1
|
Aramjoo H, Mohammadparast-Tabas P, Farkhondeh T, Zardast M, Makhdoumi M, Samarghandian S, Kiani Z. Protective effect of Sophora pachycarpa seed extract on carbon tetrachloride-induced toxicity in rats. BMC Complement Med Ther 2022; 22:76. [PMID: 35300676 PMCID: PMC8932233 DOI: 10.1186/s12906-022-03554-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of the present study was to investigate the protective effect of the Sophora pachycarpa (S. pachycarpa) seed extract against carbon tetrachloride-induced toxicity on body organs, blood, and biochemical factors. In this investigation, 40 male Wistar rats weighing 200–250 g were randomly divided into 5 groups: group I was used as control, group II received carbon tetrachloride (CCl4) (IP, 1 mL/kg) on day 21, group III and group IV received S. pachycarpa seed extract at doses of 150 mg/kg and 300 mg/kg, respectively for 21 days by oral gavage and CCl4 on day 21, group V received silymarin (300 mg/kg) for 21 days by oral gavage and CCl4 on day 21. CCl4 showed an increase of serum renal and hepatic markers creatinine, urea, blood urea nitrogen (BUN), and uric acid, alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Also, it significantly increased MDA level, and decreased CAT, FRAP, GSH, and SOD in the liver and kidney tissues. These changes and also hematological and histopathological alterations were significantly ameliorated by S. pachycarpa seed extract before CCl4 administration. In conclusion, the data obtained in our investigation confirm the protective effect of S. pachycarpa against acute exposure to CCl4-induced organ toxicity in rats.
Collapse
Affiliation(s)
- Hamed Aramjoo
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.,Department of Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahmoud Zardast
- Department of Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Marzieh Makhdoumi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zahra Kiani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran. .,Department of Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
2
|
Park HJ, Kim MJ, Han C, White K, Ding D, Boyd K, Salvi R, Someya S. Effects of Gsta4 deficiency on age-related cochlear pathology and hearing loss in mice. Exp Gerontol 2020; 133:110872. [PMID: 32044382 DOI: 10.1016/j.exger.2020.110872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
Abstract
The glutathione transferase (GST) detoxification system converts exogenous and endogenous toxins into a less toxic form by conjugating the toxic compound to reduced glutathione (GSH) by a variety of GST enzymes. Of the ~20 GST isoforms, GSTA4 exhibits high catalytic efficiency toward 4-hydroxynonenal (4-HNE), one of the most abundant end products of lipid peroxidation that contributes to neurodegenerative diseases and age-related disorders. Conjugation to GSH by GSTA4 is thought to be a major route of 4-HNE elimination. In the current study, we investigated the effects of Gsta4 deficiency on age-related cochlear pathology and hearing loss using young (3-5 months old) and old (24-25 months old) Gsta4+/+ and Gsta4-/- mice that were backcrossed onto the CBA/CaJ mouse strain, a well-established model of age-related hearing loss (AHL). At 3-5 months of age, loss of Gsta4 resulted in decreased total GSTA activity toward 4-HNE in the inner ears of young mice. However, there were no differences in the levels of 4-HNE in the inner ears between Gsta4+/+ and Gsta4-/- mice at 3-5 or 24-25 months of age. No histological abnormalities were observed in the cochlea and no hearing impairments were observed in young Gsta4-/- mice. At 24-25 months of age, both Gsta4+/+ and Gsta4-/- mice showed elevated ABR thresholds compared to 3-month-old mice, but there were no differences in ABR thresholds, cochlear spiral ganglion neuron densities, or stria vascularis thickness between Gsta4+/+ and Gsta4-/- mice. Together, these results suggest that under normal physiological conditions or during normal aging, GSTA4 is not essential for removal of 4-HNE in mouse inner ears.
Collapse
Affiliation(s)
- Hyo-Jin Park
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32611, USA
| | - Mi-Jung Kim
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32611, USA
| | - Chul Han
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32611, USA
| | - Karessa White
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32611, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Kevin Boyd
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32611, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, NY, USA
| | - Shinichi Someya
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
3
|
Shearn CT, Pulliam CF, Pedersen K, Meredith K, Mercer KE, Saba LM, Orlicky DJ, Ronis MJ, Petersen DR. Knockout of the Gsta4 Gene in Male Mice Leads to an Altered Pattern of Hepatic Protein Carbonylation and Enhanced Inflammation Following Chronic Consumption of an Ethanol Diet. Alcohol Clin Exp Res 2018; 42:1192-1205. [PMID: 29708596 DOI: 10.1111/acer.13766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/20/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glutathione S-transferase A4-4 (GSTA4) is a key enzyme for removal of toxic lipid peroxidation products such as 4-hydroxynonenal (4-HNE). In this study, we examined the potential role of GSTA4 on protein carbonylation and progression of alcoholic liver disease by examining the development of liver injury in male wild-type (WT) SV/J mice and SV/J mice lacking functional GSTA4 (GSTA4-/- mice). METHODS Adult male WT and GSTA4-/- mice were fed chow (N = 10 to 12) or high-fat Lieber-DeCarli liquid diets containing up to 28% calories as ethanol (EtOH) (N = 18 to 20) for 116 days. At the end of the study, half of the EtOH-fed mice were acutely challenged with an EtOH binge (3 g/kg given intragastrically) 12 hours before sacrifice. Carbonylation of liver proteins was assessed by immunohistochemical staining for 4-HNE adduction and by comprehensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) of purified carbonylated proteins. RESULTS Chronic EtOH intake significantly increased hepatic 4-HNE adduction and protein carbonylation, including carbonylation of ribosomal proteins. EtOH intake also resulted in steatosis and increased serum alanine aminotransferase. Hepatic infiltration with B cells, T cells, and neutrophils and mRNA expression of pro-inflammatory cytokines tumor necrosis factor (TNF)α and interferon (IFN)γ was modest in WT mice. However, an EtOH binge increased hepatic necrosis, hepatic cell proliferation, and expression of TNFα mRNA (p < 0.05). EtOH treatment of GSTA4-/- mice increased B-cell infiltration and increased mRNA expression of TNFα and IFNγ and of matrix remodeling markers MMP9, MMP13, and Col1A1 (p < 0.05). GSTA4-/- mice exhibited panlobular rather than periportal distribution of 4-HNE-adducted proteins and increased overall 4-HNE staining after EtOH binge. Comprehensive LC-MS of carbonylated proteins identified 1,022 proteins of which 189 were unique to the GSTA4-/- group. CONCLUSIONS These data suggest long-term adaptation to EtOH in WT mice does not occur in GSTA4-/- mice. Products of lipid peroxidation appear to play a role in inflammatory responses due to EtOH. And EtOH effects on B-cell infiltration and autoimmune responses may be secondary to formation of carbonyl adducts.
