1
|
Heregger R, Huemer F, Steiner M, Gonzalez-Martinez A, Greil R, Weiss L. Unraveling Resistance to Immunotherapy in MSI-High Colorectal Cancer. Cancers (Basel) 2023; 15:5090. [PMID: 37894457 PMCID: PMC10605634 DOI: 10.3390/cancers15205090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related deaths. Incidences of early CRC cases are increasing annually in high-income countries, necessitating effective treatment strategies. Immune checkpoint inhibitors (ICIs) have shown significant clinical efficacy in various cancers, including CRC. However, their effectiveness in CRC is limited to patients with mismatch-repair-deficient (dMMR)/microsatellite instability high (MSI-H) disease, which accounts for about 15% of all localized CRC cases and only 3% to 5% of metastatic CRC cases. However, the varied response among patients, with some showing resistance or primary tumor progression, highlights the need for a deeper understanding of the underlying mechanisms. Elements involved in shaping the response to ICIs, such as tumor microenvironment, immune cells, genetic changes, and the influence of gut microbiota, are not fully understood thus far. This review aims to explore potential resistance or immune-evasion mechanisms to ICIs in dMMR/MSI-H CRC and the cell types involved, as well as possible pitfalls in the diagnosis of this particular subtype.
Collapse
Affiliation(s)
- Ronald Heregger
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Florian Huemer
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
| | - Markus Steiner
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Alejandra Gonzalez-Martinez
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Richard Greil
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Lukas Weiss
- Department of Internal Medicine III with Hematology, Medical Oncology, Hemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Center for Clinical Cancer and Immunology Trials (CCCIT), Paracelsus Medical University, 5020 Salzburg, Austria (F.H.); (M.S.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
2
|
Yakushina V, Kavun A, Veselovsky E, Grigoreva T, Belova E, Lebedeva A, Mileyko V, Ivanov M. Microsatellite Instability Detection: The Current Standards, Limitations, and Misinterpretations. JCO Precis Oncol 2023; 7:e2300010. [PMID: 37315263 DOI: 10.1200/po.23.00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023] Open
Affiliation(s)
- Valentina Yakushina
- OncoAtlas LLC, Moscow, Russian Federation
- Laboratory of Epigenetics, Research Centre for Medical Genetics, Moscow, Russian Federation
| | | | - Egor Veselovsky
- OncoAtlas LLC, Moscow, Russian Federation
- Department of Evolutionary Genetics of Development, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Tatiana Grigoreva
- OncoAtlas LLC, Moscow, Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina Belova
- OncoAtlas LLC, Moscow, Russian Federation
- Lomonosov Moscow State University, Moscow, Russian Federation
| | | | | | - Maxim Ivanov
- OncoAtlas LLC, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Moscow, Russian Federation
| |
Collapse
|
3
|
He L, Yang J, Zhang B, Wang Y, Wang J, Ye Q. A comparison of performance of 6-mononucleotide site panel and NCI panel for microsatellite instability detection in patients with colorectal adenocarcinoma. Pathol Res Pract 2023; 244:154390. [PMID: 36905693 DOI: 10.1016/j.prp.2023.154390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/17/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Microsatellite instability (MSI) represents as a molecular hallmark of deficient MMR system at the genomic level. Increasing clinical significance of MSI status highlights the necessity of simple, accurate markers for detection. Although 2B3D NCI panel is the most widely applied, it has been questioned whether the performance of NCI panel is second to none in MSI detection. METHODS We evaluated the efficacy of the NCI panel versus a 6-mononucleotide site panel (BAT25, BAT26, NR21, NR24, NR27, and MONO-27) in assessing MSI status of 468 Chinese patients with CRC, and compared MSI test results with the results by immunohistochemistry of four MMR proteins (MLH1, PMS2, MSH2, MSH6) in the present study. Clinicopathological variables were also collected, and their associations with MSI or MMR proteins status were analyzed using either the chi-square test or the Fisher's exact test. RESULTS MSI-H/dMMR was significantly associated with right colon involvement, poor differentiation, early stage, mucinous adenocarcinoma, negative lymph node, less neural invasion, and KRAS/NRAS/BRAF wild-type. As to the efficiency of detecting deficient MMR system, both panels had good concordance with MMR proteins expression by IHC, and 6-mononucleotide site panel outperformed NCI panel in sensitivity, specificity, positive predictive value, and negative predictive value numerically despite the lack of statistical significance. The advantage was more obvious in the sensitivity and specificity analyses of each single microsatellite markers from 6-mononucleotide site panel in comparison with NCI panel. Additionally, the rate of MSI-L detected by 6-mononucleotide site panel was much lower than that detected by the NCI panel (0.64% vs. 2.86%, P = 0.0326). CONCLUSION 6-mononucleotide site panel had a greater ability to help resolve cases of MSI-L into either MSI-H or MSS. We propose that 6-mononucleotide site panel may be potentially more suitable than NCI panel for Chinese CRC population. Large-scale studies are warranted to validate our findings.
Collapse
Affiliation(s)
- Lu He
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Jun Yang
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Biao Zhang
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, China
| | - Yuyang Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Wang
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qing Ye
- Department of Pathology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Intelligent Pathology Institute, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
4
|
Aldera AP, Pillay K, Robertson B, Boutall A, Ramesar R. Genomic landscape of colorectal carcinoma in sub-Saharan Africa. J Clin Pathol 2023; 76:5-10. [PMID: 36566025 DOI: 10.1136/jcp-2022-208482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 12/27/2022]
Abstract
Our understanding of the molecular classification of colorectal carcinoma (CRC) has evolved significantly over the past two decades. Tumours can be broadly categorised as microsatellite stable (MSS), microsatellite instability (MSI) or CpG island-methylator phenotype. Prognostic and predictive information is provided by these categories. The overwhelming majority of the data on which these categories are based have originated from Europe and North America. There is a dearth of information represented from Africa and indigenous African patients. However, some small studies and preliminary data have shown significant differences in all of these groups. The prevalence of MSI in Africa is consistently reported as almost double that of European and North American data. Interestingly, BRAF V600E mutations and MLH1 promotor hypermethylation seem to be uncommon in Africa. The high proportion of MSI tumours is only partly accounted for by germline mutations in mismatch repair genes (Lynch syndrome), suggesting that there are likely to be other mechanisms at play. Within the MSS group, preliminary data suggest that the typical molecular pathways (Wingless/Integrated pathway activation) may not be as dominant in Africa. The purpose of this review is to summarise the current state of the molecular genetic landscape of CRC in Africa and provide insights into areas for further study.
Collapse
Affiliation(s)
| | - Komala Pillay
- Division of Anatomical Pathology, University of Cape Town, Cape Town, South Africa.,Anatomical Pathology, National Health Laboratory Service, Groote Schuur Hospital, Cape Town, South Africa
| | - Barbara Robertson
- Division of Radiation Oncology, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Adam Boutall
- Division of Surgical Gastroenterology, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa
| | - Rajkumar Ramesar
- UCT MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Institute of Infectious Diseases and Molecular Medicine and University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
McCabe M, Penny C, Magangane P, Mirza S, Perner Y. Left-sided colorectal cancer distinct in indigenous African patients compared to other ethnic groups in South Africa. BMC Cancer 2022; 22:1089. [PMID: 36280820 PMCID: PMC9590207 DOI: 10.1186/s12885-022-10185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/14/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction A large proportion of indigenous African (IA) colorectal cancer (CRC) patients in South Africa are young (< 50 years), with no unique histopathological or molecular characteristics. Anatomical site as well as microsatellite instability (MSI) status have shown to be associated with different clinicopathological and molecular features. This study aimed to ascertain key histopathological features in microsatellite stable (MSS) and low-frequency MSI (MSI-L) patients, to provide insight into the mechanism of the disease. Methods A retrospective cohort (2011–2015) of MSS/MSI-L CRC patient samples diagnosed at Charlotte Maxeke Johannesburg Academic Hospital was analyzed. Samples were categorized by site [right colon cancer (RCC) versus left (LCC)], ethnicity [IA versus other ethnic groups (OEG)] and MSI status (MSI-L vs MSS). T-test, Fischer’s exact and Chi-square tests were conducted. Results IA patients with LCC demonstrated an increased prevalence in males, sigmoid colon, signet-ring-cell morphology, MSI-L with BAT25/26 marker instability and advanced disease association. Conclusion This study revealed distinct histopathological features for LCC, and suggests BAT25 and BAT26 as negative prognostic markers in African CRC patients. Larger confirmatory studies are recommended.
Collapse
Affiliation(s)
- Michelle McCabe
- Division of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Services, Johannesburg, 2193 South Africa ,Division of Human Genetics, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Services, Braamfontein, Johannesburg, 2000 South Africa
| | - Clement Penny
- grid.11951.3d0000 0004 1937 1135Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193 South Africa
| | - Pumza Magangane
- Division of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Services, Johannesburg, 2193 South Africa
| | - Sheefa Mirza
- grid.11951.3d0000 0004 1937 1135Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193 South Africa
| | - Yvonne Perner
- Division of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory Services, Johannesburg, 2193 South Africa
| |
Collapse
|
6
|
Adeleke S, Haslam A, Choy A, Diaz-Cano S, Galante JR, Mikropoulos C, Boussios S. Microsatellite instability testing in colorectal patients with Lynch syndrome: lessons learned from a case report and how to avoid such pitfalls. Per Med 2022; 19:277-286. [PMID: 35708161 DOI: 10.2217/pme-2021-0128] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We present the case of a patient with Lynch syndrome and metastatic colorectal carcinoma (mCRC). The initial immunohistochemistry (IHC) test for deficient mismatch repair gave a false negative result. However, the same mutation has accurately has been detected with IHC in other cancers with microsatellite instability (MSI) This supports the determining role of somatic missense mutations in MMR IHC. MSI-PCR testing confirmed MSI and the patient benefited from nivolumab with a complete metabolic response. We explain the rationale for immunotherapy in mCRC, current testing strategies and discuss future developments in MSI testing. We advocate for upfront testing using both IHC and MSI-PCR to direct therapy in mCRC, and a greater understanding of IHC and MSI-PCR testing pitfalls.
