1
|
Pardridge WM. Brain gene therapy with Trojan horse lipid nanoparticles. Trends Mol Med 2023; 29:343-353. [PMID: 36907687 PMCID: PMC10005896 DOI: 10.1016/j.molmed.2023.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/13/2023]
Abstract
The COVID-19 mRNA vaccine was developed by the scalable manufacture of lipid nanoparticles (LNPs) that encapsulate mRNA within the lipid. There are many potential applications for this large nucleic acid delivery technology, including the delivery of plasmid DNA for gene therapy. However, gene therapy for the brain requires LNP delivery across the blood-brain barrier (BBB). It is proposed that LNPs could be reformulated for brain delivery by conjugation of receptor-specific monoclonal antibodies (MAbs) to the LNP surface. The MAb acts as a molecular Trojan horse to trigger receptor-mediated transcytosis (RMT) of the LNP across the BBB and subsequent localization to the nucleus for transcription of the therapeutic gene. Trojan horse LNPs could enable new approaches to gene therapy of the brain.
Collapse
|
2
|
Macher M, Platzman I, Spatz JP. Bottom-Up Assembly of Bioinspired, Fully Synthetic Extracellular Vesicles. Methods Mol Biol 2023; 2654:263-276. [PMID: 37106188 DOI: 10.1007/978-1-0716-3135-5_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Extracellular vesicles (EVs) are lipid membrane-enclosed compartments released by cells for intercellular communication in homeostasis and disease. Studies have shown great therapeutic potential of EVs, including but not limited to regenerative and immunomodulatory therapies. Additionally, EVs are promising next-generation drug delivery systems due to their biocompatibility, low immunogenicity, and inherent target specificity. However, clinical application of EVs is so far limited due to challenges in scaling up production, high heterogeneity, batch-to-batch variation, and limited control over composition. Although attaining a fundamental characterization of EVs' functions is a compelling goal, these limitations have hindered a full understanding. Therefore, there is rising interest in exploiting the beneficial properties of EVs while gaining better control over their production and composition. Herein, we describe a method for the bottom-up assembly of bioinspired, fully synthetic vesicles that mimic the most important biophysical and biochemical properties of natural EVs.
Collapse
Affiliation(s)
- Meline Macher
- Max Planck Institute for Medical Research, Heidelberg, Germany
- Institute of Molecular Systems Engineering, Heidelberg, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, Bristol, UK
| | - Ilia Platzman
- Max Planck Institute for Medical Research, Heidelberg, Germany.
- Institute of Molecular Systems Engineering, Heidelberg, Germany.
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, Bristol, UK.
| | - Joachim P Spatz
- Max Planck Institute for Medical Research, Heidelberg, Germany.
- Institute of Molecular Systems Engineering, Heidelberg, Germany.
- Max Planck School Matter to Life, Heidelberg, Germany.
- Max Planck-Bristol Center for Minimal Biology, University of Bristol, Bristol, UK.
| |
Collapse
|
3
|
Zhao Y, Liu C, Chen H, Zhou H, Yu S, Mi D, Yue S, Qiao W. Synthesis of asymmetrically dihydrophobic chain poly(ethylene glycol) lipids for long circulation and membrane fusion. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian People's Republic of China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian People's Republic of China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian People's Republic of China
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian People's Republic of China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian People's Republic of China
| | - Deze Mi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian People's Republic of China
| | - Shuli Yue
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian People's Republic of China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering Dalian University of Technology Dalian People's Republic of China
| |
Collapse
|
4
|
Huang ZN, Callmann CE, Cole LE, Wang S, Mirkin CA. Synergistic Immunostimulation through the Dual Activation of Toll-like Receptor 3/9 with Spherical Nucleic Acids. ACS NANO 2021; 15:13329-13338. [PMID: 34278782 PMCID: PMC8766625 DOI: 10.1021/acsnano.1c03093] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Toll-like receptors (TLRs) are a family of proteins that modulate the innate immune system and control the initiation of downstream immune responses. Spherical nucleic acids (SNAs) designed to stimulate single members of the TLR family (e.g., TLR7 or TLR9) have shown utility in cancer immunotherapy. We hypothesized that SNAs synthesized with multiple TLR agonists would enable the simultaneous activation of multiple TLR pathways for maximally synergistic immune activation. Here, we describe the synthesis of SNAs that incorporate both a TLR3 agonist (polyinosinic:polycytidylic acid, poly(I:C)) and TLR9 agonist (CpG oligonucleotide) on the same liposomal scaffold. In this design, CpG comprises the SNA oligonucleotide shell, and poly(I:C) is encapsulated in the liposome core. These dual-TLR activating SNAs efficiently codeliver high quantities of both agonists to the same target cell, yielding enhanced immunostimulation in various murine and human antigen-presenting cells (APCs). Moreover, codelivery of TLR agonists using the SNA both synchronizes and prolongs the duration of costimulatory molecule and major histocompatibility complex class II expression in APCs, which has been shown to be important for efficient downstream immune responses. Taken together, this SNA design provides a strategy for potently activating immune cells and increasing the efficiency of their activation, which likely will inform the preparation of nanomaterials for highly potent immunotherapies.
Collapse
|
5
|
Szunerits S, Melinte S, Barras A, Pagneux Q, Voronova A, Abderrahmani A, Boukherroub R. The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chem Soc Rev 2021; 50:2102-2146. [PMID: 33325917 DOI: 10.1039/c9cs00886a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional β-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic β-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
6
|
Tunsirikongkon A, Pyo YC, Kim DH, Tran P, Park JS. Effect of calcium chloride on the protein encapsulation and stability of proliposomal granules. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Montero P, Mosquera M, Marín-Peñalver D, Alemán A, Martínez-Álvarez Ó, Gómez-Guillén MC. Changes in structural integrity of sodium caseinate films by the addition of nanoliposomes encapsulating an active shrimp peptide fraction. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zhao W, Zhang Y, Jiang X, Cui C. Design, synthesis and evaluation of VEGF-siRNA/CRS as a novel vector for gene delivery. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:3851-3865. [PMID: 27920500 PMCID: PMC5125806 DOI: 10.2147/dddt.s118461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Small interfering RNA (siRNA) delivery is a prospective method in gene therapy, but it has application limitations such as negative charge, water solubility and high molecular weight. In this study, a safe and efficient nano-vector, CRS, was designed and synthesized to facilitate siRNA delivery. Physical and chemical properties of VEGF-siRNA/CRS were characterized by methods including scanning electron microscopy (SEM), transmission electron microscopy, zeta potential (ζ) measurement, drug-releasing rate measurement, gel electrophoresis and confocal microscopy. The biological activities were evaluated using cell viability assay, gene-silencing efficacy assay in vitro, real-time polymerase chain reaction, enzyme-linked immunosorbent assay (ELISA) and antitumor tests in vivo. The mean nanoparticle size of VEGF-siRNA/CRS was 121.4±0.3 nm with positive ζ potential of 7.69±4.47 mV. The release rate of VEGF-siRNA from VEGF-siRNA/CRS was 82.50% sustained for 48 h in Tris-ethylenediaminetetraacetic acid buffer (pH 8.0). Real-time polymerase chain reaction was used to analyze the efficiency of the transfection, and the result showed that VEGF mRNA expression had been knocked down by 82.36%. The expression of VEGF protein was also recorded to be downregulated to 14.83% using ELISA. The results of cytotoxicity measured by Cell Counting Kit-8 assay showed that VEGF-siRNA/CRS had significant inhibitory effect on HeLa cells. The results of antitumor assays indicated that VEGF-siRNA/CRS exhibited tumor cell growth inhibition in vivo. The results demonstrated that VEGF-siRNA could be delivered and transported by the designed carrier, while siRNA could be released constantly and led to an increasing gene-silencing effect against VEGF gene. In conclusion, VEGF-siRNA/CRS is a promising carrier for siRNA delivery, and further studies are warranted.
