1
|
Al-Hamaly MA, Winter E, Blackburn JS. The mitochondria as an emerging target of self-renewal in T-cell acute lymphoblastic leukemia. Cancer Biol Ther 2025; 26:2460252. [PMID: 39905687 PMCID: PMC11801350 DOI: 10.1080/15384047.2025.2460252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 12/22/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Acute lymphocytic leukemia (ALL) is the most common leukemia in children, with the T-cell subtype (T-ALL) accounting for 15% of those cases. Despite advancements in the treatment of T-ALL, patients still face a dismal prognosis following their first relapse. Relapse can be attributed to the inability of chemotherapy agents to eradicate leukemia stem cells (LSC), which possess self-renewal capabilities and are responsible for the long-term maintenance of the disease. Mitochondria have been recognized as a therapeutic vulnerability for cancer stem cells, including LSCs. Mitocans have shown promise in T-ALL both in vitro and in vivo, with some currently in early-phase clinical trials. However, due to challenges in studying LSCs in T-ALL, our understanding of how mitochondrial function influences self-renewal remains limited. This review highlights the emerging literature on targeting mitochondria in diverse T-ALL models, emphasizing specific mitochondrial vulnerabilities linked to LSC self-renewal and their potential to significantly improve T-ALL treatment.
Collapse
Affiliation(s)
- Majd A. Al-Hamaly
- Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Evelyn Winter
- Department of Agriculture, Biodiversity and Forestry, Federal University of Santa Catarina, Curitibanos, Brazil
| | - Jessica S. Blackburn
- Markey Cancer Center, University of Kentucky, Lexington, KY, USA
- Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
2
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
3
|
Shi Y, Pan Q, Chen W, Xie L, Tang S, Yang Z, Zhang M, Yin D, Lin L, Liao JY. Pan-cancer oncogenic properties and therapeutic potential of SF3B4. Cancer Gene Ther 2025:10.1038/s41417-025-00910-y. [PMID: 40394232 DOI: 10.1038/s41417-025-00910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 05/22/2025]
Abstract
Splicing factor 3B (SF3B) subunit 4 (SF3B4), an SF3B complex component essential for spliceosome assembly and accurate splicing, plays a major role in cancer development. However, the precise mechanism through which SF3B4 contributes to tumor growth remains unclear. Here, we demonstrate that SF3B4 is strongly expressed in patients with various cancer types and correlated with their survival. By using hepatocellular carcinoma (HCC) as a model, we reveal that SF3B4's interactions with and regulatory influence on the checkpoint protein BUB1 are essential for appropriate cancer cell mitosis and proliferation. Our results thus demonstrate the roles of SF3B4 as both a cell-cycle regulator and an oncogenic factor in HCC, highlighting its potential as a pan-cancer therapeutic target and diagnostic biomarker.
Collapse
Affiliation(s)
- Yanmei Shi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Qimei Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Wenli Chen
- Center for Bioresources and Drug Discovery and School of Biosciences and Biopharmaceutics, Guangdong Province Key Laboratory for Biotechnology Drug Candidates, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Shiru Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Zhizhi Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Man Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Lehang Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China.
| | - Jian-You Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China.
| |
Collapse
|
4
|
Xu S, Zhang H, Tian Y. Pericytes in hematogenous metastasis: mechanistic insights and therapeutic approaches. Cell Oncol (Dordr) 2025:10.1007/s13402-025-01073-6. [PMID: 40392500 DOI: 10.1007/s13402-025-01073-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
Metastasis, the leading cause of cancer-related deaths, underscores the critical need to understand its regulatory mechanisms to improve prevention and treatment strategies for late-stage tumors. Hematogenous dissemination is a key route of metastasis. However, as the gatekeeper of vessels, the role of pericytes in hematogenous metastasis remains largely unknown. In this review, we comprehensively explore the contributions of pericytes throughout the metastatic cascade, particularly their functions that extend beyond influencing tumor angiogenesis. Pericytes should not be perceived as passive bystanders, but rather as active participants in various stages of the metastatic cascade. Pericytes-targeted therapy may provide novel insights for preventing and treating advanced-stage tumor.
Collapse
Affiliation(s)
- Shuo Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China
| | - Hong Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, 110004, China.
| |
Collapse
|
5
|
Zhang G, Zhang X, Pan W, Chen X, Wan L, Liu C, Yong Y, Zhao Y, Sang S, Zhang L, Yao S, Guo Y, Wang M, Wang X, Peng G, Yan X, Wang Y, Zhang M. Dissecting the Spatial and Single-Cell Transcriptomic Architecture of Cancer Stem Cell Niche Driving Tumor Progression in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413019. [PMID: 39950944 PMCID: PMC12079437 DOI: 10.1002/advs.202413019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/21/2025] [Indexed: 05/16/2025]
Abstract
Despite significant advancements in identifying novel therapeutic targets and compounds, cancer stem cells (CSCs) remain pivotal in driving therapeutic resistance and tumor progression in gastric cancer (GC). High-resolution knowledge of the transcriptional programs underlying the role of CSC niche in driving tumor stemness and progression is still lacking. Herein, spatial and single-cell RNA sequencing of 32 human gastric mucosa tissues at various stages of malignancy, illuminating the phenotypic plasticity of tumor epithelium and transcriptional trajectory from mature gastric chief cells to the CSC state, which is associated with activation of EGFR and WNT signaling pathways, is conducted. Moreover, the CSCs interact with not only the immunosuppressive CXCL13+ T cells and CCL18+ M2 macrophages to evade immune surveillance, but also the inflammatory cancer-associated fibroblasts (iCAFs) to promote tumorigenesis and maintain stemness, which construct the CSC niche leading to inferior prognosis. Notably, it is uncovered that amphiregulin (AREG) derived from iCAFs promotes tumor stemness by upregulating the expression of SOX9 in tumor cells, and contributes to drug resistance via the AREG-ERBB2 axis. This study provides valuable insight into the characteristics of CSC niche in driving tumor stemness and progression, offering novel perspective for designing effective strategies to overcome GC therapy resistance.
