: 39163753 DOI: 10.1016/j.phymed.2024.155938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/20/2024] [Accepted: 08/03/2024] [Indexed: 08/22/2024]
Abstract
BACKGROUND Shengmai San Formula (SMS) is a traditional Chinese medicine (TCM) that has been used to treat wasting-thirst regarded as diabetes mellitus, which occurs disproportionately in obese patients. Therefore, we investigated whether SMS could be used to treat obesity, and explored possible mechanisms by which it might improve glucose and fat metabolism. METHODS To investigate the effects of SMS on a high-fat diet (HFD)-induced obesity (DIO) model, we studied glucose metabolism via glucose tolerance testing (GTT) and insulin tolerance testing (ITT). Browning of white adipose tissue (WAT) was evaluated using H&E staining, along with browning-related gene and protein expression. Changes in bile acid (BA) levels in serum, liver, ileum, and inguinal white adipose tissue were detected by Ultra performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). In addition, antimicrobial mixture (ABX) and fecal microbial transplantation (FMT) experiments were used to verify the role of gut flora in the effects produced by SMS on HFD-induced obesity model. RESULTS SMS ameliorated diet-induced dyslipidemia in a dose-dependent manner and reduced glucose intolerance and insulin resistance in DIO mice, helping to restore energy metabolism homeostasis. SMS significantly altered the structure of intestinal microbiome composition, decreasing the abundance of Lactobacillus carrying bile salt hydrolase (BSH) enzymes and thereby increasing the level of conjugated BAs in the blood, ileum, and iWAT. Increased TCA content promoted the secretion of Slit3 from M2 macrophages in iWAT, which activates the protein kinase A/calmodulin-dependent protein kinase II (PKA/CaMKII) signaling pathway in sympathetic neurons via the roundabouts receptor 1(ROBO1). This pathway promotes the synthesis and release of norepinephrine (NE), inducing cyclic adenosine monophosphate (cAMP) release in adipose tissue that activates the cyclic adenosine monophosphate/protein kinase A/phosphorylated hormone-sensitive lipase (cAMP/PKA/pHSL) pathway and enhances WAT browning. ABX treatment eliminated SMS effects on glucose and lipid metabolism in DIO mice, whereas glucose and lipid metabolism in obese mice improved following SMS-FMT and increased the level of serum bile acids. CONCLUSION SMS affects intestinal flora and bile acid composition in vivo and increased TCA promotes M2 macrophage polarization and Slit3 release in adipose tissue. This induces NE release and increases WAT browning in obese mice, which may be a mechanism by which SMS could be used to treat obesity.
Collapse
Affiliation(s)
- Zixuan Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Xu Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lihong Fu
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Shuyang Xu
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Xunjiang Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Qi Liao
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Tongxi Zhuang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Longchan Liu
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Haoyue Zhang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Wei Li
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Aizhen Xiong
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Lihua Gu
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China
| | - Rufeng Wang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Feng Tao
- Endocrinology department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Li Yang
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| | - Lili Ding
- Shanghai Key Laboratory of Complex Prescription, and Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines and the State Administration of Traditional Chinese Medicine (SATCM) Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai R&D Center for Standardization of Traditional Chinese Medicines, Shanghai 201203, China.
| |
Collapse
|
35
|
Xie Z, Li Y, Cheng L, Huang Y, Rao W, Shi H, Li J. Potential therapeutic strategies for MASH: from preclinical to clinical development. LIFE METABOLISM 2024; 3:loae029. [PMID: 39872142 PMCID: PMC11749562 DOI: 10.1093/lifemeta/loae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 01/03/2025]
Abstract
Current treatment paradigms for metabolic dysfunction-associated steatohepatitis (MASH) are based primarily on dietary restrictions and the use of existing drugs, including anti-diabetic and anti-obesity medications. Given the limited number of approved drugs specifically for MASH, recent efforts have focused on promising strategies that specifically target hepatic lipid metabolism, inflammation, fibrosis, or a combination of these processes. In this review, we examined the pathophysiology underlying the development of MASH in relation to recent advances in effective MASH therapy. Particularly, we analyzed the effects of lipogenesis inhibitors, nuclear receptor agonists, glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists, fibroblast growth factor mimetics, and combinatorial therapeutic approaches. We summarize these targets along with their preclinical and clinical candidates with the ultimate goal of optimizing the therapeutic prospects for MASH.