Collapse
Affiliation(s)
- Wen Zhao
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yifan Zhang
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Xueyun Jiang
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Chunying Cui
- School of Chemical Biology and Pharmaceutical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Jorritsma SHT, Gowans EJ, Grubor-Bauk B, Wijesundara DK. Delivery methods to increase cellular uptake and immunogenicity of DNA vaccines. Vaccine 2016; 34:5488-5494. [PMID: 27742218 DOI: 10.1016/j.vaccine.2016.09.062] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022]
Abstract
DNA vaccines are ideal candidates for global vaccination purposes because they are inexpensive and easy to manufacture on a large scale such that even people living in low-income countries can benefit from vaccination. However, the potential of DNA vaccines has not been realized owing mainly to the poor cellular uptake of DNA in vivo resulting in the poor immunogenicity of DNA vaccines. In this review, we discuss the benefits and shortcomings of several promising and innovative non-biological methods of DNA delivery that can be used to increase cellular delivery and efficacy of DNA vaccines.
Collapse
Affiliation(s)
- S H T Jorritsma
- Virology Research Group, Discipline of Surgery, The Basil Hetzel Institute, The University of Adelaide, Australia
| | - E J Gowans
- Virology Research Group, Discipline of Surgery, The Basil Hetzel Institute, The University of Adelaide, Australia
| | - B Grubor-Bauk
- Virology Research Group, Discipline of Surgery, The Basil Hetzel Institute, The University of Adelaide, Australia
| | - D K Wijesundara
- Virology Research Group, Discipline of Surgery, The Basil Hetzel Institute, The University of Adelaide, Australia.
| |
Collapse
|
10
|
Mosquera M, Giménez B, Montero P, Gómez-Guillén MC. Incorporation of liposomes containing squid tunic ACE-inhibitory peptides into fish gelatin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:769-776. [PMID: 25704896 DOI: 10.1002/jsfa.7145] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/19/2015] [Accepted: 02/16/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Hydrolysates from collagen of jumbo squid (Dosidicus gigas) tunics have shown excellent angiotensin I-converting enzyme (ACE)-inhibitory activity. However, peptides directly included in food systems may suffer a decrease in activity, which could be minimized by loading them into nanoliposomes. RESULTS A fraction of peptides with molecular weights <1 kDa obtained from hydrolyzed squid tunics, with reasonably high ACE-inhibitory activity (half-maximal inhibitory concentration IC50 = 0.096 g L(-1)), was encapsulated in phosphatidylcholine nanoliposomes. The peptide concentration affected the encapsulation efficiency and the stability of the resulting liposomes, which remained with a high zeta potential value (-54.3 mV) for at least 1 week at the most suitable peptide concentration. The optimal peptide concentration was established as 1.75 g L(-1). Liposomes obtained with this peptide concentration showed an encapsulation efficiency of 53%, a zeta potential of -59 mV, an average diameter of 70.3 nm and proved to be stable in the pH range 3-7 at 4 °C. CONCLUSION Liposomes containing ACE-inhibitory peptides were incorporated in fish gelatin without detriment to the rheological properties and thermal stability of the resulting cold-induced gel. The ACE-inhibitory activity of the peptide fraction, which was not affected by the encapsulation process, conferred the bioactive potential to the nanoliposome-containing gelatin gel.
Collapse
Affiliation(s)
- Mauricio Mosquera
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN, CSIC), C/ José Antonio Novais, 10, E-28040, Madrid, Spain
| | - Begoña Giménez
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN, CSIC), C/ José Antonio Novais, 10, E-28040, Madrid, Spain
| | - Pilar Montero
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN, CSIC), C/ José Antonio Novais, 10, E-28040, Madrid, Spain
| | - Maria Carmen Gómez-Guillén
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN, CSIC), C/ José Antonio Novais, 10, E-28040, Madrid, Spain
| |
Collapse
|
11
|
Abstract
Liposomes are a potential carrier of small interfering RNA (siRNA) for drug delivery systems (DDS). In this study, we searched for a molecule capable of controlling the release of siRNA from a certain type of liposomes and found that curcumin could induce the release of siRNA from the liposomes encapsulating siRNA within 30 min. However, the release of siRNA from the liposomes by curcumin showed a unique dose-response (i.e., bell-shaped curve) with a maximal induction at around 60 μg/ml of curcumin. Liposomal lipid compositions and temperatures influenced the efficiency in the release of siRNA induced by curcumin. About 10% of curcumin at a 60 μg/ml dose was incorporated into the liposomes within 30 min under our experimental conditions. Our results suggest a possibility that curcumin is useful in controlling the permeability of liposomes carrying large molecules like siRNA.
Collapse
|
12
|
Abstract
Spherulites are onion-like structures composed of phospholipids and excipients. Initially discovered in an academic laboratory, these autoassembled nano-objects have been developed further by the start-up Capsulis (Bordeaux, France), and commercialized for veterinary and dermatological applications. Owing to economical strategies, the development of these objects have not been pursued, however, they are very interesting systems, which should be exploited further. The autoassembly of amphiphiles followed by a shear stress allows the formation of nano- to micrometer range nanoparticles, which could be interesting either for systemic or local delivery. Small molecules to macromolecules have been encapsulated in spherulites in the nanometer range. All have shown promising results. Hence, spherulite-encapsulated oligonucleotides have shown increased cell internalization. DNA was shown to be encapsulated in these neutral nanoparticles. Proof-of-concept of protein encapsulation was obtained leading to immune stimulation. This review summarizes the different ways to obtain spherulites, the results of the various investigations performed to date and indicates the limits and the interests of theses nanocarriers and proposes future prospects.
Collapse
|
13
|
Chen CH, Chan TM, Wu YJ, Chen JJ. Review: Application of Nanoparticles in Urothelial Cancer of the Urinary Bladder. J Med Biol Eng 2015; 35:419-427. [PMID: 26339222 PMCID: PMC4551548 DOI: 10.1007/s40846-015-0060-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/27/2015] [Indexed: 11/24/2022]
Abstract
Bladder cancer is a common malignancy of the urinary tract, which generally develops in the epithelial lining of the urinary bladder. The specific course of treatment depends on the stage of bladder cancer; however, therapeutic strategies typically involve intravesical drug delivery to reduce toxicity and increase therapeutic effects. Recently, metallic, polymeric, lipid, and protein nanoparticles have been introduced to aid in the treatment of bladder cancer. Nanoparticles are also commonly used as pharmaceutical carriers to improve interactions between drugs and the urothelium. In this review, we classify the characteristics of bladder cancer and discuss the types of nanoparticles used in various treatment modalities. Finally we summarize the potential applications and benefits of various nanoparticles in intravesical therapy.