Collapse
Affiliation(s)
- Colin T Shearn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Casey F Pulliam
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kim Pedersen
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kyle Meredith
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arizona
| | - Laura M Saba
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, Colorado
| | - Martin J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
4
|
Crawford DR, Ilic Z, Guest I, Milne GL, Hayes JD, Sell S. Characterization of liver injury, oval cell proliferation and cholangiocarcinogenesis in glutathione S-transferase A3 knockout mice. Carcinogenesis 2017; 38:717-727. [PMID: 28535182 DOI: 10.1093/carcin/bgx048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We recently generated glutathione S-transferase (GST) A3 knockout (KO) mice as a novel model to study the risk factors for liver cancer. GSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of aflatoxin B1 (AFB1), confirming the crucial role of GSTA3 in resistance to AFB1. We now report histopathological changes, tumor formation, biochemical changes and gender response following AFB1 treatment as well as the contribution of oxidative stress. Using a protocol of weekly 0.5 mg AFB1/kg administration, we observed extensive oval (liver stem) cell (OC) proliferation within 1-3 weeks followed by microvesicular lipidosis, megahepatocytes, nuclear inclusions, cholangiomas and small nodules. Male and female GSTA3 KO mice treated with 12 and 24 weekly AFB1 injections followed by a rest period of 12 and 6 months, respectively, all had grossly distorted livers with macro- and microscopic cysts, hepatocellular nodules, cholangiomas and cholangiocarcinomas and OC proliferation. We postulate that the prolonged AFB1 treatment leads to inhibition of hepatocyte proliferation, which is compensated by OC proliferation and eventually formation of cholangiocarcinoma (CCA). At low-dose AFB1, male KO mice showed less extensive acute liver injury, OC proliferation and AFB1-DNA adducts than female KO mice. There were no significant compensatory changes in KO mice GST subunits, GST enzymatic activity, epoxide hydrolase, or CYP1A2 and CYP3A11 levels. Finally, there was a modest increase in F2-isoprostane and isofuran in KO mice that confirmed putative GSTA3 hydroperoxidase activity in vivo for the first time.
Collapse
Affiliation(s)
- Dana R Crawford
- Albany Medical Center, Department of Immunology and Microbial Disease, 43 New Scotland Avenue, Albany, NY 12208, USA
| | - Zoran Ilic
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Ian Guest
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Ginger L Milne
- Vanderbilt University School of Medicine, Department of Medicine and Pharmacology, Nashville, TN 37323, USA
| | - John D Hayes
- Division of Cancer Research, Medical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Stewart Sell
- Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| |
Collapse
|
5
|
Lu L, Pandey AK, Houseal MT, Mulligan MK. The Genetic Architecture of Murine Glutathione Transferases. PLoS One 2016; 11:e0148230. [PMID: 26829228 PMCID: PMC4734686 DOI: 10.1371/journal.pone.0148230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 01/14/2016] [Indexed: 12/17/2022] Open
Abstract
Glutathione S-transferase (GST) genes play a protective role against oxidative stress and may influence disease risk and drug pharmacokinetics. In this study, massive multiscalar trait profiling across a large population of mice derived from a cross between C57BL/6J (B6) and DBA2/J (D2)—the BXD family—was combined with linkage and bioinformatic analyses to characterize mechanisms controlling GST expression and to identify downstream consequences of this variation. Similar to humans, mice show a wide range in expression of GST family members. Variation in the expression of Gsta4, Gstt2, Gstz1, Gsto1, and Mgst3 is modulated by local expression QTLs (eQTLs) in several tissues. Higher expression of Gsto1 in brain and liver of BXD strains is strongly associated (P < 0.01) with inheritance of the B6 parental allele whereas higher expression of Gsta4 and Mgst3 in brain and liver, and Gstt2 and Gstz1 in brain is strongly associated with inheritance of the D2 parental allele. Allele-specific assays confirmed that expression of Gsto1, Gsta4, and Mgst3 are modulated by sequence variants within or near each gene locus. We exploited this endogenous variation to identify coexpression networks and downstream targets in mouse and human. Through a combined systems genetics approach, we provide new insight into the biological role of naturally occurring variants in GST genes.
Collapse
Affiliation(s)
- Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Ashutosh K. Pandey
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
| | - M. Trevor Houseal
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38106, United States of America
- * E-mail:
| |
Collapse
|
6
|
Shearn CT, Fritz KS, Shearn AH, Saba LM, Mercer KE, Engi B, Galligan JJ, Zimniak P, Orlicky DJ, Ronis MJ, Petersen DR. Deletion of GSTA4-4 results in increased mitochondrial post-translational modification of proteins by reactive aldehydes following chronic ethanol consumption in mice. Redox Biol 2015; 7:68-77. [PMID: 26654979 PMCID: PMC4683459 DOI: 10.1016/j.redox.2015.11.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 12/21/2022] Open
Abstract
Chronic alcohol consumption induces hepatic oxidative stress resulting in production of highly reactive electrophilic α/β-unsaturated aldehydes that have the potential to modify proteins. A primary mechanism of reactive aldehyde detoxification by hepatocytes is through GSTA4-driven enzymatic conjugation with GSH. Given reports that oxidative stress initiates GSTA4 translocation to the mitochondria, we hypothesized that increased hepatocellular damage in ethanol (EtOH)-fed GSTA4−/− mice is due to enhanced mitochondrial protein modification by reactive aldehydes. Chronic ingestion of EtOH increased hepatic protein carbonylation in GSTA4−/− mice as evidenced by increased 4-HNE and MDA immunostaining in the hepatic periportal region. Using mass spectrometric analysis of biotin hydrazide conjugated carbonylated proteins, a total of 829 proteins were identified in microsomal, cytosolic and mitochondrial fractions. Of these, 417 were novel to EtOH models. Focusing on mitochondrial fractions, 1.61-fold more carbonylated proteins were identified in EtOH-fed GSTA4−/− mice compared to their respective WT mice ingesting EtOH. Bioinformatic KEGG pathway analysis of carbonylated proteins from the mitochondrial fractions revealed an increased propensity for modification of proteins regulating oxidative phosphorylation, glucose, fatty acid, glutathione and amino acid metabolic processes in GSTA4−/− mice. Additional analysis revealed sites of reactive aldehyde protein modification on 26 novel peptides/proteins isolated from either SV/GSTA4−/− PF or EtOH fed mice. Among the peptides/proteins identified, ACSL, ACOX2, MTP, and THIKB contribute to regulation of fatty acid metabolism and ARG1, ARLY, and OAT, which regulate nitrogen and ammonia metabolism having direct relevance to ethanol-induced liver injury. These data define a role for GSTA4-4 in buffering hepatic oxidative stress associated with chronic alcohol consumption and that this GST isoform plays an important role in protecting against carbonylation of mitochondrial proteins.
We demonstrate increased mitochondrial carbonylation in GSTA4-4 KO mice chronically fed EtOH. Using LC-MS we identify 829 total carbonylated proteins (417 novel to murine ALD). Pathway analysis revealed a propensity for adduction of fatty acid metabolic and electron transport proteins. Using MS/MS, 26 novel adducted peptides were identified. Reactive aldehyde modification of proteins contributes to pathogenesis of ALD.
Collapse
Affiliation(s)
- Colin T Shearn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | | | - Laura M Saba
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kelly E Mercer
- Department of Pediatrics, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - Bridgette Engi
- Department of Pediatrics, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - James J Galligan
- Department of Biochemistry, Vanderbilt, Nashville, TN, United States
| | - Piotr Zimniak
- Department of Pediatrics, Arkansas Children's Nutrition Center, Little Rock, AR, United States
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Center, Aurora, CO, United States
| | - Martin J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Dennis R Petersen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
7
|
Schaur RJ, Siems W, Bresgen N, Eckl PM. 4-Hydroxy-nonenal-A Bioactive Lipid Peroxidation Product. Biomolecules 2015; 5:2247-337. [PMID: 26437435 PMCID: PMC4693237 DOI: 10.3390/biom5042247] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/24/2015] [Accepted: 07/29/2015] [Indexed: 12/23/2022] Open
Abstract
This review on recent research advances of the lipid peroxidation product 4-hydroxy-nonenal (HNE) has four major topics: I. the formation of HNE in various organs and tissues, II. the diverse biochemical reactions with Michael adduct formation as the most prominent one, III. the endogenous targets of HNE, primarily peptides and proteins (here the mechanisms of covalent adduct formation are described and the (patho-) physiological consequences discussed), and IV. the metabolism of HNE leading to a great number of degradation products, some of which are excreted in urine and may serve as non-invasive biomarkers of oxidative stress.