Collapse
Affiliation(s)
- Sola Adeleke
- High Dimensional Neurology Group, UCL Queen's Square Institute of Neurology, London, WC1N 3BG, UK.,Department of Oncology, Guy's & St Thomas' Hospital, London, UK.,School of Cancer & Pharmaceutical Sciences, King's College London, Strand, London, WC2R 2LS, UK
| | - Aidan Haslam
- South Bristol Academy, Dolphin House, Bristol Royal Infirmary, Marlborough Street, BS2 8HW, UK
| | - Adrian Choy
- Department of Oncology, Oxford University Hospitals, NHS Foundation Trust, Headington, Oxford, OX3 7DQ, UK
| | - Salvador Diaz-Cano
- Department of Cellular Pathology, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2TH, UK.,Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Joao R Galante
- Maidstone Hospital, Hermitage Lane, Maidstone, Kent, ME16 9QQ, UK
| | - Christos Mikropoulos
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK
| | - Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Windmill Road, Gillingham, Kent, ME7 5NY, UK.,King's College London, Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, London, SE1 9RT, UK.,AELIA Organization, 9th Km Thessaloniki, Thermi, Thessaloniki, 57001, Greece
| |
Collapse
|
7
|
Lin JH, Chen S, Pallavajjala A, Guedes LB, Lotan TL, Bacher JW, Eshleman JR. Validation of Long Mononucleotide Repeat Markers for Detection of Microsatellite Instability. J Mol Diagn 2021; 24:144-157. [PMID: 34864149 DOI: 10.1016/j.jmoldx.2021.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 10/27/2021] [Indexed: 01/22/2023] Open
Abstract
Mismatch repair deficiency (dMMR) predicts response to immune checkpoint inhibitor therapy in solid tumors. Long mononucleotide repeat (LMR) markers may improve the interpretation of microsatellite instability (MSI) assays. Our cohorts included mismatch repair (MMR) proficient and dMMR colorectal cancer (CRC) samples, MMR proficient and dMMR endometrial cancer (EC) samples, dMMR prostate cancer samples, MSI-high (MSI-H) samples of other cancer types, and MSI-low (MSI-L) samples of various cancer types. MMR status was determined by immunohistochemical staining and/or MSI Analysis System Version 1.2 (V1.2). The sensitivity and specificity of the LMR MSI panel for dMMR detection were both 100% in CRC. The sensitivity values of the MSI V1.2 and LMR MSI panels in EC were 88% and 98%, respectively, and the specificity values were both 100%. The sensitivity of the LMR panel was 75% in dMMR prostate cancer detected by immunohistochemistry. The 22 samples of other cancer types that were previously classified as MSI-H were also classified as MSI-H using the LMR MSI panel. For the 12 samples that were previously classified as MSI-L, 1 sample was classified as microsatellite stable using the LMR MSI panel, 8 as MSI-L, and 3 as MSI-H. The LMR MSI panel showed high concordance to the MSI V1.2 panel in CRC and greater sensitivity in EC. The LMR MSI panel improves dMMR detection in noncolorectal cancers.
Collapse
Affiliation(s)
- John H Lin
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suping Chen
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aparna Pallavajjala
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Liana B Guedes
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tamara L Lotan
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - James R Eshleman
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sol Goldman Pancreatic Cancer Research Center, Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
8
|
Guyot D'Asnières De Salins A, Tachon G, Cohen R, Karayan-Tapon L, Junca A, Frouin E, Godet J, Evrard C, Randrian V, Duval A, Svrcek M, Lascols O, Vignot S, Coulet F, André T, Fléjou JF, Cervera P, Tougeron D. Discordance between immunochemistry of mismatch repair proteins and molecular testing of microsatellite instability in colorectal cancer. ESMO Open 2021; 6:100120. [PMID: 33930657 PMCID: PMC8102173 DOI: 10.1016/j.esmoop.2021.100120] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND DNA mismatch repair system deficiency (dMMR) is found in 15% of colorectal cancers (CRCs). Two methods are used to determine dMMR, immunohistochemistry (IHC) of MMR proteins and molecular testing of microsatellite instability (MSI). Only studies with a low number of patients have reported rates of discordance between these two methods, ranging from 1% to 10%. MATERIALS AND METHODS Overall, 3228 consecutive patients with CRCs from two centers were included. Molecular testing was carried out using the Pentaplex panel and IHC evaluated four (MLH1, MSH2, MSH6, and PMS2; cohort 1; n = 1085) or two MMR proteins (MLH1 and MSH2; cohort 2; n = 2143). The primary endpoint was the rate of discordance between MSI and MMR IHC tests. RESULTS Fifty-one discordant cases (1.6%) were initially observed. Twenty-nine out of 51 discordant cases were related to IHC misclassifications. In cohort 1, after re-reading IHC and/or carrying out new IHC, 16 discordant cases were reclassified as nondiscordant. In cohort 2, after the addition of MSH6/PMS2 IHC and re-examination, 13 were reclassified as nondiscordant. In addition, 10 misclassifications of molecular tests were identified. Finally, only 12 discordant cases (0.4%) remained: 5 were proficient MMR/MSI and 7 were dMMR/microsatellite stable. CONCLUSIONS Our study confirmed the high degree of concordance between MSI and MMR IHC tests. Discordant cases must be reviewed, and if needed, tests must be repeated and analyzed by an expert team.
Collapse
Affiliation(s)
| | - G Tachon
- Faculty of Medicine, University of Poitiers, Poitiers, France; INSERM 1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers, Poitiers, France; Cancer Biology Department, Poitiers University Hospital, Poitiers, France
| | - R Cohen
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - L Karayan-Tapon
- Faculty of Medicine, University of Poitiers, Poitiers, France; INSERM 1084, Experimental and Clinical Neurosciences Laboratory, University of Poitiers, Poitiers, France; Cancer Biology Department, Poitiers University Hospital, Poitiers, France
| | - A Junca
- Pathology Department, Poitiers University Hospital, Poitiers, France
| | - E Frouin
- Pathology Department, Poitiers University Hospital, Poitiers, France
| | - J Godet
- Pathology Department, Poitiers University Hospital, Poitiers, France
| | - C Evrard
- Medical Oncology Department, Poitiers University Hospital, Poitiers, France
| | - V Randrian
- Gastroenterology Department, Poitiers University Hospital, Poitiers, France; Faculty of Medicine, University of Poitiers, Poitiers, France
| | - A Duval
- Sorbonne University, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - M Svrcek
- Sorbonne University, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France; Sorbonne University, Department of Pathology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - O Lascols
- Sorbonne University, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - S Vignot
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - F Coulet
- Department of Genetics, Pitié Salpétrière Hospital, AP-HP and Sorbonne University, Paris, France
| | - T André
- Sorbonne University, Department of Medical Oncology, Saint-Antoine Hospital, AP-HP, Paris, France; Sorbonne University, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - J-F Fléjou
- Sorbonne University, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France; Sorbonne University, Department of Pathology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - P Cervera
- Sorbonne University, INSERM, Unité Mixte de Recherche Scientifique 938 and SIRIC CURAMUS, Centre de Recherche Saint-Antoine, Equipe Instabilité des Microsatellites et Cancer, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France; Sorbonne University, Department of Pathology, Saint-Antoine Hospital, AP-HP, Paris, France
| | - D Tougeron
- Gastroenterology Department, Poitiers University Hospital, Poitiers, France; Faculty of Medicine, University of Poitiers, Poitiers, France; Medical Oncology Department, Poitiers University Hospital, Poitiers, France.
| |
Collapse
|
9
|
Rotimi SO, Rotimi OA, Salhia B. A Review of Cancer Genetics and Genomics Studies in Africa. Front Oncol 2021; 10:606400. [PMID: 33659210 PMCID: PMC7917259 DOI: 10.3389/fonc.2020.606400] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death globally and is projected to overtake infectious disease as the leading cause of mortality in Africa within the next two decades. Cancer is a group of genomic diseases that presents with intra- and inter-population unique phenotypes, with Black populations having the burden of morbidity and mortality for most types. At large, the prevention and treatment of cancers have been propelled by the understanding of the genetic make-up of the disease of mostly non-African populations. By the same token, there is a wide knowledge gap in understanding the underlying genetic causes of, and genomic alterations associated with, cancer among black Africans. Accordingly, we performed a review of the literature to survey existing studies on cancer genetics/genomics and curated findings pertaining to publications across multiple cancer types conducted on African populations. We used PubMed MeSH terms to retrieve the relevant publications from 1990 to December 2019. The metadata of these publications were extracted using R text mining packages: RISmed and Pubmed.mineR. The data showed that only 0.329% of cancer publications globally were on Africa, and only 0.016% were on cancer genetics/genomics from Africa. Although the most prevalent cancers in Africa are cancers of the breast, cervix, uterus, and prostate, publications representing breast, colorectal, liver, and blood cancers were the most frequent in our review. The most frequently reported cancer genes were BRCA1, BRCA2, and TP53. Next, the genes reported in the reviewed publications’ abstracts were extracted and annotated into three gene ontology classes. Genes in the cellular component class were mostly associated with cell part and organelle part, while those in biological process and molecular function classes were mainly associated with cell process, biological regulation, and binding, and catalytic activity, respectively. Overall, this review highlights the paucity of research on cancer genomics on African populations, identified gaps, and discussed the need for concerted efforts to encourage more research on cancer genomics in Africa.
Collapse
Affiliation(s)
- Solomon O Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Oluwakemi A Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Centre, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
10
|
McCabe M, Perner Y, Magobo R, Magangane P, Mirza S, Penny C. Microsatellite Instability assessment in Black South African Colorectal Cancer patients reveal an increased incidence of suspected Lynch syndrome. Sci Rep 2019; 9:15019. [PMID: 31636305 PMCID: PMC6803663 DOI: 10.1038/s41598-019-51316-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022] Open
Abstract
Microsatellite Instability (MSI) is a hallmark of colorectal cancer (CRC) and occurs in 15–16% of CRC. Molecular biological information of CRC in South Africa (SA) is largely unrecorded. This study was undertaken to determine the frequency of MSI, with particular reference to Lynch syndrome (LS) with a view to improve surveillance and prevention strategies. This was a retrospective study on CRC samples diagnosed between 2011–2015 at Charlotte Maxeke Johannesburg Academic Hospital (CMJAH). Samples diagnosed between 2011–2012 were screened for MSI by PCR and mismatch repair (MMR) immunohistochemistry (IHC), and additional BRAFV600E mutational analysis performed. T-tests, Fischer’s exact and Chi square statistical tests were applied. Twelve percent of patients displayed MSI, with increased frequency in black (15%) versus other ethnic group (OEG) (8%) patients. MSI patients were significantly younger than microsatellite stable (MSS) patients, however when stratified by ethnicity, black patients were predominantly younger (median age: 47), with increased MSH2/6 loss, and no BRAF mutations. These findings suggest a large proportion of young black SA CRC patients develop via the LS pathway due to earlier age onset and predominant MSH2/6 protein loss. SA patients of other ethnicities appear to follow the more well established sporadic MSI pathway.