Collapse
Affiliation(s)
- Chieh-Hsiao Chen
- Institute of Biomedical Engineering, National Cheng Kung University, 1 University Road, Tainan, 701 Taiwan ; Department of Urology, China Medical University Beigang Hospital, 123 Sin-Der Road, Beigang, 651 Yunlin Taiwan
| | - Tzu-Min Chan
- Department of Medical Education and Research, China Medical University Beigang Hospital, 123 Sin-Der Road, Beigang, 651 Yunlin Taiwan
| | - Yi-Jhen Wu
- Institute of Biomedical Engineering, National Cheng Kung University, 1 University Road, Tainan, 701 Taiwan
| | - Jia-Jin Chen
- Institute of Biomedical Engineering, National Cheng Kung University, 1 University Road, Tainan, 701 Taiwan
| |
Collapse
|
14
|
One-step scalable preparation method for non-cationic liposomes with high siRNA content. Int J Pharm 2015; 490:316-23. [DOI: 10.1016/j.ijpharm.2015.05.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/07/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
|
15
|
Arcella A, Portella G, Collepardo-Guevara R, Chakraborty D, Wales DJ, Orozco M. Structure and properties of DNA in apolar solvents. J Phys Chem B 2014; 118:8540-8. [PMID: 24968001 PMCID: PMC4124876 DOI: 10.1021/jp503816r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
The
study of nucleic acids in low-polarity environments paves the
way for novel biotechnological applications of DNA. Here, we use a
repertoire of atomistic molecular simulation tools to study the nature
of DNA when placed in a highly apolar environment and when transferred
from aqueous to apolar solvent. Our results show that DNA becomes
stiffer in apolar solvents and suggest that highly negatively charged
states, which are the most prevalent in water, are strongly disfavored
in apolar solvents and neutral states with conformations not far from
the aqueous ones are the dominant forms. Transfer from water to an
apolar solvent such as CCl4 is unlikely to occur, but our
results suggest that if forced, the DNA would migrate surrounded by
a small shell of water (the higher the DNA charge, the larger the
number of water molecules in this shell). Even the neutral form (predicted
to be the dominant one in apolar solvents) would surround itself by
a small number of highly stable water molecules when moved from water
to a highly apolar environment. Neutralization of DNA charges seems
a crucial requirement for transfer of DNA to apolar media, and the
most likely mechanism to achieve good transfer properties.
Collapse
Affiliation(s)
- Annalisa Arcella
- Institute for Research in Biomedicine (IRB Barcelona) , 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Lajunen T, Hisazumi K, Kanazawa T, Okada H, Seta Y, Yliperttula M, Urtti A, Takashima Y. Topical drug delivery to retinal pigment epithelium with microfluidizer produced small liposomes. Eur J Pharm Sci 2014; 62:23-32. [PMID: 24810393 DOI: 10.1016/j.ejps.2014.04.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/24/2014] [Accepted: 04/26/2014] [Indexed: 10/25/2022]
Abstract
Drug delivery from topically instilled eye drops to the posterior segment of the eye has long been one of the greatest challenges of ocular drug development. We developed methods of liposome preparation utilizing a microfluidizer to achieve adjustable nanoparticle size (even less than 80 nm) and high loading capacity of plasmid DNA. The microfluidizing process parameters were shown to affect the size of the liposomes. Higher operating pressures and passage for at least 10 times through the microfluidizer produced small liposomes with narrow size distribution. The liposomes were physically stable for several months at +4°C. In vivo distribution of the optimized liposome formulations in the rat eyes was investigated with confocal microscopy of the histological specimens. Transferrin was used as a targeting ligand directed to retinal pigment epithelium. Size dependent distribution of liposomes to different posterior segment tissues was seen. Liposomes with the diameter less than 80 nm permeated to the retinal pigment epithelium whereas liposomes with the diameter of 100 nm or more were distributed to the choroidal endothelium. Active targeting was shown to be necessary for liposome retention to the target tissue. In conclusion, these microfluidizer produced small liposomes in eye drops are an attractive option for drug delivery to the posterior segment tissues of the eye.
Collapse
Affiliation(s)
- T Lajunen
- Tokyo University of Pharmacy & Life Sciences, Japan; Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | | | - T Kanazawa
- Tokyo University of Pharmacy & Life Sciences, Japan
| | - H Okada
- Tokyo University of Pharmacy & Life Sciences, Japan
| | - Y Seta
- Tokyo University of Pharmacy & Life Sciences, Japan
| | - M Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - A Urtti
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Finland
| | - Y Takashima
- Tokyo University of Pharmacy & Life Sciences, Japan.
| |
Collapse
|
17
|
Dabkowska AP, Barlow DJ, Clifton LA, Hughes AV, Webster JRP, Green RJ, Quinn PJ, Lawrence MJ. Calcium-mediated binding of DNA to 1,2-distearoyl-sn-glycero-3-phosphocholine-containing mixed lipid monolayers. SOFT MATTER 2014; 10:1685-1695. [PMID: 24652078 DOI: 10.1039/c3sm52747f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The calcium-mediated interaction of DNA with monolayers of the non-toxic, zwitterionic phospholipid, 1,2-distearoyl-sn-glycero-3-phosphocholine when mixed with 50 mol% of a second lipid, either the zwitteronic 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine or neutral cholesterol was investigated using a combination of surface pressure-area isotherms, Brewster angle microscopy, external reflectance Fourier transform infrared spectroscopy and specular neutron reflectivity in combination with contrast variation. When calcium and DNA were both present in the aqueous subphase, changes were observed in the compression isotherms as well as the surface morphologies of the mixed lipid monolayers. In the presence of calcium and DNA, specular neutron reflectivity showed that directly underneath the head groups of the lipids comprising the monolayers, DNA occupied a layer comprising approximately 13 and 18% v/v DNA for the 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine and cholesterol-containing monolayers, respectively. The volume of the corresponding layer for 1,2-distearoyl-sn-glycero-3-phosphocholine only containing monolayers was ∼15% v/v DNA. Furthermore regardless of the presence and nature of the second lipid and the surface pressure of the monolayer, the specular neutron reflectivity experiments showed that the DNA-containing layer was 20-27 Å thick, suggesting the presence of a well-hydrated layer of double-stranded DNA. External reflectance Fourier transform infrared studies confirmed the presence of double stranded DNA, and indicated that the strands are in the B-form conformation. The results shed light on the interaction between lipids and nucleic acid cargo as well as the role of a second lipid in lipid-based carriers for drug delivery.
