1
|
Limbu S, Dakshanamurthy S. Predicting Dose-Dependent Carcinogenicity of Chemical Mixtures Using a Novel Hybrid Neural Network Framework and Mathematical Approach. TOXICS 2023; 11:605. [PMID: 37505571 PMCID: PMC10383376 DOI: 10.3390/toxics11070605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
This study addresses the challenge of assessing the carcinogenic potential of hazardous chemical mixtures, such as per- and polyfluorinated substances (PFASs), which are known to contribute significantly to cancer development. Here, we propose a novel framework called HNNMixCancer that utilizes a hybrid neural network (HNN) integrated into a machine-learning framework. This framework incorporates a mathematical model to simulate chemical mixtures, enabling the creation of classification models for binary (carcinogenic or noncarcinogenic) and multiclass classification (categorical carcinogenicity) and regression (carcinogenic potency). Through extensive experimentation, we demonstrate that our HNN model outperforms other methodologies, including random forest, bootstrap aggregating, adaptive boosting, support vector regressor, gradient boosting, kernel ridge, decision tree with AdaBoost, and KNeighbors, achieving a superior accuracy of 92.7% in binary classification. To address the limited availability of experimental data and enrich the training data, we generate an assumption-based virtual library of chemical mixtures using a known carcinogenic and noncarcinogenic single chemical for all the classification models. Remarkably, in this case, all methods achieve accuracies exceeding 98% for binary classification. In external validation tests, our HNN method achieves the highest accuracy of 80.5%. Furthermore, in multiclass classification, the HNN demonstrates an overall accuracy of 96.3%, outperforming RF, Bagging, and AdaBoost, which achieved 91.4%, 91.7%, and 80.2%, respectively. In regression models, HNN, RF, SVR, GB, KR, DT with AdaBoost, and KN achieved average R2 values of 0.96, 0.90, 0.77, 0.94, 0.96, 0.96, and 0.97, respectively, showcasing their effectiveness in predicting the concentration at which a chemical mixture becomes carcinogenic. Our method exhibits exceptional predictive power in prioritizing carcinogenic chemical mixtures, even when relying on assumption-based mixtures. This capability is particularly valuable for toxicology studies that lack experimental data on the carcinogenicity and toxicity of chemical mixtures. To our knowledge, this study introduces the first method for predicting the carcinogenic potential of chemical mixtures. The HNNMixCancer framework offers a novel alternative for dose-dependent carcinogen prediction. Ongoing efforts involve implementing the HNN method to predict mixture toxicity and expanding the application of HNNMixCancer to include multiple mixtures such as PFAS mixtures and co-occurring chemicals.
Collapse
Affiliation(s)
- Sarita Limbu
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Sivanesan Dakshanamurthy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
2
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Romualdo B, Cristina F, Stephen H, Marco I, Mosbach‐Schulz O, Riolo F, Christodoulidou A, Grasl‐Kraupp B. Risk assessment of N-nitrosamines in food. EFSA J 2023; 21:e07884. [PMID: 36999063 PMCID: PMC10043641 DOI: 10.2903/j.efsa.2023.7884] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
EFSA was asked for a scientific opinion on the risks to public health related to the presence of N-nitrosamines (N-NAs) in food. The risk assessment was confined to those 10 carcinogenic N-NAs occurring in food (TCNAs), i.e. NDMA, NMEA, NDEA, NDPA, NDBA, NMA, NSAR, NMOR, NPIP and NPYR. N-NAs are genotoxic and induce liver tumours in rodents. The in vivo data available to derive potency factors are limited, and therefore, equal potency of TCNAs was assumed. The lower confidence limit of the benchmark dose at 10% (BMDL10) was 10 μg/kg body weight (bw) per day, derived from the incidence of rat liver tumours (benign and malignant) induced by NDEA and used in a margin of exposure (MOE) approach. Analytical results on the occurrence of N-NAs were extracted from the EFSA occurrence database (n = 2,817) and the literature (n = 4,003). Occurrence data were available for five food categories across TCNAs. Dietary exposure was assessed for two scenarios, excluding (scenario 1) and including (scenario 2) cooked unprocessed meat and fish. TCNAs exposure ranged from 0 to 208.9 ng/kg bw per day across surveys, age groups and scenarios. 'Meat and meat products' is the main food category contributing to TCNA exposure. MOEs ranged from 3,337 to 48 at the P95 exposure excluding some infant surveys with P95 exposure equal to zero. Two major uncertainties were (i) the high number of left censored data and (ii) the lack of data on important food categories. The CONTAM Panel concluded that the MOE for TCNAs at the P95 exposure is highly likely (98-100% certain) to be less than 10,000 for all age groups, which raises a health concern.