Collapse
Affiliation(s)
- M McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa.
| | | | - R Magobo
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa
| | - P Magangane
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa
| | - S Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa
| | - C Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
11
|
Evrard C, Tachon G, Randrian V, Karayan-Tapon L, Tougeron D. Microsatellite Instability: Diagnosis, Heterogeneity, Discordance, and Clinical Impact in Colorectal Cancer. Cancers (Basel) 2019; 11:1567. [PMID: 31618962 PMCID: PMC6826728 DOI: 10.3390/cancers11101567] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/17/2022] Open
Abstract
Tumor DNA mismatch repair (MMR) deficiency testing is important to the identification of Lynch syndrome and decision making regarding adjuvant chemotherapy in stage II colorectal cancer (CRC) and has become an indispensable test in metastatic tumors due to the high efficacy of immune checkpoint inhibitor (ICI) in deficient MMR (dMMR) tumors. CRCs greatly benefit from this testing as approximately 15% of them are dMMR but only 3% to 5% are at a metastatic stage. MMR status can be determined by two different methods, microsatellite instability (MSI) testing on tumor DNA, and immunohistochemistry of the MMR proteins on tumor tissue. Recent studies have reported a rate of 3% to 10% of discordance between these two tests. Moreover, some reports suggest possible intra- and inter-tumoral heterogeneity of MMR and MSI status. These issues are important to know and to clarify in order to define therapeutic strategy in CRC. This review aims to detail the standard techniques used for the determination of MMR and MSI status, along with their advantages and limits. We review the discordances that may arise between these two tests, tumor heterogeneity of MMR and MSI status, and possible explanations. We also discuss the strategies designed to distinguish sporadic versus germline dMMR/MSI CRC. Finally, we present new and accurate methods aimed at determining MMR/MSI status.
Collapse
Affiliation(s)
- Camille Evrard
- Department of Medical Oncology, Poitiers University Hospital, 86021 Poitiers, France.
| | - Gaëlle Tachon
- Department of Cancer biology, Poitiers University Hospital, 86021 Poitiers, France.
- Faculty of medicine, University of Poitiers, 86000 Poitiers, France.
- Laboratory of Experimental and Clinical Neuroscience, Institut national de la santé et de la recherche médicale (INSERM) 1084, F-86073 Poitiers, France.
| | - Violaine Randrian
- Faculty of medicine, University of Poitiers, 86000 Poitiers, France.
- Department of Gastroenterology, Poitiers University Hospital, 86021 Poitiers, France.
| | - Lucie Karayan-Tapon
- Department of Cancer biology, Poitiers University Hospital, 86021 Poitiers, France.
- Faculty of medicine, University of Poitiers, 86000 Poitiers, France.
- Laboratory of Experimental and Clinical Neuroscience, Institut national de la santé et de la recherche médicale (INSERM) 1084, F-86073 Poitiers, France.
| | - David Tougeron
- Department of Medical Oncology, Poitiers University Hospital, 86021 Poitiers, France.
- Faculty of medicine, University of Poitiers, 86000 Poitiers, France.
- Department of Gastroenterology, Poitiers University Hospital, 86021 Poitiers, France.
| |
Collapse
|
12
|
Kinney N, Titus-Glover K, Wren JD, Varghese RT, Michalak P, Liao H, Anandakrishnan R, Pulenthiran A, Kang L, Garner HR. CAGm: a repository of germline microsatellite variations in the 1000 genomes project. Nucleic Acids Res 2019; 47:D39-D45. [PMID: 30329086 PMCID: PMC6323891 DOI: 10.1093/nar/gky969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/14/2022] Open
Abstract
The human genome harbors an abundance of repetitive DNA; however, its function continues to be debated. Microsatellites-a class of short tandem repeat-are established as an important source of genetic variation. Array length variants are common among microsatellites and affect gene expression; but, efforts to understand the role and diversity of microsatellite variation has been hampered by several challenges. Without adequate depth, both long-read and short-read sequencing may not detect the variants present in a sample; additionally, large sample sizes are needed to reveal the degree of population-level polymorphism. To address these challenges we present the Comparative Analysis of Germline Microsatellites (CAGm): a database of germline microsatellites from 2529 individuals in the 1000 genomes project. A key novelty of CAGm is the ability to aggregate microsatellite variation by population, ethnicity (super population) and gender. The database provides advanced searching for microsatellites embedded in genes and functional elements. All data can be downloaded as Microsoft Excel spreadsheets. Two use-case scenarios are presented to demonstrate its utility: a mononucleotide (A) microsatellite at the BAT-26 locus and a dinucleotide (CA) microsatellite in the coding region of FGFRL1. CAGm is freely available at http://www.cagmdb.org/.
Collapse
Affiliation(s)
- Nicholas Kinney
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA
| | - Kyle Titus-Glover
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Division of Genomics and Data Sciences Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Robin T Varghese
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA
| | - Pawel Michalak
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA
- One Health Research Center, Virginia-Maryland College of Veterinary Medicine, 1410 Prices Fork Rd, Blacksburg, VA 24060, USA
- Institute of Evolution,University of Haifa, Abba Khoushy Ave 199, Haifa, 3498838, Israel
| | - Han Liao
- Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ramu Anandakrishnan
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA
| | - Arichanah Pulenthiran
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA
| | - Lin Kang
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA
| | - Harold R Garner
- Edward Via College of Osteopathic Medicine, 2265 Kraft Drive, Blacksburg, VA 24060, USA
- Gibbs Cancer Center & Research Institute, 101 E Wood St., Spartanburg, SC 29303, USA
| |
Collapse
|
13
|
Torshizi Esfahani A, Seyedna SY, Nazemalhosseini Mojarad E, Majd A, Asadzadeh Aghdaei H. MSI-L/EMAST is a predictive biomarker for metastasis in colorectal cancer patients. J Cell Physiol 2018; 234:13128-13136. [PMID: 30549036 DOI: 10.1002/jcp.27983] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/21/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Microsatellite instability (MSI) is a prognostic marker in colorectal cancer (CRC). The biological significance of MSI-low (MSI-L) phenotype and its differences with microsatellite stable (MSS) phenotype remains unclear. The aim of this study is indicating the role of mononucleotide repeat in identifying MSI-L and revealing the association of MSI-L with elevated microsatellite alterations at selected tetranucleotide repeats (EMAST) and oncologic outcome in CRC patients. METHODS MSI and EMAST status were analyzed using three quasimonomorphic panel (BAT-25, BAT-26, and NR-27) and five tetranucleotide repeats (D20S82, D20S85, D9S242, D8S321, and MYCL1), respectively, by capillary electrophoresis method without the need to fluorescent primers. The associations of MSI status with clinicopathological features, EMAST status, metastasis, and overall survival (OS) were investigated. RESULTS Among 159 CRC patient 22.0% were MSI-H, 40.3% were MSS, 37.7% were MSI-L, and 41.5% showed EMAST + phenotype. MSI-L were associated with advanced stages, EMAST+ tumors and worse OS ( p ≤ 0.001). Metastasis was relatively common in MSI-L/EMAST + CRCs and BAT-25 were the most unstable marker in these tumors. CONCLUSIONS MSI-L tumors have different clinicopathological features from MSS and MSI-H tumors. The MSI-L phenotype is a worse prognostic biomarker in CRC and when accompanied by EMAST could be a predictor for metastasis.
Collapse
Affiliation(s)
- Amir Torshizi Esfahani
- Department of Biology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Seyed Yoosef Seyedna
- Department of Biology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ehsan Nazemalhosseini Mojarad
- Department of Cancer, Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Majd
- Department of Molecular Medicine, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
BAT-25 polymorphism in Chinese from Jiangsu province and its implication for locus microsatellite instability screening. Int J Biol Markers 2018; 27:e227-31. [PMID: 22653744 DOI: 10.5301/jbm.2012.9311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 11/20/2022]
Abstract
Background Colorectal cancer is one of the most common tumors with high mortality in China. Microsatellite instability (MSI) analysis is important for the diagnosis of hereditary non-polyposis colorectal cancer (HNPCC) and for the prediction of 5-FU chemotherapy efficiency of colorectal tumors, especially in terms of therapeutic response and overall survival rates. Among the MSI markers recommended by the NIH/NCI, BAT-25 has been extensively studied for its major role in MSI. BAT-25 presents different polymorphisms in different ethnic populations and studies of its polymorphisms in the Chinese population are still very limited. Aims To analyze the frequency of constitutive polymorphic variation at the BAT-25 locus in Chinese from Jiangsu Province and its implication for locus MSI screening. Methods The frequency of allelic variation at the BAT-25 locus of cervical cells from 500 healthy women and blood from 16 healthy males was assessed by direct sequencing. Twenty samples were also analyzed by fragment analysis. DNA extracted from blood of 94 patients with gastrointestinal cancer or endometrial cancer was analyzed by fragment analysis. Results After comparison with the sequencing results, the more frequent allele lengths were 126–127 bp, 128–129 bp, 129–130 bp, respectively consistent with the 24 poly(T) (T24), T25 and T26 alleles. At the BAT-25 locus, 516 healthy individuals had respectively 1.36%, 97.28% and 1.36% of the T24, T25 and T26. Whereas for the 94 cancer patients allelic frequencies were 0.53%, 1.06%, 96.8%, 1.6% for T15, T24, T25 and T26 alleles respectively. Sixteen healthy males had only the T25 allele and heterozygous T15 was only found in 1 male patient with colon cancer. Conclusion We established the relation between fragment length and thymine repeats in BAT-25. The results showed that the BAT-25 locus is quasimonomorphic in Chinese from Jiangsu province. Moreover we showed that variant alleles of BAT-25 were found more likely in blood from cancer patients than in healthy individuals, suggesting the need to perform comparative studies between tumor and blood, or normal tissue, as to obtain a correct MSI identification.