Collapse
Affiliation(s)
- Aleksandra P Dabkowska
- Institute of Pharmaceutical Science, School of Biomedical Sciences, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Neutral liposomes containing crown ether-lipids as potential DNA vectors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2506-12. [DOI: 10.1016/j.bbamem.2013.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/27/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022]
|
19
|
Zhuo H, Peng Y, Yao Q, Zhou N, Zhou S, He J, Fang Y, Li X, Jin H, Lu X, Zhao Y. Tumor imaging and interferon-γ-inducible protein-10 gene transfer using a highly efficient transferrin-conjugated liposome system in mice. Clin Cancer Res 2013; 19:4206-17. [PMID: 23759675 DOI: 10.1158/1078-0432.ccr-12-3451] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We have developed a PEGylated transferrin-conjugated liposomes (PTf-Ls) system for the combined tumor imaging and targeted delivery of the IFN-γ-inducible protein-10 (IP-10) gene in a single macromolecular construct. Here, we characterize and analyze the use of this system in a mouse model of breast cancer. EXPERIMENTAL DESIGN The biophysical and cell transfection properties of PTf-Ls were determined through a series of in vitro experiments. A nude mouse/breast cancer cell line xenograft model (mouse xenograft model) was used to image the tumor internalization of fluorescently labeled PTf-Ls. The clinical use of the system was tested by treating tumor-bearing mice with PTf-Ls loaded with IP-10 plasmid DNA or fluorescent lipoplexes. RESULTS The resulting 165-nm liposomes (zeta potential = -10.6 mV) displayed serum resistance, low cytotoxicity (<5%), and high transfection efficiency (≤82.8%) in cultured cells. Systemic intravenous administration of fluorescent PTf-Ls in the mouse xenograft model resulted in nanoparticle circulation for 72 hours, as well as selective and efficient internalization in tumor cells, according to in vivo fluorescence and bioluminescence analyses. Tumor fluorescence increased gradually up to 26 hours, whereas background fluorescence decreased to near-baseline levels. Treatment of mice with PTf-Ls entrapped pcDNA3.1-IP-10 suppressed tumor growth in mice by 79% on day 50 and increased the mean survival time of mice. Fluorescent pcDNA-IP-10-entrapped PTf-Ls showed good properties for simultaneous tumor-targeted imaging and gene-specific delivery in an animal tumor model. CONCLUSIONS Our developed transferrin-conjugated liposome system possesses promising characteristics for tumor-targeting, imaging, and gene therapy applications.
Collapse
Affiliation(s)
- Huiqin Zhuo
- Central Laboratory, Zhongshan Hospital Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Zhou J, Ke F, Xia Y, Sun J, Xu N, Li ZC, Liang D. Complexation of DNA with poly-(L-lysine) and its copolymers in dimethylformamide. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.03.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Un K, Sakai-Kato K, Oshima Y, Kawanishi T, Okuda H. Intracellular trafficking mechanism, from intracellular uptake to extracellular efflux, for phospholipid/cholesterol liposomes. Biomaterials 2012; 33:8131-41. [DOI: 10.1016/j.biomaterials.2012.07.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/15/2012] [Indexed: 01/27/2023]
|
22
|
He J, Evers DL, O'Leary TJ, Mason JT. Immunoliposome-PCR: a generic ultrasensitive quantitative antigen detection system. J Nanobiotechnology 2012; 10:26. [PMID: 22726242 PMCID: PMC3466442 DOI: 10.1186/1477-3155-10-26] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/22/2012] [Indexed: 11/10/2022] Open
Abstract
Background The accurate quantification of antigens at low concentrations over a wide dynamic range is needed for identifying biomarkers associated with disease and detecting protein interactions in high-throughput microarrays used in proteomics. Here we report the development of an ultrasensitive quantitative assay format called immunoliposome polymerase chain reaction (ILPCR) that fulfills these requirements. This method uses a liposome, with reporter DNA encapsulated inside and biotin-labeled polyethylene glycol (PEG) phospholipid conjugates incorporated into the outer surface of the liposome, as a detection reagent. The antigenic target is immobilized in the well of a microplate by a capture antibody and the liposome detection reagent is then coupled to a biotin-labeled second antibody through a NeutrAvidin bridge. The liposome is ruptured to release the reporter DNA, which serves as a surrogate to quantify the protein target using real-time PCR. Results A liposome detection reagent was prepared, which consisted of a population of liposomes ~120 nm in diameter with each liposome possessing ~800 accessible biotin receptors and ~220 encapsulated reporters. This liposome detection reagent was used in an assay to quantify the concentration of carcinoembryonic antigen (CEA) in human serum. This ILPCR assay exhibited a linear dose–response curve from 10-10 M to 10-16 M CEA. Within this range the assay coefficient of variance was <6 % for repeatability and <2 % for reproducibility. The assay detection limit was 13 fg/mL, which is 1,500-times more sensitive than current clinical assays for CEA. An ILPCR assay to quantify HIV-1 p24 core protein in buffer was also developed. Conclusions The ILPCR assay has several advantages over other immuno-PCR methods. The reporter DNA and biotin-labeled PEG phospholipids spontaneously incorporate into the liposomes as they form, simplifying preparation of the detection reagent. Encapsulation of the reporter inside the liposomes allows nonspecific DNA in the assay medium to be degraded with DNase I prior to quantification of the encapsulated reporter by PCR, which reduces false-positive results and improves quantitative accuracy. The ability to encapsulate multiple reporters per liposome also helps overcome the effect of polymerase inhibitors present in biological specimens. Finally, the biotin-labeled liposome detection reagent can be coupled through a NeutrAvidin bridge to a multitude of biotin-labeled probes, making ILPCR a highly generic assay system.
Collapse
Affiliation(s)
- Junkun He
- Biomedical Laboratory Research and Development Service, Veterans Health Administration, Washington, DC, USA
| | | | | | | |
Collapse
|
23
|
Pisani M, Mobbili G, Placentino IF, Smorlesi A, Bruni P. Biophysical Characterization of Complexes of DNA with Mixtures of the Neutral Lipids 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-hexanoylamine or 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine-N-dodecanoylamine and 1,2-Dioleoyl-sn-glycero-3-phosphocholine in the Presence of Bivalent Metal Cations for DNA Transfection. J Phys Chem B 2011; 115:10198-206. [DOI: 10.1021/jp202577u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michela Pisani
- Chemistry Division of the ISAC Department, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Giovanna Mobbili
- Chemistry Division of the ISAC Department, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Immacolata F. Placentino
- Chemistry Division of the ISAC Department, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Arianna Smorlesi
- Department of Pathology and Innovative Therapies, Polytechnic University of Marche, Via Tronto 10/A, 60100 Ancona, Italy
| | - Paolo Bruni
- Chemistry Division of the ISAC Department, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
24
|
Wang T, Upponi JR, Torchilin VP. Design of multifunctional non-viral gene vectors to overcome physiological barriers: dilemmas and strategies. Int J Pharm 2011; 427:3-20. [PMID: 21798324 DOI: 10.1016/j.ijpharm.2011.07.013] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 07/11/2011] [Accepted: 07/12/2011] [Indexed: 12/31/2022]
Abstract
Gene-based therapeutics hold great promise for medical advancement and have been used to treat various human diseases with mixed success. However, their therapeutic application in vivo is limited due largely to several physiological barriers. The design of non-viral gene vectors with the ability to overcome delivery obstacles is currently under extensive investigation. These efforts have placed an emphasis on the development of multifunctional vectors able to execute multiple tasks to simultaneously overcome both extracellular and intracellular obstacles. However, the assembly of these different functionalities into a single system to create multifunctional gene vectors faces many conflicts that largely limit the safe and efficient application of lipoplexes and polyplexes in a systemic delivery. In the review, we have described the dilemmas inherent in the design of a viable, non-viral gene vector equipped with multiple functionalities. The strategies directed towards individual delivery barriers are first summarized, followed by a focus on the design of so-called smart multifunctional vectors with the capability to overcome the delivery difficulties of gene medicines, including the so-called the "polycation dilemma", the "PEG dilemma" and the "package and release dilemma".
