1
|
Metz S, Belanich JR, Claussnitzer M, Kilpeläinen TO. Variant-to-function approaches for adipose tissue: Insights into cardiometabolic disorders. CELL GENOMICS 2025; 5:100844. [PMID: 40185091 DOI: 10.1016/j.xgen.2025.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/14/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Genome-wide association studies (GWASs) have identified thousands of genetic loci associated with cardiometabolic disorders. However, the functional interpretation of these loci remains a daunting challenge. This is particularly true for adipose tissue, a critical organ in systemic metabolism and the pathogenesis of various cardiometabolic diseases. We discuss how variant-to-function (V2F) approaches are used to elucidate the mechanisms by which GWAS loci increase the risk of cardiometabolic disorders by directly influencing adipose tissue. We outline GWAS traits most likely to harbor adipose-related variants and summarize tools to pinpoint the putative causal variants, genes, and cell types for the associated loci. We explain how large-scale perturbation experiments, coupled with imaging and multi-omics, can be used to screen variants' effects on cellular phenotypes and how these phenotypes can be tied to physiological mechanisms. Lastly, we discuss the challenges and opportunities that lie ahead for V2F research and propose a roadmap for future studies.
Collapse
Affiliation(s)
- Sophia Metz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jonathan Robert Belanich
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Melina Claussnitzer
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Endocrine Division, Massachusetts General Hospital, Harvard Medical School, Cambridge, MA 02142, USA
| | - Tuomas Oskari Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Gao X, Li SJ, Cai JP. Human Peripheral Blood Leukocyte Transcriptome-Based Aging Clock Reveals Acceleration of Aging by Bacterial or Viral Infections. J Gerontol A Biol Sci Med Sci 2025; 80:glaf054. [PMID: 40089807 DOI: 10.1093/gerona/glaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 03/17/2025] Open
Abstract
The aging of the population is a global concern. In the post-coronavirus disease 2019 (COVID-19) pandemic era, there are no effective methods to identify aging acceleration due to infection. In this study, we conducted whole-transcriptome sequencing on peripheral blood samples from 35 healthy individuals (22-88 years old). By analyzing the changes in mRNA, lncRNA, and miRNA expression, we investigated the characteristics of transcriptome alterations during the aging process. ceRNA networks were constructed, and 10 genes (CD248, PHGDH, SFXN2, MXRA8, NOG, TTC24, PHYKPL, CACHD1, BPGM, and TWF1) were identified as potential aging markers and used to construct an aging clock. Moreover, our aging clock categorized individuals into slow-, average-, and quick-aging groups, highlighting a link between accelerated aging and infection-related clinical parameters. Pseudotime analysis further revealed 2 distinct aging trajectories, corroborating the variations in the aging rate identified by the aging clock. Furthermore, we validated the results using the OEP001041 data set (277 healthy individuals aged 17-75), and data sets comprising patients with infectious diseases (n = 1 558). Our study revealed that infection accelerates aging via increased inflammation and oxidative stress in infectious disease patients. Besides, the aging clock exhibited alterations after infection, highlighting its potential for assessing the aging rate after patient recovery. In conclusion, our study introduces a novel aging clock to assess the aging rate in healthy individuals and those with infections, revealing a strong link between accelerated aging and infections through inflammation and oxidative stress. These findings offer valuable insights into aging mechanisms and potential strategies for healthy aging.
Collapse
Affiliation(s)
- Xin Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Si-Jia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Ratnapriya R, Grassman F, Chen R, Hewitt A, Du J, Saban DR, Klaver CCW, Ash J, Stambolian D, Tumminia SJ, Qian J, Husain D, Iyengar SK, den Hollander AI. Functional genomics in age-related macular degeneration: From genetic associations to understanding disease mechanisms. Exp Eye Res 2025; 254:110344. [PMID: 40089136 PMCID: PMC12048874 DOI: 10.1016/j.exer.2025.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
Genome-wide association studies have been remarkably successful in identifying genetic variants associated with age-related macular degeneration (AMD), demonstrating a strong genetic component largely driven by common variants. However, progress in translating these genetic findings into a deeper understanding of disease mechanisms and new therapies has been slow. Slow progress in this area can be attributed to limited knowledge of the functional impact of AMD-associated non-coding variants on gene function, the molecular mechanisms and cell types underlying disease. This review offers a comprehensive overview of functional genomics approaches to uncover the genetic, epigenetic, cellular and molecular mechanisms underlying AMD and outlines future directions for research.
Collapse
Affiliation(s)
- Rinki Ratnapriya
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Felix Grassman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alex Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Integrative Immunobiology, Duke University, Durham, NC, USA
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Institute of Molecular and Clinical Ophthalmology, University of Basel, Basel, Switzerland
| | - John Ash
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Jiang Qian
- Wilmer Eye Institute, Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Deeba Husain
- Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Sudha K Iyengar
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Anneke I den Hollander
- Genomics Research Center, AbbVie, North Chicago, IL, USA; Genomics Research Center, AbbVie, Cambridge, MA, USA.
| |
Collapse
|
4
|
Parker MT, Amar S, Campoy JA, Krause K, Tusso S, Marek M, Huettel B, Schneeberger K. Scalable eQTL mapping using single-nucleus RNA-sequencing of recombined gametes from a small number of individuals. PLoS Biol 2025; 23:e3003085. [PMID: 40279341 DOI: 10.1371/journal.pbio.3003085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/25/2025] [Indexed: 04/27/2025] Open
Abstract
Phenotypic differences between individuals of a species are often caused by differences in gene expression, which are in turn caused by genetic variation. Expression quantitative trait locus (eQTL) analysis is a methodology by which we can identify such causal variants. Scaling eQTL analysis is costly due to the expense of generating mapping populations, and the collection of matched transcriptomic and genomic information. We developed a rapid eQTL analysis approach using single-cell/nucleus RNA sequencing of gametes from a small number of heterozygous individuals. Patterns of inherited polymorphisms are used to infer the recombinant genomes of thousands of individual gametes and identify how different haplotypes correlate with variation in gene expression. Applied to Arabidopsis pollen nuclei, our approach uncovers both cis- and trans-eQTLs, ultimately mapping variation in a master regulator of sperm cell development that affects the expression of hundreds of genes. This establishes snRNA-sequencing as a powerful, cost-effective method for the mapping of meiotic recombination, addressing the scalability challenges of eQTL analysis and enabling eQTL mapping in specific cell-types.
Collapse
Affiliation(s)
- Matthew T Parker
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Samija Amar
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - José A Campoy
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kristin Krause
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sergio Tusso
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | | | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
5
|
Wu SR, Nowakowski TJ. Exploring human brain development and disease using assembloids. Neuron 2025; 113:1133-1150. [PMID: 40107269 PMCID: PMC12022838 DOI: 10.1016/j.neuron.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/10/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
How the human brain develops and what goes awry in neurological disorders represent two long-lasting questions in neuroscience. Owing to the limited access to primary human brain tissue, insights into these questions have been largely gained through animal models. However, there are fundamental differences between developing mouse and human brain, and neural organoids derived from human pluripotent stem cells (hPSCs) have recently emerged as a robust experimental system that mimics self-organizing and multicellular features of early human brain development. Controlled integration of multiple organoids into assembloids has begun to unravel principles of cell-cell interactions. Moreover, patient-derived or genetically engineered hPSCs provide opportunities to investigate phenotypic correlates of neurodevelopmental disorders and to develop therapeutic hypotheses. Here, we outline the advances in technologies that facilitate studies by using assembloids and summarize their applications in brain development and disease modeling. Lastly, we discuss the major roadblocks of the current system and potential solutions.
Collapse
Affiliation(s)
- Sih-Rong Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
6
|
Zabetian Z, Gonzalez-Ferrer J, Lehrer J, Jonsson VD, Teodorescu M, Haussler D, Mostajo-Radji MA. Protocol for deep-learning-driven cell type label transfer in single-cell RNA sequencing data. STAR Protoc 2025; 6:103768. [PMID: 40232935 PMCID: PMC12022683 DOI: 10.1016/j.xpro.2025.103768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/15/2025] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
Here, we present a protocol for using SIMS (scalable, interpretable machine learning for single cell) to transfer cell type labels in single-cell RNA sequencing data. This protocol outlines data preparation, model training with labeled data or inference using pretrained models, and methods for visualizing, downloading, and interpreting predictions. We provide stepwise instructions for accessing SIMS through the application programming interface (API), GitHub Codespaces, and a web application. For complete details on the use and execution of this protocol, please refer to Gonzalez-Ferrer et al.1.
Collapse
Affiliation(s)
- Zoe Zabetian
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Jesus Gonzalez-Ferrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Julian Lehrer
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Vanessa D Jonsson
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mircea Teodorescu
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Electrical and Computer Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - David Haussler
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95060, USA
| | - Mohammed A Mostajo-Radji
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA 95060, USA; Live Cell Biotechnology Discovery Lab, University of California, Santa Cruz, Santa Cruz, CA 95060, USA.
| |
Collapse
|
7
|
Huang Z, He C, Wang G, Zhu M, Tong X, Feng Y, Zhang C, Dong S, Harim Y, Liu HK, Zhou W, Lan F, Feng W. Mutation of CHD7 impairs the output of neuroepithelium transition that is reversed by the inhibition of EZH2. Mol Psychiatry 2025:10.1038/s41380-025-02990-6. [PMID: 40164694 DOI: 10.1038/s41380-025-02990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 03/07/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
Haploinsufficiency of CHD7 (Chromo-Helicase-DNA binding protein 7) causes a severe congenital disease CHARGE syndrome. Brain anomaly such as microcephaly and olfactory bulb agenesis seen in CHARGE patients have not been mimicked in previous animal models. Here, we uncover an indispensable function of CHD7 in the neuroepithelium (NE) but not in the neural stem cells (NSCs) after NE transition. Loss of Chd7 in mouse NE resulted in CHARGE-like brain anomalies due to reduced proliferation and differentiation of neural stem and progenitor cells, which were recapitulated in CHD7 KO human forebrain organoids. Mechanistically, we find that CHD7 activates neural transcription factors by removing the repressive histone mark H3K27me3 and promoting chromatin accessibility. Importantly, neurodevelopmental defects caused by CHD7 loss in human brain organoids and mice were ameliorated by the inhibition of H3K27me3 methyltransferase EZH2. Altogether, by implementing appropriate experimental models, we uncover the pathogenesis of CHD7-associated neurodevelopmental diseases, and identify a potential therapeutic opportunity for CHARGE syndrome.
