1
|
Téllez Garcia JM, Steenvoorden T, Bemelman F, Hilhorst M, Tammaro A, Vogt L. Purinoreceptor P2X7 in Extracellular ATP-Mediated Inflammation through the Spectrum of Kidney Diseases and Kidney Transplantation. J Am Soc Nephrol 2025:00001751-990000000-00602. [PMID: 40152923 DOI: 10.1681/asn.0000000711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/24/2025] [Indexed: 03/30/2025] Open
Abstract
Extracellular purines not only play a critical role in maintaining a balanced inflammatory response but may also trigger disproportionate inflammation in various kidney pathologies. Extracellular ATP is the most well-characterized inflammatory purine, which serves as a potent extracellular danger-associated molecular pattern ( i.e ., danger-associated molecular pattern). It signals through the P2 purinoreceptors during both acute and chronic kidney damage. The purinoreceptor P2X7 (P2X7R) has been extensively studied in kidney disease because of its potent ability to enhance inflammation by activating the nucleotide-binding oligomerization domain, leucine rich repeat family pyrin domain containing 3 inflammasome in both immune and parenchymal tubular cells and potential role in immunometabolic reprogramming. We will explore how, following a primary insult to the kidney, disturbance of purinergic balance characterized by extracellular ATP-mediated P2X7R activation exacerbates AKI. Second, we will describe how persistent purinergic disbalance promotes a P2X7R-mediated protracted inflammatory reaction leading to the progression of CKD of different etiologies. Finally, we will also highlight the relevant and emerging role of P2X7R signaling in both antigen-presenting cells and adaptive immune cells to modulate cellular and humoral immune responses in kidney transplantation and hypertension. This review underscores that ATP-P2X7R axis is a key driver of pathologic purinergic signaling, representing a largely unexplored but highly promising clinical target against a wide spectrum of kidney diseases.
Collapse
Affiliation(s)
- Juan Miguel Téllez Garcia
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thei Steenvoorden
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Frederike Bemelman
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Marc Hilhorst
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Alessandra Tammaro
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Liffert Vogt
- Department of Internal Medicine Nephrology Section, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Tachibana T, Notomi S, Funatsu J, Fujiwara K, Nakatake S, Murakami Y, Nakao S, Kanamoto T, Ikeda Y, Ishibashi T, Sonoda KH, Hisatomi T. Intraocular kinetics of pathological ATP after photoreceptor damage in rhegmatogenous retinal detachment. Jpn J Ophthalmol 2024:10.1007/s10384-024-01087-x. [PMID: 39060674 DOI: 10.1007/s10384-024-01087-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/29/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Extracellular Adenosine triphosphate (ATP) released by dying cells may cause a secondary cell death in neighboring cells in retinal degeneration. We investigated intraocular ATP kinetics to gain mechanical insights into the pathology in rhegmatogenous retinal detachment (RRD). STUDY DESIGN Retrospective clinical study. METHODS Vitreous or subretinal fluids (SRF) were obtained from patients with RRD (n=75), macular hole (MH; n=20), and epiretinal membrane (ERM; n=35) during vitrectomy. ATP levels in those samples were measured by luciferase assay. RESULTS Mean ATP levels in the vitreous from RRD patients were significantly higher compared to those from MH and ERM patients (2.3 and 0.3 nM, respectively. P<0.01). Mean ATP levels in the SRF from RRD (11.7 nM) were higher than those in the vitreous from RRD (P<0.01). Mean ATP levels in the vitreous with short durations (1-8 days) of RRD were higher compared to those with long durations (>8 days) (3.2 and 1.4 nM, respectively. P<0.05). Similarly, ATP in SRF with short durations were higher than those with long durations (23.8 and 3.6 nM, respectively. P<0.05). Furthermore, the concentrations of ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1), a major ATP degradative enzyme, in the vitreous from RRD were higher than those from MH/ERM (1.2 and 0.2 ng/ml, respectively. P<0.01). ENTPD1 expression was localized in the cytoplasm of CD11b-positive infiltrating cells in the vitreous and retinal cells. CONCLUSION ATP increased in the vitreous and SRF in RRD and decreased over time with an upregulation of ENTPD1. The kinetics indicate the pathological mechanism of the excessive extracellular ATP after RRD.
Collapse
Affiliation(s)
- Takashi Tachibana
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Ohshima Eye Hospital, Fukuoka, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jun Funatsu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohta Fujiwara
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunji Nakatake
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | | | - Yasuhiro Ikeda
- Department of Ophthalmology, Faculty of Medicine, Miyazaki University, Miyazaki, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Fukuoka University Chikushi Hospital, 1-1-1 Zokumyouin, Chikushino, Fukuoka, 818-8502, Japan.
| |
Collapse
|
3
|
Zhang HL, Doblin S, Zhang ZW, Song ZJ, Dinesh B, Tabana Y, Saad DS, Adam Ahmed Adam M, Wang Y, Wang W, Zhang HL, Wu S, Zhao R, Khaled B. Elucidating the molecular basis of ATP-induced cell death in breast cancer: Construction of a robust prognostic model. World J Clin Oncol 2024; 15:208-242. [PMID: 38455130 PMCID: PMC10915939 DOI: 10.5306/wjco.v15.i2.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/10/2023] [Accepted: 01/12/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Breast cancer is a multifaceted and formidable disease with profound public health implications. Cell demise mechanisms play a pivotal role in breast cancer pathogenesis, with ATP-triggered cell death attracting mounting interest for its unique specificity and potential therapeutic pertinence. AIM To investigate the impact of ATP-induced cell death (AICD) on breast cancer, enhancing our understanding of its mechanism. METHODS The foundational genes orchestrating AICD mechanisms were extracted from the literature, underpinning the establishment of a prognostic model. Simultaneously, a microRNA (miRNA) prognostic model was constructed that mirrored the gene-based prognostic model. Distinctions between high- and low-risk cohorts within mRNA and miRNA characteristic models were scrutinized, with the aim of delineating common influence mechanisms, substantiated through enrichment analysis and immune infiltration assessment. RESULTS The mRNA prognostic model in this study encompassed four specific mRNAs: P2X purinoceptor 4, pannexin 1, caspase 7, and cyclin 2. The miRNA prognostic model integrated four pivotal miRNAs: hsa-miR-615-3p, hsa-miR-519b-3p, hsa-miR-342-3p, and hsa-miR-324-3p. B cells, CD4+ T cells, CD8+ T cells, endothelial cells, and macrophages exhibited inverse correlations with risk scores across all breast cancer subtypes. Furthermore, Kyoto Encyclopedia of Genes and Genomes analysis revealed that genes differentially expressed in response to mRNA risk scores significantly enriched 25 signaling pathways, while miRNA risk scores significantly enriched 29 signaling pathways, with 16 pathways being jointly enriched. CONCLUSION Of paramount significance, distinct mRNA and miRNA signature models were devised tailored to AICD, both potentially autonomous prognostic factors. This study's elucidation of the molecular underpinnings of AICD in breast cancer enhances the arsenal of potential therapeutic tools, offering an unparalleled window for innovative interventions. Essentially, this paper reveals the hitherto enigmatic link between AICD and breast cancer, potentially leading to revolutionary progress in personalized oncology.
Collapse
Affiliation(s)
- Hao-Ling Zhang
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Sandai Doblin
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Zhong-Wen Zhang
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Zhi-Jing Song
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Babu Dinesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| | - Dahham Sabbar Saad
- Department of Science, University of Technology and Applied Sciences Rustaq, Rustaq 10 P.C. 329, Oman
| | - Mowaffaq Adam Ahmed Adam
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182, United States
| | - Yong Wang
- Department of Pathology Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Wei Wang
- College of Acupuncture-moxibustion and Tuina, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Hao-Long Zhang
- Universiti Sains Malaysia, Advanced Medical and Dental Institute, Penang 13200, Malaysia
| | - Sen Wu
- Department of Biomedical Science, Universiti Sains Malaysia, Penang 13200, Malaysia
| | - Rui Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, China
| | - Barakat Khaled
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton AB T6G 2E1, Canada
| |
Collapse
|
4
|
Falco MV, Fabbiani G, Maciel C, Valdivia S, Vitureira N, Russo RE. P2X7 receptor activation awakes a dormant stem cell niche in the adult spinal cord. Front Cell Neurosci 2023; 17:1288676. [PMID: 38164435 PMCID: PMC10757934 DOI: 10.3389/fncel.2023.1288676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/03/2024] Open
Abstract
The ependyma of the spinal cord is a latent stem cell niche that is reactivated by injury, generating new cells that migrate to the lesion site to limit the damage. The mechanisms by which ependymal cells are reactivated after injury remain poorly understood. ATP has been proposed to act as a diffusible "danger signal" to alert about damage and start repair. Indeed, spinal cord injury (SCI) generates an increase in extracellular ATP around the lesion epicenter that lasts for several hours and affects the functional outcome after the damage. The P2X7 receptor (P2X7r) has functional properties (e.g., low sensitivity for ATP, high permeability for Ca2+) that makes it a suitable candidate to act as a detector of tissue damage. Because ependymal cells express functional P2X7r that generate an inward current and regenerative Ca2+ waves, we hypothesize that the P2X7r has a main role in the mechanisms by which progenitor-like cells in the ependyma react to tissue damage. To test this possibility, we simulated the P2X7r activation that occurs after SCI by in vivo intraspinal injection of the selective agonist BzATP nearby the central canal. We found that BzATP rescued ependymal cells from quiescence by triggering a proliferative response similar to that generated by injury. In addition, P2X7r activation by BzATP induced a shift of ependymal cells to a glial fibrillary acidic protein (GFAP) phenotype similar to that induced by injury. However, P2X7r activation did not trigger the migration of ependyma-derived cells as occurs after tissue damage. Injection of BzATP induced the expression of connexin 26 (Cx26) in ependymal cells, an event needed for the proliferative reaction after injury. BzATP did not induce these changes in ependymal cells of P2X7-/- mice supporting a specific action on P2X7r. In vivo blockade of P2X7r with the potent antagonist AZ10606120 reduced significantly the injury-induced proliferation of ependymal cells. Our data indicate that P2X7r has a key role in the "awakening" of the ependymal stem cell niche after injury and suggest purinergic signaling is an interesting target to improve the contribution of endogenous progenitors to repair.
Collapse
Affiliation(s)
- María Victoria Falco
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Gabriela Fabbiani
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Cecilia Maciel
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Spring Valdivia
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Nathalia Vitureira
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Raúl E. Russo
- Departamento de Neurofisiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
5
|
Ai Y, Wang H, Liu L, Qi Y, Tang S, Tang J, Chen N. Purine and purinergic receptors in health and disease. MedComm (Beijing) 2023; 4:e359. [PMID: 37692109 PMCID: PMC10484181 DOI: 10.1002/mco2.359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Purines and purinergic receptors are widely distributed throughout the human body. Purine molecules within cells play crucial roles in regulating energy metabolism and other cellular processes, while extracellular purines transmit signals through specific purinergic receptors. The ubiquitous purinergic signaling maintains normal neural excitability, digestion and absorption, respiratory movement, and other complex physiological activities, and participates in cell proliferation, differentiation, migration, and death. Pathological dysregulation of purinergic signaling can result in the development of various diseases, including neurodegeneration, inflammatory reactions, and malignant tumors. The dysregulation or dysfunction of purines and purinergic receptors has been demonstrated to be closely associated with tumor progression. Compared with other subtypes of purinergic receptors, the P2X7 receptor (P2X7R) exhibits distinct characteristics (i.e., a low affinity for ATP, dual functionality upon activation, the mediation of ion channels, and nonselective pores formation) and is considered a promising target for antitumor therapy, particularly in patients with poor response to immunotherapy This review summarizes the physiological and pathological significance of purinergic signaling and purinergic receptors, analyzes their complex relationship with tumors, and proposes potential antitumor immunotherapy strategies from tumor P2X7R inhibition, tumor P2X7R overactivation, and host P2X7R activation. This review provides a reference for clinical immunotherapy and mechanism investigation.