Collapse
Affiliation(s)
- Tao Wang
- Center for Pharmaceutical Biotechnology and Nanomedicine, 312 Mugar Life Sciences Building, 360 Huntington Avenue, Northeastern University, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Xu L, Anchordoquy T. Drug delivery trends in clinical trials and translational medicine: challenges and opportunities in the delivery of nucleic acid-based therapeutics. J Pharm Sci 2011; 100:38-52. [PMID: 20575003 PMCID: PMC3303188 DOI: 10.1002/jps.22243] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ability to deliver nucleic acids (e.g., plasmid DNA, antisense oligonucleotides, siRNA) offers the potential to develop potent vaccines and novel therapeutics. However, nucleic acid-based therapeutics are still in their early stages as a new category of biologics. The efficacy of nucleic acids requires that these molecules be delivered to the interior of the target cell, which greatly complicates delivery strategies and compromises efficiency. Due to the safety concerns of viral vectors, synthetic vectors such as liposomes and polymers are preferred for the delivery of nucleic acid-based therapeutics. Yet, delivery efficiencies of synthetic vectors in the clinic are still too low to obtain therapeutic levels of gene expression. In this review, we focus on some key issues in the field of nucleic acid delivery such as PEGylation, encapsulation and targeted delivery and provide some perspectives for consideration in the development of improved synthetic vectors.
Collapse
Affiliation(s)
- Long Xu
- Department of Pharmaceutical Sciences, University of Colorado, 12700 East Nineteenth Avenue, Aurora, Colorado 80045, USA
| | | |
Collapse
|
26
|
Ke F, Luu YK, Hadjiargyrou M, Liang D. Characterizing DNA condensation and conformational changes in organic solvents. PLoS One 2010; 5:e13308. [PMID: 20949017 PMCID: PMC2952604 DOI: 10.1371/journal.pone.0013308] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 09/15/2010] [Indexed: 11/19/2022] Open
Abstract
Organic solvents offer a new approach to formulate DNA into novel structures suitable for gene delivery. In this study, we examined the in situ behavior of DNA in N, N-dimethylformamide (DMF) at low concentration via laser light scattering (LLS), TEM, UV absorbance and Zeta potential analysis. Results revealed that, in DMF, a 21bp oligonucleotide remained intact, while calf thymus DNA and supercoiled plasmid DNA were condensed and denatured. During condensation and denaturation, the size was decreased by a factor of 8–10, with calf thymus DNA forming spherical globules while plasmid DNA exhibited a toroid-like conformation. In the condensed state, DNA molecules were still able to release the counterions to be negatively charged, indicating that the condensation was mainly driven by the excluded volume interactions. The condensation induced by DMF was reversible for plasmid DNA but not for calf thymus DNA. When plasmid DNA was removed from DMF and resuspended in an aqueous solution, the DNA was quickly regained a double stranded configuration. These findings provide further insight into the behavior and condensation mechanism of DNA in an organic solvent and may aid in developing more efficient non-viral gene delivery systems.
Collapse
Affiliation(s)
- Fuyou Ke
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yen Kim Luu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael Hadjiargyrou
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail: (DL); (MH)
| | - Dehai Liang
- Beijing National Laboratory for Molecular Sciences and the Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- * E-mail: (DL); (MH)
| |
Collapse
|
27
|
Mohammadabadi MR, El-Tamimy M, Gianello R, Mozafari MR. Supramolecular assemblies of zwitterionic nanoliposome-polynucleotide complexes as gene transfer vectors: Nanolipoplex formulation and in vitro characterisation. J Liposome Res 2010; 19:105-15. [PMID: 19242855 DOI: 10.1080/08982100802547326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Synthetic gene transfer vectors based on zwitterionic nanoliposome-DNA assemblies (nanolipoplexes), formed by the mediation of magnesium ions, were prepared by a scalable method without employing volatile solvents, high-shear force treatments or extrusion. The zwitterionic nanolipoplexes (NLP) were formulated with PC (phosphatidylcholine) and DPPC (a natural lung surfactant) incorporating different amounts of cholesterol (CHOL). The resulting structures were characterised in terms of their morphology, size and DNA content. In addition, the toxicity and transfection efficiency of the nanolipoplexes were evaluated in cultured Chinese hamster ovary-K1 (CHO-K1) cells. The effects of the multivalent cation Mg(2+) on nanoliposome-DNA transfection potency were evaluated. Formulations containing 10% CHOL showed maximum transfection efficiency and the optimum amount of Mg(2+) ions for transfection with minimum cytotoxicity was ca. 20 mM. The zwitterionic formulations showed significantly less cytotoxicity compared to a commercially available cationic liposome reagent or polyethylenimine (PEI) while they were superior in terms of gene transfer potency. The zwitterionic vectors formulated in this study avoid the use of toxic cationic lipids as well as toxic solvents and may have potential application in gene therapy. The new method will enable scale-up and manufacture of safe and efficacious transfection vehicles required for preclinical and clinical studies. Based on the advantages and superiority of the formulated nanolipoplexes, this method allows for the acceleration of nanolipoplex formulation, enabling the rapid development and evaluation of novel carrier systems for genes and other drugs.
Collapse
Affiliation(s)
- M R Mohammadabadi
- Department of Animal Sciences, Faculty of Agriculture, Kerman Shahid Bahonar University, Kerman, Iran
| | | | | | | |
Collapse
|
28
|
Lipid–polyelectrolyte complexes at the air–water interface for different lipid packing. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Abstract
With the recent discovery of small interfering RNA (siRNA), to silence the expression of genes in vitro and in vivo, there has been a need to deliver these molecules to the cell nucleus. Forming a lipid/nucleic acid complex has become a solution and is explored here. Certain methods and ideas are used, such as: the positive/negative electrostatic interaction with a cationic lipid and an anionic RNA molecule, the size of the lipid vesicle aiding the uptake target tissues, targeted lipoplexes which can increase efficiency, and the protection of the siRNA molecule from the natural defenses of the immune system. Many lipid formulations exist and can be experimented with to achieve varying results depending on the application.
Collapse
Affiliation(s)
- Jeffrey Hughes
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|
30
|
Skjørringe T, Gjetting T, Jensen TG. A modified protocol for efficient DNA encapsulation into pegylated immunoliposomes (PILs). J Control Release 2009; 139:140-5. [DOI: 10.1016/j.jconrel.2009.06.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 02/04/2023]
|
31
|
Breton M, Bessodes M, Bouaziz S, Herscovici J, Scherman D, Mignet N. Iminothiol/thiourea tautomeric equilibrium in thiourea lipids impacts DNA compaction by inducing a cationic nucleation for complex assembly. Biophys Chem 2009; 145:7-16. [PMID: 19744766 DOI: 10.1016/j.bpc.2009.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/03/2009] [Accepted: 08/06/2009] [Indexed: 10/20/2022]
Abstract
Our research on lipidic vectors for transfection led us to develop thiourea lipids able to interact with DNA. Hence, we developed a series of lipopolythioureas based on the strong hydrogen bond donor ability of thiourea. More recently we have reported a branched hydroxylated bis-thiourea derivative with interesting transfecting properties. The last step of the syntheses involved a strong acidic condition, leading to an unstable product upon storage. Therefore we designed a new synthesis in mild acidic conditions. Though they exhibit the same mass, the lipids obtained in the two different conditions differ by their interaction with DNA. We therefore explored the physicochemical properties of these two lipids by different means that we describe in this article. In order to insure easier and reliable (13)C-NMR studies of the thiourea group we have designed the synthesis of the corresponding (13)C-labeled thiourea lipids. We have thus shown that when the lipid was submitted to mildly acidic medium; only the thiourea group was observed; while a thiourea/charged and/or uncharged iminothiol tautomeric equilibrium formed when the last step of the synthesis was submitted to low pH. NMR experiments showed that this tautomeric equilibrium could not form in polar solvents. However, UV experiments on the liposomal form of the lipopolythiourea showed the presence of the tautomers. Lipid/DNA interaction consequently differed according to the acidic treatment applied. Eventually, these results revealed that on this particular thiourea lipid, electrostatic interactions due to cationic thioureas are likely to be responsible for DNA compaction and that this tautomeric form of the thiourea could be stabilised by hydrogen bonds in a supramolecular assembly. Nevertheless, this does not reflect a general thiourea lipid/DNA interaction as other thiourea lipids that are able to compact DNA do not undergo an acidic treatment during the final stage of their synthesis.