Collapse
Affiliation(s)
- Zhuxi Huang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Chenxi He
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Guangfu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Ming Zhu
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoyu Tong
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Yi Feng
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Chenyang Zhang
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Shuhua Dong
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yassin Harim
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Hai-Kun Liu
- Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, 69120, Germany
| | - Wenhao Zhou
- Division of Neonatology and Center for Newborn Care, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fei Lan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Weijun Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Schaefer NK, Pavlovic BJ, Pollen AA. CellBouncer, A Unified Toolkit for Single-Cell Demultiplexing and Ambient RNA Analysis, Reveals Hominid Mitochondrial Incompatibilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.23.644821. [PMID: 40166335 PMCID: PMC11957168 DOI: 10.1101/2025.03.23.644821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Pooled processing, in which cells from multiple sources are cultured or captured together, is an increasingly popular strategy for droplet-based single cell sequencing studies. This design allows efficient scaling of experiments, isolation of cell-intrinsic differences, and mitigation of batch effects. We present CellBouncer, a computational toolkit for demultiplexing and analyzing single-cell sequencing data from pooled experiments. We demonstrate that CellBouncer can separate and quantify multi-species and multi-individual cell mixtures, identify unknown mitochondrial haplotypes in cells, assign treatments from lipid-conjugated barcodes or CRISPR sgRNAs, and infer pool composition, outperforming existing methods. We also introduce methods to quantify ambient RNA contamination per cell, infer individual donors' contributions to the ambient RNA pool, and determine a consensus doublet rate harmonized across data types. Applying these tools to tetraploid composite cells, we identify a competitive advantage of human over chimpanzee mitochondria across 10 cell fusion lines and provide evidence for inter-mitochondrial incompatibility and mito-nuclear incompatibility between species.
Collapse
Affiliation(s)
- Nathan K Schaefer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Bryan J Pavlovic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Alex A Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Boocock J, Alexander N, Alamo Tapia L, Walter-McNeill L, Patel SP, Munugala C, Bloom JS, Kruglyak L. Single-cell eQTL mapping in yeast reveals a tradeoff between growth and reproduction. eLife 2025; 13:RP95566. [PMID: 40073070 PMCID: PMC11903034 DOI: 10.7554/elife.95566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in Saccharomyces cerevisiae by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses. We used scRNA-seq data to genotype each cell, measure gene expression, and classify the cells by cell-cycle stage. We mapped thousands of local and distant eQTLs and identified interactions between eQTL effects and cell-cycle stages. We took advantage of single-cell expression information to identify hundreds of genes with allele-specific effects on expression noise. We used cell-cycle stage classification to map 20 loci that influence cell-cycle progression. One of these loci influenced the expression of genes involved in the mating response. We showed that the effects of this locus arise from a common variant (W82R) in the gene GPA1, which encodes a signaling protein that negatively regulates the mating pathway. The 82R allele increases mating efficiency at the cost of slower cell-cycle progression and is associated with a higher rate of outcrossing in nature. Our results provide a more granular picture of the effects of genetic variants on gene expression and downstream traits.
Collapse
Affiliation(s)
- James Boocock
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Noah Alexander
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Leslie Alamo Tapia
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Laura Walter-McNeill
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Shivani Prashant Patel
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Chetan Munugala
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los AngelesLos AngelesUnited States
- Department of Biological Chemistry, University of California, Los AngelesLos AngelesUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
10
|
Li T, Alvarez M, Liu C, Abuhanna K, Sun Y, Ernst J, Plath K, Balliu B, Luo C, Zaitlen N. The impact of ambient contamination on demultiplexing methods for single-nucleus multiome experiments. RESEARCH SQUARE 2025:rs.3.rs-5977005. [PMID: 39989953 PMCID: PMC11844637 DOI: 10.21203/rs.3.rs-5977005/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Sample multiplexing has become an increasingly common design choice in droplet-based single-nucleus multi-omic sequencing experiments to reduce costs and remove technical variation. Genotype-based demultiplexing is one popular class of methods that was originally developed for single-cell RNA-seq, but has not been rigorously benchmarked in other assays, such as snATAC-seq and joint snRNA/snATAC assays, especially in the context of variable ambient RNA/DNA contamination. To address this, we develop ambisim, a genotype-aware read-level simulator that can flexibly control ambient molecule proportions and generate realistic joint snRNA/snATAC data. We use ambisim to evaluate demultiplexing methods across several important parameters: doublet rate, number of multiplexed donors, and coverage levels. Our simulations reveal that methods are variably impacted by ambient contamination in both modalities. We then applied the demultiplexing methods to two joint snRNA/snATAC datasets and found highly variable concordance between methods in both modalities. Finally, we develop a new metric, variant consistency, which we show is correlated with cell-level ambient molecule fractions in singlets. Applying our metric to two multiplexed joint snRNA/snATAC datasets reveals variable ambient contamination across experiments and modalities. We conclude that improved modelling of ambient material in demultiplexing algorithms will increase both sensitivity and specificity.
Collapse
Affiliation(s)
- Terence Li
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
- Bioinformatics Graduate Program, University of California, Los Angeles
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
- Department of Medicine, University of California, San Francisco
| | - Cuining Liu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Kevin Abuhanna
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Yu Sun
- Bioinformatics Graduate Program, University of California, Los Angeles
| | - Jason Ernst
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
- Computer Science Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles
| | | | - Brunilda Balliu
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Chongyuan Luo
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Noah Zaitlen
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
11
|
Li T, Alvarez M, Liu C, Abuhanna K, Sun Y, Ernst J, Plath K, Balliu B, Luo C, Zaitlen N. The impact of ambient contamination on demultiplexing methods for single-nucleus multiome experiments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636969. [PMID: 39975005 PMCID: PMC11839078 DOI: 10.1101/2025.02.06.636969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sample multiplexing has become an increasingly common design choice in droplet-based single-nucleus multi-omic sequencing experiments to reduce costs and remove technical variation. Genotype-based demultiplexing is one popular class of methods that was originally developed for single-cell RNA-seq, but has not been rigorously benchmarked in other assays, such as snATAC-seq and joint snRNA/snATAC assays, especially in the context of variable ambient RNA/DNA contamination. To address this, we develop ambisim, a genotype-aware read-level simulator that can flexibly control ambient molecule proportions and generate realistic joint snRNA/snATAC data. We use ambisim to evaluate demultiplexing methods across several important parameters: doublet rate, number of multiplexed donors, and coverage levels. Our simulations reveal that methods are variably impacted by ambient contamination in both modalities. We then applied the demultiplexing methods to two joint snRNA/snATAC datasets and found highly variable concordance between methods in both modalities. Finally, we develop a new metric, variant consistency, which we show is correlated with cell-level ambient molecule fractions in singlets. Applying our metric to two multiplexed joint snRNA/snATAC datasets reveals variable ambient contamination across experiments and modalities. We conclude that improved modelling of ambient material in demultiplexing algorithms will increase both sensitivity and specificity.
Collapse
Affiliation(s)
- Terence Li
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
- Bioinformatics Graduate Program, University of California, Los Angeles
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
- Department of Medicine, University of California, San Francisco
| | - Cuining Liu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Kevin Abuhanna
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Yu Sun
- Bioinformatics Graduate Program, University of California, Los Angeles
| | - Jason Ernst
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles
- Computer Science Department, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles
| | | | - Brunilda Balliu
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles
| | - Chongyuan Luo
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
| | - Noah Zaitlen
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles
| |
Collapse
|
12
|
Handsaker RE, Kashin S, Reed NM, Tan S, Lee WS, McDonald TM, Morris K, Kamitaki N, Mullally CD, Morakabati NR, Goldman M, Lind G, Kohli R, Lawton E, Hogan M, Ichihara K, Berretta S, McCarroll SA. Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease. Cell 2025; 188:623-639.e19. [PMID: 39824182 PMCID: PMC11822645 DOI: 10.1016/j.cell.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/15/2024] [Accepted: 11/29/2024] [Indexed: 01/20/2025]
Abstract
In Huntington's disease (HD), striatal projection neurons (SPNs) degenerate during midlife; the core biological question involves how the disease-causing DNA repeat (CAG)n in the huntingtin (HTT) gene leads to neurodegeneration after decades of biological latency. We developed a single-cell method for measuring this repeat's length alongside genome-wide RNA expression. We found that the HTT CAG repeat expands somatically from 40-45 to 100-500+ CAGs in SPNs. Somatic expansion from 40 to 150 CAGs had no apparent cell-autonomous effect, but SPNs with 150-500+ CAGs lost positive and then negative features of neuronal identity, de-repressed senescence/apoptosis genes, and were lost. Our results suggest that somatic repeat expansion beyond 150 CAGs causes SPNs to degenerate quickly and asynchronously. We conclude that in HD, at any one time, most neurons have an innocuous but unstable HTT gene and that HD pathogenesis is a DNA process for almost all of a neuron's life.