Collapse
Affiliation(s)
- Rudolf J Schaur
- Institute of Molecular Biosciences, University of Graz, Heinrichstrasse 33a, 8010 Graz, Austria.
| | - Werner Siems
- Institute for Medical Education, KortexMed GmbH, Hindenburgring 12a, 38667 Bad Harzburg, Germany.
| | - Nikolaus Bresgen
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| | - Peter M Eckl
- Division of Genetics, Department of Cell Biology, University of Salzburg, Hellbrunnerstasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
8
|
Ronis MJJ, Mercer KE, Gannon B, Engi B, Zimniak P, Shearn CT, Orlicky DJ, Albano E, Badger TM, Petersen DR. Increased 4-hydroxynonenal protein adducts in male GSTA4-4/PPAR-α double knockout mice enhance injury during early stages of alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2015; 308:G403-15. [PMID: 25501545 PMCID: PMC4346750 DOI: 10.1152/ajpgi.00154.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To test the significance of lipid peroxidation in the development of alcoholic liver injury, an ethanol (EtOH) liquid diet was fed to male 129/SvJ mice (wild-type, WT) and glutathione S-transferase A4-4-null (GSTA4-/-) mice for 40 days. GSTA4-/- mice were crossed with peroxisome proliferator-activated receptor-α-null mice (PPAR-α-/-), and the effects of EtOH in the resulting double knockout (dKO) mice were compared with the other strains. EtOH increased lipid peroxidation in all except WT mice (P < 0.05). Increased steatosis and mRNA expression of the inflammatory markers CXCL2, tumor necrosis factor-α (TNF-α), and α-smooth muscle actin (α-SMA) were observed in EtOH GSTA4-/- compared with EtOH WT mice (P < 0.05). EtOH PPAR-α-/- mice had increased steatosis, serum alanine aminotransferase (ALT), and hepatic CD3+ T cell populations and elevated mRNA encoding CD14, CXCL2, TNF-α, IL-6, CD138, transforming growth factor-β, platelet-derived growth factor receptor-β (PDGFR-β), matrix metalloproteinase (MMP)-9, MMP-13, α-SMA, and collagen type 1 compared with EtOH WT mice. EtOH-fed dKO mice displayed elevation of periportal hepatic 4-hydroxynonenal adducts and serum antibodies against malondialdehyde adducts compared with EtOH feeding of GSTA4-/-, PPAR-α-/-, and WT mice (P < 0.05). ALT was higher in EtOH dKO mice compared with all other groups (P < 0.001). EtOH-fed dKO mice displayed elevated mRNAs for TNF-α and CD14, histological evidence of fibrosis, and increased PDGFR, MMP-9, and MMP-13 mRNAs compared with the EtOH GSTA4-/- or EtOH PPAR-α-/- genotype (P < 0.05). These findings demonstrate the central role lipid peroxidation plays in mediating progression of alcohol-induced necroinflammatory liver injury, stellate cell activation, matrix remodeling, and fibrosis.
Collapse
Affiliation(s)
- Martin J. J. Ronis
- 1Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; ,2Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; ,4Arkansas Children's Nutrition Center, Little Rock, Arkansas;
| | - Kelly E. Mercer
- 1Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; ,4Arkansas Children's Nutrition Center, Little Rock, Arkansas;
| | - Brenda Gannon
- 2Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas;
| | - Bridgette Engi
- 3Department of Laboratory Animal Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas;
| | - Piotr Zimniak
- 4Arkansas Children's Nutrition Center, Little Rock, Arkansas;
| | - Colin T. Shearn
- 5University of Colorado Anschutz Medical Campus, Aurora, Colorado;
| | - David J. Orlicky
- 5University of Colorado Anschutz Medical Campus, Aurora, Colorado;
| | - Emanuele Albano
- 6Department of Medical Sciences, University A Avogadro of East Piedmonte, Novara, Italy
| | - Thomas M. Badger
- 1Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; ,4Arkansas Children's Nutrition Center, Little Rock, Arkansas;
| | | |
Collapse
|
9
|
Mohamed MR, Emam MA, Hassan NS, Mogadem AI. Umbelliferone and daphnetin ameliorate carbon tetrachloride-induced hepatotoxicity in rats via nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1 expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:531-541. [PMID: 25170823 DOI: 10.1016/j.etap.2014.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 08/03/2014] [Accepted: 08/05/2014] [Indexed: 06/03/2023]
Abstract
Among various phytochemicals, coumarins comprise a very large class of plant phenolic compounds that have good nutritive value, in addition to their antioxidant effects. The purpose of the present study was to investigate the protective effects of two coumarin derivatives, umbelliferone and daphnetin, against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats and elucidate the underlying mechanism. Treatment of rats with either umbelliferone or daphnetin significantly improved the CCl4-induced biochemical alterations. In addition, both compounds alleviated the induced-lipid peroxidation and boosted the antioxidant defense system. Moreover, the investigated compounds attenuated CCl4-induced histopathological alterations of the liver. Finally, umbelliferone and daphnetin induced the nuclear translocation of the nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), thereby inducing the expression and activity of the cytoprotective heme oxygenase-1 (HO-1). These results suggest that umbelliferone and daphnetin ameliorate oxidative stress-related hepatotoxicity via their ability to augment cellular antioxidant defenses by activating Nrf2-mediated HO-1 expression.