Collapse
Affiliation(s)
- Zhifu Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yufeng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Long Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanglin Rao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| | - Honglu Shi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
36
|
Choi S, Ofosu-Boateng M, Kim S, Nnamani DO, Mah'moud M, Neequaye P, Gebreyesus LH, Twum E, Gonzalez FJ, Yue Cui J, Gyamfi MA. Molecular targets of PXR-dependent ethanol-induced hepatotoxicity in female mice. Biochem Pharmacol 2024; 228:116416. [PMID: 38986717 PMCID: PMC11410527 DOI: 10.1016/j.bcp.2024.116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor signaling potentiates ethanol (EtOH)-induced hepatotoxicity in male mice, however, how PXR signaling modulates EtOH-induced hepatotoxicity in female mice is unknown. Wild type (WT) and Pxr-null mice received 5 % EtOH-containing diets or paired-fed control diets for 8 weeks followed by assessment of liver injury, EtOH elimination rates, histology, and changes in gene and protein expression; microarray and bioinformatic analyses were also employed to identify PXR targets in chronic EtOH-induced hepatotoxicity. In WT females, EtOH ingestion significantly increased serum ethanol and alanine aminotransferase (ALT) levels, hepatic Pxr mRNA, constitutive androstane receptor activation, Cyp2b10 mRNA and protein, oxidative stress, endoplasmic stress (phospho-elF2α) and pro-apoptotic (Bax) protein expression. Unexpectedly, EtOH-fed female Pxr-null mice displayed increased EtOH elimination and elevated levels of hepatic acetaldehyde detoxifying aldehyde dehydrogenase 1a1 (Aldh1a1) mRNA and protein, EtOH-metabolizing alcohol dehydrogenase 1 (ADH1), and lipid suppressing microsomal triglyceride transport protein (MTP) protein, aldo-keto reductase 1b7 (Akr1b7) and Cyp2a5 mRNA, but suppressed CYP2B10 protein levels, with evidence of protection against chronic EtOH-induced oxidative stress and hepatotoxicity. While liver injury was not different between the two WT sexes, female sex may suppress EtOH-induced macrovesicular steatosis in the liver. Several genes and pathways important in retinol and steroid hormone biosynthesis, chemical carcinogenesis, and arachidonic acid metabolism were upregulated by EtOH in a PXR-dependent manner in both sexes. Together, these data establish that female Pxr-null mice are resistant to chronic EtOH-induced hepatotoxicity and unravel the PXR-dependent and -independent mechanisms that contribute to EtOH-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sora Choi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Malvin Ofosu-Boateng
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Sarah Kim
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Daniel O Nnamani
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Mia Mah'moud
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Prince Neequaye
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Lidya H Gebreyesus
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Elizabeth Twum
- Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, Building 37, Room 3106, Bethesda, MD 20892, USA
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA
| | - Maxwell A Gyamfi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA; Department of Pharmaceutical Sciences, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163 USA.
| |
Collapse
|
37
|
Tsuruya K, Yokoyama K, Mishima Y, Ida K, Araki T, Ieda S, Ohtsuka M, Inagaki Y, Honda A, Kagawa T, Kamiya A. Abcb4-defect cholangitis mouse model with hydrophobic bile acid composition by in vivo liver-specific gene deletion. J Lipid Res 2024; 65:100616. [PMID: 39111549 PMCID: PMC11407928 DOI: 10.1016/j.jlr.2024.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024] Open
Abstract
Progressive familial intrahepatic cholestasis (PFIC) is a liver disease that occurs during childhood and requires liver transplantation. ABCB4 is localized along the canalicular membranes of hepatocytes, transports phosphatidylcholine into bile, and its mutation causes PFIC3. Abcb4 gene-deficient mice established as animal models of PFIC3 exhibit cholestasis-induced liver injury. However, their phenotypes are often milder than those of human PFIC3, partly because of the existence of large amounts of less toxic hydrophilic bile acids synthesized by the rodent-specific enzymes Cyp2c70 and Cyp2a12. Mice with double deletions of Cyp2c70/Cyp2a12 (CYPDKO mice) have a human-like hydrophobic bile acid composition. PFIC-related gene mutations were induced in CYPDKO mice to determine whether these triple-gene-deficient mice are a better model for PFIC. To establish a PFIC3 mouse model using CYPDKO mice, we induced abcb4 gene deletion in vivo using adeno-associated viruses expressing SaCas9 under the control of a liver-specific promoter and abcb4-target gRNAs. Compared to Abcb4-deficient wild-type mice, Abcb4-deficient CYPDKO mice showed more pronounced liver injury along with an elevation of inflammatory and fibrotic markers. The proliferation of intrahepatic bile ductal cells and hematopoietic cell infiltration were also observed. CYPDKO/abcb4-deficient mice show a predominance of taurine-conjugated chenodeoxycholic acid and lithocholic acid in the liver. In addition, phospholipid levels in the gallbladder bile were barely detectable. Mice with both human-like bile acid composition and Abcb4-defect exhibit severe cholestatic liver injury and are useful for studying human cholestatic diseases and developing new treatments.