Collapse
Affiliation(s)
- Robert E Handsaker
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Seva Kashin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Nora M Reed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Won-Seok Lee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tara M McDonald
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nolan Kamitaki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher D Mullally
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Melissa Goldman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel Lind
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rhea Kohli
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Marina Hogan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiku Ichihara
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Berretta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| | - Steven A McCarroll
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Caporale N, Castaldi D, Rigoli MT, Cheroni C, Valenti A, Stucchi S, Lessi M, Bulgheresi D, Trattaro S, Pezzali M, Vitriolo A, Lopez-Tobon A, Bonfanti M, Ricca D, Schmid KT, Heinig M, Theis FJ, Villa CE, Testa G. Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution. Nat Methods 2025; 22:358-370. [PMID: 39653820 PMCID: PMC11810796 DOI: 10.1038/s41592-024-02555-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.
Collapse
Affiliation(s)
- Nicolò Caporale
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Davide Castaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Marco Tullio Rigoli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | - Alessia Valenti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Sarah Stucchi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | - Manuel Lessi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | | | - Martina Pezzali
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Human Technopole, Milan, Italy
| | | | | | | | | | - Katharina T Schmid
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | - Matthias Heinig
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Department of Mathematics, Technical University Munich, Munich, Germany
| | | | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
- Human Technopole, Milan, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
14
|
Caporale N, Leonardi O, Villa CE, Vitriolo A, Boeckx C, Testa G. Tile by tile: capturing the evolutionary mosaic of human conditions. Curr Opin Genet Dev 2025; 90:102297. [PMID: 39705881 DOI: 10.1016/j.gde.2024.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
The collection of Homo sapiens anatomical hallmarks hypothesized to support the 'human condition' did not appear at one specific time and place, but gradually, creating a reticulate evolutionary trajectory. The recent reconstruction of migration patterns and gene flows across different hominin species and populations draws a mosaic that we contend can be illuminated by genomic comparisons and specific experiments. Here, we first review key discoveries that could allow this experimental endeavor by describing recent advances in a variety of fields, stressing the importance of charting the current human neurodiversity as an interpretive substrate for evolutionary changes. Then, we identify key cellular and molecular observables. Finally, given the vast amount of possible variants, we focus the discussion on technologies that could allow their interrogation in a way that is compatible with the staggering amount of contemporary genomic and phenotypic characterization.
Collapse
Affiliation(s)
- Nicolò Caporale
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@NicoloCaporale
| | - Oliviero Leonardi
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@OlivieroLeonar2
| | - Carlo Emanuele Villa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@CarloEmanueleV1
| | - Alessandro Vitriolo
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@AVitriolScience
| | - Cedric Boeckx
- University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain; University of Barcelona Institute of Neurosciences, 08007 Barcelona, Spain; Catalan Institute for Research and Advanced Studies (ICREA), 08007 Barcelona, Spain.
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
15
|
Aydin S, Skelly DA, Dewey H, Mahoney JM, Choi T, Reinholdt LG, Baker CL, Munger SC. Cross cell-type systems genetics reveals the influence of eQTL at multiple points in the developmental trajectory of mouse neural progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634514. [PMID: 39896448 PMCID: PMC11785210 DOI: 10.1101/2025.01.24.634514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Genetic variation leads to phenotypic variability in pluripotent stem cells that presents challenges for regenerative medicine. Although recent studies have investigated the impact of genetic variation on pluripotency maintenance and differentiation capacity, less is known about how genetic variants affecting the pluripotent state influence gene regulation in later stages of development. Here, we characterized expression of more than 12,000 genes in 127 donor-matched Diversity Outbred (DO) mouse embryonic stem cell (mESC) and neural progenitor cell (mNPC) lines. Quantitative trait locus (QTL) mapping identified 2,947 expression QTL (eQTL) unique to DO mNPCs and 1,113 eQTL observed in both mNPCs and mESCs with highly concordant allele effects. We mapped three eQTL hotspots on Chromosomes (Chrs) 1, 10, and 11 that were unique to mNPCs. Target genes of the Chr 1 hotspot were overrepresented for those involved in mRNA processing, DNA repair, chromatin organization, protein degradation, and cell cycle. Mediation analysis of the Chr 1 hotspot identified Rnf152 as the best candidate mediator expressed in mNPCs, while cross-cell type mediation using mESC gene expression along with partial correlation analysis strongly implicated genetic variant(s) affecting Pign expression in the mESC state as regulating the mNPC Chr 1 eQTL hotspot. Together these findings highlight that many local eQTL confer similar effects on gene expression in multiple cell states; distant eQTL in DO mNPCs are numerous and largely unique to that cell state, with many co-localizing to mNPC-specific hotspots; and mediation analysis across cell types suggests that expression of Pign early in development (mESCs) shapes the transcriptome of the more specialized mNPC state.
Collapse
Affiliation(s)
- Selcan Aydin
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | | | - Hannah Dewey
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| | | | - Ted Choi
- Predictive Biology, Inc., Carlsbad, CA 92010 USA
| | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| | - Christopher L. Baker
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111 USA
| |
Collapse
|
16
|
Yildirim Z, Swanson K, Wu X, Zou J, Wu J. Next-Gen Therapeutics: Pioneering Drug Discovery with iPSCs, Genomics, AI, and Clinical Trials in a Dish. Annu Rev Pharmacol Toxicol 2025; 65:71-90. [PMID: 39284102 PMCID: PMC12011342 DOI: 10.1146/annurev-pharmtox-022724-095035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In the high-stakes arena of drug discovery, the journey from bench to bedside is hindered by a daunting 92% failure rate, primarily due to unpredicted toxicities and inadequate therapeutic efficacy in clinical trials. The FDA Modernization Act 2.0 heralds a transformative approach, advocating for the integration of alternative methods to conventional animal testing, including cell-based assays that employ human induced pluripotent stem cell (iPSC)-derived organoids, and organ-on-a-chip technologies, in conjunction with sophisticated artificial intelligence (AI) methodologies. Our review explores the innovative capacity of iPSC-derived clinical trial in a dish models designed for cardiovascular disease research. We also highlight how integrating iPSC technology with AI can accelerate the identification of viable therapeutic candidates, streamline drug screening, and pave the way toward more personalized medicine. Through this, we provide a comprehensive overview of the current landscape and future implications of iPSC and AI applications being navigated by the research community and pharmaceutical industry.
Collapse
Affiliation(s)
- Zehra Yildirim
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| | - Kyle Swanson
- Greenstone Biosciences, Palo Alto, California, USA
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Xuekun Wu
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| | - James Zou
- Department of Computer Science, Stanford University, Stanford, California, USA
| | - Joseph Wu
- Stanford Cardiovascular Institute and Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA;
| |
Collapse
|
17
|
Tegtmeyer M, Liyanage D, Han Y, Hebert KB, Pei R, Way GP, Ryder PV, Hawes D, Tromans-Coia C, Cimini BA, Carpenter AE, Singh S, Nehme R. Combining NeuroPainting with transcriptomics reveals cell-type-specific morphological and molecular signatures of the 22q11.2 deletion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623947. [PMID: 39605350 PMCID: PMC11601450 DOI: 10.1101/2024.11.16.623947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Neuropsychiatric conditions pose substantial challenges for therapeutic development due to their complex and poorly understood underlying mechanisms. High-throughput, unbiased phenotypic assays present a promising path for advancing therapeutic discovery, especially within disease-relevant neural tissues. Here, we introduce NeuroPainting, a novel adaptation of the Cell Painting assay, optimized for high-dimensional morphological phenotyping of neural cell types, including neurons, neuronal progenitor cells, and astrocytes derived from human stem cells. Using NeuroPainting, we quantified cell structure and organelle behavior across various brain cell types, creating a public dataset of over 4,000 cellular traits. This extensive dataset not only sets a new benchmark for phenotypic screening in neuropsychiatric research but also serves as a gold standard for the research community, enabling comparisons and validation of results. We then applied NeuroPainting to identify morphological signatures associated with the 22q11.2 deletion, a major genetic risk factor for schizophrenia. We observed profound cell-type-specific effects of the 22q11.2 deletion, with significant alterations in mitochondrial structure, endoplasmic reticulum organization, and cytoskeletal dynamics, particularly in astrocytes. Transcriptomic analysis revealed reduced expression of cell adhesion genes in 22q11.2 deletion astrocytes, consistent with recent post-mortem findings. Integrating the RNA sequencing data and morphological profiles uncovered a novel biological link between altered expression of specific cell adhesion molecules and observed changes in mitochondrial morphology in 22q11.2 deletion astrocytes. These findings underscore the power of combined phenomic and transcriptomic analyses to reveal mechanistic insights associated with human genetic variants of neuropsychiatric conditions.
Collapse
|
18
|
Nishimura H, Li Y. Human pluripotent stem cell-derived models of the hippocampus. Int J Biochem Cell Biol 2024; 177:106695. [PMID: 39557338 DOI: 10.1016/j.biocel.2024.106695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/06/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The hippocampus is a crucial structure of the brain, recognised for its roles in the formation of memory, and our ability to navigate the world. Despite its importance, clear understanding of how the human hippocampus develops and its contribution to disease is limited due to the inaccessible nature of the human brain. In this regard, the advent of human pluripotent stem cell (hPSC) technologies has enabled the study of human biology in an unprecedented manner, through the ability to model development and disease as both 2D monolayers and 3D organoids. In this review, we explore the existing efforts to derive the hippocampal lineage from hPSCs and evaluate the various aspects of the in vivo hippocampus that are replicated in vitro. In addition, we highlight key diseases that have been modelled using hPSC-derived cultures and offer our perspective on future directions for this emerging field.