Collapse
Affiliation(s)
- Mohamed R Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Manal A Emam
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nahla S Hassan
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Abeer I Mogadem
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt; Department of Applied Chemistry, Faculty of Applied Science, Taibah University, Al-Madinah Al-Munawwarah, Saudi Arabia
| |
Collapse
|
10
|
Saad EA. Kidney response to L-arginine treatment of carbon tetrachloride-induced hepatic injury in mice. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ns.2013.51001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim Biophys Acta Gen Subj 2012. [PMID: 23201197 DOI: 10.1016/j.bbagen.2012.11.019] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The cytosolic glutathione transferases (GSTs) comprise a super family of proteins that can be categorized into multiple classes with a mixture of highly specific and overlapping functions. SCOPE OF REVIEW The review covers the genetics, structure and function of the human cytosolic GSTs with particular attention to their emerging roles in cellular metabolism. MAJOR CONCLUSIONS All the catalytically active GSTs contribute to the glutathione conjugation or glutathione dependant-biotransformation of xenobiotics and many catalyze glutathione peroxidase or thiol transferase reactions. GSTs also catalyze glutathione dependent isomerization reactions required for the synthesis of several prostaglandins and steroid hormones and the catabolism of tyrosine. An increasing body of work has implicated several GSTs in the regulation of cell signaling pathways mediated by stress-activated kinases like Jun N-terminal kinase. In addition, some members of the cytosolic GST family have been shown to form ion channels in intracellular membranes and to modulate ryanodine receptor Ca(2+) channels in skeletal and cardiac muscle. GENERAL SIGNIFICANCE In addition to their well established roles in the conjugation and biotransformation of xenobiotics, GSTs have emerged as significant regulators of pathways determining cell proliferation and survival and as regulators of ryanodine receptors that are essential for muscle function. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | | |
Collapse
|
12
|
Ahmad I, Shukla S, Kumar A, Singh BK, Kumar V, Chauhan AK, Singh D, Pandey HP, Singh C. Biochemical and molecular mechanisms of N-acetyl cysteine and silymarin-mediated protection against maneb- and paraquat-induced hepatotoxicity in rats. Chem Biol Interact 2012; 201:9-18. [PMID: 23159886 DOI: 10.1016/j.cbi.2012.10.027] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 10/09/2012] [Accepted: 10/28/2012] [Indexed: 12/22/2022]
Abstract
Oxidative stress is one of the major players in the pathogenesis of maneb (MB) and paraquat (PQ)-induced disorders. N-acetyl cysteine (NAC), a glutathione (GSH) precursor and silymarin (SIL), a naturally occurring antioxidant, encounter oxidative stress-mediated cellular damage. The present study was aimed to investigate the effects of NAC and SIL against MB and/or PQ-induced hepatotoxicity in rats. The levels of hepatotoxicity markers - alanine aminotransaminase (ALT), aspartate aminotransaminase (AST) and total bilirubin, histological changes, oxidative stress indices, phase I and phase II xenobiotic metabolizing enzymes - cytochrome P450 (CYP) and glutathione S-transferase (GST) and pro-inflammatory molecules - inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) were measured in animals treated with MB and/or PQ in the presence or absence of NAC and SIL. MB and/or PQ augmented ALT, AST, total bilirubin, lipid peroxidation and nitrite contents and catalytic activities of superoxide dismutase and glutathione peroxidase however, the GSH content was attenuated. NAC and SIL restored the above-mentioned alterations towards basal levels but the restorations were more pronounced in SIL treated groups. Similarly, MB and/or PQ-mediated histopathological symptoms and changes in the catalytic activities/expressions of CYP1A2, CYP2E1, iNOS, TNF-α, and IL-1β were alleviated by NAC and SIL. Conversely, MB and/or PQ-induced GSTA4-4 expression/activity was further increased by NAC/SIL and glutathione reductase activity was also increased. The results obtained thus suggest that NAC and SIL protect MB and/or PQ-induced hepatotoxicity by reducing oxidative stress, inflammation and by modulating xenobitic metabolizing machinery and SIL seems to be more effective.
Collapse
Affiliation(s)
- Israr Ahmad
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow 226 001, India
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang H, Wu G, Park HJ, Jiang PP, Sit WH, van Griensven LJ, Wan JMF. Protective effect of Phellinus linteus polysaccharide extracts against thioacetamide-induced liver fibrosis in rats: a proteomics analysis. Chin Med 2012; 7:23. [PMID: 23075396 PMCID: PMC3536605 DOI: 10.1186/1749-8546-7-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023] Open
Abstract
Background The hepatoprotective potential of Phellinus linteus polysaccharide (PLP) extracts has been described. However, the molecular mechanism of PLP for the inhibition of liver fibrosis is unclear. This study aims to investigate the molecular protein signatures involved in the hepatoprotective mechanisms of PLP via a proteomics approach using a thioacetamide (TAA)-induced liver fibrosis rat model. Methods Male Sprague–Dawley rats were divided into three groups of six as follows: Normal group; TAA group, in which rats received TAA only; and PLP group, in which rats received PLP and TAA. Liver fibrosis was induced in the rats by repeated intraperitoneal injections of TAA at a dose of 200 mg/kg body weight twice a week for 4 weeks. PLP was given orally at a dose of 50 mg/kg body weight twice a day from the beginning of the TAA treatment until the end of the experiment. The development of liver cirrhosis was verified by histological examination. Liver proteomes were established by two-dimensional gel electrophoresis. Proteins with significantly altered expression levels were identified by matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry and the differentially expressed proteins were validated by immunohistochemical staining and reverse transcription polymerase chain reaction. Results Histological staining showed a remarkable reduction in liver fibrosis in the rats with PLP treatment. A total of 13 differentially expressed proteins including actin, tubulin alpha-1C chain, preprohaptoglobin, hemopexin, galectin-5, glutathione S-transferase alpha-4 (GSTA4), branched chain keto acid dehydrogenase hterotetrameric E1 subunit alpha (BCKDHA), glutathione S-transferase mu (GSTmu); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); thiosulfate sulfurtransferase (TFT); betaine-homocysteine S-methyltransferase 1 (BHMT1); quinoid dihydropteridine reductase (QDPR); ribonuclease UK114 were observed between the TAA and PLP groups. These proteins are involved in oxidative stress, heme and iron metabolism, cysteine metabolism, and branched-chain amino acid catabolism. Conclusion The proteomics data indicate that P. linteus may be protective against TAA-induced liver fibrosis via regulation of oxidative stress pathways, heat shock pathways, and metabolic pathways for amino acids and nucleic acids.
Collapse
Affiliation(s)
- Hualin Wang
- Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
El-Sayed WM. Upregulation of chemoprotective enzymes and glutathione by Nigella sativa (black seed) and thymoquinone in CCl4-intoxicated rats. Int J Toxicol 2011; 30:707-714. [PMID: 21994235 DOI: 10.1177/1091581811420741] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
To examine the hepatoprotective activities of Nigella sativa (Ns) and thymoquinone (TQ) against carbon tetrachloride (CCl(4))-induced hepatotoxicity, the effects of water extract of Ns seeds (50 mg/kg) or TQ (5 mg/kg in corn oil) by gavage for 5 days on detoxifying enzymes and glutathione were compared in healthy and CCl(4)-challenged (1 mL/kg in corn oil, intraperitoneally [ip], a single dose) rats. Both Ns and TQ countered the elevations in serum alanine aminotransferase activity, oxidized glutathione level, and stress ratio caused by CCl(4). Both Ns and TQ ameliorated the reductions in the activities and messenger RNA (mRNA) levels of glutathione S-transferase, NAD(P)H-quinone oxidoreductase, and microsomal epoxide hydrolase, as well as the reductions in reduced glutathione and cysteine levels produced by CCl(4). In many instances, Ns was much superior to TQ in providing protection against the damaging effects caused by CCl(4). This protection could be attributed to the induction of chemoprotective enzymes probably through increasing transcription.
Collapse
Affiliation(s)
- Wael M El-Sayed
- Department of Zoology, Faculty of Science, University of Ain Shams, Abbassia 11566, Cairo, Egypt.
| |
Collapse
|
15
|
Abstract
Glutathione transferases (GSTs) are a multigene family of ubiquitously expressed, polymorphic enzymes responsible for the metabolism of a wide range of both endogenous and exogenous substrates, play a central role in the adaptive response to chemical and oxidative stress, and are subject to regulation by a range of structurally unrelated chemicals. In this review, we present a current summary of knockout mouse models in the GST field, discussing some of the issues pertaining to orthologous proteins between mice and humans, the potential confounding issues related to genetic background, and also cover new transgenic models in the increasingly important area of humanization.