Collapse
|
3
|
Dada TA, Ekwomadu TI, Mwanza M. Multi Mycotoxin Determination in Dried Beef Using Liquid Chromatography Coupled with Triple Quadrupole Mass Spectrometry (LC-MS/MS). Toxins (Basel) 2020; 12:E357. [PMID: 32485980 PMCID: PMC7354427 DOI: 10.3390/toxins12060357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 11/17/2022] Open
Abstract
Dried beef meat, a locally processed meat from the cow, is vulnerable to contamination by mycotoxins, due to its exposure to the environmental microbiota during processing, drying, and point of sale. In this study, 108 dried beef samples were examined for the occurrence of 17 mycotoxins. Samples were extracted for mycotoxins using solid-liquid phase extraction method, while liquid chromatography coupled with triple quadrupole mass spectrometry (LC-MS/MS) via the dilute and shoot method was used to analyze the mycotoxins. Aflatoxin was found in 66% of the samples (average value of 23.56 µg/kg). AFB1 had a mean value of 105.4 µg/kg, AFB2 mean value of 6.92 µg/kg, and AFG1 and AFG2 had an average mean value of 40.49 µg/kg and 2.60 µg/kg, respectively. The total aflatoxins exceed the EU (4 μg/kg) permissible level in food. The α-Zea average mean value was 113.82 µg/kg for the various selling locations. Also, cyclopiazonic acid had an average mean value of 51.99 µg/kg, while some of the beef samples were contaminated with more than nine different mycotoxins. The occurrence of these mycotoxins in dried beef is an indication of possible exposure of its consumers to the dangers of mycotoxins that are usually associated with severe health problems. This result shows that there are mycotoxin residues in the beef sold in Ekiti State markets.
Collapse
Affiliation(s)
- Toluwase Adeseye Dada
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North West University, Private Bag X2046, Mmabatho 2735, Mafikeng, South Africa;
- Ekiti State College of Agriculture and Technology, Isan Ekiti 371106, Ekiti State, Nigeria
| | - Theodora Ijeoma Ekwomadu
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North West University, Private Bag X2046, Mmabatho 2735, Mafikeng, South Africa;
| | - Mulunda Mwanza
- Department of Animal Health, Faculty of Natural and Agricultural Sciences, Mafikeng Campus, North West University, Private Bag X2046, Mmabatho 2735, Mafikeng, South Africa;
| |
Collapse
|
4
|
Health Risks Associated with Exposure to Filamentous Fungi. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070719. [PMID: 28677641 PMCID: PMC5551157 DOI: 10.3390/ijerph14070719] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Filamentous fungi occur widely in the environment, contaminating soil, air, food and other substrates. Due to their wide distribution, they have medical and economic implications. Regardless of their use as a source of antibiotics, vitamins and raw materials for various industrially important chemicals, most fungi and filamentous fungi produce metabolites associated with a range of health risks, both in humans and in animals. The association of filamentous fungi and their metabolites to different negative health conditions in humans and animals, has contributed to the importance of investigating different health risks induced by this family of heterotrophs. This review aims to discuss health risks associated with commonly occurring filamentous fungal species which belong to genera Aspergillus, Penicillium and Fusarium, as well as evaluating their pathogenicity and mycotoxic properties.