Collapse
Affiliation(s)
- Marie Breton
- Inserm U640, CNRS UMR8151, Unité de Pharmacologie Chimique et Génétique, Université Paris-Descartes, Faculté de Pharmacie, 4 rue de l'observatoire, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
32
|
Zhou T, Zhao J, You Y. Effect of the Interionic Distance on the Interfacial Behavior of Double-Chain Zwitterionic Amphiphiles. J DISPER SCI TECHNOL 2009. [DOI: 10.1080/01932690802701556] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Penacho N, Simões S, de Lima MCP. Polyethylenimine of various molecular weights as adjuvant for transfection mediated by cationic liposomes. Mol Membr Biol 2009; 26:249-63. [DOI: 10.1080/09687680902766716] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Guo X, Cui B, Li H, Gong Z, Guo R. Facilitation effect of oligonucleotide on vesicle formation from single-chained cationic surfactant-Dependences of oligonucleotide sequence and size and surfactant structure. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/pola.23160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Kundu S, Langevin D, Lee LT. Neutron reflectivity study of the complexation of DNA with lipids and surfactants at the surface of water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:12347-12353. [PMID: 18828609 DOI: 10.1021/la801465p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Complexation of lipids and surfactants with short DNA fragments at the air-water interface has been studied by neutron reflectivity. Complexation with zwitterionic lipids occurs in the presence of divalent cations, and ion specificity has been demonstrated (binding is less effective with Ba2+ than with Mg2+ or Ca2+). One and two DNA layers have been observed for dilute and more compact lipid monolayers, respectively. Two DNA layers have also been found with the soluble cationic surfactant dodecyltrimethylammonium bromide (DTAB), except close to the precipitation boundary. This result is opposite to that found in ellipsometry where very thick layers are found in this region. It is possible that the ellipsometry signal is due to highly hydrated bulk complexes adsorbing at the surface, not seen by neutrons because of unfavorable contrast conditions. Long DNA was found to be less keen to form surface complexes than short DNA fragments.
Collapse
Affiliation(s)
- S Kundu
- Laboratoire de Physique des Solides, Université Paris Sud, CNRS, UMR, Orsay, France
| | | | | |
Collapse
|
36
|
Guo X, Li H, Gong Z, Zhang F, Zheng S, Guo R. Micelle-to-vesicle transition induced by oligonucleotide in SDS/DEAB mixed system with a net negative charge. ACTA ACUST UNITED AC 2008. [DOI: 10.1002/pola.23055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Kudsiova L, Arafiena C, Lawrence M. Characterisation of Chitosan-Coated Vesicles Encapsulating DNA Suitable for Gene Delivery. J Pharm Sci 2008; 97:3981-97. [DOI: 10.1002/jps.21355] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Guo X, Li H, Zhang F, Zheng S, Guo R. Aggregation of single-chained cationic surfactant molecules into vesicles induced by oligonucleotide. J Colloid Interface Sci 2008; 324:185-91. [PMID: 18513737 DOI: 10.1016/j.jcis.2008.04.057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 04/22/2008] [Accepted: 04/22/2008] [Indexed: 10/22/2022]
Abstract
Vesicles have many important applications in many different fields. In the present paper, we report for the first time that oligonucleotide can induce single-chained cationic surfactant molecules to aggregate into vesicles by determining turbidity with a Uv-vis spectrophotometer, observing images with a transmission electron microscope and/or fluorescence microscope, and dynamic light scattering. This study may increase the efficiency and applicability for a DNA/amphiphile system.
Collapse
Affiliation(s)
- Xia Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, People's Republic of China.
| | | | | | | | | |
Collapse
|
39
|
MacLachlan I. Lipid-Mediated in vivo Delivery of Small Interfering RNAs. THERAPEUTIC OLIGONUCLEOTIDES 2008. [DOI: 10.1039/9781847558275-00241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Ian MacLachlan
- Protiva Biotherapeutics Inc. 100-3480 Gilmore Way Burnaby BC Canada V5G 4Y1
| |
Collapse
|
40
|
Zhang J, Taylor DJF, Li PX, Thomas RK, Wang JB, Penfold J. Adsorption of DNA and dodecyl trimethylammonium bromide mixtures at the air/water interface: a neutron reflectometry study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1863-1872. [PMID: 18220428 DOI: 10.1021/la7021566] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The interactions between dodecyl trimethylammonium bromide (C12TAB) and two samples of DNA with widely differing molecular weights have been studied using surface tension and neutron reflectometry. Neutron reflection data show that the surfactant and polymer are adsorbed together in a highly cooperative fashion over a 1000-fold change in surfactant concentration. Furthermore, the shorter DNA fragments adsorb with C12TAB as trilayers at higher surfactant concentrations, with overall layer thicknesses of 65-70 A. The high molecular weight DNA, however, shows only approximate monolayer adsorption with thicknesses varying from 19 to 26 A over the entire range of C12TAB concentrations. The difference in behavior between the different samples is believed to be a result of the rigid double helical structure of DNA which makes the formation of bulk phase polymer/micelle aggregates much less favorable for the short fragments. The resulting increase in the critical aggregation concentration (CAC) then leads to the adsorption of additional surfactant/polymer complex to the underside of the initial stable surface active DNA/C12TAB complex. Comparison with previous results obtained for synthetic polyelectrolytes shows that DNA/C12TAB complexes are not capable of reducing the surface tensions to the extent that other mixtures such as the poly(styrene sulfonate)/C12TAB mixtures do. A possible reason for this is the high rigidity of DNA combined with the fact that its hydrophobic moieties are positioned within the double helix so that the external molecule is largely hydrophilic.