Collapse
Affiliation(s)
- Colin J Henderson
- Cancer Research UK, Molecular Pharmacology Group, Biomedical Research Institute, University of Dundee College of Medicine Dentistry and Nursing, Ninewells Hospital, Dundee, United Kingdom.
| | | |
Collapse
|
16
|
Makia NL, Bojang P, Falkner KC, Conklin DJ, Prough RA. Murine hepatic aldehyde dehydrogenase 1a1 is a major contributor to oxidation of aldehydes formed by lipid peroxidation. Chem Biol Interact 2011; 191:278-87. [PMID: 21256123 DOI: 10.1016/j.cbi.2011.01.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 01/25/2023]
Abstract
Reactive lipid aldehydes are implicated in the pathogenesis of various oxidative stress-mediated diseases, including non-alcoholic steatohepatitis, atherosclerosis, Alzheimer's and cataract. In the present study, we sought to define which hepatic Aldh isoform plays a major role in detoxification of lipid-derived aldehydes, such as acrolein and HNE by enzyme kinetic and gene expression studies. The catalytic efficiencies for metabolism of acrolein by Aldh1a1 was comparable to that of Aldh3a1 (V(max)/K(m)=23). However, Aldh1a1 exhibits far higher affinity for acrolein (K(m)=23.2 μM) compared to Aldh3a1 (K(m)=464 μM). Aldh1a1 displays a 3-fold higher catalytic efficiency for HNE than Aldh3a1 (218 ml/min/mg vs 69 ml/min/mg). The endogenous Aldh1a1 gene was highly expressed in mouse liver and a liver-derived cell line (Hepa-1c1c7) compared to Aldh2, Aldh1b1 and Aldh3a1. Aldh1a1 mRNA levels was 34-fold and 73-fold higher than Aldh2 in mouse liver and Hepa-1c1c7 cells respectively. Aldh3a1 gene was absent in mouse liver, but moderately expressed in Hepa-1c1c7 cells compared to Aldh1a1. We demonstrated that knockdown of Aldh1a1 expression by siRNA caused Hepa-1c1c7 cells to be more sensitive to acrolein-induced cell death and resulted in increased accumulation of acrolein-protein adducts and caspase 3 activation. These results indicate that Aldh1a1 plays a major role in cellular defense against oxidative damage induced by reactive lipid aldehydes in mouse liver. We also noted that hepatic Aldh1a1 mRNA levels were significantly increased (≈3-fold) in acrolein-fed mice compared to control. In addition, hepatic cytosolic ALDH activity was induced by acrolein when 1mM NAD(+) was used as cofactor, suggesting an Aldh1a1-protective mechanism against acrolein toxicity in mice liver. Thus, mechanisms to induce Aldh1a1 gene expression may provide a useful rationale for therapeutic protection against oxidative stress-induced pathologies.
Collapse
Affiliation(s)
- Ngome L Makia
- Department of Biochemistry & Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40292, United States
| | | | | | | | | |
Collapse
|
17
|
Arakawa S, Maejima T, Kiyosawa N, Yamaguchi T, Shibaya Y, Aida Y, Kawai R, Fujimoto K, Manabe S, Takasaki W. Methemoglobinemia induced by 1,2-dichloro-4-nitrobenzene in mice with a disrupted glutathione S-transferase Mu 1 gene. Drug Metab Dispos 2010; 38:1545-52. [PMID: 20562208 DOI: 10.1124/dmd.110.033597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A specific substrate to Mu class glutathione S-transferase (GST), 1,2-dichloro-4-nitrobenzene (DCNB), was administered to mice with a disrupted GST Mu 1 gene (Gstm1-null mice) to investigate the in vivo role of murine Gstm1 in toxicological responses to DCNB. A single oral administration of DCNB at doses of 500 and 1000 mg/kg demonstrated a marked increase in blood methemoglobin (MetHB) in Gstm1-null mice but not in wild-type mice. Therefore, Gstm1-null mice were considered to be more predisposed to methemoglobinemia induced by a single dosing of DCNB. In contrast, 14-day repeated-dose studies of DCNB at doses up to 600 mg/kg demonstrated a marked increase in blood MetHB in both wild-type and Gstm1-null mice. However, marked increases in the blood reticulocyte count, relative spleen weight, and extramedullary hematopoiesis in the spleen were observed in Gstm1-null mice compared with wild-type mice. In addition, microarray and quantitative reverse transcription-polymerase chain reaction analyses in the spleen showed exclusive up-regulation of hematopoiesis-related genes in Gstm1-null mice. These changes were considered to be adaptive responses to methemoglobinemia and attenuated the higher predisposition to methemoglobinemia observed in Gstm1-null mice in the single-dose study. In toxicokinetics monitoring, DCNB concentrations in plasma and blood cells were higher in Gstm1-null mice than those in wild-type mice, resulting from the Gstm1 disruption. In conclusion, it is suggested that the higher exposure to DCNB due to Gstm1 disruption was reflected in methemoglobinemia in the single-dose study and in adaptive responses in the 14-day repeated-dose study.
Collapse
Affiliation(s)
- Shingo Arakawa
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chaudhary P, Sharma R, Sharma A, Vatsyayan R, Yadav S, Singhal SS, Rauniyar N, Prokai L, Awasthi S, Awasthi YC. Mechanisms of 4-hydroxy-2-nonenal induced pro- and anti-apoptotic signaling. Biochemistry 2010; 49:6263-75. [PMID: 20565132 DOI: 10.1021/bi100517x] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In recent years, 4-hydroxy-2-nonenal (4-HNE) has emerged as an important second messenger in cell cycle signaling. Here, we demonstrate that 4-HNE induces signaling for apoptosis via both the Fas-mediated extrinsic and the p53-mediated intrinsic pathways in HepG2 cells. 4-HNE induces a Fas-mediated DISC independent apoptosis pathway by activating ASK1, JNK, and caspase-3. Parallel treatment of 4-HNE to HepG2 cells also induces apoptosis by the p53 pathway through activation of Bax, p21, JNK, and caspase-3. Exposure of HepG2 cells to 4-HNE leads to the activation of both Fas and Daxx, promotes the export of Daxx from the nucleus to cytoplasm, and facilitates Fas-Daxx binding. Depletion of Daxx by siRNA results in the potentiation of apoptosis, indicating that Fas-Daxx binding in fact is inhibitory to Fas-mediated apoptosis in cells. 4-HNE-induced translocation of Daxx is also accompanied by the activation and nuclear accumulation of HSF1 and up-regulation of heat shock protein Hsp70. All these effects of 4-HNE in cells can be attenuated by ectopic expression of hGSTA4-4, the isozyme of glutathione S-transferase with high activity for 4-HNE. Through immunoprecipitation and liquid chromatography-tandem mass spectrometry, we have demonstrated the covalent binding of 4-HNE to Daxx. We also demonstrate that 4-HNE modification induces phosphorylation of Daxx at Ser668 and Ser671 to facilitate its cytoplasmic export. These results indicate that while 4-HNE exhibits toxicity through several mechanisms, in parallel it evokes signaling for defense mechanisms to self-regulate its toxicity and can simultaneously affect multiple signaling pathways through its interactions with membrane receptors and transcription factors/repressors.
Collapse
Affiliation(s)
- Pankaj Chaudhary
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee FY, de Aguiar Vallim TQ, Chong HK, Zhang Y, Liu Y, Jones SA, Osborne TF, Edwards PA. Activation of the farnesoid X receptor provides protection against acetaminophen-induced hepatic toxicity. Mol Endocrinol 2010; 24:1626-36. [PMID: 20573685 DOI: 10.1210/me.2010-0117] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The nuclear receptor, farnesoid X receptor (FXR, NR1H4), is known to regulate cholesterol, bile acid, lipoprotein, and glucose metabolism. In the current study, we provide evidence to support a role for FXR in hepatoprotection from acetaminophen (APAP)-induced toxicity. Pharmacological activation of FXR induces the expression of several genes involved in phase II and phase III xenobiotic metabolism in wild-type, but not Fxr(-/-) mice. We used chromatin immunoprecipitation-based genome-wide response element analyses coupled with luciferase reporter assays to identify functional FXR response elements within promoters, introns, or intragenic regions of these genes. Consistent with the observed transcriptional changes, FXR gene dosage is positively correlated with the degree of protection from APAP-induced hepatotoxicity in vivo. Further, we demonstrate that pretreatment of wild-type mice with an FXR-specific agonist provides significant protection from APAP-induced hepatotoxicity. Based on these findings, we propose that FXR plays a role in hepatic xenobiotic metabolism and, when activated, provides hepatoprotection against toxins such as APAP.