Collapse
Affiliation(s)
- Yanling Ai
- Department of OncologyHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Hengyi Wang
- Department of Infectious DiseasesHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Lu Liu
- School of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Yulin Qi
- Department of OphthalmologyThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Postdoctoral Research Station of Guangzhou University of Chinese MedicineGuangzhouChina
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan ProvinceHospital of Chengdu University of Traditional Chinese MedicineChengduChina
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and EngineeringCollege of Biomedical EngineeringChongqing Medical UniversityChongqingChina
| |
Collapse
|
6
|
P2X7-dependent immune pathways in retinal diseases. Neuropharmacology 2023; 223:109332. [PMID: 36372269 DOI: 10.1016/j.neuropharm.2022.109332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
Adenosine triphosphate (ATP) is a signalling molecule acting as a neurotransmitter but also as a danger signal. The purinergic receptor P2X7 is the main sensor of high concentration of ATP released by damaged cells. In the eye, P2X7 is expressed by resident microglia and immune cells that infiltrate the retina in disease such as age-related macular degeneration (AMD), a degenerative retinal disease, and uveitis, an inflammatory eye disease. Activation of P2X7 is involved in several physiological and pathological processes: phagocytosis, activation of the inflammasome NLRP3, release of pro-inflammatory mediators and cell death. The aim of this review is to discuss the potential involvement of P2X7 in the development of AMD and uveitis.
Collapse
|
7
|
Sekar P, Hsiao G, Chen YS, Lin WW, Chan CM. P2X7 Is Involved in the Mouse Retinal Degeneration via the Coordinated Actions in Different Retinal Cell Types. Antioxidants (Basel) 2023; 12:141. [PMID: 36671003 PMCID: PMC9854982 DOI: 10.3390/antiox12010141] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Adenosine triphosphate (ATP) released from dying cells with high concentrations is sensed as a danger signal by the P2X7 receptor. Sodium iodate (NaIO3) is an oxidative toxic agent, and its retinal toxicity has been used as the model of dry age-related macular degeneration (AMD). In this study, we used NaIO3-treated mice and cultured retinal cells, including BV-2 microglia, 661W photoreceptors, rMC1 Müller cells and ARPE-19 retinal epithelial cells, to understand the pathological action of P2X7 in retinal degeneration. We found that NaIO3 can significantly decrease the photoreceptor function by reducing a-wave and b-wave amplitudes in electroretinogram (ERG) analysis. Optical coherence tomography (OCT) analysis revealed the degeneration of retinal epithelium and ganglion cell layers. Interestingly, P2X7-/- mice were protected from the NaIO3-induced retinopathy and inflammatory NLRP3, IL-1β and IL-6 gene expression in the retina. Hematoxylin and eosin staining indicated that the retinal epithelium was less deteriorated in P2X7-/- mice compared to the WT group. Although P2X7 was barely detected in 661W, rMC1 and ARPE-19 cells, its gene and protein levels can be increased after NaIO3 treatment, leading to a synergistic cytotoxicity of BzATP [2'(3')-O-(4-benzoylbenzoyl)adenosine-5'-triphosphate tri(triethyleneammonium)salt] and NaIO3 administration in ARPE-19 cells. In conclusion, the paracrine action of the ATP/P2X7 axis via cell-cell communication is involved in NaIO3-induced retinal injury. Our results show that P2X7 antagonist might be a potential therapy in inflammation-related retinal degeneration.
Collapse
Affiliation(s)
- Ponarulselvam Sekar
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - George Hsiao
- Department of Pharmacology, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yuan-Shen Chen
- Department of Neurosurgery, National Taiwan University, Yunlin Branch, Yunlin County 640203, Taiwan
| | - Wan-Wan Lin
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| |
Collapse
|
8
|
Hypercholesterolemia Negatively Regulates P2X7-Induced Cellular Function in CD4 + and CD8 + T-Cell Subsets from B6 Mice Fed a High-Fat Diet. Int J Mol Sci 2022; 23:ijms23126730. [PMID: 35743168 PMCID: PMC9223416 DOI: 10.3390/ijms23126730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
We have previously showed that plasma membrane cholesterol and GM1 ganglioside content are responsible for the opposite sensitivity of mouse leukemic T cells to ATP. We also reported that the sensitivity of CD4+ and CD8+ T cells to ATP depends on their stage of differentiation. Here, we show that CD4+ and CD8+ T cells from B6 mice express different levels of membrane GM1 and P2X7 but similar levels of cholesterol. Thus, in CD4+ T cells, membrane cholesterol content negatively correlated with ATP/P2X7-induced CD62L shedding but positively correlated with pore formation, phosphatidylserine externalization, and cell death. By contrast, in CD8+ T cells, cholesterol, GM1, and P2X7 levels negatively correlated with all these ATP/P2X7-induced cellular responses. The relationship between cholesterol and P2X7-induced cellular responses was confirmed by modulating cholesterol levels either ex vivo or through a high-fat diet. Membrane cholesterol enrichment ex vivo led to a significant reduction in all P2X7-induced cellular responses in T cells. Importantly, diet-induced hypercholesterolemia in B6 mice was also associated with decreased sensitivity to ATP in CD4+ and CD8+ T cells, highlighting the relationship between cholesterol intake and the amplitudes of P2X7-induced cellular responses in T cells.
Collapse
|
9
|
Pregnant Women and Endocrine Disruptors: Role of P2X7 Receptor and Mitochondrial Alterations in Placental Cell Disorders. Cells 2022; 11:cells11030495. [PMID: 35159304 PMCID: PMC8834275 DOI: 10.3390/cells11030495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023] Open
Abstract
In pregnant women, the lungs, skin and placenta are exposed daily to endocrine-disrupting chemicals (EDCs). EDCs induce multiple adverse effects, not only on endocrine organs, but also on non-endocrine organs, with the P2X7 cell death receptor being potentially the common key element. Our objective was first to investigate mechanisms of EDCs toxicity in both endocrine and non-endocrine cells through P2X7 receptor activation, and second, to compare the level of activation in lung, skin and placental cells. In addition, apoptosis in placental cells was studied because the placenta is the most exposed organ to EDCs and has essential endocrine functions. A total of nine EDCs were evaluated on three human cell models. We observed that the P2X7 receptor was not activated by EDCs in lung non-endocrine cells but was activated in skin and placenta cells, with the highest activation in placenta cells. P2X7 receptor activation and apoptosis are pathways shared by all tested EDCs in endocrine placental cells. P2X7 receptor activation along with apoptosis induction could be key elements in understanding endocrine placental and skin disorders induced by EDCs.
Collapse
|
10
|
Wong J, Gu BJ, Teoh H, Krupa M, Monif M, Slee M, Wiley JS. Flow Cytometry Identifies an Early Stage of Platelet Apoptosis Produced by Agonists of the P2X1 and P2X7 Receptors. Platelets 2022; 33:621-631. [PMID: 35042433 DOI: 10.1080/09537104.2021.1981844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Platelets express P2X1 receptors and our data also show the expression of P2X7 receptors. We studied the role of both receptors in platelet apoptosis by incubation of PRP with P2X agonists, then centrifuged to remove viable platelets, and analyzed the supernatant by flow cytometry to identify a sparse platelet-derived population that stained with MitoTracker dyes and CD41. BzATP, a potent agonist of P2X receptors, and ABT737, an activator of intrinsic apoptosis, produced altered platelets that stained moderately for annexin V and corresponded to an early stage apoptotic platelet (ESAP). Over a range of BzATP concentrations, we observed a dose-dependent formation of ESAPs between 5 and 500 uM BzATP, together with a variable formation of ESAPs at nanomolar ATP or BzATP (50-200 nM). Production of ESAPs occurred with αβ-meATP, while responses with either BzATP or αβ-meATP showed desensitization at a higher agonist concentration. Formation of ESAPs by either 100 nM or 0.5 mM BzATP was inhibited by preincubation of platelets with latrunculin A, an inhibitor of the actin cytoskeleton that prevents apoptosis. ESAP production was totally inhibited by preincubation of platelets with methyl-beta-cyclodextrin, which removes cholesterol from lipid rafts. Our data show that both P2X1 and P2X7 receptors are localized in platelet lipid rafts where P2X-agonists act to produce early stage apoptotic platelets.
Collapse
Affiliation(s)
- Joelyn Wong
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Harry Teoh
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - Malgorzata Krupa
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - Mastura Monif
- Department of Neurology, Royal Melbourne Hospital, Parkville, Australia.,Department of Neuroscience, Monash University, Clayton, Australia
| | - Mark Slee
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park, Australia
| | - James S Wiley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Haematology Department, Box Hill Hospital, Australia
| |
Collapse
|
11
|
The Tyrosine Phosphatase hPTPRβ Controls the Early Signals and Dopaminergic Cells Viability via the P2X 7 Receptor. Int J Mol Sci 2021; 22:ijms222312936. [PMID: 34884741 PMCID: PMC8657974 DOI: 10.3390/ijms222312936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022] Open
Abstract
ATP, one of the signaling molecules most commonly secreted in the nervous system and capable of stimulating multiple pathways, binds to the ionotropic purinergic receptors, in particular, the P2X7 receptor (P2X7R) and stimulates neuronal cell death. Given this effect of purinergic receptors on the viability of dopaminergic neurons model cells and that Ras GTPases control Erk1/2-regulated mitogen-activated cell proliferation and survival, we have investigated the role of the small GTPases of the Ras superfamily, together with their regulatory and effector molecules as the potential molecular intermediates in the P2X7R-regulated cell death of SN4741 dopaminergic neurons model cells. Here, we demonstrate that the neuronal response to purinergic stimulation involves the Calmodulin/RasGRF1 activation of the small GTPase Ras and Erk1/2. We also demonstrate that tyrosine phosphatase PTPRβ and other tyrosine phosphatases regulate the small GTPase activation pathway and neuronal viability. Our work expands the knowledge on the intracellular responses of dopaminergic cells by identifying new participating molecules and signaling pathways. In this sense, the study of the molecular circuitry of these neurons is key to understanding the functional effects of ATP, as well as considering the importance of these cells in Parkinson’s Disease.
Collapse
|
12
|
P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021; 906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
P2X7 receptor, a purinergic receptor family member, is abundantly expressed on many cells, including immune, muscle, bone, neuron, and glia. It acts as an ATP-activated cation channel that permits the influx of Ca2+, Na+ and efflux of K+ ions. The P2X7 receptor plays crucial roles in many physiological processes including cytokine and chemokine secretion, NLRP3 inflammasome activation, cellular growth and differentiation, locomotion, wound healing, transcription factors activation, cell death and T-lymphocyte survival. Past studies have demonstrated the up-regulation and direct association of this receptor in many pathophysiological conditions such as cancer, diabetics, arthritis, tuberculosis (TB) and inflammatory diseases. Hence, targeting this receptor is considered a worthwhile approach to lessen the afflictions associated with the disorders mentioned above by understanding the receptor architecture and downstream signalling processes. Here, in the present review, we have dissected the structural and functional aspects of the P2X7 receptor, emphasizing its role in various diseased conditions. This information will provide in-depth knowledge about the receptor and help to develop apt curative methodologies for the betterment of humanity in the coming years.