Collapse
Affiliation(s)
- Kota Tsuruya
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Keiko Yokoyama
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Support Center of Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yusuke Mishima
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takuma Araki
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan; Support Center of Medical Research and Education, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Satsuki Ieda
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Akira Honda
- Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan; Department of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| |
Collapse
|
38
|
Umemura M, Honda A, Yamashita M, Chida T, Noritake H, Yamamoto K, Honda T, Ichimura-Shimizu M, Tsuneyama K, Miyazaki T, Kurono N, Leung PSC, Gershwin ME, Suda T, Kawata K. High-fat diet modulates bile acid composition and gut microbiota, affecting severe cholangitis and cirrhotic change in murine primary biliary cholangitis. J Autoimmun 2024; 148:103287. [PMID: 39033687 DOI: 10.1016/j.jaut.2024.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Increasing evidence suggests that, in addition to a loss of tolerance, bile acid (BA) modulates the natural history of primary biliary cholangitis (PBC). We focused on the impacts of dietary changes on the immunopathology of PBC, along with alterations in BA composition and gut microbiota. In this study, we have taken advantage of our unique PBC model, a Cyp2c70/Cyp2a12 double knockout (DKO), which includes a human-like BA composition, and develops progressive cholangitis following immunization with the PDC-E2 mimic, 2-octynoic acid (2OA). We compared the effects of a ten-week high-fat diet (HFD) (60 % kcal from fat) and a normal diet (ND) on 2OA-treated DKO mice. Importantly, we report that 2OA-treated DKO mice fed HFD had significantly exacerbated cholangitis, leading to cirrhosis, with increased hepatic expression of Th1 cytokines/chemokines and hepatic fibrotic markers. Serum lithocholic acid (LCA) levels and the ratio of chenodeoxycholic acid (CDCA)-derived BAs to cholic acid-derived BAs were significantly increased by HFD. This was also associated with downregulated expression of key regulators of BA synthesis, including Cyp8b1, Cyp3a11, and Sult2a1. In addition, there were increases in the relative abundances of Acetatifactor and Lactococcus and decreases in Desulfovibrio and Lachnospiraceae_NK4A136_group, which corresponded to the abundances of CDCA and LCA. In conclusion, HFD and HFD-induced alterations in the gut microbiota modulate BA composition and nuclear receptor activation, leading to cirrhotic change in this murine PBC model. These findings have significant implications for understanding the progression of human PBC.
Collapse
Affiliation(s)
- Masahiro Umemura
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Akira Honda
- Joint Research Center and Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1Chuo, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| | - Maho Yamashita
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Takeshi Chida
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Hidenao Noritake
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Kenta Yamamoto
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Takashi Honda
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima, 770-8503, Japan.
| | - Teruo Miyazaki
- Joint Research Center and Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, 3-20-1Chuo, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| | - Nobuhito Kurono
- Department of Chemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Davis, CA, 95616, USA.
| | - Takafumi Suda
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| | - Kazuhito Kawata
- Department of Internal Medicine II, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuo-ku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
39
|
Sudo K, Delmas-Eliason A, Soucy S, Barrack KE, Liu J, Balasubramanian A, Shu CJ, James MJ, Hegner CL, Dionne HD, Rodriguez-Palacios A, Krause HM, O'Toole GA, Karpen SJ, Dawson PA, Schultz D, Sundrud MS. Quantifying Forms and Functions of Enterohepatic Bile Acid Pools in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:101392. [PMID: 39179177 PMCID: PMC11490680 DOI: 10.1016/j.jcmgh.2024.101392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUNDS & AIMS Bile acids (BAs) are core gastrointestinal metabolites with dual functions in lipid absorption and cell signaling. BAs circulate between the liver and distal small intestine (i.e., ileum), yet the dynamics through which complex BA pools are absorbed in the ileum and interact with host intestinal cells in vivo remain poorly understood. Because ileal absorption is rate-limiting in determining which BAs in the intestinal lumen gain access to host intestinal cells and receptors, and at what concentrations, we hypothesized that defining the rates and routes of ileal BA absorption in vivo would yield novel insights into the physiological forms and functions of mouse enterohepatic BA pools. METHODS Using ex vivo mass spectrometry, we quantified 88 BA species and metabolites in the intestinal lumen and superior mesenteric vein of individual wild-type mice, and cage-mates lacking the ileal BA transporter, Asbt/Slc10a2. RESULTS Using these data, we calculated that the pool of BAs circulating through ileal tissue (i.e., the ileal BA pool) in fasting C57BL/6J female mice is ∼0.3 μmol/g. Asbt-mediated transport accounted for ∼80% of this pool and amplified size. Passive permeability explained the remaining ∼20% and generated diversity. Compared with wild-type mice, the ileal BA pool in Asbt-deficient mice was ∼5-fold smaller, enriched in secondary BA species and metabolites normally found in the colon, and elicited unique transcriptional responses on addition to exvivo-cultured ileal explants. CONCLUSIONS This study defines quantitative traits of the mouse enterohepatic BA pool and reveals how aberrant BA metabolism can impinge directly on host intestinal physiology.