Collapse
|
15
|
Pećina-Šlaus N, Kafka A, Bukovac A, Vladušić T, Tomas D, Hrašćan R. Genetic changes of MLH1 and MSH2 genes could explain constant findings on microsatellite instability in intracranial meningioma. Tumour Biol 2017; 39:1010428317705791. [PMID: 28705114 DOI: 10.1177/1010428317705791] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Postreplicative mismatch repair safeguards the stability of our genome. The defects in its functioning will give rise to microsatellite instability. In this study, 50 meningiomas were investigated for microsatellite instability. Two major mismatch repair genes, MLH1 and MSH2, were analyzed using microsatellite markers D1S1611 and BAT26 amplified by polymerase chain reaction and visualized by gel electrophoresis on high-resolution gels. Furthermore, genes DVL3 (D3S1262), AXIN1 (D16S3399), and CDH1 (D16S752) were also investigated for microsatellite instability. Our study revealed constant presence of microsatellite instability in meningioma patients when compared to their autologous blood DNA. Altogether 38% of meningiomas showed microsatellite instability at one microsatellite locus, 16% on two, and 13.3% on three loci. The percent of detected microsatellite instability for MSH2 gene was 14%, and for MLH1, it was 26%, for DVL3 22.9%, for AXIN1 17.8%, and for CDH1 8.3%. Since markers also allowed for the detection of loss of heterozygosity, gross deletions of MLH1 gene were found in 24% of meningiomas. Genetic changes between MLH1 and MSH2 were significantly positively correlated (p = 0.032). We also noted a positive correlation between genetic changes of MSH2 and DVL3 genes (p = 0.034). No significant associations were observed when MLH1 or MSH2 was tested against specific histopathological meningioma subtype or World Health Organization grade. However, genetic changes in DVL3 were strongly associated with anaplastic histology of meningioma (χ2 = 9.14; p = 0.01). Our study contributes to better understanding of the genetic profile of human intracranial meningiomas and suggests that meningiomas harbor defective cellular DNA mismatch repair mechanisms.
Collapse
Affiliation(s)
- Nives Pećina-Šlaus
- 1 Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,2 Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Kafka
- 1 Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,2 Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anja Bukovac
- 1 Laboratory of Neurooncology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,2 Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Tomislav Vladušić
- 3 Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Davor Tomas
- 4 Department of Pathology, School of Medicine, University of Zagreb, Zagreb, Croatia.,5 University Hospital "Sisters of Charity," Zagreb, Croatia
| | - Reno Hrašćan
- 3 Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
16
|
Molecular analysis of Iranian colorectal cancer patients at risk for Lynch syndrome: a new molecular, clinicopathological feature. J Gastrointest Cancer 2016; 46:118-25. [PMID: 25722176 DOI: 10.1007/s12029-015-9696-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE Microsatellite instability (MSI) and mismatch repair (MMR) gene expression present a hallmark mutational signature of Lynch syndrome as a common hereditary cancer predisposing condition. Since there is not enough data of molecular and clinicopathological aspects of the disease in Iranian populations, this article is a new description in Central Iran. METHODS It is a descriptive analytical study in which we screened 1659 colorectal cancer (CRC) patients based on early-onset disease and Amsterdam II criteria during 14 years (2000-2013). MSI testing was applied through a commercial kit evaluating five mononucleotide markers (BAT-25, BAT-26, MON0-27, NR-21, and NR-24) using a fluorescent multiplex PCR method. Immunohistochemistry (IHC) staining was set up to detect expression of four mismatch repair (MMR) genes including MLH1, MSH2, MSH6, and PMS2. SPSS 16 software was used to analyze the data. RESULTS Overall, 31 of 45 screened at-risk families were eventually included to MSI testing of which 9/31 patients (∼29 %) showed MSI in their tumor tissues including 6 (19.4 %) MSI-H (high). BAT-26 was the most instable marker with instability in 7/31 MSI tumors (22.6 %). IHC-MMR staining was absent in 7/31 probands (22.6 %) of which in 4 cases, both MSH2/MSH6 (57.1 %) and, in 2 cases, both MLH1/PMS2 showed deficiency (28.6 %), and just in one case, MSH6 was defective (14.3 %). IHC-MMR was absent in all 6 MSI-H tumors while none of 3 MSI-L tumors were MMR-deficient. Just single MSH6-defective tumor showed MSS state. The frequency of CRC among MMR-deficient and MMR-proficient families was 67.5 and 27.9 %, respectively. The most common extracolonic cancer among both MMR-deficient and MMR-proficient groups was stomach, respectively, with 26.7 and 16.5 %. CONCLUSIONS A different molecular and clinicopathological phenotype of tumors in CRC Iranian patients at risk for Lynch syndrome could suggest some new molecular mechanisms about which more evaluations are necessary.
Collapse
|
17
|
Zeinalian M, Hashemzadeh-Chaleshtori M, Salehi R, Kazemi M, Emami MH. Tumor microsatellite instability and clinicopathologic features in Iranian colorectal cancer patients at risk for Lynch syndrome. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2015; 20:154-60. [PMID: 25983768 PMCID: PMC4400710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 11/12/2014] [Accepted: 01/07/2015] [Indexed: 10/25/2022]
Abstract
BACKGROUND Microsatellite instability (MSI) is a mutational signature that is the hallmark of Lynch syndrome, and MSI testing is a cost-effective method to screen the disease. Since there is no enough data about MSI status and associated clinicopathologic features of hereditary nonpolyposis colorectal cancer (HNPCC) in Iran, our study is a new trial to describe them in center of Iran (Isfahan). MATERIALS AND METHODS It is a descriptive retrospective study to screen HNPCC families using Amsterdam II criteria in Central Iran within 2000-2013. For MSI testing, we used a commercially available kit evaluating mononucleotide markers (BAT-25, BAT-26, MON0-27, NR-21 and NR-24). After a fluorescent multiplex polymerase chain reaction amplification of the markers, samples were sequenced to fragment analysis. Data analysis was performed using SPSS 16 software (SPSS Inc., Chicago, IL, USA). RESULTS Overall, 31 of 45 screened HNPCC families were eventually included to MSI testing. Totally, 9/31 patients (29.0%) showed MSI in their tumor tissues. BAT-26 was the most instable marker with instability in 7/24 MSI tumors (29.2%). The mean age at diagnosis in microsatellite stable (MSS), MSI-Low (MSI-L), and MSI-High (MSI-H) probands was respectively 44.7 (standard deviation [SD] = 11.83), 51.7 (SD = 16.17), and 36.0 (SD = 3.41) years. The most common tumor sites in MSS, MSI-L, and MSI-H probands were rectosigmoid (∼72.8%), rectum (66.7%) and right colon (50.0%), respectively. Of 186 cancer patients among 31 HNPCC families, 86 patients (46.2%) had colorectal cancer (CRC) and 100 patients (53.8%) had extracolonic cancers. The average of CRC affected members among MSS, MSI-L, and MSI-H groups of our HNPCC families was 2.2 (SD = 1.30), 3.3 (SD = 3.21), and 4.7 (SD = 2.42) patients per family, respectively. Stomach with 18.3% and 26.7% of all extracolonic cancers were most common involved organ in MSS and MSI-H families, respectively. CONCLUSION Our different molecular results could be suggested to describe HNPCC families based on some new molecular mechanisms leading to MSS HNPCC phenotypes. Meanwhile, more evaluations within our population are recommended.
Collapse
Affiliation(s)
- Mehrdad Zeinalian
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran,Clinic of Gastrointestinal Diseases, Poursina Hakim Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Rasoul Salehi
- Clinic of Gastrointestinal Diseases, Poursina Hakim Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Clinic of Gastrointestinal Diseases, Poursina Hakim Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hassan Emami
- Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran,Clinic of Gastrointestinal Diseases, Poursina Hakim Research Center, Isfahan University of Medical Sciences, Isfahan, Iran,Address for correspondence: Dr. Mohammad Hassan Emami, Poursina Hakim Research Center, Sheykh Mofid St., Isfahan, Iran. E-mail:
| |
Collapse
|
18
|
Vaniawala S, Acharya A, Parekh H, Bapat A, Mukhopadhyaya PN. Pattern of Variation in the Mono- and Dinucleotide Repeat Microsatellites Associated with Lynch Syndrome in an Indian Population. Oncol Res Treat 2014; 37:720-4. [DOI: 10.1159/000369261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/21/2014] [Indexed: 11/19/2022]
|
19
|
V. S, Bhagat R, C.S. P, V.R. P, Krishnamoorthy L. Microsatellite instability, promoter methylation and protein expression of the DNA mismatch repair genes in epithelial ovarian cancer. Genomics 2014; 104:257-63. [DOI: 10.1016/j.ygeno.2014.08.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/21/2014] [Accepted: 08/26/2014] [Indexed: 12/26/2022]
|
20
|
Singh N, Traisak P, Martin KA, Kaplan MJ, Cohen PL, Denny MF. Genomic alterations in abnormal neutrophils isolated from adult patients with systemic lupus erythematosus. Arthritis Res Ther 2014; 16:R165. [PMID: 25107306 PMCID: PMC4262380 DOI: 10.1186/ar4681] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 07/18/2014] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Patients with systemic lupus erythematosus (SLE) have an abnormal population of neutrophils, called low-density granulocytes (LDGs), that express the surface markers of mature neutrophils, yet their nuclear morphology resembles an immature cell. Because a similar discrepancy in maturation status is observed in myelodysplasias, and disruption of neutrophil development is frequently associated with genomic alterations, genomic DNA isolated from autologous pairs of LDGs and normal-density neutrophils was compared for genomic changes. METHODS Alterations in copy number and losses of heterozygosity (LOH) were detected by cytogenetic microarray analysis. Microsatellite instability (MSI) was detected by capillary gel electrophoresis of fluorescently labeled PCR products. RESULTS Control neutrophils and normal-density SLE neutrophils had similar levels of copy number variations, while the autologous SLE LDGs had an over twofold greater number of copy number alterations per genome. The additional copy number alterations found in LDGs were prevalent in six of the thirteen SLE patients, and occurred preferentially on chromosome 19, 17, 8, and X. These same SLE patients also displayed an increase in LOH. Several SLE patients had a common LOH on chromosome 5q that includes several cytokine genes and a DNA repair enzyme. In addition, three SLE patients displayed MSI. Two patients displayed MSI in greater than one marker, and one patient had MSI and increased copy number alterations. No correlations between genomic instability and immunosuppressive drugs, disease activity or disease manifestations were apparent. CONCLUSIONS The increased level of copy number alterations and LOH in the LDG samples relative to autologous normal-density SLE neutrophils suggests somatic alterations that are consistent with DNA strand break repair, while MSI suggests a replication error-prone status. Thus, the LDGs isolated have elevated levels of somatic alterations that are consistent with genetic damage or genomic instability. This suggests that the LDGs in adult SLE patients are derived from cell progenitors that are distinct from the autologous normal-density neutrophils, and may reflect a role for genomic instability in the disease.