Collapse
Affiliation(s)
- Florence Ying Lee
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Weerachayaphorn J, Chuncharunee A, Jariyawat S, Lewchalermwong B, Amonpatumrat S, Suksamrarn A, Piyachaturawat P. Protection of centrilobular necrosis by Curcuma comosa Roxb. in carbon tetrachloride-induced mice liver injury. JOURNAL OF ETHNOPHARMACOLOGY 2010; 129:254-260. [PMID: 20362655 DOI: 10.1016/j.jep.2010.03.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 03/05/2010] [Accepted: 03/19/2010] [Indexed: 05/29/2023]
Abstract
AIM OF THE STUDY To investigate the protective effect and possible mechanism of Curcuma comosa hexane extract on CCl(4)-induced liver injury in adult male mice. MATERIALS AND METHODS Hepatotoxicity was induced by an intraperitoneal injection of CCl(4) and was evaluated after 24 h from the elevations of plasma alanine transaminase (ALT) and aspartate transaminase (AST) activities, and histological analysis of liver injuries. Hexane extract of Curcuma comosa was given at different time points from 1 to 72 h, prior to CCl(4) administration and the protection from liver injury was assessed. RESULTS CCl(4)-induced damage to liver cells was resulted in elevations of plasma ALT and AST activities. Pretreatment with Curcuma comosa hexane extract 24 h at a dose of 100, 250, and 500 mg/kg BW resulted in a dose-dependent prevention of the increases in plasma ALT and AST activities as well as time dependent. The protective effect of the extract at a dose of 500 mg/kg BW was seen at 12-24 h. Pretreatment of the extract completely prevented elevation of plasma ALT and AST activities, and centrilobular necrosis. The protective effect of Curcuma comosa was associated with restoration of hepatic glutathione content, and CYP2E1 catalytic activity, and its mRNA and protein levels as well as increase in activity of glutathione-S-transferase (GST). CONCLUSION Curcuma comosa has a potent protective property against CCl(4)-induced hepatic injuries via the activation of detoxifying mechanisms (GST) as well as reduction of the bioactive toxic metabolites. Therefore, Curcuma comosa may be beneficial for prevention of hepatotoxicity.
Collapse
Affiliation(s)
- Jittima Weerachayaphorn
- Department of Physiology, Faculty of Science, Mahidol University, Rachatewee, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
21
|
Kuiper HC, Langsdorf BL, Miranda CL, Joss J, Jubert C, Mata JE, Stevens JF. Quantitation of mercapturic acid conjugates of 4-hydroxy-2-nonenal and 4-oxo-2-nonenal metabolites in a smoking cessation study. Free Radic Biol Med 2010; 48:65-72. [PMID: 19819328 PMCID: PMC2818256 DOI: 10.1016/j.freeradbiomed.2009.10.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 08/29/2009] [Accepted: 10/03/2009] [Indexed: 01/03/2023]
Abstract
The breakdown of polyunsaturated fatty acids (PUFAs) under conditions of oxidative stress results in the formation of lipid peroxidation (LPO) products. These LPO products such as 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE) can contribute to the development of cardiovascular and neurodegenerative diseases and cancer. Conjugation with glutathione, followed by further metabolism to mercapturic acid (MA) conjugates, can mitigate the effects of these LPO products in disease development by facilitating their excretion from the body. We have developed a quantitative method to simultaneously assess levels of 4-oxo-2-nonen-1-ol (ONO)-MA, HNE-MA, and 1,4-dihydroxy-2-nonene (DHN)-MA in human urine samples utilizing isotope-dilution mass spectrometry. We are also able to detect 4-hydroxy-2-nonenoic acid (HNA)-MA, 4-hydroxy-2-nonenoic acid lactone (HNAL)-MA, and 4-oxo-2-nonenoic acid (ONA)-MA with this method. The detection of ONO-MA and ONA-MA in humans is significant because it demonstrates that HNE/ONE branching occurs in the breakdown of PUFAs and suggests that ONO may contribute to the harmful effects currently associated with HNE. We were able to show significant decreases in HNE-MA, DHN-MA, and total LPO-MA in a group of seven smokers upon smoking cessation. These data demonstrate the value of HNE and ONE metabolites as in vivo markers of oxidative stress.
Collapse
Affiliation(s)
- Heather C Kuiper
- Linus Pauling Institute and the Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Ilic Z, Crawford D, Vakharia D, Egner PA, Sell S. Glutathione-S-transferase A3 knockout mice are sensitive to acute cytotoxic and genotoxic effects of aflatoxin B1. Toxicol Appl Pharmacol 2009; 242:241-6. [PMID: 19850059 DOI: 10.1016/j.taap.2009.10.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/06/2009] [Accepted: 10/07/2009] [Indexed: 12/29/2022]
Abstract
Aflatoxin B1 (AFB1) is a major risk factor for hepatocellular carcinoma (HCC) in humans. However, mice, a major animal model for the study of AFB1 carcinogenesis, are resistant, due to high constitutive expression, in the mouse liver, of glutathione S-transferase A3 subunit (mGSTA3) that is lacking in humans. Our objective was to establish that a mouse model for AFB1 toxicity could be used to study mechanisms of toxicity that are relevant for human disease, i.e., an mGSTA3 knockout (KO) mouse that responds to toxicants such as AFB1 in a manner similar to humans. Exons 3-6 of the mGSTA3 were replaced with a neomycin cassette by homologous recombination. Southern blotting, RT-PCR, Western blotting, and measurement of AFB1-N(7)-DNA adduct formation were used to evaluate the mGSTA3 KO mice. The KO mice have deletion of exons 3-6 of the mGSTA3 gene, as expected, as well as a lack of mGSTA3 expression at the mRNA and protein levels. Three hours after injection of 5 mg/kg AFB1, mGSTA3 KO mice have more than 100-fold more AFB1-N(7)-DNA adducts in their livers than do similarly treated wild-type (WT) mice. In addition, the mGSTA3 KO mice die of massive hepatic necrosis, at AFB1 doses that have minimal toxic effects in WT mice. We conclude that mGSTA3 KO mice are sensitive to the acute cytotoxic and genotoxic effects of AFB1, confirming the crucial role of GSTA3 subunit in protection of normal mice against AFB1 toxicity. We propose the mGSTA3 KO mouse as a useful model with which to study the interplay of risk factors leading to HCC development in humans, as well as for testing of additional possible functions of mGSTA3.