Collapse
Affiliation(s)
- Koichi Sudo
- Center for Digestive Health, Dartmouth Health, Lebanon, New Hampshire
| | - Amber Delmas-Eliason
- Department of Immunology and Microbiology, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida
| | - Shannon Soucy
- Department of Biomedical Data Science, Geisel School of Medicine, Hanover, New Hampshire
| | - Kaitlyn E Barrack
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Jiabao Liu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Akshaya Balasubramanian
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | | | | | - Courtney L Hegner
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida
| | - Henry D Dionne
- Center for Digestive Health, Dartmouth Health, Lebanon, New Hampshire
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine, Cleveland, Ohio; Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio; Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, Ohio; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Henry M Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - George A O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Saul J Karpen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia; Stravitz-Sanyal Liver Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University, Richmond, Virginia
| | - Paul A Dawson
- Division of Pediatric Gastroenterology, Department of Pediatrics, Hepatology, and Nutrition, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, Georgia
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire
| | - Mark S Sundrud
- Center for Digestive Health, Dartmouth Health, Lebanon, New Hampshire; Department of Immunology and Microbiology, Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, Florida; Department of Microbiology and Immunology, Geisel School of Medicine, Hanover, New Hampshire; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida; Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire; Dartmouth Cancer Center, Lebanon, New Hampshire.
| |
Collapse
|
40
|
Tomioka I, Ota C, Tanahashi Y, Ikegami K, Ishihara A, Kohri N, Fujii H, Morohaku K. Loss of the DNA-binding domain of the farnesoid X receptor gene causes severe liver and kidney injuries. Biochem Biophys Res Commun 2024; 721:150125. [PMID: 38762930 DOI: 10.1016/j.bbrc.2024.150125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
Farnesoid X receptor (FXR) regulates bile acid synthesis, lipid metabolism, and glucose homeostasis in metabolic organs. FXR-knockout (FXR-KO) mice lacking the last exon of the FXR gene develop normally and display no prenatal and early postnatal lethality, whereas human patients with mutations in the DNA-binding domain of the FXR gene develop severe hepatic dysfunction. In this study, we generated novel FXR-KO mice lacking the DNA-binding domain of the FXR gene using CRISPR-Cas9 technology and evaluated their phenotypes. Similar to the aforementioned FXR-KO mice, our novel mice showed elevated serum levels of total bile acids and total cholesterol. However, they were obviously short-lived, showing severe liver and renal pathologies at an early age. These results indicate that FXR, including its unknown isoforms, has more significant functions in multiple organs than previously reported. Thus, the novel FXR-KO mice could lead to a new aspect that requires reworking of previous knowledge of FXR in the liver and renal function.
Collapse
Affiliation(s)
- Ikuo Tomioka
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan.
| | - Chihiro Ota
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan
| | - Yuka Tanahashi
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan
| | - Kayoko Ikegami
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan
| | - Ayaka Ishihara
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan
| | - Nanami Kohri
- Laboratory of Applied Reproductive Science, Faculty of Agriculture, Shinshu University, Japan
| | - Hiroshi Fujii
- Laboratory of Biochemistry, Faculty of Agriculture, Shinshu University, Japan
| | - Kanako Morohaku
- Laboratory of Germ Cell Physiology and Engineering, Faculty of Agriculture, Shinshu University, Japan
| |
Collapse
|
41
|
Zhu Q, Chen B, Zhang F, Zhang B, Guo Y, Pang M, Huang L, Wang T. Toxic and essential metals: metabolic interactions with the gut microbiota and health implications. Front Nutr 2024; 11:1448388. [PMID: 39135557 PMCID: PMC11317476 DOI: 10.3389/fnut.2024.1448388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Human exposure to heavy metals, which encompasses both essential and toxic varieties, is widespread. The intestine functions as a critical organ for absorption and metabolism of heavy metals. Gut microbiota plays a crucial role in heavy metal absorption, metabolism, and related processes. Toxic heavy metals (THMs), such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), can cause damage to multiple organs even at low levels of exposure, and it is crucial to emphasize their potential high toxicity. Nevertheless, certain essential trace elements, including iron (Fe), copper (Cu), and manganese (Mn), play vital roles in