Collapse
Affiliation(s)
- Guangyu Zhang
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510070China
| | - Xin Zhang
- Department of PharmacyMedical Supplies CenterChinese PLA General HospitalBeijing100853China
| | - Wenting Pan
- Beijing International Science and Technology Cooperation Base for Antiviral DrugsBeijing Key Laboratory of Environmental and Viral OncologyCollege of Chemistry and Life ScienceBeijing University of TechnologyBeijing100124China
| | - Xizhao Chen
- Department of NephrologyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesFirst Medical CenterChinese PLA General HospitalBeijing100853China
| | - Lingfei Wan
- Beijing International Science and Technology Cooperation Base for Antiviral DrugsBeijing Key Laboratory of Environmental and Viral OncologyCollege of Chemistry and Life ScienceBeijing University of TechnologyBeijing100124China
| | - Chunjie Liu
- Laboratory of Advanced BiotechnologyBeijing Institute of BiotechnologyBeijing100071China
| | - Yuting Yong
- Beijing International Science and Technology Cooperation Base for Antiviral DrugsBeijing Key Laboratory of Environmental and Viral OncologyCollege of Chemistry and Life ScienceBeijing University of TechnologyBeijing100124China
| | - Yue Zhao
- Beijing International Science and Technology Cooperation Base for Antiviral DrugsBeijing Key Laboratory of Environmental and Viral OncologyCollege of Chemistry and Life ScienceBeijing University of TechnologyBeijing100124China
| | - Shuli Sang
- Laboratory of Advanced BiotechnologyBeijing Institute of BiotechnologyBeijing100071China
| | - Lihua Zhang
- Department of PathologyFourth Medical CenterChinese PLA General HospitalBeijing100048China
| | - Sheng Yao
- Department of General SurgeryFirst Medical CenterChinese PLA General HospitalBeijing100853China
| | - Yushu Guo
- Department of PharmacyMedical Supplies CenterChinese PLA General HospitalBeijing100853China
| | - Mingmei Wang
- Department of PharmacyMedical Supplies CenterChinese PLA General HospitalBeijing100853China
| | - Xinhui Wang
- Department of PharmacyMedical Supplies CenterChinese PLA General HospitalBeijing100853China
| | - Guangdun Peng
- Guangzhou Institutes of Biomedicine and HealthChinese Academy of SciencesGuangzhou510070China
| | - Xinlong Yan
- Beijing International Science and Technology Cooperation Base for Antiviral DrugsBeijing Key Laboratory of Environmental and Viral OncologyCollege of Chemistry and Life ScienceBeijing University of TechnologyBeijing100124China
| | - Yanchun Wang
- Laboratory of Advanced BiotechnologyBeijing Institute of BiotechnologyBeijing100071China
| | - Min Zhang
- Department of NephrologyState Key Laboratory of Kidney DiseasesNational Clinical Research Center for Kidney DiseasesFirst Medical CenterChinese PLA General HospitalBeijing100853China
| |
Collapse
|
6
|
Chen R, Zhang R, Ke F, Guo X, Zeng F, Liu Q. Mechanisms of breast cancer metastasis: the role of extracellular matrix. Mol Cell Biochem 2025; 480:2771-2796. [PMID: 39652293 DOI: 10.1007/s11010-024-05175-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/23/2024] [Indexed: 05/03/2025]
Abstract
The components of the extracellular matrix (ECM) are dynamic, and they mediate mechanical signals that modulate cellular behaviors. Disruption of the ECM can induce the migration and invasion of cancer cells via specific signaling pathways and cytokines. Metastasis is a leading cause of high mortality in malignancies, and early intervention can improve survival rates. However, breast cancer is frequently diagnosed subsequent to metastasis, resulting in poor prognosis and distant metastasis poses substantial hurdles in therapy. In breast cancer, there is notable tissue remodeling of ECM proteins, with several identified as essential components for metastasis. Moreover, specific ECM molecules, receptors, enzymes, and various signaling pathways play crucial roles in breast cancer metastasis, drug treatment, and resistance. The in-depth consideration of these elements could provide potential therapeutic targets to enhance the survival rates and quality of life for breast cancer patients. This review explores the mechanisms by which alterations in the ECM contribute to breast cancer metastasis and discusses current clinical applications targeting ECM in breast cancer treatment, offering valuable perspectives for future ECM-based therapies.
Collapse
Affiliation(s)
- Rui Chen
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Ranqi Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Finger AM, Hendley AM, Figueroa D, Gonzalez H, Weaver VM. Tissue mechanics in tumor heterogeneity and aggression. Trends Cancer 2025:S2405-8033(25)00096-2. [PMID: 40307158 DOI: 10.1016/j.trecan.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 03/10/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Tumorigenesis ensues within a heterogeneous tissue microenvironment that promotes malignant transformation, metastasis and treatment resistance. A major feature of the tumor microenvironment is the heterogeneous population of cancer-associated fibroblasts and myeloid cells that stiffen the extracellular matrix. The heterogeneously stiffened extracellular matrix in turn activates cellular mechanotransduction and creates a hypoxic and metabolically hostile microenvironment. The stiffened extracellular matrix and elevated mechanosignaling also drive tumor aggression by fostering tumor cell growth, survival, and invasion, compromising antitumor immunity, expanding cancer stem cell frequency, and increasing mutational burden, which promote intratumor heterogeneity. Delineating the molecular mechanisms whereby tissue mechanics regulate these phenotypes should help to clarify the basis for tumor heterogeneity and cancer aggression and identify novel therapeutic targets that could improve patient outcome. Here, we discuss the role of the extracellular matrix in driving cancer aggression through its impact on tumor heterogeneity.
Collapse
Affiliation(s)
- Anna-Marie Finger
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA 94143; Current address: Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, Malov, Denmark
| | - Audrey Marie Hendley
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA 94143
| | - Diego Figueroa
- Department of Radiation Oncology, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Hugo Gonzalez
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA 94143; Current address: Laboratory of Tumor Microenvironment and Metastasis, Centro Ciencia & Vida, Santiago, Chile
| | - Valerie Marie Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA, USA 94143; Department of Radiation Oncology, Department of Bioengineering and Therapeutic Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
8
|
Higuchi Y, Teo JL, Yi D, Kahn M. Safely Targeting Cancer, the Wound That Never Heals, Utilizing CBP/Beta-Catenin Antagonists. Cancers (Basel) 2025; 17:1503. [PMID: 40361430 PMCID: PMC12071182 DOI: 10.3390/cancers17091503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cells, both normal somatic (SSC) and cancer stem cells (CSC) exist in minimally two states, i.e., quiescent and activated. Regulation of these two states, including their reliance on different metabolic processes, i.e., FAO and glycolysis in quiescent versus activated stem cells respectively, involves the analysis of a complex array of factors (nutrient and oxygen levels, adhesion molecules, cytokines, etc.) to initiate the epigenetic changes to either depart or enter quiescence. Quiescence is a critical feature of SSC that is required to maintain the genomic integrity of the stem cell pool, particularly in long lived complex organisms. Quiescence in CSC, whether they are derived from mutations arising in SSC, aberrant microenvironmental regulation, or via dedifferentiation of more committed progenitors, is a critical component of therapy resistance and disease latency and relapse. At the beginning of vertebrate evolution, approximately 450 million years ago, a gene duplication generated the two members of the Kat3 family, CREBBP (CBP) and EP300 (p300). Despite their very high degree of homology, these two Kat3 coactivators play critical and non-redundant roles at enhancers and super-enhancers via acetylation of H3K27, thereby controlling stem cell quiescence versus activation and the cells metabolic requirements. In this review/perspective, we discuss the unique regulatory roles of CBP and p300 and how specifically targeting the CBP/β-catenin interaction utilizing small molecule antagonists, can correct lineage infidelity and safely eliminate quiescent CSC.
Collapse
Affiliation(s)
- Yusuke Higuchi
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Jia-Ling Teo
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Daniel Yi
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| | - Michael Kahn
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.-L.T.); (D.Y.)
| |
Collapse
|
9
|
Ding F, Yu Y, Zhao J, Wei S, Zhang Y, Han JH, Li Z, Jiang HB, Ryu D, Cho M, Bae SJ, Park W, Ha KT, Gao B. The interplay of cellular senescence and reprogramming shapes the biological landscape of aging and cancer revealing novel therapeutic avenues. Front Cell Dev Biol 2025; 13:1593096. [PMID: 40356604 PMCID: PMC12066513 DOI: 10.3389/fcell.2025.1593096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Cellular senescence and cellular reprogramming represent two fundamentally intertwined processes that profoundly influence aging and cancer. This paper explores how the permanent cell-cycle arrest of senescent cells and the identity-resetting capacity of reprogramming jointly shape biological outcomes in later life and tumor development. We synthesize recent findings to show that senescent cells, while halting the proliferation of damaged cells, can paradoxically promote tissue dysfunction and malignancy via their secretory phenotype. Conversely, induced reprogramming of somatic cells-exemplified by Yamanaka factors-resets cellular age and epigenetic marks, offering a potential to rejuvenate aged cells. Key findings highlight shared mechanisms (e.g., DNA damage responses and epigenetic remodeling) and bidirectional crosstalk between these processes: senescence signals can facilitate neighboring cell plasticity, whereas reprogramming attempts can trigger intrinsic senescence programs as a barrier. In aging tissues, transient (partial) reprogramming has been shown to erase senescence markers and restore cell function without inducing tumorigenesis, underlining a novel strategy to combat age-related degeneration. In cancer, we discuss how therapy-induced senescence of tumor cells may induce stem-cell-like traits in some cells and drive relapse, revealing a delicate balance between tumor suppression and tumor promotion. Understanding the interplay between senescence and reprogramming is crucial for developing innovative therapies. By targeting the senescence-reprogramming axis-for instance, via senolytic drugs, SASP inhibitors, or safe reprogramming techniques-there is significant therapeutic potential to ameliorate aging-related diseases and improve cancer treatment. Our findings underscore that carefully modulating cellular senescence and rejuvenation processes could pave the way for novel regenerative and anti-cancer strategies.