Collapse
Affiliation(s)
- Haruka Nishimura
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
19
|
Nolbrant S, Wallace JL, Ding J, Zhu T, Sevetson JL, Kajtez J, Baldacci IA, Corrigan EK, Hoglin K, McMullen R, Schmitz MT, Breevoort A, Swope D, Wu F, Pavlovic BJ, Salama SR, Kirkeby A, Huang H, Schaefer NK, Pollen AA. INTERSPECIES ORGANOIDS REVEAL HUMAN-SPECIFIC MOLECULAR FEATURES OF DOPAMINERGIC NEURON DEVELOPMENT AND VULNERABILITY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623592. [PMID: 39605599 PMCID: PMC11601475 DOI: 10.1101/2024.11.14.623592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The disproportionate expansion of telencephalic structures during human evolution involved tradeoffs that imposed greater connectivity and metabolic demands on midbrain dopaminergic neurons. Despite the central role of dopaminergic neurons in human-enriched disorders, molecular specializations associated with human-specific features and vulnerabilities of the dopaminergic system remain unexplored. Here, we establish a phylogeny-in-a-dish approach to examine gene regulatory evolution by differentiating pools of human, chimpanzee, orangutan, and macaque pluripotent stem cells into ventral midbrain organoids capable of forming long-range projections, spontaneous activity, and dopamine release. We identify human-specific gene expression changes related to axonal transport of mitochondria and reactive oxygen species buffering and candidate cis- and trans-regulatory mechanisms underlying gene expression divergence. Our findings are consistent with a model of evolved neuroprotection in response to tradeoffs related to brain expansion and could contribute to the discovery of therapeutic targets and strategies for treating disorders involving the dopaminergic system.
Collapse
Affiliation(s)
- Sara Nolbrant
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Jenelle L. Wallace
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Jingwen Ding
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Tianjia Zhu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Jess L. Sevetson
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, CA, United States of America
- Genomics Institute, University of California Santa Cruz, CA, United States of America
| | - Janko Kajtez
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Isabella A. Baldacci
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Emily K. Corrigan
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Kaylynn Hoglin
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Reed McMullen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew T. Schmitz
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Arnar Breevoort
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Dani Swope
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Fengxia Wu
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Anatomy and Neurobiology, Shandong University, Jinan, Shandong Province, China
| | - Bryan J. Pavlovic
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Cruz, CA, United States of America
- Genomics Institute, University of California Santa Cruz, CA, United States of America
| | - Agnete Kirkeby
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)), Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Experimental Medical Sciences, Wallenberg Center for Molecular Medicine (WCMM) and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Hao Huang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Nathan K. Schaefer
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Alex A. Pollen
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Lead contact
| |
Collapse
|
20
|
Boocock J, Alexander N, Tapia LA, Walter-McNeill L, Patel SP, Munugala C, Bloom JS, Kruglyak L. Single-cell eQTL mapping in yeast reveals a tradeoff between growth and reproduction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.07.570640. [PMID: 38106186 PMCID: PMC10723400 DOI: 10.1101/2023.12.07.570640] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Expression quantitative trait loci (eQTLs) provide a key bridge between noncoding DNA sequence variants and organismal traits. The effects of eQTLs can differ among tissues, cell types, and cellular states, but these differences are obscured by gene expression measurements in bulk populations. We developed a one-pot approach to map eQTLs in Saccharomyces cerevisiae by single-cell RNA sequencing (scRNA-seq) and applied it to over 100,000 single cells from three crosses. We used scRNA-seq data to genotype each cell, measure gene expression, and classify the cells by cell-cycle stage. We mapped thousands of local and distant eQTLs and identified interactions between eQTL effects and cell-cycle stages. We took advantage of single-cell expression information to identify hundreds of genes with allele-specific effects on expression noise. We used cell-cycle stage classification to map 20 loci that influence cell-cycle progression. One of these loci influenced the expression of genes involved in the mating response. We showed that the effects of this locus arise from a common variant (W82R) in the gene GPA1, which encodes a signaling protein that negatively regulates the mating pathway. The 82R allele increases mating efficiency at the cost of slower cell-cycle progression and is associated with a higher rate of outcrossing in nature. Our results provide a more granular picture of the effects of genetic variants on gene expression and downstream traits.
Collapse
Affiliation(s)
- James Boocock
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Noah Alexander
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leslie Alamo Tapia
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Laura Walter-McNeill
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Shivani Prashant Patel
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Chetan Munugala
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Joshua S Bloom
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Leonid Kruglyak
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
21
|
Wu X, Swanson K, Yildirim Z, Liu W, Liao R, Wu JC. Clinical trials in-a-dish for cardiovascular medicine. Eur Heart J 2024; 45:4275-4290. [PMID: 39270727 PMCID: PMC11491156 DOI: 10.1093/eurheartj/ehae519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Cardiovascular diseases persist as a global health challenge that requires methodological innovation for effective drug development. Conventional pipelines relying on animal models suffer from high failure rates due to significant interspecies variation between humans and animal models. In response, the recently enacted Food and Drug Administration Modernization Act 2.0 encourages alternative approaches including induced pluripotent stem cells (iPSCs). Human iPSCs provide a patient-specific, precise, and screenable platform for drug testing, paving the way for cardiovascular precision medicine. This review discusses milestones in iPSC differentiation and their applications from disease modelling to drug discovery in cardiovascular medicine. It then explores challenges and emerging opportunities for the implementation of 'clinical trials in-a-dish'. Concluding, this review proposes a framework for future clinical trial design with strategic incorporations of iPSC technology, microphysiological systems, clinical pan-omics, and artificial intelligence to improve success rates and advance cardiovascular healthcare.
Collapse
Affiliation(s)
- Xuekun Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kyle Swanson
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Greenstone Biosciences, Palo Alto, CA, USA
| | - Zehra Yildirim
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wenqiang Liu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ronglih Liao
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Zhang H, McCarroll A, Peyton L, Díaz de León-Guerrerro S, Zhang S, Gowda P, Sirkin D, ElAchwah M, Duhe A, Wood WG, Jamison B, Tracy G, Pollak R, Hart RP, Pato CN, Mulle JG, Sanders AR, Pang ZP, Duan J. Scaled and efficient derivation of loss-of-function alleles in risk genes for neurodevelopmental and psychiatric disorders in human iPSCs. Stem Cell Reports 2024; 19:1489-1504. [PMID: 39270650 PMCID: PMC11561461 DOI: 10.1016/j.stemcr.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/15/2024] Open
Abstract
Translating genetic findings for neurodevelopmental and psychiatric disorders (NPDs) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop codons (iSTOP) that lead to mRNA nonsense-mediated decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 genes. Using RNA sequencing (RNA-seq), we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Despite high editing efficiency, three schizophrenia risk genes (SETD1A, TRIO, and CUL1) only had heterozygous LoF alleles, suggesting their essential roles for cell growth. We found that CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.
Collapse
Affiliation(s)
- Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Ada McCarroll
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Lilia Peyton
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Sol Díaz de León-Guerrerro
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Prarthana Gowda
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - David Sirkin
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Mahmoud ElAchwah
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alexandra Duhe
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Whitney G Wood
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Brandon Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Gregory Tracy
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA
| | - Rebecca Pollak
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Carlos N Pato
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Jennifer G Mulle
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA; Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL, USA; Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
23
|
Whye D, Norabuena EM, Srinivasan GR, Wood D, Polanco TJ, Makhortova NR, Sahin M, Buttermore ED. A Hybrid 2D-to-3D in vitro Differentiation Platform Improves Outcomes of Cerebral Cortical Organoid Generation in hiPSCs. Curr Protoc 2024; 4:e70022. [PMID: 39400999 DOI: 10.1002/cpz1.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Three-dimensional (3D) cerebral cortical organoids are popular in vitro cellular model systems widely used to study human brain development and disease, compared to traditional stem cell-derived methods that use two-dimensional (2D) monolayer cultures. Despite the advancements made in protocol development for cerebral cortical organoid derivation over the past decade, limitations due to biological, mechanistic, and technical variables remain in generating these complex 3D cellular systems. Building from our previously established differentiation system, we have made modifications to our existing 3D cerebral cortical organoid protocol that resolve several of these technical and biological challenges when working with diverse groups of human induced pluripotent stem cell (hiPSC) lines. This improved protocol blends a 2D monolayer culture format for the specification of neural stem cells and expansion of neuroepithelial progenitor cells with a 3D system for improved self-aggregation and subsequent organoid development. Furthermore, this "hybrid" approach is amenable to both an accelerated cerebral cortical organoid protocol as well as an alternative long-term differentiation protocol. In addition to establishing a hybrid technical format, this protocol also offers phenotypic and morphological characterization of stage-specific cellular profiles using antibodies and fluorescent-based dyes for live cell imaging. © 2024 Wiley Periodicals LLC. Basic Protocol 1: hiPSC-based 2D monolayer specification into neural stem cells (NSCs) Basic Protocol 2: Serial passaging and 2D monolayer expansion of neuroepithelial progenitor cells (NPCs) Support Protocol 1: Direct cryopreservation and rapid thawing of NSCs and NPCs Basic Protocol 3: Bulk aggregation of 3D neurospheres and accelerated cerebral cortical organoid differentiation Alternate Protocol 1: Bulk aggregation of 3D neurospheres and long-term cerebral cortical organoid differentiation Support Protocol 2: High-throughput 3D neurosphere formation and 2D neurosphere migration assay Support Protocol 3: LIVE/DEAD stain cell imaging assay of 3D neurospheres Support Protocol 4: NeuroFluor NeuO live cell dye for 3D cerebral cortical organoids.