the biochemical and physiological functions of organisms at low concentrations but can exert toxic effects on the gut microbiota at higher levels. Some potentially essential micronutrients, such as chromium (Cr), silicon (Si), and nickel (Ni), which were considered to be intermediate in terms of their essentiality and toxicity, had different effects on the gut microbiota and their metabolites. Bidirectional relationships between heavy metals and gut microbiota have been found. Heavy metal exposure disrupts gut microbiota and influences its metabolism and physiological functions, potentially contributing to metabolic and other disorders. Furthermore, gut microbiota influences the absorption and metabolism of heavy metals by serving as a physical barrier against heavy metal absorption and modulating the pH, oxidative balance, and concentrations of detoxification enzymes or proteins involved in heavy metal metabolism. The interactions between heavy metals and gut microbiota might be positive or negative according to different valence states, concentrations, and forms of the same heavy metal. This paper reviews the metabolic interactions of 10 common heavy metals with the gut microbiota and their health implications. This collated information could provide novel insights into the disruption of the intestinal microbiota caused by heavy metals as a potential contributing factor to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianjiao Wang
- Department of Personnel Management, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
42
|
Carmody RN, Varady K, Turnbaugh PJ. Digesting the complex metabolic effects of diet on the host and microbiome. Cell 2024; 187:3857-3876. [PMID: 39059362 PMCID: PMC11309583 DOI: 10.1016/j.cell.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The past 50 years of interdisciplinary research in humans and model organisms has delivered unprecedented insights into the mechanisms through which diet affects energy balance. However, translating these results to prevent and treat obesity and its associated diseases remains challenging. Given the vast scope of this literature, we focus this Review on recent conceptual advances in molecular nutrition targeting the management of energy balance, including emerging dietary and pharmaceutical interventions and their interactions with the human gut microbiome. Notably, multiple current dietary patterns of interest embrace moderate-to-high fat intake or prioritize the timing of eating over macronutrient intake. Furthermore, the rapid expansion of microbiome research findings has complicated multiple longstanding tenets of nutrition while also providing new opportunities for intervention. Continued progress promises more precise and reliable dietary recommendations that leverage our growing knowledge of the microbiome, the changing landscape of clinical interventions, and our molecular understanding of human biology.
Collapse
Affiliation(s)
- Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Krista Varady
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
43
|
Roessler J, Zimmermann F, Schumann P, Nageswaran V, Ramezani Rad P, Schuchardt S, Leistner DM, Landmesser U, Haghikia A. Modulation of the Serum Metabolome by the Short-Chain Fatty Acid Propionate: Potential Implications for Its Cholesterol-Lowering Effect. Nutrients 2024; 16:2368. [PMID: 39064811 PMCID: PMC11280296 DOI: 10.3390/nu16142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Dyslipidemia represents a major risk factor for atherosclerosis-driven cardiovascular disease. Emerging evidence suggests a close relationship between cholesterol metabolism and gut microbiota. Recently, we demonstrated that the short-chain fatty acid (SCFA) propionate (PA) reduces serum cholesterol levels through an immunomodulatory mechanism. Here, we investigated the effects of oral PA supplementation on the human serum metabolome and analyzed changes in the serum metabolome in relation to the cholesterol-lowering properties of PA. (2) Methods: The serum metabolome of patients supplemented with either placebo or propionate orally for 8 weeks was assessed using a combination of flow injection analysis-tandem (FIA-MS/MS) as well as liquid chromatography (LC-MS/MS) and mass spectrometry using a targeted metabolomics kit (MxP®Quant 500 kit: BIOCRATES Life Sciences AG, Innsbruck, Austria). A total of 431 metabolites were employed for further investigation in this study. (3) Results: We observed a significant increase in distinct bile acids (GCDCA: fold change = 1.41, DCA: fold change = 1.39, GUDCA: fold change = 1.51) following PA supplementation over the study period, with the secondary bile acid DCA displaying a significant negative correlation with the serum cholesterol levels. (4) Conclusions: Oral supplementation with PA modulates the serum metabolome with a particular impact on the circulatory bile acid profile. Since cholesterol and bile acid metabolism are interconnected, the elevation of the secondary bile acid DCA may contribute to the cholesterol-lowering effect of PA.