Collapse
Affiliation(s)
- Namrata Singh
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
| | - Pamela Traisak
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
| | - Kayla A Martin
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Mariana J Kaplan
- />Systemic Autoimmunity Branch, Intramural Research Program, NIAMS/NIH, 10 Center Drive, Bethesda, MD 20892 USA
| | - Philip L Cohen
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
- />Temple Autoimmunity Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| | - Michael F Denny
- />Section of Rheumatology, Temple University, 3322 North Broad Street, Philadelphia, PA 19140 USA
- />Department of Microbiology and Immunology, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
- />Temple Autoimmunity Center, Temple University, 3500 North Broad Street, Philadelphia, PA 19140 USA
| |
Collapse
|
21
|
Mokarram P, Rismanchi M, Alizadeh Naeeni M, Mirab Samiee S, Paryan M, Alipour A, Honardar Z, Kavousipour S, Naghibalhossaini F, Mostafavi-Pour Z, Monabati A, Hosseni SV, Shamsdin SA. Microsatellite instability typing in serum and tissue of patients with colorectal cancer: comparing real time PCR with hybridization probe and high-performance liquid chromatography. Mol Biol Rep 2014; 41:2835-44. [DOI: 10.1007/s11033-014-3138-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 01/11/2014] [Indexed: 01/06/2023]
|
22
|
Should Microsatellite Instability Be Tested in All Cases of Colorectal Cancer? CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-013-0204-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
23
|
|
24
|
Hegde M, Ferber M, Mao R, Samowitz W, Ganguly A. ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis). Genet Med 2013; 16:101-16. [PMID: 24310308 DOI: 10.1038/gim.2013.166] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/28/2022] Open
Abstract
Lynch syndrome, familial adenomatous polyposis, and Mut Y homolog (MYH)-associated polyposis are three major known types of inherited colorectal cancer, which accounts for up to 5% of all colon cancer cases. Lynch syndrome is most frequently caused by mutations in the mismatch repair genes MLH1, MSH2, MSH6, and PMS2 and is inherited in an autosomal dominant manner. Familial adenomatous polyposis is manifested as colonic polyposis caused by mutations in the APC gene and is also inherited in an autosomal dominant manner. Finally, MYH-associated polyposis is caused by mutations in the MUTYH gene and is inherited in an autosomal recessive manner but may or may not be associated with polyps. There are variants of both familial adenomatous polyposis (Gardner syndrome--with extracolonic features--and Turcot syndrome, which features medulloblastoma) and Lynch syndrome (Muir-Torre syndrome features sebaceous skin carcinomas, and Turcot syndrome features glioblastomas). Although a clinical diagnosis of familial adenomatous polyposis can be made using colonoscopy, genetic testing is needed to inform at-risk relatives. Because of the overlapping phenotypes between attenuated familial adenomatous polyposis, MYH-associated polyposis, and Lynch syndrome, genetic testing is needed to distinguish among these conditions. This distinction is important, especially for women with Lynch syndrome, who are at increased risk for gynecological cancers. Clinical testing for these genes has progressed rapidly in the past few years with advances in technologies and the lower cost of reagents, especially for sequencing. To assist clinical laboratories in developing and validating testing for this group of inherited colorectal cancers, the American College of Medical Genetics and Genomics has developed the following technical standards and guidelines. An algorithm for testing is also proposed.
Collapse
Affiliation(s)
- Madhuri Hegde
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Rong Mao
- Mayo Clinic, Salt Lake City, Utah, USA
| | | | - Arupa Ganguly
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
25
|
A five-marker panel in a multiplex PCR accurately detects microsatellite instability-high colorectal tumors without control DNA. ACTA ACUST UNITED AC 2012; 21:127-33. [PMID: 22847155 DOI: 10.1097/pdm.0b013e3182461cc3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Microsatellite instability (MSI) testing is used to screen for Lynch syndrome. The current technique for MSI determination requires DNA from normal and neoplastic tissue and is expensive and laborious. Five quasi-monomorphic markers (NR-21, BAT-25, MONO-27, NR-24, and BAT-26) are included in the Promega MSI analysis kit. With the working hypothesis that this 5-marker panel can accurately determine the MSI status of colorectal tumors without using paired control DNA, we evaluated 478 colorectal tumors and divided them into a test group (N=172, colorectal adenocarcinomas) and a validation group (N=306 including 179 colorectal adenocarcinomas and 127 adenomas). The quasi-monomorphic variation range of each marker was generated from the test group (172 normal samples) and used as a reference value in the subsequent interpretation of MSI status in the test and validation groups. Considering the MSI result using a 5-marker panel with paired control DNA as the gold standard, we identified 136 microsatellite stable (MSS) and 36 microsatellite instability-high (MSI-H) colorectal tumors in the test group and 259 MSS and 47 MSI-H colorectal tumors in the validation group. Using the quasi-monomorphic variation range of each marker rather than paired normal DNA, the 5-marker panel identified all MSI-H colorectal tumors in the test and validation groups, when MSI-H was defined as ≥2 unstable markers. Our study demonstrates that the 5-marker panel within a multiplex polymerase chain reaction of the Promega MSI analysis kit accurately identifies all MSI-H and 95.2% MSS colorectal tumors without using paired normal DNA.
Collapse
|
26
|
The Correlation between Microsatellite Instability and the Features of Sporadic Colorectal Cancer in the North Part of Iran. Gastroenterol Res Pract 2012; 2012:756263. [PMID: 23213329 PMCID: PMC3507153 DOI: 10.1155/2012/756263] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/09/2012] [Accepted: 10/14/2012] [Indexed: 01/27/2023] Open
Abstract
Background. The aim of this study was to determine the correlation between MSI and sporadic colorectal cancer in Guilan province, North part of Iran.
Materials and Methods. A total of 96 patients who underwent resection for sporadic colorectal cancer in Guilan province were studied. No patients had positive family history of cancers. The frequencies of MSI were analyzed by testing the BAT-26 and BAT-25 markers. Results. MSI analysis revealed that 22.9% of the tumors (22 patients) were microsatellite instability positive and 77.1% (74 patients) were microsatellite instability negative. The highest rate of MSI (40.9%) was found in the rectal region. MSI-H status was seen more frequently in distal tumors (P = 0.04, odds ratio = 3.13, 0.96–10.14). Conclusions. Distal tumor location and MSI may associate with special clinicopathological features. It seems that there may be correlation with underlying genetic and immunologic mechanisms.
Collapse
|
27
|
Abstract
CONTEXT About 15% of colorectal cancers are characterized by genomic microsatellite instability, and of these, about 1 in 5 (2%-4% overall) are due to Lynch syndrome, a dominantly inherited condition predisposing the patient to cancers of multiple organ systems, including the gastrointestinal tract. Identification of individuals with Lynch syndrome allows for increased surveillance of the affected individual and of potentially affected family members. OBJECTIVE To review the literature on microsatellite instability in colorectal cancer and current laboratory diagnostic testing strategies for the detection of Lynch syndrome. DATA SOURCES This review is based on peer-reviewed literature, published guidelines from professional organizations (Evaluation of Genomic Applications in Practice and Prevention Working Group, National Comprehensive Cancer Network), and information from clinical laboratories performing microsatellite instability testing. CONCLUSIONS Universal screening for Lynch syndrome in all individuals affected with colorectal cancer has been recommended by the Evaluation of Genomic Applications in Practice and Prevention Working Group. Preliminary screening tests can identify individuals unlikely to be affected by Lynch syndrome, thereby reducing the need for full gene analysis. Immunohistochemistry and polymerase chain reaction-based tests for microsatellite instability have similar clinical sensitivity and specificity, and each method has advantages and limitations. BRAF and MLH1 methylation testing are useful reflex tests for those with a defect in MLH1 identified by immunohistochemistry. Emerging technologies, such as high-throughput sequencing, may substantially affect diagnostic algorithms in the future.
Collapse
Affiliation(s)
- Katherine B Geiersbach
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84108, USA.
| | | |
Collapse
|
28
|
Pino MS, Chung DC. Microsatellite instability in the management of colorectal cancer. Expert Rev Gastroenterol Hepatol 2011; 5:385-99. [PMID: 21651356 DOI: 10.1586/egh.11.25] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microsatellite instability (MSI) is a form of genetic instability caused by alterations in the DNA mismatch repair system. Approximately 15% of colorectal cancers display MSI due to a germline mutation in one of the mismatch repair genes (MLH1, MSH2, MSH6 and PMS2) or to epigenetic silencing of MLH1. Colorectal cancers with MSI have distinctive features, including a tendency to arise in the proximal colon, poor differentiation, lymphocytic infiltration and mucinous or signet-ring histology. Patients with MSI tumors appear to have a better prognosis than those with microsatellite stable tumors, but curiously the responses to 5-fluorouracil-based chemotherapy regimens are poorer with MSI tumors. Preliminary data suggest possible advantages of irinotecan-based regimens, but these findings need validation in well-designed clinical trials.
Collapse
Affiliation(s)
- Maria S Pino
- Gastrointestinal Unit, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, USA
| | | |
Collapse
|
29
|
Abstract
Approximately 20 percent of right-sided colon cancers and 5 percent of left-sided colon and rectal cancers have a deficient DNA mismatch repair system. This results in the widespread accumulation of mutations to nucleotide repeats, some of which occur within the coding regions of cancer-related genes such as TGFβRII and BAX. A standardized definition for microsatellite instability (MSI) based on the presence of deletions to mononucleotide repeats is gaining widespread acceptance in both research and the clinic. Colorectal cancer (CRC) with MSI are characterized histologically by an abundance of tumor-infiltrating lymphocytes, poor differentiation and a signet ring or mucinous phenotype. In younger patients these tumors usually develop along the chromosomal instability pathway, in which case the mismatch repair genes are inactivated by germline mutation, somatic mutation and loss of heterozygosity. In older patients MSI CRC usually develops against a background of widespread hypermethylation that includes methylation-induced silencing of the mismatch repair gene MLH1. The overall biological and clinical phenotype of MSI CRC that arise in these two pathways is likely to be different and may account for some of the discordant results reported in the literature relating to the clinical properties of these tumors. The available evidence indicates that MSI is unlikely to be a clinically useful marker for the prognostic stratification of early-stage CRC. The predictive value of MSI for response to 5-fluorouracil-based chemotherapy remains controversial, while for other agents the predictive value is difficult to assess because they are used in combination regimens. The MSI phenotype is being actively investigated for novel therapeutic approaches based on the principle of synthetic lethality. Finally, the MSI status of CRC is an extremely useful marker for population-based screening programs that aim to identify individuals and families with the hereditary cancer condition known as Lynch syndrome.