Collapse
Affiliation(s)
- Dosh Whye
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Erika M Norabuena
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Gayathri Rajaram Srinivasan
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Delaney Wood
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Taryn J Polanco
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| | - Nina R Makhortova
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Mustafa Sahin
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
- Department of Neurology, Harvard Medical School, Boston, Massachusetts
| | - Elizabeth D Buttermore
- Human Neuron Core, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Boston, Massachusetts
- F.M. Kirby Neurobiology Department, Boston Children's Hospital, Boston, Massachusetts
| |
Collapse
|
24
|
Garcia MF, Retallick-Townsley K, Pruitt A, Davidson E, Dai Y, Fitzpatrick SE, Sen A, Cohen S, Livoti O, Khan S, Dossou G, Cheung J, Deans PJM, Wang Z, Huckins L, Hoffman E, Brennand K. Dynamic convergence of autism disorder risk genes across neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609190. [PMID: 39229156 PMCID: PMC11370590 DOI: 10.1101/2024.08.23.609190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Over a hundred risk genes underlie risk for autism spectrum disorder (ASD) but the extent to which they converge on shared downstream targets to increase ASD risk is unknown. To test the hypothesis that cellular context impacts the nature of convergence, here we apply a pooled CRISPR approach to target 29 ASD loss-of-function genes in human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells, glutamatergic neurons, and GABAergic neurons. Two distinct approaches (gene-level and network-level analyses) demonstrate that convergence is greatest in mature glutamatergic neurons. Convergent effects are dynamic, varying in strength, composition, and biological role between cell types, increasing with functional similarity of the ASD genes examined, and driven by cell-type-specific gene co-expression patterns. Stratification of ASD genes yield targeted drug predictions capable of reversing gene-specific convergent signatures in human cells and ASD-related behaviors in zebrafish. Altogether, convergent networks downstream of ASD risk genes represent novel points of individualized therapeutic intervention.
Collapse
Affiliation(s)
- Meilin Fernandez Garcia
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Kayla Retallick-Townsley
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - April Pruitt
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
| | - Elizabeth Davidson
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Yi Dai
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Sarah E Fitzpatrick
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
| | - Annabel Sen
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Sophie Cohen
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Olivia Livoti
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Suha Khan
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Grace Dossou
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Jen Cheung
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - P J Michael Deans
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Zuoheng Wang
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Laura Huckins
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ellen Hoffman
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Kristen Brennand
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
25
|
Pera M, Greene A, Cardon L, Carter GW, Chesler EJ, Churchill G, Kumar V, Lutz C, Munger S, Murray S, O'Connell K, Reinholdt L, Rosenthal NA. Improving the predictive power of mouse models. Nat Biotechnol 2024; 42:1175-1177. [PMID: 39143158 DOI: 10.1038/s41587-024-02349-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
| | | | - Lon Cardon
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | | | | | | | | | | | | | | | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, ME, USA.
- National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London, UK.
| |
Collapse
|
26
|
Pang PD, Ahmed SM, Nishiga M, Stockbridge NL, Wu JC. Tackling the challenges of new approach methods for predicting drug effects from model systems. Nat Rev Drug Discov 2024; 23:565-566. [PMID: 38750208 PMCID: PMC11482555 DOI: 10.1038/d41573-024-00081-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The passage of the FDA Modernization Act 2.0 in 2022 has provided additional impetus to develop new approach methods for predicting the effects of drug candidates in humans from models such as microphysiological systems based on human-derived induced pluripotent stem cells. Here, we highlight progress in the field and strategies to address various challenges, including the application of artificial intelligence tools.
Collapse
|
27
|
Gordon MG, Kathail P, Choy B, Kim MC, Mazumder T, Gearing M, Ye CJ. Population Diversity at the Single-Cell Level. Annu Rev Genomics Hum Genet 2024; 25:27-49. [PMID: 38382493 DOI: 10.1146/annurev-genom-021623-083207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Population-scale single-cell genomics is a transformative approach for unraveling the intricate links between genetic and cellular variation. This approach is facilitated by cutting-edge experimental methodologies, including the development of high-throughput single-cell multiomics and advances in multiplexed environmental and genetic perturbations. Examining the effects of natural or synthetic genetic variants across cellular contexts provides insights into the mutual influence of genetics and the environment in shaping cellular heterogeneity. The development of computational methodologies further enables detailed quantitative analysis of molecular variation, offering an opportunity to examine the respective roles of stochastic, intercellular, and interindividual variation. Future opportunities lie in leveraging long-read sequencing, refining disease-relevant cellular models, and embracing predictive and generative machine learning models. These advancements hold the potential for a deeper understanding of the genetic architecture of human molecular traits, which in turn has important implications for understanding the genetic causes of human disease.
Collapse
Affiliation(s)
| | - Pooja Kathail
- Center for Computational Biology, University of California, Berkeley, California, USA
| | - Bryson Choy
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Min Cheol Kim
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Thomas Mazumder
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
| | - Chun Jimmie Ye
- Arc Institute, Palo Alto, California, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, California, USA
- Institute for Human Genetics, University of California, San Francisco, California, USA
- Bakar Computational Health Sciences Institute, Gladstone-UCSF Institute of Genomic Immunology, Parker Institute for Cancer Immunotherapy, Department of Epidemiology and Biostatistics, Department of Microbiology and Immunology, and Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, USA;
| |
Collapse
|
28
|
Retallick-Townsley KG, Lee S, Cartwright S, Cohen S, Sen A, Jia M, Young H, Dobbyn L, Deans M, Fernandez-Garcia M, Huckins LM, Brennand KJ. Dynamic stress- and inflammatory-based regulation of psychiatric risk loci in human neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602755. [PMID: 39026810 PMCID: PMC11257632 DOI: 10.1101/2024.07.09.602755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The prenatal environment can alter neurodevelopmental and clinical trajectories, markedly increasing risk for psychiatric disorders in childhood and adolescence. To understand if and how fetal exposures to stress and inflammation exacerbate manifestation of genetic risk for complex brain disorders, we report a large-scale context-dependent massively parallel reporter assay (MPRA) in human neurons designed to catalogue genotype x environment (GxE) interactions. Across 240 genome-wide association study (GWAS) loci linked to ten brain traits/disorders, the impact of hydrocortisone, interleukin 6, and interferon alpha on transcriptional activity is empirically evaluated in human induced pluripotent stem cell (hiPSC)-derived glutamatergic neurons. Of ~3,500 candidate regulatory risk elements (CREs), 11% of variants are active at baseline, whereas cue-specific CRE regulatory activity range from a high of 23% (hydrocortisone) to a low of 6% (IL-6). Cue-specific regulatory activity is driven, at least in part, by differences in transcription factor binding activity, the gene targets of which show unique enrichments for brain disorders as well as co-morbid metabolic and immune syndromes. The dynamic nature of genetic regulation informs the influence of environmental factors, reveals a mechanism underlying pleiotropy and variable penetrance, and identifies specific risk variants that confer greater disorder susceptibility after exposure to stress or inflammation. Understanding neurodevelopmental GxE interactions will inform mental health trajectories and uncover novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Kayla G. Retallick-Townsley
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Seoyeon Lee
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Sam Cartwright
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Sophie Cohen
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Annabel Sen
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Meng Jia
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Hannah Young
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lee Dobbyn
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Deans
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Meilin Fernandez-Garcia
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Laura M. Huckins
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
| | - Kristen J. Brennand
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06511
- Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| |
Collapse
|
29
|
Baum ML, Wilton DK, Fox RG, Carey A, Hsu YHH, Hu R, Jäntti HJ, Fahey JB, Muthukumar AK, Salla N, Crotty W, Scott-Hewitt N, Bien E, Sabatini DA, Lanser TB, Frouin A, Gergits F, Håvik B, Gialeli C, Nacu E, Lage K, Blom AM, Eggan K, McCarroll SA, Johnson MB, Stevens B. CSMD1 regulates brain complement activity and circuit development. Brain Behav Immun 2024; 119:317-332. [PMID: 38552925 DOI: 10.1016/j.bbi.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the brain during development.
Collapse
Affiliation(s)
- Matthew L Baum
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; MD-PhD Program of Harvard & MIT, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel K Wilton
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel G Fox
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Alanna Carey
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu-Han H Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ruilong Hu
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Henna J Jäntti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jaclyn B Fahey
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Allie K Muthukumar
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nikkita Salla
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - William Crotty
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Nicole Scott-Hewitt
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth Bien
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sabatini
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Toby B Lanser
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arnaud Frouin
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Frederick Gergits
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Chrysostomi Gialeli
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden; Cardiovascular Research - Translational Studies Research Group, Department of Clinical Sciences, Lund University, S-214 28 Malmö, Sweden
| | - Eugene Nacu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Lund University, S-214 28 Malmö, Sweden
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Steven A McCarroll
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Matthew B Johnson
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Beth Stevens
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, USA.
| |
Collapse
|
30
|
Mullard A. These 3D model brains with cells from several people are first of their kind. Nature 2024; 631:16. [PMID: 38926566 DOI: 10.1038/d41586-024-02096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
|
31
|
Bhaduri A. Chimeric brain organoids capture human genetic diversity. Nature 2024; 631:32-33. [PMID: 38926554 DOI: 10.1038/d41586-024-01648-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
|
32
|
Frenkel M, Raman S. Discovering mechanisms of human genetic variation and controlling cell states at scale. Trends Genet 2024; 40:587-600. [PMID: 38658256 PMCID: PMC11607914 DOI: 10.1016/j.tig.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 04/26/2024]
Abstract
Population-scale sequencing efforts have catalogued substantial genetic variation in humans such that variant discovery dramatically outpaces interpretation. We discuss how single-cell sequencing is poised to reveal genetic mechanisms at a rate that may soon approach that of variant discovery. The functional genomics toolkit is sufficiently modular to systematically profile almost any type of variation within increasingly diverse contexts and with molecularly comprehensive and unbiased readouts. As a result, we can construct deep phenotypic atlases of variant effects that span the entire regulatory cascade. The same conceptual approach to interpreting genetic variation should be applied to engineering therapeutic cell states. In this way, variant mechanism discovery and cell state engineering will become reciprocating and iterative processes towards genomic medicine.