Collapse
Affiliation(s)
- Johann Roessler
- Department of Cardiology, University Hospital St Josef-Hospital Bochum, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Friederike Zimmermann
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Paul Schumann
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
| | - Vanasa Nageswaran
- Department of Cardiology, University Hospital St Josef-Hospital Bochum, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, 12203 Berlin, Germany
| | - Pegah Ramezani Rad
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Sven Schuchardt
- Department of Bio and Environmental Analytics, Fraunhofer Institute for Toxicology and Experimental Medicine, 30625 Hannover, Germany
| | - David M. Leistner
- Medizinische Klinik 3—Kardiologie und Angiologie, Universitätsklinikum Frankfurt am Main, 60590 Frankfurt am Main, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, 12203 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Arash Haghikia
- Department of Cardiology, University Hospital St Josef-Hospital Bochum, Ruhr University Bochum, 44791 Bochum, Germany
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, 12203 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
| |
Collapse
|
44
|
Zhang J, Li Y, Yang L, Ma N, Qian S, Chen Y, Duan Y, Xiang X, He Y. New advances in drug development for metabolic dysfunction-associated diseases and alcohol-associated liver disease. Cell Biosci 2024; 14:90. [PMID: 38971765 PMCID: PMC11227172 DOI: 10.1186/s13578-024-01267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
Metabolic disorders are currently threatening public health worldwide. Discovering new targets and developing promising drugs will reduce the global metabolic-related disease burden. Metabolic disorders primarily consist of lipid and glucose metabolic disorders. Specifically, metabolic dysfunction-associated steatosis liver disease (MASLD) and alcohol-associated liver disease (ALD) are two representative lipid metabolism disorders, while diabetes mellitus is a typical glucose metabolism disorder. In this review, we aimed to summarize the new drug candidates with promising efficacy identified in clinical trials for these diseases. These drug candidates may provide alternatives for patients with metabolic disorders and advance the progress of drug discovery for the large disease burden.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yixin Li
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China
| | - Liu Yang
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ningning Ma
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shengying Qian
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingfen Chen
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, 230001, Anhui, China.
| | - Xiaogang Xiang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yong He
- Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
45
|
Tang G, Nierath WF, Leitner E, Xie W, Revskij D, Seume N, Zhang X, Ehlers L, Vollmar B, Zechner D. Comparing animal well-being between bile duct ligation models. PLoS One 2024; 19:e0303786. [PMID: 38950046 PMCID: PMC11216573 DOI: 10.1371/journal.pone.0303786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/01/2024] [Indexed: 07/03/2024] Open
Abstract
A prevailing animal model currently used to study severe human diseases like obstructive cholestasis, primary biliary or sclerosing cholangitis, biliary atresia, and acute liver injury is the common bile duct ligation (cBDL). Modifications of this model include ligation of the left hepatic bile duct (pBDL) or ligation of the left bile duct with the corresponding left hepatic artery (pBDL+pAL). Both modifications induce cholestasis only in the left liver lobe. After induction of total or partial cholestasis in mice, the well-being of these animals was evaluated by assessing burrowing behavior, body weight, and a distress score. To compare the pathological features of these animal models, plasma levels of liver enzymes, bile acids, bilirubin, and within the liver tissue, necrosis, fibrosis, inflammation, as well as expression of genes involved in the synthesis or transport of bile acids were assessed. The survival rate of the animals and their well-being was comparable between pBDL+pAL and pBDL. However, surgical intervention by pBDL+pAL caused confluent necrosis and collagen depositions at the edge of necrotic tissue, whereas pBDL caused focal necrosis and fibrosis in between portal areas. Interestingly, pBDL animals had a higher survival rate and their well-being was significantly improved compared to cBDL animals. On day 14 after cBDL liver aspartate, as well as alanine aminotransferase, alkaline phosphatase, glutamate dehydrogenase, bile acids, and bilirubin were significantly elevated, but only glutamate dehydrogenase activity was increased after pBDL. Thus, pBDL may be primarily used to evaluate local features such as inflammation and fibrosis or regulation of genes involved in bile acid synthesis or transport but does not allow to study all systemic features of cholestasis. The pBDL model also has the advantage that fewer mice are needed, because of its high survival rate, and that the well-being of the animals is improved compared to the cBDL animal model.