Collapse
|
13
|
Zhang WJ, Luo C, Huang C, Pu FQ, Zhu JF, Zhu ZM. PI3K/Akt/GSK-3β signal pathway is involved in P2X7 receptor-induced proliferation and EMT of colorectal cancer cells. Eur J Pharmacol 2021; 899:174041. [PMID: 33737010 DOI: 10.1016/j.ejphar.2021.174041] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022]
Abstract
P2X7 receptor (P2X7R) plays an important role in regulating the growth of tumor cells. However, the role of P2X7R in colorectal cancer (CRC) has remained poorly understood. Therefore, in this study, in vivo and in vitro experiments were performed to investigate the effect of P2X7R on the proliferation of CRC. The results showed that P2X7R was expressed in CRC cell lines (SW620 and HCT116). ATP and BzATP increased the expression of P2X7R in CRC cells, while the application of P2X7R antagonist A438079 and AZD9056 decreased the P2X7R expression induced by BzATP. Moreover, ATP and BzATP induced the activation of P2X7R to promote the proliferation, migration and invasion of CRC cells. Conversely, A438079, AZD9056 or siRNA transfection targeting P2X7R (siP2X7R) knockdown P2X7R expression inhibited the proliferation and migration of CRC cells. TGF-β1 promoted the migration and invasion of CRC cells, while the application of P2X7R antagonist could inhibit TGF-β1 induced migration of CRC cells. Furthermore, activation of P2X7R increased the expression of Vimentin, Snail, Fibronectin and decreased the expression of E-cadherin. While reducing the expression of P2X7R could inhibit these genes expression. In addition, ATP and BzATP increased the expression of p-Akt, p-GSK-3beta and β-catenin via P2X7R. P13/Akt pathway inhibitor LY294002 inhibited the proliferation of CRC cells, and the P13/Akt signaling was required for BzATP induced the proliferation of CRC cells. Our conclusion is that P2X7R mediated the PI3K/Akt/GSK-3beta signaling to promote the proliferation and EMT of CRC, indicating that P2X7R may be used as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Chen Luo
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Chao Huang
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Fan-Qin Pu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Jin-Feng Zhu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China
| | - Zheng-Ming Zhu
- Gastrointestinal Surgery, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China; Molecular Center Key Laboratory, The Second Affiliated Hospital, Nanchang University, Nanchang City, Jiangxi province, China.
| |
Collapse
|
14
|
Bisphenol A, Bisphenol F, and Bisphenol S: The Bad and the Ugly. Where Is the Good? Life (Basel) 2021; 11:life11040314. [PMID: 33916708 PMCID: PMC8066465 DOI: 10.3390/life11040314] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Bisphenol A (BPA), a reprotoxic and endocrine-disrupting chemical, has been substituted by alternative bisphenols such as bisphenol F (BPF) and bisphenol S (BPS) in the plastic industry. Despite their detection in placenta and amniotic fluids, the effects of bisphenols on human placental cells have not been characterized. Our objective was to explore in vitro and to compare the toxicity of BPA to its substitutes BPF and BPS to highlight their potential risks for placenta and then pregnancy. Methods: Human placenta cells (JEG-Tox cells) were incubated with BPA, BPF, and BPS for 72 h. Cell viability, cell death, and degenerative P2X7 receptor and caspases activation, and chromatin condensation were assessed using microplate cytometry and fluorescence microscopy. Results: Incubation with BPA, BPF, or BPS was associated with P2X7 receptor activation and chromatin condensation. BPA and BPF induced more caspase-1, caspase-9, and caspase-3 activation than BPS. Only BPF enhanced caspase-8 activity. Conclusions: BPA, BPF, and BPS are all toxic to human placental cells, with the P2X7 receptor being a common key element. BPA substitution by BPF and BPS does not appear to be a safe alternative for human health, particularly for pregnant women and their fetuses.
Collapse
|
15
|
Zefferino R, Piccoli C, Di Gioia S, Capitanio N, Conese M. How Cells Communicate with Each Other in the Tumor Microenvironment: Suggestions to Design Novel Therapeutic Strategies in Cancer Disease. Int J Mol Sci 2021; 22:ijms22052550. [PMID: 33806300 PMCID: PMC7961918 DOI: 10.3390/ijms22052550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023] Open
Abstract
Connexin- and pannexin (Panx)-formed hemichannels (HCs) and gap junctions (GJs) operate an interaction with the extracellular matrix and GJ intercellular communication (GJIC), and on account of this they are involved in cancer onset and progression towards invasiveness and metastatization. When we deal with cancer, it is not correct to omit the immune system, as well as neglecting its role in resisting or succumbing to formation and progression of incipient neoplasia until the formation of micrometastasis, nevertheless what really occurs in the tumor microenvironment (TME), which are the main players and which are the tumor or body allies, is still unclear. The goal of this article is to discuss how the pivotal players act, which can enhance or contrast cancer progression during two important process: "Activating Invasion and Metastasis" and the "Avoiding Immune Destruction", with a particular emphasis on the interplay among GJIC, Panx-HCs, and the purinergic system in the TME without disregarding the inflammasome and cytokines thereof derived. In particular, the complex and contrasting roles of Panx1/P2X7R signalosome in tumor facilitation and/or inhibition is discussed in regard to the early/late phases of the carcinogenesis. Finally, considering this complex interplay in the TME between cancer cells, stromal cells, immune cells, and focusing on their means of communication, we should be capable of revealing harmful messages that help the cancer growth and transform them in body allies, thus designing novel therapeutic strategies to fight cancer in a personalized manner.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
- Correspondence: ; Tel.: +39-0881-884673
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (C.P.); (N.C.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (S.D.G.); (M.C.)
| |
Collapse
|
16
|
Kotawong K, Chajaroenkul W, Roytrakul S, Phaonakrop N, Na-Bangchang K. The Proteomics and Metabolomics Analysis for Screening the Molecular Targets of Action of β-Eudesmol in Cholangiocarcinoma. Asian Pac J Cancer Prev 2021; 22:909-918. [PMID: 33773557 PMCID: PMC8286696 DOI: 10.31557/apjcp.2021.22.3.909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE β-eudesmol is the active compound isolated from Atractylodes lancea (Thunb) D.C. The actions of this compound against cholangiocarcinoma (CCA) cells include anti-angiogenesis and anti-cell proliferation and growth. For more understanding of the molecular targets of action of β-eudesmol, the CCA cells (CL-6) were exposed to β-eudesmol for 24 and 48 hours. METHODS Proteins and metabolites from the intra- and extra-cellular components of the CL-6 cells were extracted and identified by LC-MS/MS. Protein analysis was performed using the Venn diagram (protein grouping), PANTHER (gene ontology), and STITCH software (protein-protein interaction). Metabolite analysis including their interactions with proteins, was performed using MetaboAnalyst software. RESULTS The analysis showed that the actions of β-eudesmol were associated with various biological processes particularly apoptosis and cell cycle. These included blood coagulation, wound healing, DNA repair, PI3K-Akt signaling pathway, immune system process, MAPK cascade, urea cycle, purine metabolism, ammonia recycling, and methionine metabolism. CONCLUSION Possible molecular targets of action of β-eudesmol against CL-6 for cell apoptosis induction were TNFRSf6, cytochrome C, BAX3, DHCR24, CD29, and ATP. On the other hand, possible targets for cell cycle arrest induction were CDKN2B, MLF1, TFDP2, CDK11-p110, and nicotinamide.
Collapse
Affiliation(s)
- Kanawut Kotawong
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| | - Wanna Chajaroenkul
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| | - Sittiruk Roytrakul
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Narumon Phaonakrop
- Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Paholyothin Road, Klonglung, Pathumthani Thailand
| |
Collapse
|
17
|
Soare AY, Freeman TL, Min AK, Malik HS, Osota EO, Swartz TH. P2RX7 at the Host-Pathogen Interface of Infectious Diseases. Microbiol Mol Biol Rev 2021; 85:e00055-20. [PMID: 33441488 PMCID: PMC7849353 DOI: 10.1128/mmbr.00055-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The P2X7 receptor (P2RX7) is an important molecule that functions as a danger sensor, detecting extracellular nucleotides from injured cells and thus signaling an inflammatory program to nearby cells. It is expressed in immune cells and plays important roles in pathogen surveillance and cell-mediated responses to infectious organisms. There is an abundance of literature on the role of P2RX7 in inflammatory diseases and the role of these receptors in host-pathogen interactions. Here, we describe the current knowledge of the role of P2RX7 in the host response to a variety of pathogens, including viruses, bacteria, fungi, protozoa, and helminths. We describe in vitro and in vivo evidence for the critical role these receptors play in mediating and modulating immune responses. Our observations indicate a role for P2X7 signaling in sensing damage-associated molecular patterns released by nearby infected cells to facilitate immunopathology or protection. In this review, we describe how P2RX7 signaling can play critical roles in numerous cells types in response to a diverse array of pathogens in mediating pathogenesis and immunity to infectious agents.
Collapse
Affiliation(s)
- Alexandra Y Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracey L Freeman
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alice K Min
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hagerah S Malik
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Elizabeth O Osota
- University of California San Diego, Graduate School of Biomedical Sciences, San Diego, California, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
18
|
Dong Y, Chen Y, Zhang L, Tian Z, Dong S. P2X7 receptor acts as an efficient drug target in regulating bone metabolism system. Biomed Pharmacother 2020; 125:110010. [PMID: 32187957 DOI: 10.1016/j.biopha.2020.110010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Skeletal system is a highly dynamic system going through continuous resorption and reconstruction to maintain homeostasis, which is influenced by numerous factors. Once the balance is disrupted, various kinds of bone diseases may occur such as osteoporosis. It has been well known that ATP (adenosine triphosphate), an important signaling molecule, is important in maintaining the dynamic balance of bone matrix. ATP mainly functions through P2X receptors, a kind of ATP receptors expressed by various kinds of bone cells to regulate the whole network of skeleton system. Among P2X receptors, P2X7 plays a crucial role in bone since P2X7 is widely expressed by bone cells and the mutation of P2X7 receptor is associated with kinds of bone diseases. It's acknowledged that P2X7 acts as a potential therapeutic target for clinical treatment of bone-related diseases but further investigations are needed for the practical application. However, since P2X7 has a complicated effect in many aspects, the exact role of P2X7 in skeleton system is ambiguous. This review discusses the function of P2X7 in bone and other cells and their general effect on skeleton system, especially focusing on the possible clinical application for bone diseases.