Collapse
Affiliation(s)
- Zoran Ilic
- Ordway Research Institute, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
23
|
Ma K, Zhang Y, Zhu D, Lou Y. Protective effects of asiatic acid against D-galactosamine/lipopolysaccharide-induced hepatotoxicity in hepatocytes and kupffer cells co-cultured system via redox-regulated leukotriene C4 synthase expression pathway. Eur J Pharmacol 2008; 603:98-107. [PMID: 19087874 DOI: 10.1016/j.ejphar.2008.11.054] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Revised: 11/05/2008] [Accepted: 11/24/2008] [Indexed: 01/01/2023]
Abstract
Asiatic acid is a triterpenoid component possessing antioxidative, anti-inflammatory and hepatoprotective activity. In this issue, we explored the protective effects of asiatic acid and the relative mechanism in the D-galactosamine/lipopolysaccharide (D-GalN/LPS)-induced hepatotoxicity in hepatocytes and kupffer cells co-cultured system. The cultures were pretreated with asiatic acid for 12 h, followed by D-GalN/LPS exposure for 12 h. Asiatic acid reduced aspartate aminotransferase and lactate dehydrogenase generation and increased cell viability in a concentration-dependent manner. Meanwhile, the effects of asiatic acid in leukotriene C(4) synthase (LTC(4)S) expression and cellular redox status including reactive oxygen species and GSH content were detected. The results showed that D-GalN/LPS induced the increase of reactive oxygen species followed by extracellular signal-regulated kinase 1/2 (ERK 1/2) and nuclear factor-kappaB (NF-kappaB) activation. Treatment with ERK 1/2 specific inhibitor 1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene (U0126) abolished the ERK1/2 protein phosphorylation and blunted LTC(4)S expression. Reactive oxygen species signaling pathway inhibitor pyrrolidine dithiocarbamate (PDTC) inhibited reactive oxygen species generation and NF-kappaB activation, which in turn blocked LTC(4)S expression and attenuated the injury. Asiatic acid can protect the hepatocytes against D-GalN/LPS-induced hepatotoxicity. During which, the cell redox was ameliorated and increased expression of LTC(4)S was reversed by the pretreatment of asiatic acid. Taken together, asiatic acid can protect against D-GalN/LPS-induced hepatotoxicity partly via redox-regulated LTC(4)S expression pathway.
Collapse
Affiliation(s)
- Kuifen Ma
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences and Biochemical Pharmaceutics, Zhejiang University, Hangzhou, China
| | | | | | | |
Collapse
|
24
|
Uehara S, Izumi Y, Kubo Y, Wang CC, Mineta K, Ikeo K, Gojobori T, Tachibana M, Kikuchi T, Kobayashi T, Shibahara S, Taya C, Yonekawa H, Shiroishi T, Yamamoto H. Specific expression of Gsta4 in mouse cochlear melanocytes: a novel role for hearing and melanocyte differentiation. Pigment Cell Melanoma Res 2008; 22:111-9. [PMID: 18983533 DOI: 10.1111/j.1755-148x.2008.00513.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian pigment cells produce melanin as the main pigment. Melanocytes, one of the two types of mammalian pigment cells, differentiate from the neural crest and migrate to a variety of organs during development. Melanocytes exist not only in the skin but also in other sites such as the cochlea where they are essential for hearing. Mitf(mi-bw) is one of the known recessive alleles of the mouse microphthalmia-associated transcription factor (Mitf) locus, which is essential for the development of pigment cells. Homozygous Mitf(mi-bw)/Mitf(mi-bw) mice have a completely white coat with black eyes and are deaf due to the lack of melanocytes. By comparing gene expression profiles in cochleae of wild-type and Mitf(mi-bw)/Mitf(mi-bw) mice, we now demonstrate the specific expression of glutathione S-transferase alpha 4 (Gsta4) in the stria vascularis. Gsta4 encodes one of the cytosolic glutathione S-transferases (GSTs) which participate in detoxification processes of many tissues. This gene is specifically expressed in intermediate cells of the stria vascularis, suggesting a novel function for cochlear melanocytes. Moreover, among mammalian pigment cells, expression of Gsta4 was restricted to cochlear melanocytes, suggesting that melanocytes in various tissues differentiate from one another depending on their location.
Collapse
Affiliation(s)
- Shigeyuki Uehara
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Whey protein, as exclusively nitrogen source, controls food intake and promotes glutathione antioxidant protection in Sprague-Dawley rats. MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM 2008. [DOI: 10.1007/s12349-008-0017-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Poli G, Schaur R, Siems W, Leonarduzzi G. 4-Hydroxynonenal: A membrane lipid oxidation product of medicinal interest. Med Res Rev 2008; 28:569-631. [DOI: 10.1002/med.20117] [Citation(s) in RCA: 509] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Board PG. The use of glutathione transferase-knockout mice as pharmacological and toxicological models. Expert Opin Drug Metab Toxicol 2007; 3:421-33. [PMID: 17539748 DOI: 10.1517/17425255.3.3.421] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
ADME/Tox studies are of increasing importance because of the necessity to eliminate poor drug candidates early in the development pipeline. The glutathione S-transferases (GSTs) are a family of phase II enzymes that have been shown to play a significant role in the disposition of a wide range of drugs and other xenobiotics. Several GST-knockout mice strains have been developed that can potentially be used in ADME/Tox studies. So far, mice have been generated with deficiencies of mGSTP1/2, mGSTA4-4, mGSTZ1-1, mGSTM1-1, mGSTO1-1 and mGSTS1-1, but studies of drug metabolism in these strains have been limited. As there are 21 recognised GST genes in mice there is potential for many more strains to be made. However, a review of the available data suggests that because of differences in the evolution of the GST gene family between rodents and humans, only some knockout strains can provide insights relevant to human drug metabolism. It is concluded that, of the strains generated so far, only those deficient in mGSTP1-1, mGSTA4-4, mGSTO1-1 and mGSTZ1-1 have direct human orthologues and can be considered as human models. In contrast, there may not be appropriate orthologues of some enzymes, such as hGSTM1-1, that are known to be of relevance in drug metabolism.
Collapse
Affiliation(s)
- Philip G Board
- Australian National University, Molecular Genetics Group, John Curtin School of Medical Research, PO Box 334, Canberra ACT 2601, Australia.
| |
Collapse
|
28
|
Amador-Noguez D, Dean A, Huang W, Setchell K, Moore D, Darlington G. Alterations in xenobiotic metabolism in the long-lived Little mice. Aging Cell 2007; 6:453-70. [PMID: 17521389 PMCID: PMC2859448 DOI: 10.1111/j.1474-9726.2007.00300.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Our previous microarray expression analysis of the long-lived Little mice (Ghrhr(lit/lit)) showed a concerted up-regulation of xenobiotic detoxification genes. Here, we show that this up-regulation is associated with a potent increase in resistance against the adverse effects of a variety of xenobiotics, including the hepatotoxins acetaminophen and bromobenzene and the paralyzing agent zoxazolamine. The classic xenobiotic receptors Car (Constitutive Androstane Receptor) and Pxr (Pregnane X Receptor) are considered key regulators of xenobiotic metabolism. Using double and triple knockout/mutant mouse models we found, however, that Car and Pxr are not required for the up-regulation of xenobiotic genes in Little mice. Our results suggest instead that bile acids and the primary bile acid receptor Fxr (farnesoid X receptor) are likely mediators of the up-regulation of xenobiotic detoxification genes in Little mice. Bile acid levels are considerably elevated in the bile, serum, and liver of Little mice. We found that treatment of wild-type animals with cholic acid, one of the major bile acids elevated in Little mice, mimics in large part the up-regulation of xenobiotic detoxification genes observed in Little mice. Additionally, the loss of Fxr had a major effect on the expression of the xenobiotic detoxification genes up-regulated in Little mice. A large fraction of these genes lost or decreased their high expression levels in double mutant mice for Fxr and Ghrhr. The alterations in xenobiotic metabolism in Little mice constitute a form of increased stress resistance and may contribute to the extended longevity of these mice.