Collapse
Affiliation(s)
- Barry Iacopetta
- School of Surgery, University of Western Australia Anatomical Pathology, Pathwest, Nedlands, Western Australia, Australia.
| | | | | |
Collapse
|
30
|
Abstract
Lynch syndrome (LS), or hereditary nonpolyposis colorectal cancer, is the most common hereditary colorectal cancer (CRC) syndrome, accounting for approximately 2-5% of all newly diagnosed cases of CRC. Patients with LS have an increased lifetime risk of colorectal (52.2% in women and 68.7% in men) and endometrial cancer (15-70%), as well as certain extra-colonic cancers. Germline mutations in one of several DNA mismatch repair genes underlie LS. Molecular testing has emerged as an indispensable strategy for the diagnosis of LS. The diagnostic work-up of at-risk individuals includes a careful family history evaluation, microsatellite instability, immunohistochemistry and germline DNA analysis. A positive test result can guide clinicians in formulating the appropriate screening, surveillance and management strategies. However, because of the absence of an overt phenotype, such as a diffuse polyposis, it is not always straightforward to recognize LS clinically.
Collapse
Affiliation(s)
- Maria S Pino
- Gastrointestinal Unit, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, USA
| | - Daniel C Chung
- Gastrointestinal Unit, Massachusetts General Hospital, 50 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
31
|
de la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol 2010; 28:3380-7. [PMID: 20516444 DOI: 10.1200/jco.2009.27.0652] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Microsatellite instability (MSI) is a clonal change in the number of repeated DNA nucleotide units in microsatellites. It arises in tumors with deficient mismatch repair due to the inactivation of one of the four mismatch repair genes: MSH2, MLH1, MSH6, and PMS2. In order to determine the MSI status of a tumor, microdissection and polymerase chain reaction-based detection strategies are required. For practical purposes, MSI is equivalent to the loss of staining by immunohistochemistry (IHC) of one of the mismatch repair genes since both signify an abnormality in mismatch repair. Of all colorectal cancers (CRCs), 15% to 20% display MSI or abnormal IHC (often referred to as microsatellite instability [MIN] pathway). The remaining 80% to 85% of CRCs are microsatellite stable but most are characterized by chromosomal instability (CIN pathway). Almost all Lynch syndrome tumors have MSI or abnormal IHC and they account for up to one third of all MIN CRCs (3% to 5% of all CRCs). The remaining MIN tumors are sporadic as a result of somatic inactivation of the MLH1 gene caused by methylation of its promoter. Thus, the presence of a MSI/IHC abnormality prompts further investigations to diagnose Lynch syndrome, whereas its absence excludes Lynch syndrome. We recommend screening all CRC tumors for IHC or MSI. MIN tumors have a more favorable outcome than CIN tumors, and fluorouracil-based adjuvant chemotherapy does not improve the outcome of stage II or stage III MIN tumors. More data are needed to determine how best to treat patients with stage II and stage III MIN CRCs.
Collapse
|
32
|
Messick CA, Church JM, Liu X, Ting AH, Kalady MF. Stage III Colorectal Cancer: Molecular Disparity Between Primary Cancers and Lymph Node Metastases. Ann Surg Oncol 2009; 17:425-31. [DOI: 10.1245/s10434-009-0783-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Indexed: 12/23/2022]
|
33
|
Bianchi F, Galizia E, Catalani R, Belvederesi L, Ferretti C, Corradini F, Cellerino R. CAT25 is a mononucleotide marker to identify HNPCC patients. J Mol Diagn 2009; 11:248-52. [PMID: 19324995 PMCID: PMC2671342 DOI: 10.2353/jmoldx.2009.080155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2009] [Indexed: 12/31/2022] Open
Abstract
Mismatch repair mutations are the cause of generalized genomic instability and are particularly evident at microsatellite loci, which is known as microsatellite instability (MSI). MSI is present in 85% to 90% of colorectal cancers and occurs in hereditary non-polyposis colorectal cancer (HNPCC). The National Cancer Institute recommends the "Bethesda panel" for MSI screening. Recently, a novel T(25) mononucleotide marker was described, termed CAT25. This microsatellite marker displays a quasi-monomorphic pattern in normal tissues. The aim of our study was to evaluate the performance of CAT25 in HNPCC patients and to compare its reliability with the results of the Bethesda panel. We tested 55 tumor tissues from HNPCC patients using both the Bethesda panel and the CAT25 mononucleotide marker. One hundred healthy blood donors were used as controls. The CAT25 microsatellite was found to be altered in all 13 colorectal cancers classified as MSI-H using the standard Bethesda panel. Colorectal tumors that showed a stable Bethesda pattern did not show altered CAT25 repeats. Additionally, CAT25 showed a monomorphic allele pattern in all tissue samples. In our series, the concordance between the Bethesda panel and CAT25 in identifying colorectal cancers with high MSI reached 100%. Our results suggest that the CAT25 microsatellite represents a sensitive and specific marker for MSI and could be, at least, included in the panel of markers for the identification of HNPCC patients.
Collapse
Affiliation(s)
- Francesca Bianchi
- Centro Regionale di Genetica Oncologica, Ospedali Riuniti-Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Laghi L, Bianchi P, Malesci A. Differences and evolution of the methods for the assessment of microsatellite instability. Oncogene 2008; 27:6313-21. [PMID: 18679418 DOI: 10.1038/onc.2008.217] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Microsatellite instability (MSI) originates from the systematic accumulation of uncorrected deletion/insertion in repetitive DNA tracts in cancer cells with a deficient mismatch repair system. Among colorectal cancers, the MSI signature identifies hereditary cases arising in patients with germline mutations in hMLH1, hMSH2, PMS2 and a fraction of those with hMSH6 mutations, as well as sporadic cancers with epigenetic hMLH1 promoter hypermethylation. Considering the specific pathogenesis, pathological features, natural history and response to 5-fluoro-uracil-based chemotherapy of the MSI cancers, confusion about the genetic markers for MSI recognition seems surprising. In this clinically relevant field, an agreement has not been reached concerning the use of di- or mononucleotide markers for MSI assessment. The Revised Bethesda Guidelines still recommend a panel of markers consisting of mono- and dinucleotides, despite being questioned whether it is congruous to continue to use dinucleotide markers for MSI identification. In any event, no single marker is accurate enough for MSI testing, and an awareness of their pros and cons is required for proper interpretation of results. In recent years, several papers have reported different prevalence of MSI in unrelated series, largely depending on the detection and classification method, suggesting that MSI test interpretation also requires the understanding of the phenomenon rather than simply the crude satisfaction of panel recommendations. Inaccuracies can otherwise lead to under- or overdiagnosis and inaccurate disease classification, which always have a negative impact on the clinical practice of medicine.
Collapse
Affiliation(s)
- L Laghi
- Department of Gastroenterology, IRCCS-Istituto Clinico Humanitas, Rozzano, Milano, Italy.
| | | | | |
Collapse
|
35
|
Deschoolmeester V, Baay M, Wuyts W, Van Marck E, Van Damme N, Vermeulen P, Lukaszuk K, Lardon F, Vermorken JB. Detection of microsatellite instability in colorectal cancer using an alternative multiplex assay of quasi-monomorphic mononucleotide markers. J Mol Diagn 2008; 10:154-9. [PMID: 18258928 DOI: 10.2353/jmoldx.2008.070087] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Colorectal malignancies demonstrating microsatellite instability (MSI) have a very heterogeneous histological appearance, better prognosis, and altered response to therapy. Consequently, identification of the MSI phenotype is both relevant and interesting as a screening and prognostic tool and as a potential predictive factor of chemotherapeutic response. Several groups have argued for the exclusive use of mononucleotide markers for MSI analysis. In this study, an alternative MSI typing multiplex system of mononucleotide microsatellite repeats was developed. This system obviates the need to compare allelic profiles between tumor and matching normal DNA, rendering MSI analysis amenable to high throughput. The quasi-monomorphic allelic distribution of five alternative mononucleotide markers was evaluated in genomic DNA. Only SEC63 and CAT25 were found to be quasi-monomorphic and were thus combined with BAT25 and BAT26 from the Bethesda panel. Consequently, 177 colorectal cancer samples previously analyzed by the Bethesda panel were tested for MSI using this alternative mononucleotide panel. In an attempt to resolve discordant cases, immunohistochemistry of MLH1, MSH2, and MSH6 was performed. The concordance between both panels reached 99.4% when microsatellite stability and MSI-L were grouped together. These new markers were subsequently multiplexed in a single polymerase chain reaction assay. The resulting mononucleotide fluorescent multiplex MSI assay has high accuracy, reliability, and throughput, thus reducing the time and cost involved in MSI testing.
Collapse
Affiliation(s)
- Vanessa Deschoolmeester
- Laboratory of Cancer Research and Clinical Oncology, Department of Medical Oncology, University of Antwerp (UA/UZA), Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sellick GS, Lubbe SJ, Matutes E, Catovsky D, Houlston RS. Microsatellite instability indicative of defects in the major mismatch repair genes is rare in patients with B-cell chronic lymphocytic leukemia: Evaluation with disease stage and family history. Leuk Lymphoma 2007; 48:1320-2. [PMID: 17613760 DOI: 10.1080/10428190701361844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A possible role for DNA mismatch repair defects and microsatellite instability (MSI) in the pathogenesis of a number of B-cell lymphoproliferative disorders has recently been debated. To gain further insight into the impact of MSI on B-CLL, we evaluated samples from a series of 982 patients using the mono-satellite markers BAT25 and BAT26, which are highly sensitive in demonstrating classical mismatch repair (MMR) deficiency. Only 1% of cases displayed MSI and this was not correlated with stage of disease or family history of B-CLL. A sub-polymorphic germline variant of BAT25 was identified in one familial case, which was also detected in the patient's affected brother. In conclusion, our study demonstrates that MSI does not have a prominent role in the pathogenesis of B-CLL.
Collapse
Affiliation(s)
- G S Sellick
- Section of Cancer Genetics, Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | | | |
Collapse
|
37
|
Xicola RM, Llor X, Pons E, Castells A, Alenda C, Piñol V, Andreu M, Castellví-Bel S, Payá A, Jover R, Bessa X, Girós A, Duque JM, Nicolás-Pérez D, Garcia AM, Rigau J, Gassull MA. Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J Natl Cancer Inst 2007; 99:244-52. [PMID: 17284719 DOI: 10.1093/jnci/djk033] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Colorectal tumors caused by failure of the DNA mismatch repair system commonly show microsatellite instability. Our goals were to compare the performance of two panels of markers (a panel previously recommended by the National Cancer Institute [NCI] and a pentaplex of mononucleotide repeats) and to devise the simplest diagnostic strategy for identification of patients with colorectal cancer characterized by defects in mismatch repair. METHODS We recruited 1058 patients who were newly diagnosed with colorectal cancer. DNA from fresh-frozen and paraffin-embedded tumors was tested for microsatellite instability, using the NCI-recommended panel of microsatellite markers and the pentaplex panel of mononucleotide repeats, respectively, as templates for polymerase chain reactions (PCRs). Microsatellite instability in fresh-frozen tumors was also assessed using the pentaplex panel of mononucleotides in a crossover analysis. The expression of mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2) in the tumors was determined immunohistochemically. The sensitivity and specificity with which the marker panels identified tumors with deficiencies in the expression of mismatch repair proteins were calculated. All statistical tests were two-sided. RESULTS The sensitivity and positive predictive value of the NCI panel were 76.5% (95% confidence interval [CI] = 61% to 92%) and 65.0% (95% CI = 49% to 81%), respectively; corresponding values for the mononucleotide pentaplex panel were 95.8% (95% CI = 89% to 103%) and 88.5% (95% CI = 79% to 98%), respectively. A panel consisting of the mononucleotide repeat markers BAT26 and NR24 alone had the same predictive value as the pentaplex panel of mononucleotide repeats. CONCLUSIONS The pentaplex panel of mononucleotide repeats performs better than the NCI panel for the detection of mismatch repair-deficient tumors. Simultaneous assessment of the instability of BAT26 and NR24 is as effective as use of the pentaplex panel for diagnosing mismatch repair deficiency.