Collapse
Affiliation(s)
- Max Frenkel
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, USA; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biochemistry, University of Wisconsin, Madison, WI, USA.
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA; Department of Bacteriology, University of Wisconsin, Madison, WI, USA; Department of Chemical and Biological Engineering, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
33
|
Antón-Bolaños N, Faravelli I, Faits T, Andreadis S, Kastli R, Trattaro S, Adiconis X, Wei A, Sampath Kumar A, Di Bella DJ, Tegtmeyer M, Nehme R, Levin JZ, Regev A, Arlotta P. Brain Chimeroids reveal individual susceptibility to neurotoxic triggers. Nature 2024; 631:142-149. [PMID: 38926573 PMCID: PMC11338177 DOI: 10.1038/s41586-024-07578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Interindividual genetic variation affects the susceptibility to and progression of many diseases1,2. However, efforts to study how individual human brains differ in normal development and disease phenotypes are limited by the paucity of faithful cellular human models, and the difficulty of scaling current systems to represent multiple people. Here we present human brain Chimeroids, a highly reproducible, multidonor human brain cortical organoid model generated by the co-development of cells from a panel of individual donors in a single organoid. By reaggregating cells from multiple single-donor organoids at the neural stem cell or neural progenitor cell stage, we generate Chimeroids in which each donor produces all cell lineages of the cerebral cortex, even when using pluripotent stem cell lines with notable growth biases. We used Chimeroids to investigate interindividual variation in the susceptibility to neurotoxic triggers that exhibit high clinical phenotypic variability: ethanol and the antiepileptic drug valproic acid. Individual donors varied in both the penetrance of the effect on target cell types, and the molecular phenotype within each affected cell type. Our results suggest that human genetic background may be an important mediator of neurotoxin susceptibility and introduce Chimeroids as a scalable system for high-throughput investigation of interindividual variation in processes of brain development and disease.
Collapse
Affiliation(s)
- Noelia Antón-Bolaños
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Irene Faravelli
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tyler Faits
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sophia Andreadis
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Rahel Kastli
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sebastiano Trattaro
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anqi Wei
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Abhishek Sampath Kumar
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniela J Di Bella
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew Tegtmeyer
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ralda Nehme
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Boston, MA, USA
- Genentech, San Francisco, CA, USA
| | - Paola Arlotta
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
34
|
Glenn RA, Do SC, Guruvayurappan K, Corrigan EK, Santini L, Medina-Cano D, Singer S, Cho H, Liu J, Broman K, Czechanski A, Reinholdt L, Koche R, Furuta Y, Kunz M, Vierbuchen T. A PLURIPOTENT STEM CELL PLATFORM FOR IN VITRO SYSTEMS GENETICS STUDIES OF MOUSE DEVELOPMENT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597758. [PMID: 38895226 PMCID: PMC11185710 DOI: 10.1101/2024.06.06.597758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The directed differentiation of pluripotent stem cells (PSCs) from panels of genetically diverse individuals is emerging as a powerful experimental system for characterizing the impact of natural genetic variation on developing cell types and tissues. Here, we establish new PSC lines and experimental approaches for modeling embryonic development in a genetically diverse, outbred mouse stock (Diversity Outbred mice). We show that a range of inbred and outbred PSC lines can be stably maintained in the primed pluripotent state (epiblast stem cells -- EpiSCs) and establish the contribution of genetic variation to phenotypic differences in gene regulation and directed differentiation. Using pooled in vitro fertilization, we generate and characterize a genetic reference panel of Diversity Outbred PSCs (n = 230). Finally, we demonstrate the feasibility of pooled culture of Diversity Outbred EpiSCs as "cell villages", which can facilitate the differentiation of large numbers of EpiSC lines for forward genetic screens. These data can complement and inform similar efforts within the stem cell biology and human genetics communities to model the impact of natural genetic variation on phenotypic variation and disease-risk.
Collapse
Affiliation(s)
- Rachel A. Glenn
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Stephanie C. Do
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Emily K. Corrigan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Present address: Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA and Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Laura Santini
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Singer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyein Cho
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jing Liu
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl Broman
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI USA
| | | | | | - Richard Koche
- Center for Epigenetics Research, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yasuhide Furuta
- Mouse Genetics Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meik Kunz
- The Bioinformatics CRO, Sanford Florida, 32771 USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Center for Stem Cell Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
35
|
Kimura M, Takebe T. Cellotype-phenotype associations using 'organoid villages'. Trends Endocrinol Metab 2024; 35:462-465. [PMID: 38575442 PMCID: PMC11752945 DOI: 10.1016/j.tem.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
En masse phenotyping technology, using massively mosaic donor-derived cells and organoids, can offer enriched insights for cellotype-phenotype association in a cell-type-specific regulatory context. This emerging approach will help to discover biomarkers, inform genetic-epigenetic interactions and identify personalized therapeutic targets, offering hope for precision medicine against highly heterogeneous metabolic diseases.
Collapse
Affiliation(s)
- Masaki Kimura
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan.
| |
Collapse
|
36
|
Moore KM, Pelletier AN, Lapp S, Metz A, Tharp GK, Lee M, Bhasin SS, Bhasin M, Sékaly RP, Bosinger SE, Suthar MS. Single-cell analysis reveals an antiviral network that controls Zika virus infection in human dendritic cells. J Virol 2024; 98:e0019424. [PMID: 38567950 PMCID: PMC11092337 DOI: 10.1128/jvi.00194-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10× Genomics Chromium single-cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human monocyte-derived dendritic cells infected with ZIKV at the single-cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN-dependent and -independent genes (the antiviral module). We modeled the ZIKV-specific antiviral state at the protein level, leveraging experimentally derived protein interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per-cell basis with experimental protein interaction data. IMPORTANCE Zika virus (ZIKV) remains a public health threat given its potential for re-emergence and the detrimental fetal outcomes associated with infection during pregnancy. Understanding the dynamics between ZIKV and its host is critical to understanding ZIKV pathogenesis. Through ZIKV-inclusive single-cell RNA sequencing (scRNA-seq), we demonstrate on the single-cell level the dynamic interplay between ZIKV and the host: the transcriptional program that restricts viral infection and ZIKV-mediated inhibition of that response. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool for gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
Collapse
Affiliation(s)
- Kathryn M. Moore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | | | - Stacey Lapp
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Amanda Metz
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Gregory K. Tharp
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Laboratory, Atlanta, Georgia, USA
| | - Michelle Lee
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
| | - Swati Sharma Bhasin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Manoj Bhasin
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta and Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Rafick-Pierre Sékaly
- Emory Vaccine Center, Atlanta, Georgia, USA
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Laboratory, Atlanta, Georgia, USA
| | - Mehul S. Suthar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Vaccine Center, Atlanta, Georgia, USA
- Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
37
|
Osonoi S, Takebe T. Organoid-guided precision hepatology for metabolic liver disease. J Hepatol 2024; 80:805-821. [PMID: 38237864 PMCID: PMC11828489 DOI: 10.1016/j.jhep.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease affects millions of people worldwide. Progress towards a definitive cure has been incremental and treatment is currently limited to lifestyle modification. Hepatocyte-specific lipid accumulation is the main trigger of lipotoxic events, driving inflammation and fibrosis. The underlying pathology is extraordinarily heterogenous, and the manifestations of steatohepatitis are markedly influenced by metabolic communications across non-hepatic organs. Synthetic human tissue models have emerged as powerful platforms to better capture the mechanistic diversity in disease progression, while preserving person-specific genetic traits. In this review, we will outline current research efforts focused on integrating multiple synthetic tissue models of key metabolic organs, with an emphasis on organoid-based systems. By combining functional genomics and population-scale en masse profiling methodologies, human tissues derived from patients can provide insights into personalised genetic, transcriptional, biochemical, and metabolic states. These collective efforts will advance our understanding of steatohepatitis and guide the development of rational solutions for mechanism-directed diagnostic and therapeutic investigation.
Collapse
Affiliation(s)
- Sho Osonoi
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, Hirosaki, 036-8562, Japan
| | - Takanori Takebe
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Gastroenterology, Hepatology and Nutrition, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; WPI Premium Institute for Human Metaverse Medicine (WPI-PRIMe) and Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama 236-0004, Japan.
| |
Collapse
|
38
|
Farbehi N, Neavin DR, Cuomo ASE, Studer L, MacArthur DG, Powell JE. Integrating population genetics, stem cell biology and cellular genomics to study complex human diseases. Nat Genet 2024; 56:758-766. [PMID: 38741017 DOI: 10.1038/s41588-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
Human pluripotent stem (hPS) cells can, in theory, be differentiated into any cell type, making them a powerful in vitro model for human biology. Recent technological advances have facilitated large-scale hPS cell studies that allow investigation of the genetic regulation of molecular phenotypes and their contribution to high-order phenotypes such as human disease. Integrating hPS cells with single-cell sequencing makes identifying context-dependent genetic effects during cell development or upon experimental manipulation possible. Here we discuss how the intersection of stem cell biology, population genetics and cellular genomics can help resolve the functional consequences of human genetic variation. We examine the critical challenges of integrating these fields and approaches to scaling them cost-effectively and practically. We highlight two areas of human biology that can particularly benefit from population-scale hPS cell studies, elucidating mechanisms underlying complex disease risk loci and evaluating relationships between common genetic variation and pharmacotherapeutic phenotypes.