Collapse
Affiliation(s)
- Yutong Dong
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China; Battalion one of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Yueqi Chen
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China; Department of Orthopedics, Southwest Hospital, Army medical university, Chongqing, China
| | - Lincheng Zhang
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China; Battalion one of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Zhansong Tian
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China
| | - Shiwu Dong
- Department of Biomedical Materials Science, Army Medical University, Chongqing, China; Department of Orthopedics, Southwest Hospital, Army medical university, Chongqing, China; State Key Laboratory of Trauma, Burns and Combined Injury, Army medical university, Chongqing, China.
| |
Collapse
|
19
|
Rump A, Smolander OP, Rüütel Boudinot S, Kanellopoulos JM, Boudinot P. Evolutionary Origin of the P2X7 C-ter Region: Capture of an Ancient Ballast Domain by a P2X4-Like Gene in Ancient Jawed Vertebrates. Front Immunol 2020; 11:113. [PMID: 32117264 PMCID: PMC7016195 DOI: 10.3389/fimmu.2020.00113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 01/16/2020] [Indexed: 01/31/2023] Open
Abstract
P2X purinergic receptors are extracellular ATP-gated ion channel receptors present on the cell plasma membrane. P2X receptors have been found in Metazoa, fungi, amoebas, and in plants. In mammals, P2X7 is expressed by a large number of cell types and is involved in inflammation and immunity. Remarkably, P2X7 does not desensitize as other P2X do, a feature linked to a “C-cysteine anchor” intra-cytoplasmic motif encoded by exon 11. Another specific feature of P2X7 is its C-terminal cytoplasmic ballast domain (exon 13) which contains a zinc (Zn) coordinating cysteine motif and a GDP-binding region. To determine the origin of P2X7, we analyzed and compared sequences and protein motifs of the C-terminal intra-cytoplasmic region across all main groups of Metazoa. We identified proteins with typical ballast domains, sharing a remarkably conserved Zn-coordinating cysteine motif. Apart from vertebrates, these ballast domains were not associated with a typical P2X architecture. These results strongly suggest that P2X7 resulted from the fusion of a P2X gene, highly similar to P2X4, with an exon encoding a ballast domain. Our work brings new evidence on the origin of the P2X7 purinergic receptor and identifies the Zn-coordinating cysteine domain as the fundamental feature of the ancient ballast fold.
Collapse
Affiliation(s)
- Airi Rump
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Olli Pekka Smolander
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Sirje Rüütel Boudinot
- Immunology Unit, Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Jean M Kanellopoulos
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pierre Boudinot
- Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, Jouy en Josas, France
| |
Collapse
|
20
|
Zhang X, Liu Z, Li C, Zhang Y, Wang L, Wei J, Qin Q. Characterization of orange-spotted grouper (Epinephelus coioides) ASC and caspase-1 involved in extracellular ATP-mediated immune signaling in fish. FISH & SHELLFISH IMMUNOLOGY 2020; 97:58-71. [PMID: 31837409 DOI: 10.1016/j.fsi.2019.12.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Apoptosis-associated speck-like protein containing a CARD domain (ASC) is a critical adaptor molecule in multiple inflammasome protein complexes that mediate inflammation and host defense. Caspase-1 is a member of inflammatory caspases that play important roles in the innate immune system. However, few studies have been performed in lower vertebrates such as teleosts and implications of extracellular ATP-mediated immune signalling in fish. Here we identified and characterized novel ASC and caspase-1 genes (namely EcASC and EcCaspase-1) from the orange-spotted grouper (Epinephelus coioides). EcASC and EcCaspase-1 encode 204- and 388-aa proteins which shared 55.34% and 72.89% identity with those in Siniperca chuatsi and Perca flavescens, respectively. EcASC contained a PYRIN domain (aa 5-82) and CARD domain (aa 107-201). EcCaspase1 contained a CARD domain (aa 1-88) and a CASc domain (aa 127-376). Both EcASC and EcCaspase-1 were distributed in all tissues tested in the healthy grouper. The expression of EcASC and EcCaspase-1 was significantly upregulated in response to ATP infection. Subcellular localization analysis showed that EcCaspase-1 exhibited a clear distribution in both cytoplasm and nucleus. In contrast, EcASC was observed in the cytoplasm as speck-like structures, which are called "pyroptosomes". EcCaspase-1 co-localized with the spot-like protein (EcASC). Overexpression of EcASC and EcCaspase-1 inhibited NF-κB activation and promoted P53 activation in grouper spleen (GS) cells. Extracellular ATP was an effective signaling molecule that activates the innate immune response, rapidly upregulating the expression of EcASC and EcCaspase1, and enhancing their promotion of proinflammatory cytokine expression in GS cells. Both EcASC and EcCaspase-1 promoted ATP-induced apoptosis. Our results suggested that the interactions of inflammatory EcCaspase-1 with EcASC proteins were associated with extracellular ATP-mediated immune signaling in fish.
Collapse
Affiliation(s)
- Xin Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zetian Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chen Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ya Zhang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Liqun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingguang Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
21
|
Skarratt KK, Gu BJ, Lovelace MD, Milligan CJ, Stokes L, Glover R, Petrou S, Wiley JS, Fuller SJ. A P2RX7 single nucleotide polymorphism haplotype promotes exon 7 and 8 skipping and disrupts receptor function. FASEB J 2020; 34:3884-3901. [PMID: 32003498 DOI: 10.1096/fj.201901198rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022]
Abstract
P2X7 is an ATP-gated membrane ion channel that is expressed by multiple cell types. Brief exposure to ATP induces the opening of a nonselective cation channel; while repeated or prolonged exposure induces formation of a transmembrane pore. This process may be partially regulated by alternative splicing of full-length P2RX7A pre-mRNA, producing isoforms that delete or retain functional domains. Here, we report cloning and expression of a novel P2RX7 splice variant, P2RX7L, that is, characterized by skipping of exons 7 and 8. In HEK 293 cells, expression of P2RX7L produces a protein isoform, P2X7L, that forms a heteromer with P2X7A. A haplotype defined by six single nucleotide polymorphisms (SNPs) (rs208307, rs208306, rs36144485, rs208308, rs208309, and rs373655596) promotes allele-specific alternative splicing, increasing mRNA levels of P2RX7L and another isoform, P2RX7E, which in addition has a truncated C-terminus. Skipping of exons 7 and 8 is predicted to delete critical amino acids in the ATP-binding site. P2X7L-transfected HEK 293 cells have phagocytic but not channel, pore, or membrane-blebbing function, and double-transfected P2X7L and P2X7A cells have reduced pore function. Heteromeric receptor complexes of P2X7A and P2X7L are predicted to have reduced numbers of ATP-binding sites, which potentially alters receptor function compared to homomeric P2X7A complexes.
Collapse
Affiliation(s)
- Kristen K Skarratt
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| | - Ben J Gu
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael D Lovelace
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| | - Carol J Milligan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Leanne Stokes
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia.,School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Rachel Glover
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - James S Wiley
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Fuller
- Department of Medicine, Sydney Medical School Nepean, Faculty of Medicine and Health, The University of Sydney, Kingswood, NSW, Australia
| |
Collapse
|
22
|
Aghaei M, KhanAhmad H, Aghaei S, Ali Nilforoushzadeh M, Mohaghegh MA, Hejazi SH. The role of Bax in the apoptosis of Leishmania-infected macrophages. Microb Pathog 2019; 139:103892. [PMID: 31778755 DOI: 10.1016/j.micpath.2019.103892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 10/30/2019] [Accepted: 11/23/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Leishmania is a protozoan parasite that nests in macrophages and is responsible for the Leishmaniasis disease. In spite of different defense pathways, last strategy of macrophage for killing parasite is apoptosis process. By permeableizing the mitochondrial outer membrane (MOM). As breaching MOM releases apoptogenic factors like cytochrome-c which activate caspases that result in the destruction of the cell. In this review, we summarized the appropriate manuscripts regarding the bax includes, its different types and the effect of bax on the apoptosis of Leishmania and parasite-infected macrophages. METHODS Information about the role of BAX in the apoptosis of parasite-infected macrophage of recent articles were surveyed by searching computerized bibliographic database PubMed and Google Scholar entering the keywords BAX and leishmaniasis. RESULTS The common studies revealed Leishmania use different survival strategies for inhibiting macrophage apoptosis. As Leishmania by preventing homooligomerization or upregulating the anti-apoptotic molecule Bcl-2 can prohibits proteins of host-cell apoptosis such as Bax that is required for mitochondrial permeabilisation during apoptosis. CONCLUSION With regard to the supportive role of bax in apoptosis and the preventive role of Leishmania in its function, it seems that expression of bax gene in parasite by technologies like transgenic or down regulating of anti-apoptotic molecule Bcl-2 by miRNA could be prompted the apoptosis process of infected-macrophages and inhibited extensive spread of Leishmania and the resulting lesions.
Collapse
Affiliation(s)
- Maryam Aghaei
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein KhanAhmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shahrzad Aghaei
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Mohammad-Ali Mohaghegh
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Seyed Hossein Hejazi
- Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Skin Disease and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
23
|
Mendes CE, Palombit K, Tavares-de-Lima W, Castelucci P. Enteric glial cells immunoreactive for P2X7 receptor are affected in the ileum following ischemia and reperfusion. Acta Histochem 2019; 121:665-679. [PMID: 31202513 DOI: 10.1016/j.acthis.2019.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
Abstract
The aim of this study was to analyze the effect of ischemia and reperfusion injury (IS) on enteric glial cells (EGCs) and neurons immunoreactive for the P2X7 receptor. Intestinal ischemia was induced by obstructing blood flow in the ileal vessels for 35 min. Afterwards, the vessels were reperfused for 14 days. Tissues were prepared for immunohistochemical labeling of P2X7 receptor, HuC/D (Hu) (pan-neuronal marker) and S100β (glial marker); HuC/D (Hu) and glial fibrillary acidic protein (GFAP, glial marker)/DAPI (nuclear marker); or S100β and GFAP/DAPI. Qualitative and quantitative analyses of colocalization, density, profile area and cell proliferation were performed via fluorescence and confocal laser scanning microscopy. The quantitative analyses revealed that a) neurons and EGCs were immunoreactive for P2X7 receptor; b) the P2X7 receptor immunoreactive cells and Hu immunoreactive neurons were reduced after 0 h and 14 days of reperfusion; c) the S100β and GFAP immunoreactive EGCs were increased; d) the profile area of S100β immunoreactive EGCs was increased by IS; e) few GFAP immunoreactive proliferated at 14 days of reperfusion; f) distinct populations of glial cells can be discerned: S100β+/GFAP+ cells, S100β+/GFAP- cells and S100β-/GFAP + cells; g) histological analysis revealed less alterations in the epithelium cells in the IS groups and h) myeloperoxidase reaction revealed increased of the neutrophils in the lamina propria in the IS groups. This study showed that IS is associated with significant neuronal loss, increase of glial cells and altered purinergic receptor expression and that these changes may contribute to intestinal disorders.
Collapse
|
24
|
Li S, Li J, Peng W, Hao G, Sun J. Characterization of the responses of the caspase 2, 3, 6 and 8 genes to immune challenges and extracellular ATP stimulation in the Japanese flounder (Paralichthys olivaceus). BMC Vet Res 2019; 15:20. [PMID: 30621683 PMCID: PMC6325855 DOI: 10.1186/s12917-018-1763-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 12/26/2018] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Caspases are a family of conserved intracellular cysteine-dependent aspartate-specific cysteine proteases that play important roles in regulating cell death and inflammation. Our previous study revealed the importance of the inflammatory caspase 1 gene in extracellular ATP-mediated immune signaling in Japanese flounder, Paralichthys olivaceus. To explore the potential roles of other caspases in P. olivaceus innate immunity, we extended our study by characterizing of the responses of four additional P. olivaceus caspase genes, termed JfCaspase 2, 3, 6 and 8, to inflammatory challenge and extracellular ATP stimulation. RESULTS Sequence analysis revealed that the domain structures of all the Japanese flounder caspase proteins are evolutionarily conserved. Quantitative real-time PCR analysis showed that the JfCaspase 2, 3, 6 and 8 genes were expressed ubiquitously but at unequal levels in all examined Japanese flounder normal tissues. In addition, the basal gene expression levels of JfCaspase 2, 3, 6 and 8 were higher than those of JfCaspase 1 in both Japanese flounder head kidney macrophages (HKMs) and peripheral blood leukocytes (PBLs). Furthermore, immune challenge experiments showed that the inflammatory stimuli LPS and poly(I:C) significantly modulated the expression of the JfCaspase 2, 3, 6 and 8 genes in Japanese flounder immune cells. Finally, DNA fragmentation, associated with increased extracellular ATP-induced JfCaspase 2, 3, 6 and 8 gene expression and enzymatic activity, was inhibited by the caspase inhibitor Z-VAD-FMK in the HKMs. CONCLUSION Our findings demonstrate broad participation of multiple caspase genes in response to inflammatory stimulation in Japanese flounder immune cells and provide new evidence for the involvement of caspase(s) in extracellular ATP-induced apoptosis in fish.