Collapse
Affiliation(s)
- Guanglin Tang
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
- Department of General Surgery, Fushun Central Hospital, Fushun, Liaoning, China
| | - Wiebke-Felicitas Nierath
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Emily Leitner
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Wentao Xie
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Denis Revskij
- Division of Gastroenterology, Department of Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Nico Seume
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Xianbin Zhang
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
- Department of General Surgery & Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Luise Ehlers
- Department of General Surgery, Fushun Central Hospital, Fushun, Liaoning, China
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
46
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
47
|
Baumeister T, Proaño-Vasco A, Metwaly A, Kleigrewe K, Kuznetsov A, Schömig L, Borgmann M, Khiat M, Anand A, Böttcher K, Haller D, Dunkel A, Somoza V, Reiter S, Meng C, Thimme R, Schmid RM, Patil DT, Burgermeister E, Huang Y, Sun Y, Wang HH, Wang TC, Abrams JA, Quante M. Microbiota metabolized Bile Acids accelerate Gastroesophageal Adenocarcinoma via FXR inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598405. [PMID: 38915718 PMCID: PMC11195123 DOI: 10.1101/2024.06.11.598405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background The incidence of Barrett esophagus (BE) and Gastroesophageal Adenocarcinoma (GEAC) correlates with obesity and a diet rich in fat. Bile acids (BA) support fat digestion and undergo microbial metabolization in the gut. The farnesoid X receptor (FXR) is an important modulator of the BA homeostasis. The capacity of inhibiting cancer-related processes when activated, make FXR an appealing therapeutic target. In this work, we assess the role of diet on the microbiota-BA axis and evaluate the role of FXR in disease progression. Results Here we show that high fat diet (HFD) accelerated tumorigenesis in L2-IL1B mice (BE- and GEAC- mouse model) while increasing BA levels and enriching gut microbiota that convert primary to secondary BA. While upregulated in BE, expression of FXR was downregulated in GEAC in mice and humans. In L2-IL1B mice, FXR knockout enhanced the dysplastic phenotype and increased Lgr5 progenitor cell numbers. Treatment of murine organoids and L2-IL1B mice with the FXR agonist obeticholic acid (OCA) deacelerated GEAC progression. Conclusion We provide a novel concept of GEAC carcinogenesis being accelerated via the diet-microbiome-metabolome axis and FXR inhibition on progenitor cells. Further, FXR activation protected with OCA ameliorated the phenotype in vitro and in vivo, suggesting that FXR agonists have potential as differentiation therapy in GEAC prevention.
Collapse
Affiliation(s)
- Theresa Baumeister
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich; Germany
| | - Andrea Proaño-Vasco
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Germany
- Faculty of Biology, University of Freiburg; Germany
| | - Amira Metwaly
- Chair of Nutrition and Immunology; Technical University of Munich; Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich; Germany
| | - Alexander Kuznetsov
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Germany
- Faculty of Biology, University of Freiburg; Germany
| | - Linus Schömig
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Germany
- Faculty of Biology, University of Freiburg; Germany
| | - Martin Borgmann
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Germany
- Faculty of Biology, University of Freiburg; Germany
| | - Mohammed Khiat
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
| | - Akanksha Anand
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich; Germany
| | - Katrin Böttcher
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich; Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology; Technical University of Munich; Germany
| | - Andreas Dunkel
- Leibniz-Institute for Food Systems Biology, Technical University of Munich; Germany
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich; Germany
| | - Veronika Somoza
- Leibniz-Institute for Food Systems Biology, Technical University of Munich; Germany
| | - Sinah Reiter
- Chair of Food Chemistry and Molecular Sensory Science, TUM School of Life Sciences, Technical University of Munich; Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich; Germany
| | - Robert Thimme
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
| | - Roland M. Schmid
- Klinik und Poliklinik für Innere Medizin II, Technical University of Munich; Germany
| | - Deepa T. Patil
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School; Boston, USA
| | - Elke Burgermeister
- Dept. of Internal Medicine II, Medical Faculty Mannheim, Heidelberg University; Germany
| | - Yiming Huang
- Systems & Synthetic Biology, Columbia University Medical Center; New York, NY, USA
| | - Yiwei Sun
- Systems & Synthetic Biology, Columbia University Medical Center; New York, NY, USA
| | - Harris H. Wang
- Systems & Synthetic Biology, Columbia University Medical Center; New York, NY, USA
| | - Timothy C. Wang
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Julian A. Abrams
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Michael Quante
- Klinik für Innere Medizin II, Universitätsklinikum Freiburg; Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg; Germany
| |
Collapse
|
48
|
Li X, Kong Y, Ren Y, Li Y, Xu J, Zhan Y, Zhou S, Yang F, Xu T, Wang X. The impact of maternal intrahepatic cholestasis during pregnancy on the growth trajectory of offspring: a population-based nested case‒control cohort study. BMC Pregnancy Childbirth 2024; 24:413. [PMID: 38849722 PMCID: PMC11157880 DOI: 10.1186/s12884-024-06559-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/02/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Intrahepatic cholestasis of pregnancy (ICP) is associated with an increased risk of adverse fetal outcomes, yet its influence on offspring growth remains unclear. Our study dynamically tracks growth rates in children from ICP and healthy mothers and investigates the link between maternal liver function and developmental abnormalities in offspring. METHOD Our case‒control study involved 97 women with ICP and 152 with uncomplicated pregnancies nested in a cohort of their offspring, including 50 from the ICP group and 87 from the uncomplicated pregnancy group. We collected pediatric growth and development data, with a maximum follow-up duration of 36 months. Stratified analyses of children's height, weight, and head circumference were conducted, and Spearman's rank correlation was applied to examine the relationships between maternal serological markers and pediatric growth metrics. RESULT Maternal liver and renal functions, along with serum lipid profiles, significantly differed between the ICP and normal groups. In the ICP group, the offspring showed elevated alanine aminotransferase (ALT), direct bilirubin (DBIT), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and apolipoprotein B (APOB) levels. Notably, the length-for-age z score (LAZ), weight-for-age z score (WAZ), and head circumference-for-age z score (HCZ) were lower in ICP offspring compared with those from normal pregnancies within the 1- to 12-month age range (P < 0.05). However, no significant differences in LAZ, weight-for-length z score (WLZ), BMI-for-age z score (BAZ), or HCZ were observed between groups in the 13- to 36-month age range. Maternal maximum lactate dehydrogenase (LDH) and total bile acids (TBA) levels during pregnancy were inversely correlated with LAZ and WAZ in the first year. Furthermore, offspring of mothers with ICP exhibited a greater incidence of stunting (24% vs. 6.9%, P = 0.004) and abnormal HCZ (14% vs. 3.7%, P = 0.034). CONCLUSIONS Growth disparities in offspring of ICP-affected pregnancies were most significant within the 1- to 12-month age range. During this period, maximum maternal LDH and TBA levels were negatively correlated with LAZ and WAZ values of offspring. The observation of similar growth rates between ICP and control group offspring from 13 to 36 months suggested catch-up growth in the ICP group.