Collapse
Affiliation(s)
- Nona Farbehi
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Drew R Neavin
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Anna S E Cuomo
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Lorenz Studer
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joseph E Powell
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
39
|
Neavin D, Senabouth A, Arora H, Lee JTH, Ripoll-Cladellas A, Franke L, Prabhakar S, Ye CJ, McCarthy DJ, Melé M, Hemberg M, Powell JE. Demuxafy: improvement in droplet assignment by integrating multiple single-cell demultiplexing and doublet detection methods. Genome Biol 2024; 25:94. [PMID: 38622708 PMCID: PMC11020463 DOI: 10.1186/s13059-024-03224-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024] Open
Abstract
Recent innovations in single-cell RNA-sequencing (scRNA-seq) provide the technology to investigate biological questions at cellular resolution. Pooling cells from multiple individuals has become a common strategy, and droplets can subsequently be assigned to a specific individual by leveraging their inherent genetic differences. An implicit challenge with scRNA-seq is the occurrence of doublets-droplets containing two or more cells. We develop Demuxafy, a framework to enhance donor assignment and doublet removal through the consensus intersection of multiple demultiplexing and doublet detecting methods. Demuxafy significantly improves droplet assignment by separating singlets from doublets and classifying the correct individual.
Collapse
Affiliation(s)
- Drew Neavin
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute for Medical Research, Darlinghurst, NSW, Australia.
| | - Anne Senabouth
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute for Medical Research, Darlinghurst, NSW, Australia
| | - Himanshi Arora
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute for Medical Research, Darlinghurst, NSW, Australia
- Present address: Statewide Genomics at NSW Health Pathology, Sydney, NSW, Australia
| | | | - Aida Ripoll-Cladellas
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, Spain
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Shyam Prabhakar
- Spatial and Single Cell Systems Domain, Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Population and Global Health, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Republic of Singapore
| | - Chun Jimmie Ye
- Bakar Institute for Computational Health Sciences, University of California, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Davis J McCarthy
- Bioinformatics and Cellular Genomics, St Vincent's Institute of Medical Research, Fitzroy, Australia
- Melbourne Integrative Genomics, School of BioSciences-School of Mathematics & Statistics, Faculty of Science, University of Melbourne, Melbourne, Australia
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, Spain
| | - Martin Hemberg
- Present address: The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph E Powell
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute for Medical Research, Darlinghurst, NSW, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
40
|
Scala M, Khan K, Beneteau C, Fox RG, von Hardenberg S, Khan A, Joubert M, Fievet L, Musquer M, Le Vaillant C, Holsclaw JK, Lim D, Berking AC, Accogli A, Giacomini T, Nobili L, Striano P, Zara F, Torella A, Nigro V, Cogné B, Salick MR, Kaykas A, Eggan K, Capra V, Bézieau S, Davis EE, Wells MF. Biallelic loss-of-function variants in CACHD1 cause a novel neurodevelopmental syndrome with facial dysmorphism and multisystem congenital abnormalities. Genet Med 2024; 26:101057. [PMID: 38158856 PMCID: PMC11910193 DOI: 10.1016/j.gim.2023.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Kamal Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Claire Beneteau
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Rachel G Fox
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | - Ayaz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Madeleine Joubert
- CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU Nantes, Department of Anatomical Pathology, Nantes, France
| | - Lorraine Fievet
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC
| | - Marie Musquer
- CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU Nantes, Department of Anatomical Pathology, Nantes, France
| | | | | | - Derek Lim
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, United Kingdom; Department of Medicine, University of Birmingham, Birmingham, United Kingdom
| | | | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Thea Giacomini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Benjamin Cogné
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | | | | | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Valeria Capra
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Stéphane Bézieau
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| | - Michael F Wells
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
41
|
Zhang H, Peyton L, McCarroll A, de León Guerrerro SD, Zhang S, Gowda P, Sirkin D, El Achwah M, Duhe A, Wood WG, Jamison B, Tracy G, Pollak R, Hart RP, Pato CN, Mulle JG, Sanders AR, Pang ZP, Duan J. Scaled and Efficient Derivation of Loss of Function Alleles in Risk Genes for Neurodevelopmental and Psychiatric Disorders in Human iPSC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585542. [PMID: 38562852 PMCID: PMC10983959 DOI: 10.1101/2024.03.18.585542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Translating genetic findings for neurodevelopmental and psychiatric disorders (NPD) into actionable disease biology would benefit from large-scale and unbiased functional studies of NPD genes. Leveraging the cytosine base editing (CBE) system, here we developed a pipeline for clonal loss-of-function (LoF) allele mutagenesis in human induced pluripotent stem cells (hiPSCs) by introducing premature stop-codons (iSTOP) that lead to mRNA nonsense-mediated-decay (NMD) or protein truncation. We tested the pipeline for 23 NPD genes on 3 hiPSC lines and achieved highly reproducible, efficient iSTOP editing in 22 NPD genes. Using RNAseq, we confirmed their pluripotency, absence of chromosomal abnormalities, and NMD. Interestingly, for three schizophrenia risk genes (SETD1A, TRIO, CUL1), despite the high efficiency of base editing, we only obtained heterozygous LoF alleles, suggesting their essential roles for cell growth. We replicated the reported neural phenotypes of SHANK3-haploinsufficiency and found CUL1-LoF reduced neurite branches and synaptic puncta density. This iSTOP pipeline enables a scaled and efficient LoF mutagenesis of NPD genes, yielding an invaluable shareable resource.
Collapse
Affiliation(s)
- Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Lilia Peyton
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Ada McCarroll
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Sol Díaz de León Guerrerro
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL
| | - Prarthana Gowda
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - David Sirkin
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Mahmoud El Achwah
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Alexandra Duhe
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Whitney G Wood
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Brandon Jamison
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Gregory Tracy
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
| | - Rebecca Pollak
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University
| | - Carlos N Pato
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
| | - Jennifer G Mulle
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Center for Advanced Biotechnology and Medicine, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ
- Department of Psychiatry, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL
| |
Collapse
|
42
|
Guss EJ, Sathe L, Dai A, Derebenskiy T, Vega AR, Eggan K, Wells MF. Protocol for neurogenin-2-mediated induction of human stem cell-derived neural progenitor cells. STAR Protoc 2024; 5:102878. [PMID: 38335091 PMCID: PMC10865475 DOI: 10.1016/j.xpro.2024.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/01/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Human pluripotent stem cell-derived neural progenitor cells (NPCs) are an essential tool for the study of brain development and developmental disorders such as autism. Here, we present a protocol to generate NPCs rapidly and reproducibly from human stem cells using dual-SMAD inhibition coupled with a brief pulse of mouse neurogenin-2 (Ngn2) overexpression. We detail the 48-h induction scheme deployed to produce these cells-termed stem cell-derived Ngn2-accelerated progenitor cells-followed by steps for expansion, purification, banking, and quality assessment. For complete details on the use and execution of this protocol, please refer to Wells et al.1.
Collapse
Affiliation(s)
- Ellen J Guss
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Laila Sathe
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander Dai
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Tim Derebenskiy
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ana Rodriguez Vega
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michael F Wells
- Department of Human Genetics, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
43
|
Ling E, Nemesh J, Goldman M, Kamitaki N, Reed N, Handsaker RE, Genovese G, Vogelgsang JS, Gerges S, Kashin S, Ghosh S, Esposito JM, Morris K, Meyer D, Lutservitz A, Mullally CD, Wysoker A, Spina L, Neumann A, Hogan M, Ichihara K, Berretta S, McCarroll SA. A concerted neuron-astrocyte program declines in ageing and schizophrenia. Nature 2024; 627:604-611. [PMID: 38448582 PMCID: PMC10954558 DOI: 10.1038/s41586-024-07109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/23/2024] [Indexed: 03/08/2024]
Abstract
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA sequencing to analyse the prefrontal cortex of 191 human donors aged 22-97 years, including healthy individuals and people with schizophrenia. Latent-factor analysis of these data revealed that, in people whose cortical neurons more strongly expressed genes encoding synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the synaptic neuron and astrocyte program (SNAP). In schizophrenia and ageing-two conditions that involve declines in cognitive flexibility and plasticity1,2-cells divested from SNAP: astrocytes, glutamatergic (excitatory) neurons and GABAergic (inhibitory) neurons all showed reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy people of similar age, may underlie many aspects of normal human interindividual differences and may be an important point of convergence for multiple kinds of pathophysiology.
Collapse
Affiliation(s)
- Emi Ling
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Melissa Goldman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Nolan Kamitaki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Nora Reed
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Robert E Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Vogelgsang
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Sherif Gerges
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Seva Kashin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alyssa Lutservitz
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christopher D Mullally
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Liv Spina
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Marina Hogan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kiku Ichihara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sabina Berretta
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Hurabielle C, LaFlam TN, Gearing M, Ye CJ. Functional genomics in inborn errors of immunity. Immunol Rev 2024; 322:53-70. [PMID: 38329267 PMCID: PMC10950534 DOI: 10.1111/imr.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inborn errors of immunity (IEI) comprise a diverse spectrum of 485 disorders as recognized by the International Union of Immunological Societies Committee on Inborn Error of Immunity in 2022. While IEI are monogenic by definition, they illuminate various pathways involved in the pathogenesis of polygenic immune dysregulation as in autoimmune or autoinflammatory syndromes, or in more common infectious diseases that may not have a significant genetic basis. Rapid improvement in genomic technologies has been the main driver of the accelerated rate of discovery of IEI and has led to the development of innovative treatment strategies. In this review, we will explore various facets of IEI, delving into the distinctions between PIDD and PIRD. We will examine how Mendelian inheritance patterns contribute to these disorders and discuss advancements in functional genomics that aid in characterizing new IEI. Additionally, we will explore how emerging genomic tools help to characterize new IEI as well as how they are paving the way for innovative treatment approaches for managing and potentially curing these complex immune conditions.