Collapse
Affiliation(s)
- Fuan Ding
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying Yu
- Department of Surgery, Changchun University of Chinese Medicine, Changchun, China
| | - Jiangqi Zhao
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, China
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Yan Zhang
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Jung Ho Han
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Zhuo Li
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hong-Bo Jiang
- Department of Dermatology, Qingdao Women and Children’s Hospital, Qingdao University, Qingdao, Shandong, China
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Minkyoung Cho
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, Kosin University College of Medicine, Busan, Republic of Korea
| | - Wonyoung Park
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
- Research Institute for Korean Medicine, Pusan National University, Yangsan, Gyeongsangnam-do, Republic of Korea
| | - Bo Gao
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Pagliari F, Tirinato L, Di Fabrizio E. Raman spectroscopies for cancer research and clinical applications: a focus on cancer stem cells. Stem Cells 2025; 43:sxae084. [PMID: 39949042 DOI: 10.1093/stmcls/sxae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/20/2024] [Indexed: 04/23/2025]
Abstract
Over the last 2 decades, research has increasingly focused on cancer stem cells (CSCs), considered responsible for tumor formation, resistance to therapies, and relapse. The traditional "static" CSC model used to describe tumor heterogeneity has been challenged by the evidence of CSC dynamic nature and plasticity. A comprehensive understanding of the mechanisms underlying this plasticity, and the capacity to unambiguously identify cancer markers to precisely target CSCs are crucial aspects for advancing cancer research and introducing more effective treatment strategies. In this context, Raman spectroscopy (RS) and specific Raman schemes, including CARS, SRS, SERS, have emerged as innovative tools for molecular analyses both in vitro and in vivo. In fact, these techniques have demonstrated considerable potential in the field of cancer detection, as well as in intraoperative settings, thanks to their label-free nature and minimal invasiveness. However, the RS integration in pre-clinical and clinical applications, particularly in the CSC field, remains limited. This review provides a concise overview of the historical development of RS and its advantages. Then, after introducing the CSC features and the challenges in targeting them with traditional methods, we review and discuss the current literature about the application of RS for revealing and characterizing CSCs and their inherent plasticity, including a brief paragraph about the integration of artificial intelligence with RS. By providing the possibility to better characterize the cellular diversity in their microenvironment, RS could revolutionize current diagnostic and therapeutic approaches, enabling early identification of CSCs and facilitating the development of personalized treatment strategies.
Collapse
Affiliation(s)
- Francesca Pagliari
- Division of Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Luca Tirinato
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Enzo Di Fabrizio
- PolitoBIOMed Lab DISAT Department, Polytechnic University of Turin, 10129 Turin, Italy
| |
Collapse
|
11
|
Wang L, Shi F, Cao Y, Xie L. Multiple roles of branched-chain amino acid metabolism in tumour progression. J Biomed Sci 2025; 32:41. [PMID: 40205401 PMCID: PMC11983764 DOI: 10.1186/s12929-025-01132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 03/09/2025] [Indexed: 04/11/2025] Open
Abstract
Metabolic reprogramming enables tumour cells to sustain their continuous proliferation and adapt to the ever-changing microenvironment. Branched-chain amino acids (BCAAs) and their metabolites are involved in intracellular protein synthesis and catabolism, signal transduction, epigenetic modifications, and the maintenance of oxidative homeostasis. Alterations in BCAA metabolism can influence the progression of various tumours. However, how BCAA metabolism is dysregulated differs among depending on tumour type; for example, it can manifest as decreased BCAA metabolism leading to BCAA accumulation, or as enhanced BCAA uptake and increased catabolism. In this review, we describe the role of BCAA metabolism in the progression of different tumours. As well as discuss how BCAA metabolic reprogramming drives tumour therapy resistance and evasion of the antitumour immune response, and how these pro-cancer effects are achieved in part by activating the mTORC signalling pathway. In-depth investigations into the potential mechanisms by which BCAA metabolic reprogramming affects tumorigenesis and tumour progression can enhance our understanding of the relationship between metabolism and cancer and provide new strategies for cancer therapy.
Collapse
Affiliation(s)
- Lin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Chinese Ministry of Education, XiangYa Hospital, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis of National Health Commission, Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Longlong Xie
- Department of Radiology, The Affiliated Children's Hospital of Xiangya School of Medicine (Hunan Children's Hospital), Central South University, Changsha, 410078, China.
| |
Collapse
|
12
|
Deng Q, Hua A, Li S, Zhang Z, Chen X, Wang Q, Wang X, Chu Z, Yang X, Li Z. Hyperbaric Oxygen Regulates Tumor pH to Boost Copper‐Doped Hydroxyethyl Starch Conjugate Nanoparticles Against Cancer Stem Cells. EXPLORATION 2025. [DOI: 10.1002/exp.20240080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/14/2024] [Indexed: 05/04/2025]
Abstract
ABSTRACTAn extracellular acidic environment and an intracellular mildly alkaline environment induced by carbonic anhydrase 9 (CA9) play a critical role in self‐renewal, invasion, migration, and drug resistance of cancer stem cells (CSCs) within hypoxic solid tumors. Here, we report an antitumor strategy leveraging hyperbaric oxygen therapy (HBO) to regulate tumor pH and boost hydroxyethyl starch‐doxorubicin‐copper nanoparticles (HHD‐Cu NPs) against CSCs. HBO overcomes tumor hypoxia, downregulates pH‐regulatory proteins such as CA9, and leads to intracellular accumulation of acidic metabolites. As a result, HBO promotes intracellular acidification of both tumor cells and CSCs, triggering efficient doxorubicin release and the potent copper‐mediated chemical dynamic effect of subsequently administered dual‐acid‐responsive HHD‐Cu NPs. The combination of HBO with HHD‐Cu NPs not only eliminates tumor cells but also inhibits CSCs, altogether leading to potent tumor inhibition. This study explores a new function of clinical‐widely used HBO and establishes a novel combination therapy for treating CSCs abundant hypoxic solid tumors.