Collapse
Affiliation(s)
- Shuo Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Jiafang Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Weijiao Peng
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Gaixiang Hao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| | - Jinsheng Sun
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, 393 West Binshui Road, Tianjin, 300387 Xiqing District China
| |
Collapse
|
25
|
Mellouk A, Bobé P. CD8 +, but not CD4 + effector/memory T cells, express the CD44 highCD45RB high phenotype with aging, which displays reduced expression levels of P2X 7 receptor and ATP-induced cellular responses. FASEB J 2018; 33:3225-3236. [PMID: 30383448 DOI: 10.1096/fj.201800867r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previously we reported that the sensitivity of CD4+ T cells to ATP does not depend on P2X7 receptor (P2X7R) expression levels but on their activation and differentiation stages. Therefore, here we have investigated a potential relationship between the sensitivity of CD8+ T cells to ATP and their stages of differentiation. Thus, the CD8+ subpopulation exhibits a drastically reduced sensitivity to ATP with aging, which parallels the strong increase of an effector/memory CD8+ subset expressing high levels of CD44 cell adhesion molecule and CD45RB transmembrane phosphatase (CD44hiCD45RBhi). Using l-selectin/CD62L, CC-chemokine receptor 7, and CD127/IL-7 receptor-α markers, we showed that effector/memory CD8+ T cells belong to a central or effector memory subset. In contrast, the CD44hiCD45RBhi effector/memory subset is absent or poorly expressed in the CD4+ T subpopulation regardless of age. While ATP treatment can trigger channel and pore formation, CD62L shedding, phosphatidylserine exposure, and cell death in the CD44loCD45RBhi-naive CD8+ subset, it is unable to induce these cellular activities in the CD44hiCD45RBhi effector/memory CD8+ subset. Importantly, both CD44loCD45RBhi-naive and CD44hiCD45RBhi effector/memory subsets express similar low levels of P2X7R, demonstrating that the sensitivity of CD8+ T cells to ATP depends on the stage of differentiation instead of P2X7R expression levels.-Mellouk, A., Bobé, P. CD8+, but not CD4+ effector/memory T cells, express the CD44highCD45RBhigh phenotype with aging, which displays reduced expression levels of P2X7 receptor and ATP-induced cellular responses.
Collapse
Affiliation(s)
- Amine Mellouk
- INSERM, Université Paris-Sud, Université Paris-Saclay, Unité Mixte de Recherche (UMR) 1174, Orsay, France
| | - Pierre Bobé
- INSERM, Université Paris-Sud, Université Paris-Saclay, Unité Mixte de Recherche (UMR) 1174, Orsay, France
| |
Collapse
|
26
|
Szepesi Z, Manouchehrian O, Bachiller S, Deierborg T. Bidirectional Microglia-Neuron Communication in Health and Disease. Front Cell Neurosci 2018; 12:323. [PMID: 30319362 PMCID: PMC6170615 DOI: 10.3389/fncel.2018.00323] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022] Open
Abstract
Microglia are ramified cells that exhibit highly motile processes, which continuously survey the brain parenchyma and react to any insult to the CNS homeostasis. Although microglia have long been recognized as a crucial player in generating and maintaining inflammatory responses in the CNS, now it has become clear, that their function are much more diverse, particularly in the healthy brain. The innate immune response and phagocytosis represent only a little segment of microglia functional repertoire that also includes maintenance of biochemical homeostasis, neuronal circuit maturation during development and experience-dependent remodeling of neuronal circuits in the adult brain. Being equipped by numerous receptors and cell surface molecules microglia can perform bidirectional interactions with other cell types in the CNS. There is accumulating evidence showing that neurons inform microglia about their status and thus are capable of controlling microglial activation and motility while microglia also modulate neuronal activities. This review addresses the topic: how microglia communicate with other cell types in the brain, including fractalkine signaling, secreted soluble factors and extracellular vesicles. We summarize the current state of knowledge of physiological role and function of microglia during brain development and in the mature brain and further highlight microglial contribution to brain pathologies such as Alzheimer’s and Parkinson’s disease, brain ischemia, traumatic brain injury, brain tumor as well as neuropsychiatric diseases (depression, bipolar disorder, and schizophrenia).
Collapse
Affiliation(s)
- Zsuzsanna Szepesi
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oscar Manouchehrian
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sara Bachiller
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Tomas Deierborg
- Experimental Neuroinflammation Laboratory, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Safya H, Mellouk A, Legrand J, Le Gall SM, Benbijja M, Kanellopoulos-Langevin C, Kanellopoulos JM, Bobé P. Variations in Cellular Responses of Mouse T Cells to Adenosine-5'-Triphosphate Stimulation Do Not Depend on P2X7 Receptor Expression Levels but on Their Activation and Differentiation Stage. Front Immunol 2018. [PMID: 29535730 PMCID: PMC5835135 DOI: 10.3389/fimmu.2018.00360] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A previous report has shown that regulatory T cells (Treg) were markedly more sensitive to adenosine-5′-triphosphate (ATP) than conventional T cells (Tconv). Another one has shown that Tregs and CD45RBlow Tconvs, but not CD45RBhigh Tconvs, displayed similar high sensitivity to ATP. We have previously reported that CD45RBlow Tconvs expressing B220/CD45RABC molecules in a pre-apoptotic stage are resistant to ATP stimulation due to the loss of P2X7 receptor (P2X7R) membrane expression. To gain a clearer picture on T-cell sensitivity to ATP, we have quantified four different cellular activities triggered by ATP in mouse T cells at different stages of activation/differentiation, in correlation with levels of P2X7R membrane expression. P2X7R expression significantly increases on Tconvs during differentiation from naive CD45RBhighCD44low to effector/memory CD45RBlowCD44high stage. Maximum levels of upregulation are reached on recently activated CD69+ naive and memory Tconvs. Ectonucleotidases CD39 and CD73 expression levels increase in parallel with those of P2X7R. Recently activated CD69+ CD45RBhighCD44low Tconvs, although expressing high levels of P2X7R, fail to cleave homing receptor CD62L after ATP treatment, but efficiently form pores and externalize phosphatidylserine (PS). In contrast, naive CD45RBhighCD44low Tconvs cleave CD62L with high efficiency although they express a lower level of P2X7, thus suggesting that P2X7R levels are not a limiting factor for signaling ATP-induced cellular responses. Contrary to common assumption, P2X7R-mediated cellular activities in mouse Tconvs are not triggered in an all-or-none manner, but depend on their stage of activation/differentiation. Compared to CD45RBlow Tconvs, CD45RBlowFoxp3+ Tregs show significantly higher levels of P2X7R membrane expression and of sensitivity to ATP as evidenced by their high levels of CD62L shedding, pore formation and PS externalization observed after ATP treatment. In summary, the different abilities of ATP-treated Tconvs to form pore or cleave CD62L depending on their activation and differentiation state suggests that P2X7R signaling varies according to the physiological role of T convs during antigen activation in secondary lymphoid organs or trafficking to inflammatory sites.
Collapse
Affiliation(s)
- Hanaa Safya
- UMR1174, INSERM, Université Paris-Sud, Orsay, France
| | - Amine Mellouk
- UMR1174, INSERM, Université Paris-Sud, Orsay, France
| | - Julie Legrand
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| | - Sylvain M Le Gall
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France.,UMR 970, INSERM, Université Paris Descartes, Paris, France
| | - Mohcine Benbijja
- Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France.,UMR 1012, INSERM, Université Paris-Sud, Le Kremlin Bicêtre, France
| | | | | | - Pierre Bobé
- UMR1174, INSERM, Université Paris-Sud, Orsay, France.,Institut André Lwoff, CNRS, Université Paris-Sud, Villejuif, France
| |
Collapse
|
28
|
Zhou Y, Tan CY, Mo ZJ, Gao QL, He D, Li J, Huang RF, Li YB, Guo CF, Guo Q, Wang LJ, Yang GT, Zhang HQ. P2X7 receptor in spinal tuberculosis: Gene polymorphisms and protein levels in Chinese Han population. INFECTION GENETICS AND EVOLUTION 2017; 57:138-144. [PMID: 29158203 DOI: 10.1016/j.meegid.2017.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/11/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Spinal tuberculosis (TB) accounts for 1%-5% of all TB infections. Host genetic variation influences susceptibility to Mycobacterium tuberculosis (MTB). P2X7 receptor (P2X7R) expressed on cells has been identified as a regulatory molecule in cell death/apoptosis, killing of intercellular pathogens, and bone turnover. This study investigated the P2X7 gene polymorphisms and protein levels in spinal TB. P2X7 gene -762C>T and 489C>T polymorphisms were genotyped. The expression of P2X7R in bone or intervertebral disc (ID) tissues was analyzed by Western blot assay. The -762C>T and 489C>T polymorphisms were associated with susceptibility to spinal TB. Having the -762CC genotype and -762C allele increased the risk of developing spinal TB (CC vs. TT: P=0.031, OR [95%CI]=1.865 [1.053-3.304]; C vs. T: P=0.028, OR [95%CI]=1.355 [1.034-1.775]). The presence of the 489T allele was associated with an increased risk of developing spinal TB (TT vs. CC: P=0.004, OR [95%CI]=2.248 [1.283-3.939]; CT vs. CC: P=0.044, OR [95%CI]=1.755 [1.011-3.047]; T vs. C: P=0.004, OR [95%CI]=1.482 [1.134-1.936]; TT+CT vs. CC: P=0.010, OR [95%CI]=1.967 [1.171-3.304]; TT vs. CT+CC: P=0.037, OR [95%CI]=1.489 [1.023-2.167]). The expression of P2X7R in TB-induced bone lesions increased significantly among spinal TB patients (t=0.011). Carrying the P2X7 -762CC genotype and 489T allele is associated with an increased risk of developing spinal TB in a Southern Chinese Han population.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Laboratory Medicine, The People's Hospital of Guangxi Autonomous Region, Nanning, China
| | - Chun-Yan Tan
- Department of Laboratory Medicine, The People's Hospital of Guangxi Autonomous Region, Nanning, China
| | - Zhi-Jiang Mo
- Department of Pharmacy, The People's Hospital of Guangxi Autonomous Region, Nanning, China
| | - Qi-le Gao
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China.