Collapse
Affiliation(s)
- Daniel Amador-Noguez
- Molecular & Human Genetics Department, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Zamara E, Galastri S, Aleffi S, Petrai I, Aragno M, Mastrocola R, Novo E, Bertolani C, Milani S, Vizzutti F, Vercelli A, Pinzani M, Laffi G, LaVilla G, Parola M, Marra F. Prevention of severe toxic liver injury and oxidative stress in MCP-1-deficient mice. J Hepatol 2007; 46:230-8. [PMID: 17125873 DOI: 10.1016/j.jhep.2006.09.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 09/16/2006] [Accepted: 09/17/2006] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Administration of carbon tetrachloride determines liver injury, inflammation and oxidative stress, but the molecular mechanisms of damage are only partially understood. In this study, we investigated the development of acute toxic damage in mice lacking monocyte chemoattractant protein-1 (MCP-1), a chemokine which recruits monocytes and activated lymphocytes. METHODS Mice with targeted deletion of the MCP-1 gene and wild type controls were administered a single intragastric dose of carbon tetrachloride. Serum liver enzymes, histology, expression of different chemokines and cytokines, and intrahepatic levels of oxidative stress-related products were evaluated. RESULTS Compared to wild type mice, peak aminotransferase levels were significantly lower in MCP-1-deficient animals. This was paralleled by a delayed appearance of necrosis at histology. In addition, MCP-1-deficient mice showed a shift in the pattern of infiltrating inflammatory cells, with a predominance of polymorphonuclear leukocytes. Lack of MCP-1 was also accompanied by reduced intrahepatic expression of cytokines regulating inflammation and tissue repair. The increase in tissue levels of reactive oxygen species and 4-hydroxy-nonenal following administration of the hepatotoxin was also significantly lower in animals lacking MCP-1. CONCLUSIONS Lack of MCP-1 affords protection from damage and development of oxidative stress in a toxic model of severe acute liver injury.
Collapse
Affiliation(s)
- Elena Zamara
- Dipartimento di Medicina e Oncologia Sperimentale, University of Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lima CF, Fernandes-Ferreira M, Pereira-Wilson C. Drinking of Salvia officinalis tea increases CCl(4)-induced hepatotoxicity in mice. Food Chem Toxicol 2006; 45:456-64. [PMID: 17084954 DOI: 10.1016/j.fct.2006.09.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 09/12/2006] [Accepted: 09/19/2006] [Indexed: 11/16/2022]
Abstract
In a previous study, the drinking of a Salvia officinalis tea (prepared as an infusion) for 14 days improved liver antioxidant status in mice and rats where, among other factors, an enhancement of glutathione-S-transferase (GST) activity was observed. Taking in consideration these effects, in the present study the potential protective effects of sage tea drinking against a situation of hepatotoxicity due to free radical formation, such as that caused by carbon tetrachloride (CCl(4)), were evaluated in mice of both genders. Contrary to what was expected, sage tea drinking significantly increased the CCl(4)-induced liver injury, as seen by increased plasma transaminase levels and histology liver damage. In accordance with the previous study, sage tea drinking enhanced significantly GST activity. Additionally, glutathione peroxidase was also significantly increased by sage tea drinking. Since CCl(4) toxicity results from its bioactivation mainly by cytochrome P450 (CYP) 2E1, the expression level of this protein was measured by Western Blot. An increase in CYP 2E1 protein was observed which may explain, at least in part, the potentiation of CCl(4)-induced hepatotoxicity conferred by sage tea drinking. The CCl(4)-induced hepatotoxicity was higher in females than males. In conclusion, our results indicate that, although sage tea did not have toxic effects of its own, herb-drug interactions are possible and may affect the efficacy and safety of concurrent medical therapy with drugs that are metabolized by phase I enzymes.
Collapse
Affiliation(s)
- Cristovao F Lima
- Department/Centre of Biology, School of Sciences, University of Minho, 4710-057 Braga, Portugal
| | | | | |
Collapse
|
31
|
Wen T, Guan L, Zhang YL, Zhao JY. Dynamic changes of heme oxygenase-1 and carbon monoxide production in acute liver injury induced by carbon tetrachloride in rats. Toxicology 2006; 228:51-7. [PMID: 16978757 DOI: 10.1016/j.tox.2006.08.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 08/14/2006] [Accepted: 08/14/2006] [Indexed: 12/27/2022]
Abstract
Heme oxygenase-1, a stress-responsive enzyme that catabolizes hemes into carbon monoxide, biliverdin, and iron, has been shown to play a pivotal role in many physiological and pathological situations. Here we investigated changes in HO-1 enzyme activity and protein expression, and its end product carbon monoxide concentrations in the liver of rats after CCl(4) treatment. We found that CCl(4) administration not only induced severe liver damage in rats, as demonstrated by dramatic elevation of ALT, AST levels and severe histopathological changes, but also resulted in a prominent up-regulation of HO-1 enzyme activity. Western blot and immunohistochemical analysis confirmed that expression of HO-1 protein was also increased significantly in a time-dependent manner following CCl(4) treatment, and localized mainly in liver cells around the central vein. In addition, CO concentrations in the liver of CCl(4)-treated rats were elevated remarkably in the same time-dependent way as HO-1 induction in contrast to the control rats. These data indicated that HO-1/CO pathway was greatly up regulated in the liver of rats after CCl(4) treatment, which might play an important protective role in the pathophysiological mechanism underlying CCl(4)-induced hepatotoxicity. It therefore suggested that more relevant studies should be carried out in the future to clarify the detailed mechanisms.
Collapse
Affiliation(s)
- Tao Wen
- Research Center of Occupational Medicine, The Third Hospital of Peking University, Beijing, PR China
| | | | | | | |
Collapse
|
32
|
Abstract
AIM: To explore the antioxidant and free radical scavenger properties of mistletoe alkali (MA).
METHODS: The antioxidant effect of mistletoe alkali on the oxidative stress induced by carbon tetrachloride (CCl4) in rats was investigated. The rats were divided into four groups (n = 8): CCl4-treated group (1 mL/kg body weight), MA -treated group (90 mg/kg), CCl4+MA-treated group and normal control group. After 4 wk of treatment, the level of malondialdehyde (MDA), a lipid peroxidation product (LPO) was measured in serum and homogenates of liver and kidney. Also, the level of glutathione (GSH), and activities of glutathione reductase (GR), glutathione peroxidase (GSPx), superoxide dismutase (SOD), and glutathione-S-transferase (GST) in liver and kidney were determined. Scavenging effects on hydroxyl free radicals produced in vitro by Fenton reaction were studied by ESR methods using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trap reagent and H2O2/UV as the OH· source. Urinary 8-hydroxydeoxyguanosine (8-OHdG) was determined by competitive ELISA.
RESULTS: In CCl4-treated group, the level of LPO in serum of liver and kidney was significantly increased compared to controls. The levels of GSH and enzyme activities of SOD, GSPx and GR in liver and kidney were significantly decreased in comparison with controls. In CCl4+MA-treated group, the changes in the levels of LPO in serum of liver and kidney were not statistically significant compared to controls. The levels of SOD, GSPx and GR in liver and kidney were significantly increased in comparison with controls. There was a significant difference in urinary excretion of 8-OHdG between the CCl4-treated and MA-treated groups.
CONCLUSION: Oxidative stress may be a major mechanism for the toxicity of CCl4. MA has a protective effect against CCl4 toxicity by inhibiting the oxidative damage and stimulating GST activities. Thus, clinical application of MA should be considered in cases with carbon tetrachloride-induced injury.
Collapse
|