Collapse
Affiliation(s)
- Qingyuan Deng
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Ao Hua
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Shiyou Li
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Zhijie Zhang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Xiang Chen
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Qiang Wang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Xing Wang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering The University of Hong Kong Hong Kong P. R. China
- School of Biomedical Sciences The University of Hong Kong Hong Kong P. R. China
| | - Xiangliang Yang
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
- National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Huazhong University of Science and Technology Wuhan P. R. China
| | - Zifu Li
- Department of Nanomedicine and Biopharmaceuticals College of Life Science and Technology Huazhong University of Science and Technology Wuhan P. R. China
- National Engineering Research Center for Nanomedicine Huazhong University of Science and Technology Wuhan P. R. China
- Key Laboratory of Molecular Biophysics of Ministry of Education Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical Huazhong University of Science and Technology Wuhan P. R. China
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials Huazhong University of Science and Technology Wuhan P. R. China
| |
Collapse
|
13
|
Haddadin L, Sun X. Stem Cells in Cancer: From Mechanisms to Therapeutic Strategies. Cells 2025; 14:538. [PMID: 40214491 PMCID: PMC11988674 DOI: 10.3390/cells14070538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Stem cells have emerged as a pivotal area of research in the field of oncology, offering new insights into the mechanisms of cancer initiation, progression, and resistance to therapy. This review provides a comprehensive overview of the role of stem cells in cancer, focusing on cancer stem cells (CSCs), their characteristics, and their implications for cancer therapy. We discuss the origin and identification of CSCs, their role in tumorigenesis, metastasis, and drug resistance, and the potential therapeutic strategies targeting CSCs. Additionally, we explore the use of normal stem cells in cancer therapy, focusing on their role in tissue regeneration and their use as delivery vehicles for anticancer agents. Finally, we highlight the challenges and future directions in stem cell research in cancer.
Collapse
Affiliation(s)
| | - Xueqin Sun
- Cancer Genome and Epigenetics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Rolver MG, Camacho-Roda J, Dai Y, Flinck M, Ialchina R, Hindkær J, Dyhr RT, Bodilsen AN, Prasad NS, Baldan J, Yao J, Sandelin A, Arnes L, Pedersen SF. Tumor microenvironment acidosis favors pancreatic cancer stem cell properties and in vivo metastasis. iScience 2025; 28:111956. [PMID: 40083719 PMCID: PMC11904601 DOI: 10.1016/j.isci.2025.111956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/20/2024] [Accepted: 01/31/2025] [Indexed: 03/16/2025] Open
Abstract
The acidic tumor microenvironment (TME) favors cancer aggressiveness via incompletely understood pathways. Here, we asked whether adaptation to environmental acidosis (pH 6.5) selects for human pancreatic cancer stem cell (CSC) properties. RNA sequencing (RNA-seq) of acid-adapted (AA) Panc-1 cells revealed CSC pathway enrichment and upregulation of CSC markers. AA Panc-1 cells exhibited classical CSC characteristics including increased aldehyde dehydrogenase (ALDH) activity and β-catenin activity. Panc-1, PaTu8988s, and MiaPaCa-2 cells all exhibited increased pancreatosphere-forming efficiency after acid adaptation but differed in CSC marker expression and did not exhibit typical flow cytometric CSC populations. However, single-nucleus sequencing revealed the acid adaptation-induced emergence of Panc-1 cell subpopulations with clear CSC characteristics. In orthotopic mouse tumors, AA Panc-1 cells exhibited enhanced aggressiveness, liver and lung metastasis, compared to controls. Collectively, our work suggests that acid adaptation enriches for pancreatic CSC phenotypes with unusual traits via several trajectories, providing new insight into how acidic microenvironments favor cancer aggressiveness.
Collapse
Affiliation(s)
- Michala G. Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Juan Camacho-Roda
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Yifan Dai
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Renata Ialchina
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Julie Hindkær
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Rigmor T. Dyhr
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - August N. Bodilsen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nanditha S. Prasad
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jonathan Baldan
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jiayi Yao
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Albin Sandelin
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Luis Arnes
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Stine F. Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Shang T, Jia Z, Li J, Cao H, Xu H, Cong L, Ma D, Wang X, Liu J. Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance. J Hematol Oncol 2025; 18:32. [PMID: 40102937 PMCID: PMC11921735 DOI: 10.1186/s13045-025-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
In the domain of addressing cancer resistance, challenges such as limited effectiveness and treatment resistance remain persistent. Hypoxia is a key feature of solid tumors and is strongly associated with poor prognosis in cancer patients. Another significant portion of the development of acquired drug resistance is attributed to tumor stemness. Cancer stem cells (CSCs), a small tumor cell subset with self-renewal and proliferative abilities, are crucial for tumor initiation, metastasis, and intra-tumoral heterogeneity. Studies have shown a significant association between hypoxia and CSCs in the context of tumor resistance. Recent studies reveal a strong link between hypoxia and tumor stemness, which together promote tumor survival and progression during treatment. This review elucidates the interplay between hypoxia and CSCs, as well as their correlation with resistance to therapeutic drugs. Targeting pivotal genes associated with hypoxia and stemness holds promise for the development of novel therapeutics to combat tumor resistance.
Collapse
Affiliation(s)
- Tongxuan Shang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayi Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Heng Cao
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Cong
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dongxu Ma
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
16
|
Lin Y, Song Y, Zhang Y, Li X, Kan L, Han S. New insights on anti-tumor immunity of CD8 + T cells: cancer stem cells, tumor immune microenvironment and immunotherapy. J Transl Med 2025; 23:341. [PMID: 40097979 PMCID: PMC11912710 DOI: 10.1186/s12967-025-06291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/23/2025] [Indexed: 03/19/2025] Open
Abstract
Recent breakthroughs in tumor immunotherapy have confirmed the capacity of the immune system to fight several cancers. The effective means of treating cancer involves accelerating the death of tumor cells and improving patient immunity. Dynamic changes in the tumor immune microenvironment alter the actual effects of anti-tumor drug production and may trigger favorable or unfavorable immune responses by modulating tumor-infiltrating lymphocytes. Notably, CD8+ T cells are one of the primary tumor-infiltrating immune cells that provide anti-tumor response. Tumor cells and tumor stem cells will resist or evade destruction through various mechanisms as CD8+ T cells exert their anti-tumor function. This paper reviews the research on the regulation of tumor development and prognosis by cancer stem cells that directly or indirectly alter the role of tumor-infiltrating CD8+ T cells. We also discuss related immunotherapy strategies.
Collapse
Affiliation(s)
- Yibin Lin
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Yaochuan Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiaodong Li
- Department of Neurosurgery, Siping Central People's Hospital, Siping, Jilin, 136000, China
| | - Liang Kan
- Department of Geriatrics, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
17
|
Sueoka S, Kai A, Kobayashi Y, Ito M, Sasada S, Emi A, Gotoh N, Arihiro K, Nakayama K, Okada M, Kadoya T. Diversity of ER-positive and HER2-negative breast cancer stem cells attained using selective culture techniques. Sci Rep 2025; 15:8257. [PMID: 40064935 PMCID: PMC11894160 DOI: 10.1038/s41598-025-90689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025] Open
Abstract
Breast cancer stem cells are a promising therapeutic target in cancer. We explored breast cancer stem cell diversity and establish a methodology for selectively culturing breast cancer stem cells. We collected breast cancer tissues from surgical samples of treatment-naïve patients with estrogen receptor (ER)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer. Following isolation, cells were subjected to spheroid culture on non-adherent plates. Of the 57 cases, successful culture was achieved in 48 cases, among which the average ratio of CD44+/CD24- breast cancer cells increased from 13.8% in primary tumors to 61.6% in spheroids. A modest number of spheroid cells successfully engrafted in mice and subsequently re-differentiated within the murine environment, confirming their stemness. ER expression in spheroid cells exhibited negative conversion in 52.1% of cases. The proportion of Twist-, Snail-, and Vimentin-positive cells increased from 43.8%, 12.9%, and 7.7-75.0%, 58.1%, and 37.7%, respectively. ER-positive, HER2-negative breast cancer stem cells were classified into two groups using DNA microarrays. Gene Ontology analysis unveiled higher expression of immune response-related genes in one group and protein binding-associated genes in the other. We demonstrated stable and selective culture of breast cancer stem cells from patient-derived breast cancer tissue using spheroid cultures.