Collapse
|
5
|
Scientific Opinion on the risk for public and animal health related to the presence of sterigmatocystin in food and feed. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3254] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
6
|
|
7
|
Cook JC, Klinefelter GR, Hardisty JF, Sharpe RM, Foster PM. Rodent Leydig cell tumorigenesis: a review of the physiology, pathology, mechanisms, and relevance to humans. Crit Rev Toxicol 1999; 29:169-261. [PMID: 10213111 DOI: 10.1080/10408449991349203] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Leydig cells (LCs) are the cells of the testis that have as their primary function the production of testosterone. LCs are a common target of compounds tested in rodent carcinogenicity bioassays. The number of reviews on Leydig cell tumors (LCTs) has increased in recent years because of its common occurrence in rodent bioassays and the importance in assessing the relevance of this tumor type to humans. To date, there have been no comprehensive reviews to identify all the compounds that have been shown to induce LCTs in rodents or has any review systematically evaluated the epidemiology data to determine whether humans were at increased risk for developing LCTs from exposure to these agents. This review attempts to fill these deficiencies in the literature by comparing the cytology and ontogeny of the LC, as well as the endocrine and paracrine regulation of both normal and tumorigenic LCs. In addition, the pathology of LCTs in rodents and humans is compared, compounds that induce LC hyperplasia or tumors are enumerated, and the human relevance of chemical-induced LCTs is discussed. There are plausible mechanisms for the chemical induction of LCTs, as typified by agonists of estrogen, gonadotropin releasing hormone (GnRH), and dopamine receptors, androgen receptor antagonists, and inhibitors of 5alpha-reductase, testosterone biosynthesis, and aromatase. Most of these ultimately involve elevation in serum luteinizing hormone (LH) and/or LC responsiveness to LH as proximate mediators. It is expected that further work will uncover additional mechanisms by which LCTs may arise, especially the role of growth factors in modulating LC tumorigenesis. Regarding human relevance, the pathways for regulation of the hypothalamo-pituitary-testis (HPT) axis of rats and humans are similar, such that compounds that either decrease testosterone or estradiol levels or their recognition will increase LH levels. Hence, compounds that induce LCTs in rats by disruption of the HPT axis pose a risk to human health, except for possibly two classes of compounds (GnRH and dopamine agonists). Because GnRH and prolactin receptors are either not expressed or are expressed at very low levels in the testes in humans, the induction of LCTs in rats by GnRH and dopamine agonists would appear not to be relevant to humans; however, the potential relevance to humans of the remaining five pathways of LCT induction cannot be ruled out. Therefore, the central issue becomes what is the relative sensitivity between rat and human LCs in their response to increased LH levels; specifically, is the proliferative stimulus initiated by increased levels of LH attenuated, similar, or enhanced in human vs. rat LCs? There are several lines of evidence that suggest that human LCs are quantitatively less sensitive than rats in their proliferative response to LH, and hence in their sensitivity to chemically induced LCTs. This evidence includes the following: (1) the human incidence of LCTs is much lower than in rodents even when corrected for detection bias; (2) several comparative differences exist between rat and human LCs that may contribute, at least in part, to the greater susceptibility of the rat to both spontaneous and xenobiotic-induced LCTs; (3) endocrine disease states in man (such as androgen-insensitivity syndrome and familial male precocious puberty) underscore the marked comparative differences that exist between rats and man in the responsiveness of their LC's to proliferative stimuli; and (4) several human epidemiology studies are available on a number of compounds that induce LCTs in rats (1,3-butadiene, cadmium, ethanol, lactose, lead, nicotine) that demonstrate no association between human exposure to these compounds and induction of LC hyperplasia or adenomas. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- J C Cook
- DuPont Haskell Laboratory, Newark, DE, USA
| | | | | | | | | |
Collapse
|
8
|