Collapse
Affiliation(s)
- Xueqi Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Yao Kong
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Yuxin Ren
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
| | - Yaqian Li
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Jinfeng Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Yongchi Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Shu Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
| | - Fan Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China
- Department of Child Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tingting Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China.
| | - Xiaodong Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Renmin Nan Road, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
49
|
Wei M, Tu W, Huang G. Regulating bile acids signaling for NAFLD: molecular insights and novel therapeutic interventions. Front Microbiol 2024; 15:1341938. [PMID: 38887706 PMCID: PMC11180741 DOI: 10.3389/fmicb.2024.1341938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) emerges as the most predominant cause of liver disease, tightly linked to metabolic dysfunction. Bile acids (BAs), initially synthesized from cholesterol in the liver, undergo further metabolism by gut bacteria. Increasingly acknowledged as critical modulators of metabolic processes, BAs have been implicated as important signaling molecules. In this review, we will focus on the mechanism of BAs signaling involved in glucose homeostasis, lipid metabolism, energy expenditure, and immune regulation and summarize their roles in the pathogenesis of NAFLD. Furthermore, gut microbiota dysbiosis plays a key role in the development of NAFLD, and the interactions between BAs and intestinal microbiota is elucidated. In addition, we also discuss potential therapeutic strategies for NAFLD, including drugs targeting BA receptors, modulation of intestinal microbiota, and metabolic surgery.
Collapse
Affiliation(s)
- Meilin Wei
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Tu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Genhua Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
50
|
Shi Y, Wei L, Jin F, Wang J, Cao H, Yang Y, Gao L. Colchicine disrupts bile acid metabolic homeostasis by affecting the enterohepatic circulation in mice. J Appl Toxicol 2024; 44:863-873. [PMID: 38311468 DOI: 10.1002/jat.4587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024]
Abstract
Although the medicinal properties of colchicine (COL) have been widely known for centuries, its toxicity has been the subject of controversy. The narrow therapeutic window causes COL to induce gastrointestinal adverse effects even when taken at recommended doses, mainly manifested as nausea, vomiting, and diarrhea. However, the mechanism of COL-induced gastrointestinal toxic reactions remains obscure. In the present study, the mice were dosed with COL (2.5 mg/kg b.w./day) for a week to explore the effect of COL on bile acid metabolism and the mechanism of COL-induced diarrhea. The results showed that COL treatment affected liver biochemistry in mice, resulting in a significant down-regulation of the mRNA expression levels of bile acid biosynthesis regulators Cyp7a1, Cyp8b1, Cyp7b1, and Cyp27a1 in liver tissues. The mRNA expression levels of bile acid transporters Ntcp, Oatp1, Mrp2, Ibabp, Mrp3, Osta, and Ostb in liver and ileum tissues were also significantly down-regulated. In addition, COL treatment significantly inhibited the mRNA expression levels of Fxr and its downstream target genes Shp, Lrh1, and Fgf15 in liver and ileum tissues, affecting the feedback regulation of bile acid biosynthesis. More importantly, the inhibition of COL on bile acid transporters in ileal and hepatic tissues affected bile acid recycling in the ileum as well as their reuptake in the liver, leading to a significantly increased accumulation of bile acids in the colon, which may be an important cause of diarrhea. In conclusion, our study revealed that COL treatment affected bile acid biosynthesis and enterohepatic circulation, thereby disrupting bile acid metabolic homeostasis in mice.
Collapse
Affiliation(s)
- Yongpeng Shi
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Wei
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Fang Jin
- Gansu Provincial Clinical Research Center for Laboratory Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Ji Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hanwen Cao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ying Yang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Lan Gao
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|