Collapse
Affiliation(s)
- Satoshi Sueoka
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
- Department of Breast Center, Shimane University Hospital, Izumo, Japan
| | - Azusa Kai
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukino Kobayashi
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Masaoki Ito
- Department of Surgery, Kindai University Hospital, Osakasayama, Japan
| | - Shinsuke Sasada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Akiko Emi
- Department of Breast Surgery, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, Japan
| | - Noriko Gotoh
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Koji Arihiro
- Department of Anatomical Pathology, Hiroshima University Hospital, Hiroshima, Japan
| | - Koh Nakayama
- Department of Pharmacology, Asahikawa Medical University, Asahikawa, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Takayuki Kadoya
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
- Department of Breast Center, Shimane University Hospital, Izumo, Japan.
| |
Collapse
|
18
|
Shahzad U, Nikolopoulos M, Li C, Johnston M, Wang JJ, Sabha N, Varn FS, Riemenschneider A, Krumholtz S, Krishnamurthy PM, Smith CA, Karamchandani J, Watts JK, Verhaak RGW, Gallo M, Rutka JT, Das S. CASCADES, a novel SOX2 super-enhancer-associated long noncoding RNA, regulates cancer stem cell specification and differentiation in glioblastoma. Mol Oncol 2025; 19:764-784. [PMID: 39323013 PMCID: PMC11887672 DOI: 10.1002/1878-0261.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
Glioblastoma is the most common primary malignant brain tumor in adults, with a median survival of just over 1 year. The failure of available treatments to achieve remission in patients with glioblastoma (GBM) has been attributed to the presence of cancer stem cells (CSCs), which are thought to play a central role in tumor development and progression and serve as a treatment-resistant cell repository capable of driving tumor recurrence. In fact, the property of "stemness" itself may be responsible for treatment resistance. In this study, we identify a novel long noncoding RNA (lncRNA), cancer stem cell-associated distal enhancer of SOX2 (CASCADES), that functions as an epigenetic regulator in glioma CSCs (GSCs). CASCADES is expressed in isocitrate dehydrogenase (IDH)-wild-type GBM and is significantly enriched in GSCs. Knockdown of CASCADES in GSCs results in differentiation towards a neuronal lineage in a cell- and cancer-specific manner. Bioinformatics analysis reveals that CASCADES functions as a super-enhancer-associated lncRNA epigenetic regulator of SOX2. Our findings identify CASCADES as a critical regulator of stemness in GSCs that represents a novel epigenetic and therapeutic target for disrupting the CSC compartment in glioblastoma.
Collapse
Affiliation(s)
- Uswa Shahzad
- Faculty of Medicine, Institute of Medical ScienceUniversity of TorontoCanada
- Arthur and Sonia Labatt Brain Tumor Research CenterHospital for Sick ChildrenTorontoCanada
| | - Marina Nikolopoulos
- Faculty of Medicine, Institute of Medical ScienceUniversity of TorontoCanada
- Arthur and Sonia Labatt Brain Tumor Research CenterHospital for Sick ChildrenTorontoCanada
| | - Christopher Li
- Arthur and Sonia Labatt Brain Tumor Research CenterHospital for Sick ChildrenTorontoCanada
| | - Michael Johnston
- Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute (ACHRI), Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCanada
| | - Jenny J. Wang
- Arthur and Sonia Labatt Brain Tumor Research CenterHospital for Sick ChildrenTorontoCanada
| | - Nesrin Sabha
- Program for Genetics and Genome BiologyHospital for Sick ChildrenTorontoCanada
| | | | - Alexandra Riemenschneider
- Faculty of Medicine, Institute of Medical ScienceUniversity of TorontoCanada
- Arthur and Sonia Labatt Brain Tumor Research CenterHospital for Sick ChildrenTorontoCanada
| | - Stacey Krumholtz
- Arthur and Sonia Labatt Brain Tumor Research CenterHospital for Sick ChildrenTorontoCanada
| | | | - Christian A. Smith
- Arthur and Sonia Labatt Brain Tumor Research CenterHospital for Sick ChildrenTorontoCanada
| | - Jason Karamchandani
- Montreal Neurological InstituteMcGill University Health Center (MUHC)MontrealCanada
| | - Jonathan K. Watts
- RNA Therapeutics InstituteUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | | | - Marco Gallo
- Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute (ACHRI), Department of Biochemistry and Molecular Biology, Cumming School of MedicineUniversity of CalgaryCanada
| | - James T. Rutka
- Faculty of Medicine, Institute of Medical ScienceUniversity of TorontoCanada
- Arthur and Sonia Labatt Brain Tumor Research CenterHospital for Sick ChildrenTorontoCanada
| | - Sunit Das
- Faculty of Medicine, Institute of Medical ScienceUniversity of TorontoCanada
- Arthur and Sonia Labatt Brain Tumor Research CenterHospital for Sick ChildrenTorontoCanada
- Division of Neurosurgery, St. Michael's Hospital and Li Ka Shing Knowledge InstituteUniversity of TorontoTorontoCanada
| |
Collapse
|
19
|
Xu J, Zhang H, Nie Z, He W, Zhao Y, Huang Z, Jia L, Du Z, Zhang B, Xia S. Cancer stem-like cells stay in a plastic state ready for tumor evolution. Neoplasia 2025; 61:101134. [PMID: 39919692 PMCID: PMC11851212 DOI: 10.1016/j.neo.2025.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/31/2025] [Indexed: 02/09/2025]
Abstract
Cell plasticity emerges as a novel cancer hallmark and is pivotal in driving tumor heterogeneity and adaptive resistance to different therapies. Cancer stem-like cells (CSCs) are considered the root of cancer. While first defined as tumor-initiating cells with the potential to develop a heterogeneous tumor, CSCs further demonstrate their roles in cancer metastasis and adaptive therapeutic resistance. Generally, CSCs come from the malignant transformation of somatic stem cells or the de-differentiation of other cancer cells. The resultant cells gain more plasticity and are ready to differentiate into different cell states, enabling them to adapt to therapies and metastatic ecosystems. Therefore, CSCs are likely the nature of tumor cells that gain cell plasticity. However, the phenotypic plasticity of CSCs has never been systematically discussed. Here, we review the distinct intrinsic signaling pathways and unique microenvironmental niches that endow CSC plasticity in solid tumors to adapt to stressful conditions, as well as emerging opportunities for CSC-targeted therapy.
Collapse
Affiliation(s)
- Jiali Xu
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Houde Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihao Nie
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenyou He
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yichao Zhao
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Zhenhui Huang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China.
| | - Zhiye Du
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, China.
| | - Baotong Zhang
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Siyuan Xia
- Department of Human Cell Biology and Genetics, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
20
|
Uthamacumaran A. Cell Fate Dynamics Reconstruction Identifies TPT1 and PTPRZ1 Feedback Loops as Master Regulators of Differentiation in Pediatric Glioblastoma-Immune Cell Networks. Interdiscip Sci 2025; 17:59-85. [PMID: 39420135 DOI: 10.1007/s12539-024-00657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Pediatric glioblastoma is a complex dynamical disease that is difficult to treat due to its multiple adaptive behaviors driven largely by phenotypic plasticity. Integrated data science and network theory pipelines offer novel approaches to studying glioblastoma cell fate dynamics, particularly phenotypic transitions over time. Here we used various single-cell trajectory inference algorithms to infer signaling dynamics regulating pediatric glioblastoma-immune cell networks. We identified GATA2, PTPRZ1, TPT1, MTRNR2L1/2, OLIG1/2, SOX11, FXYD6, SEZ6L, PDGFRA, EGFR, S100B, WNT, TNF α , and NF-kB as critical transition genes or signals regulating glioblastoma-immune network dynamics, revealing potential clinically relevant targets. Further, we reconstructed glioblastoma cell fate attractors and found complex bifurcation dynamics within glioblastoma phenotypic transitions, suggesting that a causal pattern may be driving glioblastoma evolution and cell fate decision-making. Together, our findings have implications for developing targeted therapies against glioblastoma, and the continued integration of quantitative approaches and artificial intelligence (AI) to understand pediatric glioblastoma tumor-immune interactions.