Collapse
Affiliation(s)
- J Zhang
- Physical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | | | | | | | | | | |
Collapse
|
41
|
Güven GU, Laçin NT, Pişkin E. Monosize polycationic nanoparticles as non-viral vectors for gene transfer to HeLa cells. J Tissue Eng Regen Med 2008; 2:155-63. [DOI: 10.1002/term.78] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Leblond J, Mignet N, Largeau C, Seguin J, Scherman D, Herscovici J. Lipopolythiourea Transfecting Agents: Lysine Thiourea Derivatives. Bioconjug Chem 2007; 19:306-14. [DOI: 10.1021/bc7001924] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jeanne Leblond
- Inserm, U640, Paris F-75006, France, CNRS, UMR8151, Paris F-75006, France, Ecole Nationale Supérieure de Chimie de Paris, Paris F-75005, France, Unité de Pharmacologie Chimique et Génétique, France, Université Paris-Descartes, Faculté de Pharmacie, Paris F-75270, France, and Chimie Moléculaire de Paris Centre, CNRS, FR 2769, Paris F-75005, France
| | - Nathalie Mignet
- Inserm, U640, Paris F-75006, France, CNRS, UMR8151, Paris F-75006, France, Ecole Nationale Supérieure de Chimie de Paris, Paris F-75005, France, Unité de Pharmacologie Chimique et Génétique, France, Université Paris-Descartes, Faculté de Pharmacie, Paris F-75270, France, and Chimie Moléculaire de Paris Centre, CNRS, FR 2769, Paris F-75005, France
| | - Céline Largeau
- Inserm, U640, Paris F-75006, France, CNRS, UMR8151, Paris F-75006, France, Ecole Nationale Supérieure de Chimie de Paris, Paris F-75005, France, Unité de Pharmacologie Chimique et Génétique, France, Université Paris-Descartes, Faculté de Pharmacie, Paris F-75270, France, and Chimie Moléculaire de Paris Centre, CNRS, FR 2769, Paris F-75005, France
| | - Johanne Seguin
- Inserm, U640, Paris F-75006, France, CNRS, UMR8151, Paris F-75006, France, Ecole Nationale Supérieure de Chimie de Paris, Paris F-75005, France, Unité de Pharmacologie Chimique et Génétique, France, Université Paris-Descartes, Faculté de Pharmacie, Paris F-75270, France, and Chimie Moléculaire de Paris Centre, CNRS, FR 2769, Paris F-75005, France
| | - Daniel Scherman
- Inserm, U640, Paris F-75006, France, CNRS, UMR8151, Paris F-75006, France, Ecole Nationale Supérieure de Chimie de Paris, Paris F-75005, France, Unité de Pharmacologie Chimique et Génétique, France, Université Paris-Descartes, Faculté de Pharmacie, Paris F-75270, France, and Chimie Moléculaire de Paris Centre, CNRS, FR 2769, Paris F-75005, France
| | - Jean Herscovici
- Inserm, U640, Paris F-75006, France, CNRS, UMR8151, Paris F-75006, France, Ecole Nationale Supérieure de Chimie de Paris, Paris F-75005, France, Unité de Pharmacologie Chimique et Génétique, France, Université Paris-Descartes, Faculté de Pharmacie, Paris F-75270, France, and Chimie Moléculaire de Paris Centre, CNRS, FR 2769, Paris F-75005, France
| |
Collapse
|
43
|
Mozafari MR, Reed CJ, Rostron C. Prospects of anionic nanolipoplexes in nanotherapy: Transmission electron microscopy and light scattering studies. Micron 2007; 38:787-95. [PMID: 17681472 DOI: 10.1016/j.micron.2007.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Currently nanosystems composed of polynucleotides and lipid vesicles (nanolipoplexes) are considered to be promising tools for gene therapeutics. Successful in vivo application of these vectors depends on their physicochemical, technological and biological characteristics including morphology, size distribution, molecular interactions and stability. Anionic nanoliposomes (DPPC:DCP:CHOL) were prepared by two different techniques, namely the conventional thin-film hydration method followed by extrusion, and the heating method (HM), in which no volatile solvent or detergent is used. A non-viral and non-cationic gene transfer vector was constructed by incorporating plasmid DNA (pcDNA3.1/His B/lacZ) to the HM-nanoliposomes by the electrostatic mediation of Ca(2+) ions. Transfection efficiency of the nanolipoplexes was evaluated using a human bronchial epithelial cell line (16HBE14o-) in the presence of serum. Particle characterisation, stability of the formulations and lipid-DNA interaction studies were performed using transmission electron microscopy (TEM) and light scattering. TEM pictures of nanolipoplexes showed presence of two to four closely packed vesicles with signs of fusion. Efficient delivery of plasmid DNA and subsequent beta-galactosidase expression was achieved using the anionic nanolipoplexes. Transfection efficiency increased with lipid:DNA ratio up to 7:1 (w/w), where transfection efficiency was 12-fold higher than in untreated cells. Further increase in lipid ratio decreased transfection. These nanolipoplexes appear to be safe, stable and efficient in the protection and delivery of DNA to different cells and tissues.
Collapse
Affiliation(s)
- M Reza Mozafari
- Riddet Centre, Massey University, Private Bag 11 222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
44
|
Mason JT, Xu L, Sheng ZM, He J, O'Leary TJ. Liposome polymerase chain reaction assay for the sub-attomolar detection of cholera toxin and botulinum neurotoxin type A. Nat Protoc 2007; 1:2003-11. [PMID: 17487189 DOI: 10.1038/nprot.2006.331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We describe an ultrasensitive immunoassay for detecting biotoxins that uses a liposome with encapsulated DNA reporters, and ganglioside receptors embedded in the bilayer, as the detection reagent. After immobilization of the target biotoxin by a capture antibody and co-binding of the detection reagent, the liposomes are ruptured to release the reporters, which are quantified by real-time polymerase chain reaction. The new assays for cholera and botulinum toxins are several orders of magnitude more sensitive than current detection methods. A single 96-well microtiter plate can analyze approximately 20 specimens, including calibration standards and controls, with all measurements conducted in triplicate. Using pre-coated and blocked microtiter plates, and pre-prepared liposome reagents, a liposome polymerase chain reaction assay can be carried out in about 6 h.
Collapse
Affiliation(s)
- Jeffrey T Mason
- Department of Biophysics, Armed Forces Institute of Pathology, 1413 Research Boulevard, Rockville, Maryland 20850, USA.
| | | | | | | | | |
Collapse
|
45
|
Abstract
Gene therapy is a promising therapeutic strategy to combat genetic or acquired diseases at their root cause rather than just treating symptoms. It is well recognised that there is an urgent need for non-toxic and efficient gene delivery vectors to fully exploit the current potential of gene therapy in molecular medicine. Cell-specific targeting of bioactive nucleotides is a prerequisite to attain the concentration of nucleic acids required for therapeutic efficacy in the target tissue. Many metal ions such as Mg2+, Mn2+, Ba2+ and, most importantly, Ca2+ have been demonstrated to have significant roles in gene delivery. These inorganic cations show low toxicity, good biocompatibility and promise for controlled delivery properties, thus presenting a new alternative to toxic and immunogenic carriers. Recently, inorganic nanoparticles alone, or in combination with a colloidal particulate system such as nanoliposome, an advanced approach to gene delivery, were found to exert a positive effect on gene transfer. In this report, the role of the divalent cations in nucleic acid delivery, particularly with respect to the potential improvement of transfection efficiency of nanolipoplexes, is reviewed.