| | - Dan He
- Department of Neurology, The First Hospital of Changsha, Changsha, China
| | - Jiong Li
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Rong-Fu Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Yan-Bing Li
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Chao-Feng Guo
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Qiang Guo
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Long-Jie Wang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Guan-Teng Yang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Qi Zhang
- Department of Spine Surgery, Xiangya Spinal Surgery Center, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Olivier E, Dutot M, Regazzetti A, Laprévote O, Rat P. 25-Hydroxycholesterol induces both P2X7-dependent pyroptosis and caspase-dependent apoptosis in human skin model: New insights into degenerative pathways. Chem Phys Lipids 2017; 207:171-178. [DOI: 10.1016/j.chemphyslip.2017.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 02/06/2023]
|
30
|
Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 Receptor in Infection and Inflammation. Immunity 2017; 47:15-31. [PMID: 28723547 DOI: 10.1016/j.immuni.2017.06.020] [Citation(s) in RCA: 875] [Impact Index Per Article: 109.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/14/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Adenosine triphosphate (ATP) accumulates at sites of tissue injury and inflammation. Effects of extracellular ATP are mediated by plasma membrane receptors named P2 receptors (P2Rs). The P2R most involved in inflammation and immunity is the P2X7 receptor (P2X7R), expressed by virtually all cells of innate and adaptive immunity. P2X7R mediates NLRP3 inflammasome activation, cytokine and chemokine release, T lymphocyte survival and differentiation, transcription factor activation, and cell death. Ten human P2RX7 gene splice variants and several SNPs that produce complex haplotypes are known. The P2X7R is a potent stimulant of inflammation and immunity and a promoter of cancer cell growth. This makes P2X7R an appealing target for anti-inflammatory and anti-cancer therapy. However, an in-depth knowledge of its structure and of the associated signal transduction mechanisms is needed for an effective therapeutic development.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | - Diego Dal Ben
- School of Pharmacy, University of Camerino, Camerino, Italy
| | - Alba Clara Sarti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Anna Lisa Giuliani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
31
|
Figliuolo VR, Savio LEB, Safya H, Nanini H, Bernardazzi C, Abalo A, de Souza HSP, Kanellopoulos J, Bobé P, Coutinho CMLM, Coutinho-Silva R. P2X7 receptor promotes intestinal inflammation in chemically induced colitis and triggers death of mucosal regulatory T cells. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1183-1194. [PMID: 28286160 DOI: 10.1016/j.bbadis.2017.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 03/05/2017] [Indexed: 12/13/2022]
Abstract
P2X7 receptor activation contributes to inflammation development in different pathologies. We previously reported that the P2X7 receptor is over-expressed in the gut mucosa of patients with inflammatory bowel disease, and that P2X7 inhibition protects against chemically induced colitis. Here, we investigated in detail the role of the P2X7 receptor in inflammatory bowel disease development, by treating P2X7 knockout (KO) and WT mice with two different (and established) colitis inductors. P2X7 KO mice were protected against gut inflammation induced by 2,4,6-trinitrobenzenesulfonic acid or oxazolone, with no weight loss or gut histological alterations after treatment. P2X7 receptor knockout induced regulatory T cell accumulation in the colon, as evaluated by qRT-PCR for FoxP3 expression and immunostaining for CD90/CD45RBlow. Flow cytometry analysis of mesenteric lymph node cells showed that P2X7 activation (by ATP) triggered regulatory T cell death. In addition, such cells from P2X7 KO mice expressed more CD103, suggesting increased migration of regulatory T cells to the colon (relative to the WT). Our results show that the P2X7 has a key role during inflammation development in inflammatory bowel disease, by triggering the death and retention in the mesenteric lymph nodes of regulatory T cells that would otherwise promote immune system tolerance in the gut.
Collapse
Affiliation(s)
- Vanessa R Figliuolo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil; Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | - Hanaa Safya
- Interactions Cellulaires et Physiopathologie Hépatique, UMRS 1174 INSERM, Université Paris Sud, Orsay, France; Centre de la recherche sur l'inflammation, UMR 1149 INSERM, Université Paris Diderot, Paris, France
| | - Hayandra Nanini
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Cláudio Bernardazzi
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Alessandra Abalo
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Heitor S P de Souza
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Jean Kanellopoulos
- Institut de Biologie intégrative de la cellule, Centre National de la Recherche Scientifique, I2BC - CNRS/UMR9198, Université Paris-Sud, Orsay, France
| | - Pierre Bobé
- Interactions Cellulaires et Physiopathologie Hépatique, UMRS 1174 INSERM, Université Paris Sud, Orsay, France
| | - Cláudia M L M Coutinho
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil; Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Robson Coutinho-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
32
|
Ye X, Shen T, Hu J, Zhang L, Zhang Y, Bao L, Cui C, Jin G, Zan K, Zhang Z, Yang X, Shi H, Zu J, Yu M, Song C, Wang Y, Qi S, Cui G. Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp Neurol 2017; 292:46-55. [DOI: 10.1016/j.expneurol.2017.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/19/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022]
|
33
|
McLarnon JG. Roles of purinergic P2X 7 receptor in glioma and microglia in brain tumors. Cancer Lett 2017; 402:93-99. [PMID: 28536012 DOI: 10.1016/j.canlet.2017.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/19/2017] [Accepted: 05/02/2017] [Indexed: 01/25/2023]
Abstract
This review considers evidence suggesting that activation of the ionotropic purinergic receptor P2X7 (P2X7R) is a contributing factor in the growth of brain tumors. Importantly, expression of P2X7R may be upregulated in both glioma cells and in immune responding microglial cells with possible differential effects on tumor progression. The recruitment of immune cells into tumor regions may not only be involved in supporting an immunosuppressive environment aiding tumor growth but activated microglia could secrete inflammatory factors promoting neoangiogenesis in expanding tumors. The subtype P2X7R exhibits a number of unique properties including activation of the receptor in pathological conditions associated with developing brain tumors. In particular, the tumor microenvironment includes elevated levels of ATP required for activation of P2X7R and the sustained tumor and immune cell P2X7R-mediated responses which in total contribute to overall tumor growth and viability. Studies on cultured rat and human glioma show marked increases in expression of P2X7R and enhanced cell mobility relative to control. Glioma cell animal models demonstrate enhanced expression of P2X7R in both glioma and microglia with antagonism of receptor showing differential effects on tumor growth. Overall, P2X7R activation is associated with a complexity of modulatory actions on tumor growth in part due to ubiquitous expression of the receptor in glioma and immune responsive cells.
Collapse
Affiliation(s)
- James G McLarnon
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, 2176 Health Sciences Mall, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
34
|
The Role of the P2X7 Receptor in Ocular Stresses: A Potential Therapeutic Target. Vision (Basel) 2017; 1:vision1020014. [PMID: 31740640 PMCID: PMC6835678 DOI: 10.3390/vision1020014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/10/2017] [Accepted: 05/14/2017] [Indexed: 01/30/2023] Open
Abstract
The P2X7 receptor is expressed in both anterior and posterior segments of the eyeball. In the ocular surface, the P2X7 receptor is activated in case of external aggressions: preservatives and surfactants induce the activation of P2X7 receptors, leading to either apoptosis, inflammation, or cell proliferation. In the retina, the key endogenous actors of age-related macular degeneration, diabetic retinopathy, and glaucoma act through P2X7 receptors’ activation and/or upregulation of P2X7 receptors’ expression. Different therapeutic strategies aimed at the P2X7 receptor exist. P2X7 receptor antagonists, such as divalent cations and Brilliant Blue G (BBG) could be used to target either the ocular surface or the retina, as long as polyunsaturated fatty acids may exert their effects through the disruption of plasma membrane lipid rafts or saffron that reduces the response evoked by P2X7 receptor stimulation. Treatments against P2X7 receptor activation are proposed by using either eye drops or food supplements.
Collapse
|
35
|
Osgood MJ, Sexton K, Voskresensky I, Hocking K, Song J, Komalavilas P, Brophy C, Cheung-Flynn J. Use of Brilliant Blue FCF during vein graft preparation inhibits intimal hyperplasia. J Vasc Surg 2017; 64:471-478. [PMID: 27763268 DOI: 10.1016/j.jvs.2015.02.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/13/2015] [Indexed: 10/21/2022]
Abstract
BACKGROUND Intimal hyperplasia remains the primary cause of vein graft failure for the 1 million yearly bypass procedures performed using human saphenous vein (HSV) grafts. This response to injury is caused in part by the harvest and preparation of the conduit. The use of Brilliant Blue FCF (FCF) restores injury-induced loss of function in vascular tissues possibly via inhibition of purinergic receptor signaling. This study investigated whether pretreatment of the vein graft with FCF prevents intimal hyperplasia. METHODS Cultured rat aortic smooth muscle cells (A7r5) were used to determine the effect of FCF on platelet-derived growth factor-mediated migration and proliferation, cellular processes that contribute to intimal hyperplasia. The effectiveness of FCF treatment during the time of explantation on preventing intimal hyperplasia was evaluated in a rabbit jugular-carotid interposition model and in an organ culture model using HSV. RESULTS FCF inhibited platelet-derived growth factor-induced migration and proliferation of A7r5 cells. Treatment with FCF at the time of vein graft explantation inhibited the subsequent development of intimal thickening in the rabbit model. Pretreatment with FCF also prevented intimal thickening of HSV in organ culture. CONCLUSIONS Incorporation of FCF as a component of vein graft preparation at the time of explantation represents a potential therapeutic approach to mitigate intimal hyperplasia, reduce vein graft failure, and improve outcome of the autologous transplantation of HSV.
Collapse
Affiliation(s)
| | - Kevin Sexton
- Department of Surgery, Vanderbilt University, Nashville, Tenn
| | | | - Kyle Hocking
- Department of Surgery, Vanderbilt University, Nashville, Tenn; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tenn
| | - Jun Song
- Department of Surgery, Vanderbilt University, Nashville, Tenn
| | - Padmini Komalavilas
- Department of Surgery, Vanderbilt University, Nashville, Tenn; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tenn
| | - Colleen Brophy
- Department of Surgery, Vanderbilt University, Nashville, Tenn; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tenn
| | | |
Collapse
|
36
|
Wang J, Liu S, Nie Y, Wu B, Wu Q, Song M, Tang M, Xiao L, Xu P, Tan X, Zhang L, Li G, Liang S, Zhang C. Activation of P2X7 receptors decreases the proliferation of murine luteal cells. Reprod Fertil Dev 2017; 27:1262-71. [PMID: 25782073 DOI: 10.1071/rd14381] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
Extracellular ATP regulates cellular function in an autocrine or paracrine manner through activating purinergic signalling. Studies have shown that purinergic receptors were expressed in mammalian ovaries and they have been proposed as an intra-ovarian regulatory mechanism. P2X7 was expressed in porcine ovarian theca cells and murine and human ovarian surface epithelium and is involved in ATP-induced apoptotic cell death. However, the role of P2X7 in corpus luteum is still unclear. The aim of this study was to investigate the role of ATP signalling in murine luteal cells and the possible mechanism(s) involved. We found that P2X7 was highly expressed in murine small luteal cells. The agonists of P2X7, ATP and BzATP, inhibited the proliferation of luteal cells. P2X7 antagonist BBG reversed the inhibition induced by ATP and BzATP. Further studies showed that ATP and BzATP inhibited the expression of cell cycle regulators cyclinD2 and cyclinE2. ATP and BzATP also inhibited the p38-mitogen-activated protein kinase (MAPK) signalling pathway. These results reveal that P2X7 receptor activation is involved in corpus luteum formation and function.