Collapse
Affiliation(s)
- Rosa M Xicola
- Department of Gastroenterology, Germans Trias i Pujol Hospital, Carretera del Canyet s/n, 08916 Badalona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cossio SL, Ashton-Prolla P, Bortolini MC, Coura RS, Giugliani R, Prolla JC. Microsatellite Instability Testing in Genetically Heterogeneous Populations. J Clin Oncol 2007; 25:913-4; author reply 914-5. [PMID: 17327619 DOI: 10.1200/jco.2006.09.4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
39
|
Kloor M, von Knebel Doeberitz M, Gebert JF. Molecular testing for microsatellite instability and its value in tumor characterization. Expert Rev Mol Diagn 2007; 5:599-611. [PMID: 16013977 DOI: 10.1586/14737159.5.4.599] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molecular analysis of tumor tissue has become a rapidly expanding field in medical research, exploiting the advantages of new technologies adapted to high-throughput examination of genetic alterations, gene and protein expression patterns. Only exceptionally, these approaches have found their way into routine clinical diagnosis and therapy. Microsatellite instability testing has been established as a very powerful tool to identify patients with hereditary nonpolyposis colorectal cancer, one of the most common familial cancer syndromes. In addition, there is emerging evidence that microsatellite instability analysis may become increasingly important for the clinician, having considerable impact on patients' prognosis as well as therapeutic decisions, at least in colorectal cancer patients. A better understanding of the microsatellite instability phenotype, its pathogenesis and implications for the course of the disease will pave the way for novel diagnostic and therapeutic strategies specifically tailored to microsatellite-unstable tumors. This review summarizes the current significance of molecular testing for microsatellite instability in several tumor entities and provides prospects of future developments.
Collapse
Affiliation(s)
- Matthias Kloor
- Institute of Molecular Pathology, Im Neuenheimer Feld 220/221, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
40
|
Cossio SL, Coura RDS, Bortolini MC, Giugliani R, Ashton-Prolla P, Prolla JC. Polymorphic variation of mononucleotide microsatellites in healthy humans and its implication for microsatellite instability screening. ARQUIVOS DE GASTROENTEROLOGIA 2007; 44:64-7. [PMID: 17639186 DOI: 10.1590/s0004-28032007000100014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Accepted: 07/21/2006] [Indexed: 05/16/2023]
Abstract
BACKGROUND Colorectal cancer is the sixth most common tumor and the fifth in mortality in Brazil. Molecular markers have been associated with disease prognosis, especially in relation to therapeutic response and overall survival rates. Among these, microsatellite instability has been extensively studied. Microsatellite stability status is usually determined by comparison of normal and tumoral tissues from the same patient and instability is characterized by the difference in the PCR-amplification profile of these tissues at a given locus. Usually, a panel of five markers is used for this purpose. Two of them (BAT-25 and BAT-26) are considered monomorphic in populations of European origin. AIM To analyse the frequency of constitutive polymorphic variation at BAT-25 and BAT-26 loci in a sample of individuals from Southern Brazil. METHODS Two-hundred and sixteen healthy and unrelated individuals were analised to assess the frequency of allelic variation at the BAT-25 and BAT-26 loci in DNA extracted from peripheral blood. Analysis was done by polymerase chain reaction - single strand conformation polymorphism (PCR-SSCP). RESULTS From the sample of patients studied, 7% and 6% of the patients had possible constitutive allelic variation at the BAT-25 and BAT-26 loci, respectively. CONCLUSIONS These results indicate that significant constitutive allelic variation of these loci does occur in heterogeneous populations such as ours, and reinforce the importance of comparative studies between tumoral and corresponding normal tissue to determine microsatellite stability status and correctly identify microsatellite instability in selected populations.
Collapse
|
41
|
Søreide K. Molecular Testing for Microsatellite Instability and DNA Mismatch Repair Defects in Hereditary and Sporadic Colorectal Cancers – Ready for Prime Time? Tumour Biol 2007; 28:290-300. [DOI: 10.1159/000110427] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Accepted: 08/15/2007] [Indexed: 01/04/2023] Open
|
42
|
Namour F, Ayav A, Lu X, Klein M, Muresan M, Bresler L, Tramoy D, Guéant JL, Brunaud L. Lack of association between microsatellite instability and benign adrenal tumors. World J Surg 2006; 30:1240-6. [PMID: 16715450 DOI: 10.1007/s00268-005-0471-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The adrenal gland may give rise to pheochromocytomas, which are catecholamine-producing tumors originating from the adrenal medulla, or to adrenocortical tumors, which derive from the adrenocortical cortex and may be secreting or not. The genetic mechanisms underlying the formation of these tumors include somatic mutations in susceptibility genes, especially in the familial forms, and allelic loss, especially in chromosome 1. AIM The aim of this study was to investigate a third genetic mechanism by evaluating microsatellite instability using the reference markers (Bat25, Bat26, D2S123, D5S346, D17S250) validated by the National Cancer Institute. Microsatellite loci were analyzed in 32 benign tumors, including 11 pheochromocytomas and 21 adrenocortical tumors, in patients with and without familial syndrome. RESULTS The different alleles of microsatellite loci were reliably detected by DNA fragments analysis, whereas data obtained after melting-point analysis on the Lightcycler were inconsistent. No microsatellite instability was detected in any tumor. One patient with a unilateral pheochromocytoma showed a loss of heterozygosity for D17S250. A second patient with a MEN-2A syndrome and a two-sided pheochromocytoma exhibited a loss of heterozygosity for D2S123 in the right tumor only and a retention of heterozygosity for all markers in the left tumor. CONCLUSIONS These results suggest that microsatellite instability, evaluated by the five reference markers of the National Cancer Institute, is not a feature of benign adrenal tumors.
Collapse
Affiliation(s)
- Fares Namour
- Department of Biochemistry, CHU Nancy-Brabois, INSERM U724, allée du Morvan, 54511, Vandoeuvre les Nancy, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jaskowski L, Young J, Jackson L, Arnold S, Barker MA, Walsh MD, Buchanan DD, Holman S, Mensink KA, Jenkins MA, Hopper JL, Thibodeau SN, Jass JR, Spurdle AB. Stability of BAT26 in Lynch syndrome colorectal tumours. Eur J Hum Genet 2006; 15:139-41; author reply 141-2. [PMID: 17133259 DOI: 10.1038/sj.ejhg.5201740] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
44
|
Murphy KM, Zhang S, Geiger T, Hafez MJ, Bacher J, Berg KD, Eshleman JR. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J Mol Diagn 2006; 8:305-11. [PMID: 16825502 PMCID: PMC1867601 DOI: 10.2353/jmoldx.2006.050092] [Citation(s) in RCA: 224] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microsatellite instability (MSI) analysis of colorectal cancers is clinically useful to identify patients with hereditary nonpolyposis colorectal cancer (HNPCC) caused by germline mutations of mismatch repair genes. MSI status may also predict cancer response/resistance to certain chemotherapies. We evaluated the MSI Analysis System (Promega Corp.; five mononucleotide and two pentanucleotide repeats) and compared the results to the Bethesda panel, which interrogates five microsatellite loci recommended by the 1997 National Cancer Institute-sponsored MSI workshop (three dinucleotide and two mononucleotide repeats). Thirty-four colorectal cancers were analyzed by both assays. The overall concordance between the two assays was 85% (29 of 34). There was complete concordance between the two assays for all of the MSI-high (11 of 11) and microsatellite stable (MSS; 18 of 18) cases. In the 11 MSI-high cases, all 5 of the mononucleotide loci in the MSI Analysis System demonstrated shifted alleles (100% sensitivity), and each shift resulted in products that were smaller in size than the germline alleles. All (5 of 5) of the cases interpreted as MSI-low by the Bethesda assay were interpreted as MSS by the MSI Analysis System. Our results suggest that the MSI Analysis System is generally superior and may help resolve cases of MSI-low into either MSI-high or MSS.
Collapse
Affiliation(s)
- Kathleen M Murphy
- Department of Pathology, Johns Hopkins University School of Medicine, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Pinto C, Veiga I, Pinheiro M, Mesquita B, Jeronimo C, Sousa O, Fragoso M, Santos L, Moreira-Dias L, Baptista M, Lopes C, Castedo S, Teixeira MR. MSH6 germline mutations in early-onset colorectal cancer patients without family history of the disease. Br J Cancer 2006; 95:752-6. [PMID: 16940983 PMCID: PMC2360512 DOI: 10.1038/sj.bjc.6603318] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Germline MLH1 and MSH2 mutations are scarce in young colorectal cancer patients with negative family history of the disease. To evaluate the contribution of germline MSH6 mutations to early-onset colorectal cancer, we have analysed peripheral blood of 38 patients diagnosed with this disease before 45 years of age and who presented no family history of hereditary nonpolyposis colorectal cancer-related cancers. Blood samples from 108 healthy volunteers were analysed for those genetic alterations suspected to affect the function of MSH6. Of the seven (18.4%) MSH6 alterations found, we have identified three novel germline mutations, one 8 bp deletion leading to a truncated protein and two missense mutations resulting in the substitution of amino acids belonging to different polarity groups. High-frequency microsatellite instability was found in the patient with the MSH6 deletion, but not in the other 27 carcinomas analysed. No MLH1 promoter methylation was detected in tumour tissue. Our findings suggest that germline MSH6 mutations contribute to a subset of early-onset colorectal cancer. Further studies are warranted to understand the genetic and environmental factors responsible for the variable penetration of MSH6 germline mutations, as well as to identify other causes of early-onset colorectal cancer.