Clegg ED, Cook JC, Chapin RE, Foster PM, Daston GP. Leydig cell hyperplasia and adenoma formation: mechanisms and relevance to humans. Reprod Toxicol 1997; 11:107-21. [PMID: 9138629 DOI: 10.1016/s0890-6238(96)00203-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Leydig cell adenomas are observed frequently in studies evaluating the chronic toxicity of chemical agents in laboratory animals. Doubts have been raised about the relevance of such responses for human risk assessment, but the question of relevance has not been evaluated and presented in a comprehensive manner by a broad group of experts. This article reports the consensus conclusions from a workshop on rodent Leydig cell adenomas and human relevance. Five aspects of Leydig cell biology and toxicology were discussed: 1) control of Leydig cell proliferation; 2) mechanisms of toxicant-induced Leydig cell hyperplasia and tumorigenesis; 3) pathology of Leydig cell adenomas; 4) epidemiology of Leydig cell adenomas; and 5) risk assessment for Leydig cell tumorigens. Important research needs also were identified. Uncertainty exists about the true incidence of Leydig cell adenomas in men, although apparent incidence is rare and restricted primarily to white males. Also, surveillance databases for specific therapeutic agents as well as nicotine and lactose that have induced Leydig cell hyperplasia or adenoma in test species have detected no increased incidence in humans. Because uncertainties exist about the true incidence in humans, induction of Leydig cell adenomas in test species may be of concern under some conditions. Occurrence of Leydig cell hyperplasia alone in test species after lifetime exposure to a chemical does not constitute a cause for concern in a risk assessment for carcinogenic potential, but early occurrence may indicate a need for additional testing. Occurrence of Leydig cell adenomas in test species is of potential concern as both a carcinogenic and reproductive effect if the mode of induction and potential exposures cannot be ruled out as relevant for humans. The workgroup focused on seven hormonal modes of induction of which two, GnRH agonism and dopamine agonism, were considered not relevant to humans. Androgen receptor antagonism, 5 alpha-reductase inhibition, testosterone biosynthesis inhibition, aromatase inhibition, and estrogen agonism were considered to be relevant or potentially relevant, but quantitative differences may exist across species, with rodents being more sensitive. A margin of exposure (MOE; the ratio of the lowest exposure associated with toxicity to the human exposure level) approach should be used for compounds causing Leydig cell adenoma by a hormonal mode that is relevant to humans. For agents that are positive for mutagenicity, the decision regarding a MOE or linear extrapolation approach should be made on a case-by-case basis. In the absence of information about mode of induction, it is necessary to utilize default assumptions, including linear behavior below the observable range. All of the evidence should be weighed in the decision-making process.
Collapse
Affiliation(s)
- E D Clegg
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, Washington, DC 20460, USA
| | | | | | | | | |
Collapse
|
9
|
Angsubhakorn S, Bhamarapravati N, Romruen K, Sahaphong S. Enhancing effects of dimethylnitrosamine on aflatoxin B hepatocarcinogenesis in rats. Int J Cancer 1981; 28:621-6. [PMID: 6796531 DOI: 10.1002/ijc.2910280515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In a study of possible enhancing effects of dimethylnitrosamine (DMN) on aflatoxin B1 (AFB1) hepatocarcinogenesis, male Buffalo strain rats were fed diets containing 1 ppm AFB1, 25 ppm DMN, and a combination of 1 ppm AFB1 and 25 ppm DMN (AFB1 + DMN). The diets were replaced by chow pellets after 6 months, and animals were killed 3, 6, 9 and 12 months after the onset of the experiment. In the untreated control group animals were free of hepatocellular carcinoma but the treated groups fed AFB1, DMN and AFB1 plus DMN developed hepatic lesions ranging from multiple cysts, altered cell foci and neoplastic nodules to hepatocellular carcinomas. Hepatocellular carcinomas developed in 79%, 45% and 5% of rats fed AFB1 plus DMN, AFB1 and DMN respectively at the end of the experiment. Multiple cysts were also found in all periods in animals fed AFB1 plus DMN, whereas rats fed AFB1 and DMN separately developed a few multiple cysts by the end of the experiment. These findings suggest that DMN potentiates the hepatocarcinogenesis induced by AFB1 in rats.
Collapse
|