Collapse
Affiliation(s)
- Jing Wang
- Department of Microbiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Yijun Nie
- The First Affiliated Hospital, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Qin Wu
- Department of Physiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Miaomiao Song
- Department of Physiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Min Tang
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Li Xiao
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Ping Xu
- School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Ximin Tan
- School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Luyin Zhang
- School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Gang Li
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Shangdong Liang
- Department of Physiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
37
|
Leyva-Grado VH, Ermler ME, Schotsaert M, Gonzalez MG, Gillespie V, Lim JK, García-Sastre A. Contribution of the Purinergic Receptor P2X7 to Development of Lung Immunopathology during Influenza Virus Infection. mBio 2017; 8:e00229-17. [PMID: 28351919 PMCID: PMC5371412 DOI: 10.1128/mbio.00229-17] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/09/2017] [Indexed: 12/28/2022] Open
Abstract
An exacerbated immune response is one of the main causes of influenza-induced lung damage during infection. The molecular mechanisms regulating the fate of the initial immune response to infection, either as a protective response or as detrimental immunopathology, are not well understood. The purinergic receptor P2X7 is an ionotropic nucleotide-gated ion channel receptor expressed on immune cells that has been implicated in induction and maintenance of excessive inflammation. Here, we analyze the role of this receptor in a mouse model of influenza virus infection using a receptor knockout (KO) mouse strain. Our results demonstrate that the absence of the P2X7 receptor results in a better outcome to influenza virus infection characterized by reduced weight loss and increased survival upon experimental influenza challenge compared to wild-type mice. This effect was not virus strain specific. Overall lung pathology and apoptosis were reduced in virus-infected KO mice. Production of proinflammatory cytokines and chemokines such as interleukin-10 (IL-10), gamma interferon (IFN-γ), and CC chemokine ligand 2 (CCL2) was also reduced in the lungs of the infected KO mice. Infiltration of neutrophils and depletion of CD11b+ macrophages, characteristic of severe influenza virus infection in mice, were lower in the KO animals. Together, these results demonstrate that activation of the P2X7 receptor is involved in the exacerbated immune response observed during influenza virus infection.IMPORTANCE A hallmark of influenza virus infection is the development of lung pathology induced by an exacerbated immune response. The mechanisms shared by the antiviral host defense required for viral clearance and those required for development of immunopathology are not clearly understood. Purinergic receptors, and in particular the purinergic receptor P2X7 (P2X7r), are involved in activation of the immune response. We used mice lacking the P2X7r (P2X7r KO mice) to better understand the mechanisms that lead to development of lung pathology during influenza virus infection. In our studies, we observed that P2X7r KO mice developed less lung immunopathology and had better survival than the wild-type mice. These results implicate P2X7r in the induction of an exacerbated local immune response to influenza virus and help us to better understand the mechanisms leading to the lung immunopathology observed during severe viral infections.
Collapse
Affiliation(s)
- Victor H Leyva-Grado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan E Ermler
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ma G Gonzalez
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Virginia Gillespie
- Center for Comparative Medicine and Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
38
|
Alshammari EM, Mandal RK, Wahid M, Dar SA, Jawed A, Areeshi MY, Khan S, Khan MEA, Panda AK, Haque S. Genetic association study of P2x7 A1513C (rs 3751143) polymorphism and susceptibility to pulmonary tuberculosis: A meta-analysis based on the findings of 11 case–control studies. ASIAN PAC J TROP MED 2016; 9:1150-1157. [DOI: 10.1016/j.apjtm.2016.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 08/20/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022] Open
|
39
|
Lewandowska M, Jędrychowska-Dańska K, Zamerska A, Płoszaj T, Witas HW. The genetic profile of susceptibility to infectious diseases in Roman-Period populations from Central Poland. INFECTION GENETICS AND EVOLUTION 2016; 47:1-8. [PMID: 27847329 DOI: 10.1016/j.meegid.2016.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/13/2016] [Accepted: 11/11/2016] [Indexed: 12/17/2022]
Abstract
For thousands of years human beings have resisted life-threatening pathogens. This ongoing battle is considered to be the major force shaping our gene pool as every micro-evolutionary process provokes specific shifts in the genome, both that of the host and the pathogen. Past populations were more susceptible to changes in allele frequencies not only due to selection pressure, but also as a result of genetic drift, migration and inbreeding. In the present study we have investigated the frequency of five polymorphisms within innate immune-response genes (SLC11A1 D543N, MBL2 G161A, P2RX7 A1513C, IL10 A-1082G, TLR2 -196 to -174 ins/del) related to susceptibility to infections in humans. The DNA of individuals from two early Roman-Period populations of Linowo and Rogowo was analysed. The distribution of three mutations varied significantly when compared to the modern Polish population. The TAFT analysis suggests that the decreased frequency of SLC11A1 D543N in modern Poles as compared to 2nd century Linowo samples is the result of non-stochastic mechanisms, such as purifying or balancing selection. The disparity in frequency of other mutations is most likely the result of genetic drift, an evolutionary force which is remarkably amplified in low-size groups. Together with the FST analysis, mtDNA haplotypes' distribution and deviation from the Hardy-Weinberg equilibrium, we suggest that the two populations were not interbreeding (despite the close proximity between them), but rather inbreeding, the results of which are particularly pronounced among Rogowo habitants.
Collapse
Affiliation(s)
- Magda Lewandowska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland.
| | - Krystyna Jędrychowska-Dańska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| | - Alicja Zamerska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| | - Tomasz Płoszaj
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| | - Henryk W Witas
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, Lodz, 90-136, Poland
| |
Collapse
|
40
|
López-López C, Jaramillo-Polanco J, Portales-Pérez DP, Gómez-Coronado KS, Rodríguez-Meléndez JG, Cortés-García JD, Espinosa-Luna R, Montaño LM, Barajas-López C. Two P2X1 receptor transcripts able to form functional channels are present in most human monocytes. Eur J Pharmacol 2016; 793:82-88. [PMID: 27823931 DOI: 10.1016/j.ejphar.2016.10.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/18/2016] [Accepted: 10/27/2016] [Indexed: 12/24/2022]
Abstract
To characterize the presence and general properties of P2X1 receptors in single human monocytes we used RT-PCR, flow cytometry, and the patch-clamp and the two-electrode voltage-clamp techniques. Most human monocytes expressed the canonical P2X1 (90%) and its splicing variant P2X1del (88%) mRNAs. P2X1 receptor immunoreactivity was also observed in 70% of these cells. Currents mediated by P2X1 (EC50=1.9±0.8µm) and P2X1del (EC50 >1000µm) channels, expressed in Xenopus leavis oocytes, have different ATP sensitivity and kinetics. Both currents mediated by P2X1 and P2X1del channels kept increasing during the continuous presence of high ATP concentrations. Currents mediated by the native P2X1 receptors in human monocytes showed an EC50=6.3±0.2µm. Currents have kinetics that resemble those observed for P2X1 and P2X1del receptors in oocytes. Our study is the first to demonstrate the expression of P2X1 transcript and its splicing variant P2X1del in most human monocytes. We also, for the first time, described functional homomeric P2X1del channels and demonstrated that currents mediated by P2X1 or P2X1del receptors, during heterologous expression, increased in amplitude when activated with high ATP concentrations in a similar fashion to those channels that increase their conductance under similar conditions, such as P2X7, P2X2, and P2X4 channels.
Collapse
Affiliation(s)
- Cintya López-López
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Josue Jaramillo-Polanco
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | | | - Karen S Gómez-Coronado
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Jessica G Rodríguez-Meléndez
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Juan D Cortés-García
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, SLP, México
| | - Rosa Espinosa-Luna
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, México DF, México
| | - Carlos Barajas-López
- Instituto Potosino Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4ª Sección, CP 78216, San Luis Potosí, México.
| |
Collapse
|
41
|
Koss K, Unsworth L. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides. Acta Biomater 2016; 44:2-15. [PMID: 27544809 DOI: 10.1016/j.actbio.2016.08.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/26/2016] [Accepted: 08/16/2016] [Indexed: 12/25/2022]
Abstract
UNLABELLED Rescuing or repairing neural tissues is of utmost importance to the patient's quality of life after an injury. To remedy this, many novel biomaterials are being developed that are, ideally, non-invasive and directly facilitate neural wound healing. As such, this review surveys the recent approaches and applications of self-assembling peptides and peptide amphiphiles, for building multi-faceted nanoscaffolds for direct application to neural injury. Specifically, methods enabling cellular interactions with the nanoscaffold and controlling the release of bioactive molecules from the nanoscaffold for the express purpose of directing endogenous cells in damaged or diseased neural tissues is presented. An extensive overview of recently derived self-assembling peptide-based materials and their use as neural nanoscaffolds is presented. In addition, an overview of potential bioactive peptides and ligands that could be used to direct behaviour of endogenous cells are categorized with their biological effects. Finally, a number of neurotrophic and anti-inflammatory drugs are described and discussed. Smaller therapeutic molecules are emphasized, as they are thought to be able to have less potential effect on the overall peptide self-assembly mechanism. Options for potential nanoscaffolds and drug delivery systems are suggested. STATEMENT OF SIGNIFICANCE Self-assembling nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. The combination of the existing knowledge on bioactive motifs for neural engineering and the self-assembling propensity of peptides is discussed in specific reference to neural tissue engineering.
Collapse
|
42
|
Lewandowska M, Garczyńska P, Jędrychowska-Dańska K, Kopczyńska P, Masłowska A, Witas H. Frequency of P2RX7 A1513C and TLR2 -196 to -174 ins/del in healthy Polish individuals. Int J Immunogenet 2015; 42:195-9. [PMID: 25726710 DOI: 10.1111/iji.12185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/30/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
Abstract
Polymorphisms within genes coding innate immune response proteins are involved in genetic susceptibility to various conditions. We investigated the frequency of P2RX7 A1513C and TLR2 -196 to -174 ins/del polymorphisms in healthy Polish population. Frequency of minor alleles was relatively similar to the pattern presented by Caucasian populations while it differed significantly when compared to non-European populations, which could be a result of variable selection pressure put upon studied alleles or hindered gene flow between populations.
Collapse
Affiliation(s)
- M Lewandowska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University, Lodz, Poland
| | - P Garczyńska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University, Lodz, Poland
| | - K Jędrychowska-Dańska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University, Lodz, Poland
| | - P Kopczyńska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University, Lodz, Poland
| | - A Masłowska
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University, Lodz, Poland
| | - H Witas
- Department of Molecular Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University, Lodz, Poland
| |
Collapse
|
43
|
|
44
|
Cecílio P, Pérez-Cabezas B, Santarém N, Maciel J, Rodrigues V, Cordeiro da Silva A. Deception and manipulation: the arms of leishmania, a successful parasite. Front Immunol 2014; 5:480. [PMID: 25368612 PMCID: PMC4202772 DOI: 10.3389/fimmu.2014.00480] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/19/2014] [Indexed: 12/12/2022] Open
Abstract
Leishmania spp. are intracellular parasitic protozoa responsible for a group of neglected tropical diseases, endemic in 98 countries around the world, called leishmaniasis. These parasites have a complex digenetic life cycle requiring a susceptible vertebrate host and a permissive insect vector, which allow their transmission. The clinical manifestations associated with leishmaniasis depend on complex interactions between the parasite and the host immune system. Consequently, leishmaniasis can be manifested as a self-healing cutaneous affliction or a visceral pathology, being the last one fatal in 85–90% of untreated cases. As a result of a long host–parasite co-evolutionary process, Leishmania spp. developed different immunomodulatory strategies that are essential for the establishment of infection. Only through deception and manipulation of the immune system, Leishmania spp. can complete its life cycle and survive. The understanding of the mechanisms associated with immune evasion and disease progression is essential for the development of novel therapies and vaccine approaches. Here, we revise how the parasite manipulates cell death and immune responses to survive and thrive in the shadow of the immune system.