Collapse
Affiliation(s)
- C Pinto
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - I Veiga
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - M Pinheiro
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - B Mesquita
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - C Jeronimo
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - O Sousa
- Department of Radiotherapy, Portuguese Oncology Institute, Porto, Portugal
| | - M Fragoso
- Department of Oncology, Portuguese Oncology Institute, Porto, Portugal
| | - L Santos
- Department of Surgery, Portuguese Oncology Institute, Porto, Portugal
| | - L Moreira-Dias
- Department of Gastroenterology, Portuguese Oncology Institute, Porto, Portugal
| | - M Baptista
- Department of Surgery B, S. João Hospital, Porto, Portugal
| | - C Lopes
- Department of Pathology, Portuguese Oncology Institute, Porto, Portugal
| | - S Castedo
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
| | - M R Teixeira
- Department of Genetics, Portuguese Oncology Institute, Porto, Portugal
- E-mail:
| |
Collapse
|
46
|
Trusky CL, Sepulveda AR, Hunt JL. Assessment of microsatellite instability in very small microdissected samples and in tumor samples that are contaminated with normal DNA. ACTA ACUST UNITED AC 2006; 15:63-9. [PMID: 16778585 DOI: 10.1097/00019606-200606000-00001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Microsatellite instability (MSI) testing is important for the management of young patients with colonic adenocarcinoma. Biopsies can be small and can be contaminated by normal cells. It is not known how sample size or contamination by non-neoplastic cell populations affects the interpretation of MSI assays. Serial microdissection targets (0.75 to 5.5 mm) were obtained from cases with high-level MSI. Polymerase chain reaction was performed for the standard National Cancer Institute recommended markers and products were analyzed by capillary electrophoresis. DNA from a patient with a BAT25 polymorphism was used to determine the sensitivity of detecting an aberrant allele in otherwise normal DNA. In small targets, MSI was seen sporadically in the setting of low DNA concentration. The results for small targets ranged from 1/4 to 5/5 loci with MSI, secondary to allelic dropout. In the sensitivity study, the aberrant allele was detected only when present at a concentration of above 10%. Allelic dropout can lead to under-estimation of the presence of MSI in small tissue samples or samples with low DNA concentration. Contaminating normal cell DNA can mask the presence of MSI. MSI testing on tissue fragments that are <5.5 mm can lead to a false-negative MSI test.
Collapse
|
47
|
Honoré LH, Hanson J, Andrew SE. Microsatellite instability in endometrioid endometrial carcinoma: correlation with clinically relevant pathologic variables. Int J Gynecol Cancer 2006; 16:1386-92. [PMID: 16803535 DOI: 10.1111/j.1525-1438.2006.00535.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study of 218 patients with endometrioid endometrial carcinoma explores the relationship between microsatellite instability (MSI) as established by the BAT26 method and the common pathologic variables of prognostic and therapeutic significance. MSI was positively correlated with grade, associated endometrial atrophy, squamous metaplasia, isthmic involvement, depth of myoinvasion, vascular invasion-associated changes, extrauterine tumor spread, and extramyometrial angiolymphatic spread. There was no significant correlation with carcinoma developing in adenomyosis, mucinous metaplasia, tumor size, cornual involvement, cervical extension, uterine serosal involvement, and targeted lymphoid response. The positive correlations are discussed in terms of molecular genetics.
Collapse
Affiliation(s)
- L H Honoré
- Department of Laboratory Medicine, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
48
|
Chialina SG, Fornes C, Landi C, de La Vega Elena CD, Nicolorich MV, Dourisboure RJ, Solano A, Solis EA. Microsatellite instability analysis in hereditary non-polyposis colon cancer using the Bethesda consensus panel of microsatellite markers in the absence of proband normal tissue. BMC MEDICAL GENETICS 2006; 7:5. [PMID: 16426447 PMCID: PMC1373649 DOI: 10.1186/1471-2350-7-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Accepted: 01/20/2006] [Indexed: 11/16/2022]
Abstract
Background Hereditary non-polyposis colon cancer (HNPCC) is an autosomal dominant syndrome predisposing to the early development of various cancers including those of colon, rectum, endometrium, ovarium, small bowel, stomach and urinary tract. HNPCC is caused by germline mutations in the DNA mismatch repair genes, mostly hMSH2 or hMLH1. In this study, we report the analysis for genetic counseling of three first-degree relatives (the mother and two sisters) of a male who died of colorectal adenocarcinoma at the age of 23. The family fulfilled strict Amsterdam-I criteria (AC-I) with the presence of extracolonic tumors in the extended pedigree. We overcame the difficulty of having a proband post-mortem non-tumor tissue sample for MSI testing by studying the alleles carried by his progenitors. Methods Tumor MSI testing is described as initial screening in both primary and metastasis tumor tissue blocks, using the reference panel of 5 microsatellite markers standardized by the National Cancer Institute (NCI) for the screening of HNPCC (BAT-25, BAT-26, D2S123, D5S346 and D17S250). Subsequent mutation analysis of the hMLH1 and hMSH2 genes was performed. Results Three of five microsatellite markers (BAT-25, BAT-26 and D5S346) presented different alleles in the proband's tumor as compared to those inherited from his parents. The tumor was classified as high frequency microsatellite instability (MSI-H). We identified in the HNPCC family a novel germline missense (c.1864C>A) mutation in exon 12 of hMSH2 gene, leading to a proline 622 to threonine (p.Pro622Thr) amino acid substitution. Conclusion This approach allowed us to establish the tumor MSI status using the NCI recommended panel in the absence of proband's non-tumor tissue and before sequencing the obligate carrier. According to the Human Gene Mutation Database (HGMD) and the International Society for Gastrointestinal Hereditary Tumors (InSiGHT) Database this is the first report of this mutation.
Collapse
Affiliation(s)
- Sergio G Chialina
- Histocompatibility and Molecular Biology Laboratory. Italian Hospital"Garibaldi". Rosario Santa Fe. Argentina
| | - Claudia Fornes
- Histocompatibility and Molecular Biology Laboratory. Italian Hospital"Garibaldi". Rosario Santa Fe. Argentina
| | - Carolina Landi
- Histocompatibility and Molecular Biology Laboratory. Italian Hospital"Garibaldi". Rosario Santa Fe. Argentina
| | - Carlos D de La Vega Elena
- Histocompatibility and Molecular Biology Laboratory. Italian Hospital"Garibaldi". Rosario Santa Fe. Argentina
| | - Maria V Nicolorich
- Histocompatibility and Molecular Biology Laboratory. Italian Hospital"Garibaldi". Rosario Santa Fe. Argentina
| | | | - Angela Solano
- Laboratory ACDM-Instituto Alexander Fleming, Buenos Aires, Argentina
| | - Edita A Solis
- Histocompatibility and Molecular Biology Laboratory. Italian Hospital"Garibaldi". Rosario Santa Fe. Argentina
| |
Collapse
|
49
|
Baudhuin LM, Burgart LJ, Leontovich O, Thibodeau SN. Use of microsatellite instability and immunohistochemistry testing for the identification of individuals at risk for Lynch syndrome. Fam Cancer 2005; 4:255-65. [PMID: 16136387 DOI: 10.1007/s10689-004-1447-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 07/12/2004] [Indexed: 12/23/2022]
Abstract
It is now generally recognized that a specific subset of those patients clinically defined as having hereditary non polyposis colon cancer (HNPCC) have germline mutations in any one of several genes involved in DNA mismatch repair (MMR). This important subset of HNPCC families is now defined as having Lynch syndrome. A considerable amount of data has shown that tumors from patients with Lynch syndrome have characteristic features resulting from the underlying molecular involvement of defective MMR, that is, the presence of microsatellite instability (MSI) and the absence of MMR protein expression by immunohistochemistry (IHC). As a result, identifying patients with Lynch syndrome can now be accomplished by testing tumors for these tumor-related changes. Together, MSI and IHC are powerful tools that help identify individuals at risk for having Lynch syndrome and to distinguish these cases from HNPCC cases with other hereditary gene defects. Furthermore, IHC analysis provides valuable clues as to which MMR gene is mutated, allowing for comprehensive mutational analyses of that gene. Here, we discuss the current and historical perspectives regarding MSI and IHC analyses in tumors from sporadic colon cancer and from patients with Lynch syndrome. Given this background, we also provide a testing strategy for the identification of patients at risk for Lynch syndrome and subsequent gene testing.
Collapse
Affiliation(s)
- Linnea M Baudhuin
- Department of Laboratory Medicine and Pathology, Mayo Clinic and Foundation, 200 First St. SW, 920 Hilton Building, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
50
|
Buhard O, Cattaneo F, Wong YF, Yim SF, Friedman E, Flejou JF, Duval A, Hamelin R. Multipopulation analysis of polymorphisms in five mononucleotide repeats used to determine the microsatellite instability status of human tumors. J Clin Oncol 2005; 24:241-51. [PMID: 16330668 DOI: 10.1200/jco.2005.02.7227] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Human gastrointestinal tumors with inactivated DNA mismatch repair system (microsatellite instability [MSI] tumors) have distinct molecular and clinicopathologic profiles, and are associated with favorable prognosis. There is evidence suggesting that colorectal cancer patients with MSI tumors respond differently to adjuvant chemotherapy as compared with patients with non-MSI tumors. Finally, determination of the MSI status has clinical application for assisting in the diagnosis of suspected hereditary cases. It is thus becoming increasingly recognized that testing for MSI should be conducted systematically in all human cancers potentially of this type. We recently described a pentaplex polymerase chain reaction of five mononucleotide repeats to establish the MSI status of human tumors, and showed that this assay was 100% sensitive and specific. Moreover, these markers are quasimonomorphic in germline DNA of the white population (ie, individuals of Eurasian origin), and could be used for tumor MSI determination without the requirement for matching normal DNA in this group. PATIENTS AND METHODS In this study, we analyzed a comparable panel of five mononucleotide markers in germline DNA from 1,206 individuals encompassing 55 different populations worldwide. Results With the exception of two Biaka Pygmies and one San individual for whom three markers showed variant alleles (three cases [0.2%]), the remaining 1,203 individuals showed no alleles of variant size (1,055 cases [87.5%]), or only one (122 cases [10.1%]) or two (26 cases [2.2%]) markers with variant alleles. All 60 MSI tumors investigated display instability in at least four of the five markers. CONCLUSION We demonstrated that tumor MSI status can be determined using the pentaplex reaction for all human populations without the need for matching normal DNA.
Collapse
Affiliation(s)
- Olivier Buhard
- Institut National de la Santé et de la Recherche Médicale U434, Centre d'Etude du Polymorphisme Humain, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|