Collapse
Affiliation(s)
- Charlotte Hurabielle
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Taylor N LaFlam
- Division of Pediatric Rheumatology, Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Melissa Gearing
- Division of Rheumatology, Department of Medicine, UCSF, San Francisco, California, USA
| | - Chun Jimmie Ye
- Institute for Human Genetics, UCSF, San Francisco, California, USA
- Institute of Computational Health Sciences, UCSF, San Francisco, California, USA
- Gladstone Genomic Immunology Institute, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy, UCSF, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
- Department of Microbiology and Immunology, UCSF, San Francisco, California, USA
- Department of Bioengineering and Therapeutic Sciences, UCSF, San Francisco, California, USA
- Arc Institute, Palo Alto, California, USA
| |
Collapse
|
45
|
Moore KM, Pelletier AN, Lapp S, Metz A, Tharp GK, Lee M, Bhasin SS, Bhasin M, Sékaly RP, Bosinger SE, Suthar MS. Single cell analysis reveals an antiviral network that controls Zika virus infection in human dendritic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.19.576293. [PMID: 38293140 PMCID: PMC10827181 DOI: 10.1101/2024.01.19.576293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that caused an epidemic in the Americas in 2016 and is linked to severe neonatal birth defects, including microcephaly and spontaneous abortion. To better understand the host response to ZIKV infection, we adapted the 10x Genomics Chromium single cell RNA sequencing (scRNA-seq) assay to simultaneously capture viral RNA and host mRNA. Using this assay, we profiled the antiviral landscape in a population of human moDCs infected with ZIKV at the single cell level. The bystander cells, which lacked detectable viral RNA, expressed an antiviral state that was enriched for genes coinciding predominantly with a type I interferon (IFN) response. Within the infected cells, viral RNA negatively correlated with type I IFN dependent and independent genes (antiviral module). We modeled the ZIKV specific antiviral state at the protein level leveraging experimentally derived protein-interaction data. We identified a highly interconnected network between the antiviral module and other host proteins. In this work, we propose a new paradigm for evaluating the antiviral response to a specific virus, combining an unbiased list of genes that highly correlate with viral RNA on a per cell basis with experimental protein interaction data. Our ZIKV-inclusive scRNA-seq assay will serve as a useful tool to gaining greater insight into the host response to ZIKV and can be applied more broadly to the flavivirus field.
Collapse
|
46
|
Ling E, Nemesh J, Goldman M, Kamitaki N, Reed N, Handsaker RE, Genovese G, Vogelgsang JS, Gerges S, Kashin S, Ghosh S, Esposito JM, French K, Meyer D, Lutservitz A, Mullally CD, Wysoker A, Spina L, Neumann A, Hogan M, Ichihara K, Berretta S, McCarroll SA. Concerted neuron-astrocyte gene expression declines in aging and schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.07.574148. [PMID: 38260461 PMCID: PMC10802483 DOI: 10.1101/2024.01.07.574148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human brains vary across people and over time; such variation is not yet understood in cellular terms. Here we describe a striking relationship between people's cortical neurons and cortical astrocytes. We used single-nucleus RNA-seq to analyze the prefrontal cortex of 191 human donors ages 22-97 years, including healthy individuals and persons with schizophrenia. Latent-factor analysis of these data revealed that in persons whose cortical neurons more strongly expressed genes for synaptic components, cortical astrocytes more strongly expressed distinct genes with synaptic functions and genes for synthesizing cholesterol, an astrocyte-supplied component of synaptic membranes. We call this relationship the Synaptic Neuron-and-Astrocyte Program (SNAP). In schizophrenia and aging - two conditions that involve declines in cognitive flexibility and plasticity 1,2 - cells had divested from SNAP: astrocytes, glutamatergic (excitatory) neurons, and GABAergic (inhibitory) neurons all reduced SNAP expression to corresponding degrees. The distinct astrocytic and neuronal components of SNAP both involved genes in which genetic risk factors for schizophrenia were strongly concentrated. SNAP, which varies quantitatively even among healthy persons of similar age, may underlie many aspects of normal human interindividual differences and be an important point of convergence for multiple kinds of pathophysiology.
Collapse
Affiliation(s)
- Emi Ling
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - James Nemesh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Melissa Goldman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nolan Kamitaki
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Nora Reed
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Robert E. Handsaker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Giulio Genovese
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan S. Vogelgsang
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
| | - Sherif Gerges
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Seva Kashin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sulagna Ghosh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Daniel Meyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alyssa Lutservitz
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher D. Mullally
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Alec Wysoker
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Liv Spina
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Anna Neumann
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Marina Hogan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiku Ichihara
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Berretta
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McLean Hospital, Belmont, MA 02478, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA
| | - Steven A. McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Tegtmeyer M, Arora J, Asgari S, Cimini BA, Nadig A, Peirent E, Liyanage D, Way GP, Weisbart E, Nathan A, Amariuta T, Eggan K, Haghighi M, McCarroll SA, O'Connor L, Carpenter AE, Singh S, Nehme R, Raychaudhuri S. High-dimensional phenotyping to define the genetic basis of cellular morphology. Nat Commun 2024; 15:347. [PMID: 38184653 PMCID: PMC10771466 DOI: 10.1038/s41467-023-44045-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/28/2023] [Indexed: 01/08/2024] Open
Abstract
The morphology of cells is dynamic and mediated by genetic and environmental factors. Characterizing how genetic variation impacts cell morphology can provide an important link between disease association and cellular function. Here, we combine genomic sequencing and high-content imaging approaches on iPSCs from 297 unique donors to investigate the relationship between genetic variants and cellular morphology to map what we term cell morphological quantitative trait loci (cmQTLs). We identify novel associations between rare protein altering variants in WASF2, TSPAN15, and PRLR with several morphological traits related to cell shape, nucleic granularity, and mitochondrial distribution. Knockdown of these genes by CRISPRi confirms their role in cell morphology. Analysis of common variants yields one significant association and nominate over 300 variants with suggestive evidence (P < 10-6) of association with one or more morphology traits. We then use these data to make predictions about sample size requirements for increasing discovery in cellular genetic studies. We conclude that, similar to molecular phenotypes, morphological profiling can yield insight about the function of genes and variants.
Collapse
Affiliation(s)
- Matthew Tegtmeyer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Centre for Gene Therapy and Regenerative Medicine, King's College, London, UK
| | - Jatin Arora
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samira Asgari
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Beth A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ajay Nadig
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Emily Peirent
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Dhara Liyanage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gregory P Way
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Erin Weisbart
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Tiffany Amariuta
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Halıcıoğlu Data Science Institute, University of California, La Jolla, CA, USA
- Department of Medicine, University of California, La Jolla, CA, USA
| | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Marzieh Haghighi
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Luke O'Connor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Anne E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ralda Nehme
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|
48
|
Iatrou A, Daskalakis NP. Unraveling the cell-type-specific molecular pathways of PTSD: integrating GWAS with brain genomic profiling and in vitro modeling. Neuropsychopharmacology 2024; 49:303-304. [PMID: 37580460 PMCID: PMC10700486 DOI: 10.1038/s41386-023-01698-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Affiliation(s)
- Artemis Iatrou
- McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nikolaos P Daskalakis
- McLean Hospital, Belmont, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
49
|
Michalski C, Wen Z. Leveraging iPSC technology to assess neuro-immune interactions in neurological and psychiatric disorders. Front Psychiatry 2023; 14:1291115. [PMID: 38025464 PMCID: PMC10672983 DOI: 10.3389/fpsyt.2023.1291115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Communication between the immune and the nervous system is essential for human brain development and homeostasis. Disruption of this intricately regulated crosstalk can lead to neurodevelopmental, psychiatric, or neurodegenerative disorders. While animal models have been essential in characterizing the role of neuroimmunity in development and disease, they come with inherent limitations due to species specific differences, particularly with regard to microglia, the major subset of brain resident immune cells. The advent of induced pluripotent stem cell (iPSC) technology now allows the development of clinically relevant models of the central nervous system that adequately reflect human genetic architecture. This article will review recent publications that have leveraged iPSC technology to assess neuro-immune interactions. First, we will discuss the role of environmental stressors such as neurotropic viruses or pro-inflammatory cytokines on neuronal and glial function. Next, we will review how iPSC models can be used to study genetic risk factors in neurological and psychiatric disorders. Lastly, we will evaluate current challenges and future potential for iPSC models in the field of neuroimmunity.
Collapse
Affiliation(s)
- Christina Michalski
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
50
|
Zushin PJH, Mukherjee S, Wu JC. FDA Modernization Act 2.0: transitioning beyond animal models with human cells, organoids, and AI/ML-based approaches. J Clin Invest 2023; 133:e175824. [PMID: 37909337 PMCID: PMC10617761 DOI: 10.1172/jci175824] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Affiliation(s)
- Peter-James H. Zushin
- Stanford Cardiovascular Institute and
- Department of Medicine (Division of Cardiology), Stanford University, Stanford, California, USA
| | | | - Joseph C. Wu
- Stanford Cardiovascular Institute and
- Department of Medicine (Division of Cardiology), Stanford University, Stanford, California, USA
- Greenstone Biosciences, Palo Alto, California, USA
| |
Collapse
|