Collapse
Affiliation(s)
- Abicumaran Uthamacumaran
- Department of Physics (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
- Department of Psychology (Alumni), Concordia University, Montréal, H4B 1R6, Canada.
- Oxford Immune Algorithmics, Reading, RG1 8EQ, UK.
| |
Collapse
|
21
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
22
|
Jaiswal A, Kaushik N, Patel P, Acharya TR, Mukherjee S, Choi EH, Kaushik NK. Nonthermal plasma boosted dichloroacetate induces metabolic shifts to combat glioblastoma CSCs via oxidative stress. Free Radic Biol Med 2025; 229:264-275. [PMID: 39724987 DOI: 10.1016/j.freeradbiomed.2024.12.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Glioblastoma (GBM) remains a formidable clinical challenge, with cancer stem cells (CSCs) contributing to treatment resistance and tumor recurrence. Conventional treatments often fail to eradicate these CSCs characterized by enhanced resistance to standard therapies through metabolic plasticity making them key targets for novel treatment approaches. Addressing this challenge, this study introduces a novel combination therapy of dichloroacetate (DCA), a metabolic modulator and nonthermal plasma to induce oxidative stress in glioblastomas. Our results demonstrate that DCA and nonthermal plasma (NTP) synergistically increase ROS production, resulting in endoplasmic reticulum (ER) stress and mitochondrial reprogramming, key factors in the initiation of programmed cell death. Furthermore, the combination downregulated key stemness markers indicating effective CSCs suppression. Upregulation of pro-apoptotic proteins and downregulation of anti-apoptotic factors highlight the induction of apoptosis in glioma stem cells. This study provides compelling evidence that the combination of DCA and NTP offers a novel and effective strategy for targeting glioma CSCs by inducing oxidative and metabolic stress, underscoring potential therapeutic advancements in glioblastoma treatment.
Collapse
Affiliation(s)
- Apurva Jaiswal
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, South Korea
| | - Paritosh Patel
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Tirtha Raj Acharya
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Subhadip Mukherjee
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, South Korea.
| |
Collapse
|
23
|
Pan Y, Yuan C, Zeng C, Sun C, Xia L, Wang G, Chen X, Zhang B, Liu J, Ding ZY. Cancer stem cells and niches: challenges in immunotherapy resistance. Mol Cancer 2025; 24:52. [PMID: 39994696 PMCID: PMC11852583 DOI: 10.1186/s12943-025-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer stem cells (CSCs) are central to tumor progression, metastasis, immune evasion, and therapeutic resistance. Characterized by remarkable self-renewal and adaptability, CSCs can transition dynamically between stem-like and differentiated states in response to external stimuli, a process termed "CSC plasticity." This adaptability underpins their resilience to therapies, including immune checkpoint inhibitors and adoptive cell therapies (ACT). Beyond intrinsic properties, CSCs reside in a specialized microenvironment-the CSC niche-which provides immune-privileged protection, sustains their stemness, and fosters immune suppression. This review highlights the critical role of CSCs and their niche in driving immunotherapy resistance, emphasizing the need for integrative approaches to overcome these challenges.
Collapse
Affiliation(s)
- Yonglong Pan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the MOE, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Tongji Hospital, GI Cancer Research Institute, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianfeng Liu
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
24
|
Li Y, Liu F, Cai Q, Deng L, Ouyang Q, Zhang XHF, Zheng J. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct Target Ther 2025; 10:57. [PMID: 39979279 PMCID: PMC11842613 DOI: 10.1038/s41392-025-02148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/24/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
The progression of malignant tumors leads to the development of secondary tumors in various organs, including bones, the brain, liver, and lungs. This metastatic process severely impacts the prognosis of patients, significantly affecting their quality of life and survival rates. Research efforts have consistently focused on the intricate mechanisms underlying this process and the corresponding clinical management strategies. Consequently, a comprehensive understanding of the biological foundations of tumor metastasis, identification of pivotal signaling pathways, and systematic evaluation of existing and emerging therapeutic strategies are paramount to enhancing the overall diagnostic and treatment capabilities for metastatic tumors. However, current research is primarily focused on metastasis within specific cancer types, leaving significant gaps in our understanding of the complex metastatic cascade, organ-specific tropism mechanisms, and the development of targeted treatments. In this study, we examine the sequential processes of tumor metastasis, elucidate the underlying mechanisms driving organ-tropic metastasis, and systematically analyze therapeutic strategies for metastatic tumors, including those tailored to specific organ involvement. Subsequently, we synthesize the most recent advances in emerging therapeutic technologies for tumor metastasis and analyze the challenges and opportunities encountered in clinical research pertaining to bone metastasis. Our objective is to offer insights that can inform future research and clinical practice in this crucial field.
Collapse
Affiliation(s)
- Yongxing Li
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fengshuo Liu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA
- Graduate School of Biomedical Science, Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, USA
| | - Qingjin Cai
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lijun Deng
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- Department of Medicinal Chemistry, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- McNair Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Ji Zheng
- Department of Urology, Urologic Surgery Center, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
25
|
P J N, Patil SR, Veeraraghavan VP, Daniel S, Aileni KR, Karobari MI. Oral cancer stem cells: A comprehensive review of key drivers of treatment resistance and tumor recurrence. Eur J Pharmacol 2025; 989:177222. [PMID: 39755243 DOI: 10.1016/j.ejphar.2024.177222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/06/2025]
Abstract
Oral squamous cell carcinoma (OSCC) remains a major cause of morbidity and mortality worldwide with high recurrence rates and resistance to conventional therapies. Recent studies have highlighted the pivotal role of oral cancer stem cells (OCSCs) in driving treatment resistance and tumor recurrence. OCSCs possess unique properties, including self-renewal, differentiation potential, and resistance to chemotherapy and radiotherapy, which contribute to their ability to survive treatment and initiate tumor relapse. Several signaling pathways, such as Wnt/β-catenin, Hedgehog, Notch, and PI3K/Akt/mTOR, have been implicated in maintaining OCSC properties, promoting survival, and conferring resistance. Additionally, mechanisms such as drug efflux, enhanced DNA repair, epithelial-mesenchymal transition (EMT), and resistance to apoptosis further contribute to resilience. Targeting these pathways offers promising therapeutic strategies for eliminating OCSCs and improving treatment outcomes. Approaches such as immunotherapy, nanotechnology-based drug delivery, and targeting of the tumor microenvironment are emerging as potential solutions to overcome OCSC-mediated resistance. However, further research is needed to fully understand the molecular mechanisms governing OCSCs and develop effective therapies to prevent tumor recurrence. This review discusses the role of OCSCs in treatment resistance and recurrence and highlights the current and future directions for targeting these cells in OSCC.