Collapse
Affiliation(s)
- M Reza Mozafari
- Riddet Centre, Private Bag 11-222, Massey University, Palmerston North, New Zealand
| | | |
Collapse
|
46
|
Li W, Szoka FC. Lipid-based nanoparticles for nucleic acid delivery. Pharm Res 2007; 24:438-49. [PMID: 17252188 DOI: 10.1007/s11095-006-9180-5] [Citation(s) in RCA: 448] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 10/16/2006] [Indexed: 01/13/2023]
Abstract
Lipid-based colloidal particles have been extensively studied as systemic gene delivery carriers. The topic that we would like to emphasize is the formulation/assembly of lipid-based nanoparticles (NP) with diameter under 100 nm for delivering nucleic acid in vivo. NP are different from cationic lipid-nucleic acid complexes (lipoplexes) and are vesicles composed of lipids and encapsulated nucleic acids with a diameter less than 100 nm. The diameter of the NP is an important attribute to enable NP to overcome the various in vivo barriers for systemic gene delivery such as: the blood components, reticuloendothelial system (RES) uptake, tumor access, extracellular matrix components, and intracellular barriers. The major formulation factors that impact the diameter and encapsulation efficiency of DNA-containing NP include the lipid composition, nucleic acid to lipid ratio and formulation method. The particle assembly step is a critical one to make NP suitable for in vivo gene delivery. NP are often prepared using a dialysis method either from an aqueous-detergent or aqueous-organic solvent mixture. The resulting particles have diameters about 100 nm and nucleic acid encapsulation ratios are >80%. Additional components can then be added to the particle after it is formed. This ordered assembly strategy enables one to optimize the particle physico-chemical attributes to devise a biocompatible particle with increased gene transfer efficacy in vivo. The components included in the sequentially assembled NP include: poly(ethylene glycol) (PEG)-shielding to improve the particle pharmacokinetic behavior, a targeting ligand to facilitate the particle-cell recognition and in some case a bioresponsive lipid or pH-triggered polymer to enhance nucleic acid release and intracellular trafficking. A number of groups have observed that a PEG-shielded NP is a robust and modestly effective system for systemic gene or small interfering RNA (siRNA) delivery.
Collapse
Affiliation(s)
- Weijun Li
- Departament of Biopharmaceutidal Sciences, School of Pharmacy, University of California at San Francisco, San Francisco, California 94143-0046, USA
| | | |
Collapse
|
47
|
Mortazavi SM, Mohammadabadi MR, Khosravi-Darani K, Mozafari MR. Preparation of liposomal gene therapy vectors by a scalable method without using volatile solvents or detergents. J Biotechnol 2007; 129:604-13. [PMID: 17353061 DOI: 10.1016/j.jbiotec.2007.02.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 01/24/2007] [Accepted: 02/07/2007] [Indexed: 11/27/2022]
Abstract
A scalable and safe method was developed to prepare liposomal carriers for entrapment and delivery of genetic material. The carrier systems were composed of endogenously occurring dipalmitoylphosphatidylcholine (DPPC), negatively charged dicetylphosphate (DCP), cholesterol (CHOL) and glycerol (3%, v/v). Liposomes were prepared by a modified and improved version of the heating method in which no harmful chemical or procedure is involved. Anionic lipoplexes were formed by incorporating plasmid DNA (pCMV-GFP) to the liposomes by the mediation of calcium ions. Transfection efficiency and toxicity of the lipoplexes were evaluated in CHO-K1 cells using flow cytometry and MTT assay, respectively. Controls included DNA-Ca(2+) complexes (without lipids), anionic liposome-DNA complexes (with no Ca(2+)), and a commercially available cationic liposomal formulation. Results indicated fast and reproducible formation of non-toxic lipoplexes that possess long-term stability, high DNA entrapment capacity (81%) and high transfection efficiency. The lipoplex preparation method has the potential of large-scale manufacture of safe and efficient carriers of nucleic acid drugs.
Collapse
Affiliation(s)
- S Moazam Mortazavi
- Biochemistry Group, Medical School of Sanandaj, Faculty of Medicine, Kurdestan University, Sanandaj, Kurdestan, Iran
| | | | | | | |
Collapse
|
48
|
Taylor D, Thomas R, Penfold J. Polymer/surfactant interactions at the air/water interface. Adv Colloid Interface Sci 2007; 132:69-110. [PMID: 17328859 DOI: 10.1016/j.cis.2007.01.002] [Citation(s) in RCA: 334] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Revised: 01/23/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.
Collapse
|
49
|
Rivest V, Phivilay A, Julien C, Bélanger S, Tremblay C, Emond V, Calon F. Novel liposomal formulation for targeted gene delivery. Pharm Res 2007; 24:981-90. [PMID: 17385024 DOI: 10.1007/s11095-006-9224-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 12/22/2006] [Indexed: 01/28/2023]
Abstract
PURPOSE Development of a polyethylene glycol (PEG)-stabilized immunoliposome (PSIL) formulation with high DNA content suitable for in vivo intravenous administration and targeted gene delivery. MATERIALS AND METHODS Plasmid DNA was condensed using 40% ethanol and packaged into neutral PSILs targeted to the mouse transferrin receptor using monoclonal antibodies (MAbs; clones RI7 and 8D3) attached to their PEG maleimide moieties. PSILs size was measured by quasi-elastic light scattering. The targeting capacity of the formulation was determined by transfection of mouse neuroblastoma Neuro 2A (N2A) cells with PSIL-DNA complexes conjugated with either RI7 or 8D3 MAbs. RESULTS DNA encapsulation and MAb conjugation efficiencies averaged 71 +/- 14% and 69 +/- 5% (mean +/- SD), respectively. No alteration in mean particle size (< 100 nm) or DNA leakage were found after 48 h storage in a physiological buffer, and the in vivo terminal half-life reached 23.9 h, indicating that the PSIL-DNA formulation was stable. Addition of free RI7 MAbs prevented transfection of N2A cells with PSIL-DNA complexes conjugated with either RI7 or 8D3 MAbs, confirming that the transfection was transferrin receptor-dependent. CONCLUSIONS The present data suggest that our new PSIL formulation combines molecular features required for targeted gene therapy including high DNA encapsulation efficiencies and vector-specific transient transfection capacity.
Collapse
Affiliation(s)
- Véronique Rivest
- Molecular Endocrinology and Oncology Research Center, Centre Hospitalier de l'Université Laval (CHUL) Research Center, 2705 Laurier Blvd, Quebec, QC, Canada, G1V 4G2
| | | | | | | | | | | | | |
Collapse
|
50
|
Simões S, Filipe A, Faneca H, Mano M, Penacho N, Düzgünes N, de Lima MP. Cationic liposomes for gene delivery. Expert Opin Drug Deliv 2006; 2:237-54. [PMID: 16296751 DOI: 10.1517/17425247.2.2.237] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cationic liposome-DNA complexes (lipoplexes) constitute a potentially viable alternative to viral vectors for the delivery of therapeutic genes. This review will focus on various parameters governing lipoplex biological activity, from their mode of formation to in vivo behaviour. Particular emphasis is given to the mechanism of interaction of lipoplexes with cells, in an attempt to dissect the different barriers that need to be surpassed for efficient gene expression to occur. Aspects related to new trends in the formulation of lipid-based gene delivery systems aiming at overcoming some of their limitations will be covered. Finally, examples illustrating the potential of cationic liposomes in clinical applications will be provided.
Collapse
Affiliation(s)
- Sérgio Simões
- University of Coimbra, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Portugal.
| | | | | | | | | | | | | |
Collapse
|