Collapse
Affiliation(s)
- Pedro Cecílio
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Begoña Pérez-Cabezas
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Nuno Santarém
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Joana Maciel
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Vasco Rodrigues
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal
| | - Anabela Cordeiro da Silva
- Parasite Disease Group, Institute for Molecular and Cell Biology (IBMC), University of Porto , Porto , Portugal ; Department of Biological Sciences, Faculty of Pharmacy, University of Porto , Porto , Portugal
| |
Collapse
|
45
|
Hu X, Liou AKF, Leak RK, Xu M, An C, Suenaga J, Shi Y, Gao Y, Zheng P, Chen J. Neurobiology of microglial action in CNS injuries: receptor-mediated signaling mechanisms and functional roles. Prog Neurobiol 2014; 119-120:60-84. [PMID: 24923657 PMCID: PMC4121732 DOI: 10.1016/j.pneurobio.2014.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/31/2014] [Accepted: 06/03/2014] [Indexed: 12/28/2022]
Abstract
Microglia are the first line of immune defense against central nervous system (CNS) injuries and disorders. These highly plastic cells play dualistic roles in neuronal injury and recovery and are known for their ability to assume diverse phenotypes. A broad range of surface receptors are expressed on microglia and mediate microglial 'On' or 'Off' responses to signals from other host cells as well as invading microorganisms. The integrated actions of these receptors result in tightly regulated biological functions, including cell mobility, phagocytosis, the induction of acquired immunity, and trophic factor/inflammatory mediator release. Over the last few years, significant advances have been made toward deciphering the signaling mechanisms related to these receptors and their specific cellular functions. In this review, we describe the current state of knowledge of the surface receptors involved in microglial activation, with an emphasis on their engagement of distinct functional programs and their roles in CNS injuries. It will become evident from this review that microglial homeostasis is carefully maintained by multiple counterbalanced strategies, including, but not limited to, 'On' and 'Off' receptor signaling. Specific regulation of theses microglial receptors may be a promising therapeutic strategy against CNS injuries.
Collapse
Affiliation(s)
- Xiaoming Hu
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| | - Anthony K F Liou
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Mingyue Xu
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Chengrui An
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Suenaga
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yanqin Gao
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Ping Zheng
- State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China
| | - Jun Chen
- Center of Cerebrovascular Disease Research, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, Fudan University, Shanghai, China; Geriatric Research, Educational and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
46
|
Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2014; 66:638-75. [PMID: 24928329 DOI: 10.1124/pr.113.008003] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The P2X7 receptor is a trimeric ATP-gated cation channel found predominantly, but not exclusively, on immune cells. P2X7 activation results in a number of downstream events, including the release of proinflammatory mediators and cell death and proliferation. As such, P2X7 plays important roles in various inflammatory, immune, neurologic and musculoskeletal disorders. This review focuses on the use of P2X7 antagonists in rodent models of neurologic disease and injury, inflammation, and musculoskeletal and other disorders. The cloning and characterization of human, rat, mouse, guinea pig, dog, and Rhesus macaque P2X7, as well as recent observations regarding the gating and permeability of P2X7, are discussed. Furthermore, this review discusses polymorphic and splice variants of P2X7, as well as the generation and use of P2X7 knockout mice. Recent evidence for emerging signaling pathways downstream of P2X7 activation and the growing list of negative and positive modulators of P2X7 activation and expression are also described. In addition, the use of P2X7 antagonists in numerous rodent models of disease is extensively summarized. Finally, the use of P2X7 antagonists in clinical trials in humans and future directions exploring P2X7 as a therapeutic target are described.
Collapse
Affiliation(s)
- Rachael Bartlett
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Leanne Stokes
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| | - Ronald Sluyter
- School of Biological Sciences, University of Wollongong, New South Wales, Australia and Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia (R.B., R.S.); and Health Innovations Research Institute, School of Medical Sciences, RMIT University, Bundoora, Victoria, Australia (L.S.)
| |
Collapse
|
47
|
ATP/P2X7 axis modulates myeloid-derived suppressor cell functions in neuroblastoma microenvironment. Cell Death Dis 2014; 5:e1135. [PMID: 24651438 PMCID: PMC3973218 DOI: 10.1038/cddis.2014.109] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 01/06/2023]
Abstract
Tumor microenvironment of solid tumors is characterized by a strikingly high concentration of adenosine and ATP. Physiological significance of this biochemical feature is unknown, but it has been suggested that it may affect infiltrating immune cell responses and tumor progression. There is increasing awareness that many of the effects of extracellular ATP on tumor and inflammatory cells are mediated by the P2X7 receptor (P2X7R). Aim of this study was to investigate whether: (i) extracellular ATP is a component of neuroblastoma (NB) microenvironment, (ii) myeloid-derived suppressor cells (MDSCs) express functional P2X7R and (iii) the ATP/P2X7R axis modulates MDSC functions. Our results show that extracellular ATP was detected in NB microenvironment in amounts that increased in parallel with tumor progression. The percentage of CD11b(+)/Gr-1(+) cells was higher in NB-bearing mice compared with healthy animals. Within the CD11b/Gr-1(+) population, monocytic MDSCs (M-MDSCs) produced higher levels of reactive oxygen species (ROS), arginase-1 (ARG-1), transforming growth factor-β1 (TGF-β1) and stimulated more potently in vivo tumor growth, as compared with granulocytic MDSCs (G-MDSCs). P2X7R of M-MDSCs was localized at the plasma membrane, coupled to increased functionality, upregulation of ARG-1, TGF-β1 and ROS. Quite surprisingly, the P2X7R in primary MDSCs as well as in the MSC-1 and MSC-2 lines was uncoupled from cytotoxicity. This study describes a novel scenario in which MDSC immunosuppressive functions are modulated by the ATP-enriched tumor microenvironment.
Collapse
|
48
|
Vázquez-Cuevas FG, Cruz-Rico A, Garay E, García-Carrancá A, Pérez-Montiel D, Juárez B, Arellano RO. Differential expression of the P2X7 receptor in ovarian surface epithelium during the oestrous cycle in the mouse. Reprod Fertil Dev 2014; 25:971-84. [PMID: 23050672 DOI: 10.1071/rd12196] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/04/2012] [Indexed: 12/13/2022] Open
Abstract
Purinergic signalling has been proposed as an intraovarian regulatory mechanism. Of the receptors responsible for purinergic transmission, the P2X7 receptor is an ATP-gated cationic channel that displays a broad spectrum of cellular functions ranging from apoptosis to cell proliferation and tumourigenesis. In the present study, we investigated the functional expression of P2X7 receptors in ovarian surface epithelium (OSE). P2X7 protein was detected in the OSE layer of the mouse, both in situ and in primary cultures. In cultures, 2'(3')-O-(4-Benzoylbenzoyl)adenosine-5'-triphosphate (BzATP) activation of P2X7 receptors increased [Ca(2+)]i and induced apoptosis. The functionality of the P2X7 receptor was investigated in situ by intrabursal injection of BzATP on each day of the oestrous cycle and evaluation of apoptosis 24h using the terminal deoxyribonucleotidyl transferase-mediated dUTP-fluorescein nick end-labelling (TUNEL) assay. Maximum effects of BzATP were observed during pro-oestrus, with the effects being blocked by A438079, a specific P2X7 receptor antagonist. Immunofluorescence staining for P2X7 protein revealed more robust expression during pro-oestrus and in OSE regions behind the antral follicles, strongly supporting the notion that the differences in apoptosis can be explained by increased receptor expression, which is regulated during the oestrous cycle. Finally, P2X7 receptor expression was detected in the OSE layer of human ovaries, with receptor expression maintained in human ovaries diagnosed with cancer, as well as in the human ovarian carcinoma SKOV3 cell line.
Collapse
Affiliation(s)
- F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, CP, 76230, Querétaro México
| | | | | | | | | | | | | |
Collapse
|
49
|
Chu B, Yao F, Cheng C, Wu Y, Mei Y, Li X, Liu Y, Wang P, Hou L, Zou X. The potential role of As-sumo-1 in the embryonic diapause process and early embryo development of Artemia sinica. PLoS One 2014; 9:e85343. [PMID: 24404204 PMCID: PMC3880333 DOI: 10.1371/journal.pone.0085343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
During embryonic development of Artemia sinica, environmental stresses induce the embryo diapause phenomenon, required to resist apoptosis and regulate cell cycle activity. The small ubiquitin-related modifier-1 (SUMO), a reversible post-translational protein modifier, plays an important role in embryo development. SUMO regulates multiple cellular processes, including development and other biological processes. The molecular mechanism of diapause, diapause termination and the role of As-sumo-1 in this processes and in early embryo development of Artemia sinica still remains unknown. In this study, the complete cDNA sequences of the sumo-1 homolog, sumo ligase homolog, caspase-1 homolog and cyclin B homolog from Artemia sinica were cloned. The mRNA expression patterns of As-sumo-1, sumo ligase, caspase-1, cyclin B and the location of As-sumo-1 were investigated. SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E proteins were analyzed during different developmental stages of the embryo of A. sinica. Small interfering RNA (siRNA) was used to verify the function of sumo-1 in A. sinica. The full-length cDNA of As-sumo-1 was 476 bp, encoding a 92 amino acid protein. The As-caspases-1 cDNA was 966 bp, encoding a 245 amino-acid protein. The As-sumo ligase cDNA was 1556 bp encoding, a 343 amino acid protein, and the cyclin B cDNA was 739 bp, encoding a 133 amino acid protein. The expressions of As-sumo-1, As-caspase-1 and As-cyclin B were highest at the 10 h stage of embryonic development, and As-sumo ligase showed its highest expression at 0 h. The expression of As-SUMO-1 showed no tissue or organ specificity. Western blotting showed high expression of As-SUMO-1, p53, Mdm2, Caspase-1, Cyclin B and Cyclin E at the 10 h stage. The siRNA caused abnormal development of the embryo, with increased malformation and mortality. As-SUMO-1 is a crucial regulation and modification protein resumption of embryonic diapause and early embryo development of A. sinica.
Collapse
Affiliation(s)
- Bing Chu
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Feng Yao
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Cheng Cheng
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Yang Wu
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Yanli Mei
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Xuejie Li
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Yan Liu
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
| | - Peisheng Wang
- Department of Biology, Dalian Medical University, Dalian, PR China
| | - Lin Hou
- College of Life Sciences, Liaoning Normal University, Dalian, PR China
- * E-mail: (LH); (X-YZ)
| | - Xiangyang Zou
- Department of Biology, Dalian Medical University, Dalian, PR China
- * E-mail: (LH); (X-YZ)
| |
Collapse
|
50
|
Purinergic receptor P2X₇: a novel target for anti-inflammatory therapy. Bioorg Med Chem 2013; 22:54-88. [PMID: 24314880 DOI: 10.1016/j.bmc.2013.10.054] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022]
Abstract
Purinergic receptors, also known as purinoceptors, are ligand gated membrane ion channels involved in many cellular functions. Among all identified purinergic receptors, P2X₇ subform is unique since it induces the caspase activity, cytokine secretion, and apoptosis. The distribution of P2X₇ receptors, and the need of high concentration of ATP required to activate this receptor exhibited its ability to function as 'danger' sensor associated with tissue inflammation and damage. Further, the modulation of other signalling pathways associated with P2X₇ has also been proposed to play an important role in the control of macrophage functions and inflammatory responses, especially towards lipopolysaccharides. Experimentally, researchers have also observed the decreased severity of inflammatory responses in P2X₇ receptor expressing gene (P2RX₇) knockout (KO) phenotypes. Therefore, newly developed potent antagonists of P2X₇ receptor would serve as novel therapeutic agents to combat various inflammatory conditions. In this review article, we tried to explore various aspects of P2X₇ receptors including therapeutic potential, and recent discoveries and developments of P2X₇ receptor antagonists.
Collapse
|