Collapse
Affiliation(s)
- Nagarathna P J
- Department of Pediatric Dentistry, Chhattisgarh Dental College and Research Institute, India.
| | - Santosh R Patil
- Department of Oral Medicine and Radiology, Chhattisgarh Dental College and Research Institute, Rajnandgaon, C.G, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Shikhar Daniel
- Department of Oral Medicine and Radiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Kaladhar Reddy Aileni
- Department of Preventive Dentistry, College of Dentistry, Jouf University, Chennai, Tamil Nadu, India.
| | - Mohmed Isaqali Karobari
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
26
|
Chang CH, Tsai CC, Tsai FM, Chu TY, Hsu PC, Kuo CY. EpCAM Signaling in Oral Cancer Stem Cells: Implications for Metastasis, Tumorigenicity, and Therapeutic Strategies. Curr Issues Mol Biol 2025; 47:123. [PMID: 39996844 PMCID: PMC11854592 DOI: 10.3390/cimb47020123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Oral cancer, a subtype of head and neck cancer, poses significant global health challenges owing to its late diagnosis and high metastatic potential. The epithelial cell adhesion molecule (EpCAM), a transmembrane glycoprotein, has emerged as a critical player in cancer biology, particularly in oral cancer stem cells (CSCs). This review highlights the multifaceted roles of EPCAM in regulating oral cancer metastasis, tumorigenicity, and resistance to therapy. EpCAM influences key pathways, including Wnt/β-catenin and EGFR, modulating CSC self-renewal, epithelial-to-mesenchymal transition (EMT), and immune evasion. Moreover, EpCAM has been implicated in metabolic reprogramming, epigenetic regulation, and crosstalk with other signaling pathways. Advances in EpCAM-targeting strategies, such as monoclonal antibodies, chimeric antigen receptor (CAR) T/NK cell therapies, and aptamer-based systems hold promise for personalized cancer therapies. However, challenges remain in understanding the precise mechanism of EpCAM in CSC biology and its translation into clinical applications. This review highlights the need for further investigation into the role of EPCAM in oral CSCs and its potential as a therapeutic target to improve patient outcomes.
Collapse
Affiliation(s)
- Chuan-Hsin Chang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-H.C.); (C.-C.T.); (F.-M.T.); (T.-Y.C.)
| | - Chung-Che Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-H.C.); (C.-C.T.); (F.-M.T.); (T.-Y.C.)
| | - Fu-Ming Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-H.C.); (C.-C.T.); (F.-M.T.); (T.-Y.C.)
| | - Tin-Yi Chu
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-H.C.); (C.-C.T.); (F.-M.T.); (T.-Y.C.)
| | - Po-Chih Hsu
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chan-Yen Kuo
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (C.-H.C.); (C.-C.T.); (F.-M.T.); (T.-Y.C.)
- Institute of Oral Medicine and Materials, College of Medicine, Tzu Chi University, Hualien 970, Taiwan
| |
Collapse
|
27
|
Verona F, Di Bella S, Schirano R, Manfredi C, Angeloro F, Bozzari G, Todaro M, Giannini G, Stassi G, Veschi V. Cancer stem cells and tumor-associated macrophages as mates in tumor progression: mechanisms of crosstalk and advanced bioinformatic tools to dissect their phenotypes and interaction. Front Immunol 2025; 16:1529847. [PMID: 39981232 PMCID: PMC11839637 DOI: 10.3389/fimmu.2025.1529847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
Cancer stem cells (CSCs) are a small subset within the tumor mass significantly contributing to cancer progression through dysregulation of various oncogenic pathways, driving tumor growth, chemoresistance and metastasis formation. The aggressive behavior of CSCs is guided by several intracellular signaling pathways such as WNT, NF-kappa-B, NOTCH, Hedgehog, JAK-STAT, PI3K/AKT1/MTOR, TGF/SMAD, PPAR and MAPK kinases, as well as extracellular vesicles such as exosomes, and extracellular signaling molecules such as cytokines, chemokines, pro-angiogenetic and growth factors, which finely regulate CSC phenotype. In this scenario, tumor microenvironment (TME) is a key player in the establishment of a permissive tumor niche, where CSCs engage in intricate communications with diverse immune cells. The "oncogenic" immune cells are mainly represented by B and T lymphocytes, NK cells, and dendritic cells. Among immune cells, macrophages exhibit a more plastic and adaptable phenotype due to their different subpopulations, which are characterized by both immunosuppressive and inflammatory phenotypes. Specifically, tumor-associated macrophages (TAMs) create an immunosuppressive milieu through the production of a plethora of paracrine factors (IL-6, IL-12, TNF-alpha, TGF-beta, CCL1, CCL18) promoting the acquisition by CSCs of a stem-like, invasive and metastatic phenotype. TAMs have demonstrated the ability to communicate with CSCs via direct ligand/receptor (such as CD90/CD11b, LSECtin/BTN3A3, EPHA4/Ephrin) interaction. On the other hand, CSCs exhibited their capacity to influence immune cells, creating a favorable microenvironment for cancer progression. Interestingly, the bidirectional influence of CSCs and TME leads to an epigenetic reprogramming which sustains malignant transformation. Nowadays, the integration of biological and computational data obtained by cutting-edge technologies (single-cell RNA sequencing, spatial transcriptomics, trajectory analysis) has significantly improved the comprehension of the biunivocal multicellular dialogue, providing a comprehensive view of the heterogeneity and dynamics of CSCs, and uncovering alternative mechanisms of immune evasion and therapeutic resistance. Moreover, the combination of biology and computational data will lead to the development of innovative target therapies dampening CSC-TME interaction. Here, we aim to elucidate the most recent insights on CSCs biology and their complex interactions with TME immune cells, specifically TAMs, tracing an exhaustive scenario from the primary tumor to metastasis formation.
Collapse
Affiliation(s)
- Francesco Verona
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Sebastiano Di Bella
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Roberto Schirano
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Camilla Manfredi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| | - Francesca Angeloro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Giulia Bozzari
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion Sciences, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- Azienda Ospedaliera Universitaria Policlinico “Paolo Giaccone” (AOUP), Palermo, Italy
| | - Giuseppe Giannini
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
- Istituto Pasteur, Fondazione Cenci-Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Giorgio Stassi
- Department of Precision Medicine in Medical, Surgical and Critical Care, University of Palermo, Palermo, Italy
| | - Veronica Veschi
- Department of Molecular Medicine, University La Sapienza, Rome, Italy
| |
Collapse
|
28
|
Liu S, Liu Z, Lei H, Miao YB, Chen J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv Healthc Mater 2025; 14:e2403019. [PMID: 39529548 DOI: 10.1002/adhm.202403019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Tumor metabolism is crucial in the continuous advancement and complex growth of cancer. The emerging field of nanotechnology has made significant strides in enhancing the understanding of the complex metabolic intricacies inherent to tumors, offering potential avenues for their strategic manipulation to achieve therapeutic goals. This comprehensive review delves into the interplay between tumor metabolism and various facets of cancer, encompassing its origins, progression, and the formidable challenges posed by metastasis. Simultaneously, it underscores the classification of programmable nanomodulators and their transformative impact on enhancing cancer treatment, particularly when integrated with modalities such as chemotherapy, radiotherapy, and immunotherapy. This review also encapsulates the mechanisms by which nanomodulators modulate tumor metabolism, including the delivery of metabolic inhibitors, regulation of oxidative stress, pH value modulation, nanoenzyme catalysis, nutrient deprivation, and RNA interference technology, among others. Additionally, the review delves into the prospects and challenges of nanomodulators in clinical applications. Finally, the innovative concept of using nanomodulators to reprogram metabolic pathways is introduced, aiming to transform cancer cells back into normal cells. This review underscores the profound impact that tailored nanomodulators can have on tumor metabolic, charting a path toward pioneering precision therapies for cancer.
Collapse
Affiliation(s)
- Siwei Liu
- Women & Children's Molecular Medicine Center, Department of Gynecology, Guangyuan Central Hospital, No. 16, Jingxiangzi, Lizhou District, Guangyuan, 628000, P. R. China
| | - Zhijun Liu
- Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, China
| | - Huajiang Lei
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| | - Jiao Chen
- Department of Haematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, No. 32, West Section 2, First Ring Road, Qingyang District, Chengdu, 610000, China
| |
Collapse
|
29
|
Nuñez-Rios JD, Ulrich H, Díaz-Muñoz M, Lameu C, Vázquez-Cuevas FG. Purinergic system in cancer stem cells. Purinergic Signal 2025; 21:23-38. [PMID: 37966629 PMCID: PMC11904000 DOI: 10.1007/s11302-023-09976-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Accumulating evidence supports the idea that cancer stem cells (CSCs) are those with the capacity to initiate tumors, generate phenotypical diversity, sustain growth, confer drug resistance, and orchestrate the spread of tumor cells. It is still controversial whether CSCs originate from normal stem cells residing in the tissue or cancer cells from the tumor bulk that have dedifferentiated to acquire stem-like characteristics. Although CSCs have been pointed out as key drivers in cancer, knowledge regarding their physiology is still blurry; thus, research focusing on CSCs is essential to designing novel and more effective therapeutics. The purinergic system has emerged as an important autocrine-paracrine messenger system with a prominent role at multiple levels of the tumor microenvironment, where it regulates cellular aspects of the tumors themselves and the stromal and immune systems. Recent findings have shown that purinergic signaling also participates in regulating the CSC phenotype. Here, we discuss updated information regarding CSCs in the purinergic system and present evidence supporting the idea that elements of the purinergic system expressed by this subpopulation of the tumor represent attractive pharmacological targets for proposing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- J D Nuñez-Rios
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - H Ulrich
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - M Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México
| | - C Lameu
- Department of Biochemistry, Chemistry Institute, University of São Paulo (USP), São Paulo, Brazil
| | - F G Vázquez-Cuevas
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla #3001, Juriquilla Querétaro, Querétaro, CP 76230, México.
| |
Collapse
|
30
|
Meerovich G, Kogan E, Romanishkin I, Zharkov N, Avraamova S, Shchelokova E, Akhlyustina E, Strakhovskaya M, Meerovich I, Demura S, Tiganova I, Romanova Y, Chen ZL, Reshetov I. Potential of photodynamic therapy using polycationic photosensitizers in the treatment of lung cancer patients with SARS-CoV-2 infection and bacterial complications: Our recent experience. Photodiagnosis Photodyn Ther 2025; 51:104447. [PMID: 39681293 DOI: 10.1016/j.pdpdt.2024.104447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
The problem of treating cancer patients with lung cancer has become more difficult due to the SARS-CoV-2 viral infection and concomitant bacterial lesions. The analysis shows that the photodynamic effect of long-wavelength polycationic photosensitizers suppresses the tumor process (including the destruction of cancer stem cells), SARS-CoV-2 coronavirus infection, Gram-positive and Gram-negative bacteria, including those that can cause pneumonia. Therefore, the photodynamic approach using such photosensitizers is promising for the development of an effective treatment method for patients with lung cancer, including those with SARS-CoV-2 infection and bacterial complications.
Collapse
Affiliation(s)
- Gennady Meerovich
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia; Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
| | - Evgeniya Kogan
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Igor Romanishkin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow 119991, Russia.
| | - Nikolay Zharkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Sofiya Avraamova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Elena Shchelokova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119992, Russia
| | - Ekaterina Akhlyustina
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
| | | | - Irina Meerovich
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Moscow 119071, Russia
| | - Sofya Demura
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
| | - Irina Tiganova
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yulia Romanova
- Lomonosov Moscow State University, Moscow 119991, Russia
| | - Zhi-Long Chen
- Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Igor Reshetov
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow 115409, Russia
| |
Collapse
|
31
|
Djamgoz MBA. Stemness of Cancer: A Study of Triple-negative Breast Cancer From a Neuroscience Perspective. Stem Cell Rev Rep 2025; 21:337-350. [PMID: 39531198 PMCID: PMC11872763 DOI: 10.1007/s12015-024-10809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Stemness, giving cancer cells massive plasticity enabling them to survive in dynamic (e.g. hypoxic) environments and become resistant to treatment, especially chemotherapy, is an important property of aggressive tumours. Here, we review some essentials of cancer stemness focusing on triple-negative breast cancer (TNBC), the most aggressive form of all breast cancers. TNBC cells express a range of genes and mechanisms associated with stemness, including the fundamental four "Yamanaka factors". Most of the evidence concerns the transcription factor / oncogene c-Myc and an interesting case is the expression of the neonatal splice variant of voltage-gated sodium channel subtype Nav1.5. On the whole, measures that reduce the stemness make cancer cells less aggressive, reducing their invasive/metastatic potential and increasing/restoring their chemosensitivity. Such measures include gene silencing techniques, epigenetic therapies as well as novel approaches like optogenetics aiming to modulate the plasma membrane voltage. Indeed, simply hyperpolarizing their membrane potential can make stem cells differentiate. Finally, we give an overview of the clinical aspects and exploitation of cancer/TNBC stemness, including diagnostics and therapeutics. In particular, personalised mRNA-based therapies and mechanistically meaningful combinations are promising and the emerging discipline of 'cancer neuroscience' is providing novel insights to both fundamental issues and clinical applications.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.
| |
Collapse
|
32
|
Liu L, Han F, Deng M, Han Q, Lai M, Zhang H. Crosstalk between GLTSCR1-deficient endothelial cells and tumour cells promotes colorectal cancer development by activating the Notch pathway. Cell Death Differ 2025:10.1038/s41418-025-01450-6. [PMID: 39870803 DOI: 10.1038/s41418-025-01450-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/17/2024] [Accepted: 01/21/2025] [Indexed: 01/29/2025] Open
Abstract
Cancer stem cells (CSCs) typically reside in perivascular niches, but whether endothelial cells of blood vessels influence the stemness of cancer cells remains poorly understood. This study revealed that endothelial cell-specific GLTSCR1 deletion promotes colorectal cancer (CRC) tumorigenesis and metastasis by increasing cancer cell stemness. Mechanistically, knocking down GLTSCR1 induces the transformation of endothelial cells into tip cells by regulating the expression of Neuropilin-1 (NRP1), thereby increasing the direct contact and interaction between endothelial cells and tumour cells. In addition, GLTSCR1 inhibits JAG1 transcription by competing with acetylated p65(Lys-310) to bind to the BRD4 interaction site. Therefore, GLTSCR1 deficiency increases JAG1 expression in endothelial cells. Subsequently, increased JAG1 levels on tip cell membranes bind to Notch on CRC cell membranes, activating the Notch signalling pathway in tumour cells and increasing CRC cell stemness. Taken together, our findings highlight the roles of endothelial cells in CRC development.
Collapse
Affiliation(s)
- Lu Liu
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, China
| | - Fengyan Han
- School of Basic Medical Sciences, The Fourth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Mengli Deng
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, China
| | - Qizheng Han
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, China
| | - Maode Lai
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, China.
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Honghe Zhang
- Department of Pathology and International Institutes of Medicine, The Fourth Affiliated Hospital (Yiwu), Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, China.
| |
Collapse
|
33
|
El-Tanani M, Rabbani SA, Satyam SM, Rangraze IR, Wali AF, El-Tanani Y, Aljabali AAA. Deciphering the Role of Cancer Stem Cells: Drivers of Tumor Evolution, Therapeutic Resistance, and Precision Medicine Strategies. Cancers (Basel) 2025; 17:382. [PMID: 39941751 PMCID: PMC11815874 DOI: 10.3390/cancers17030382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/17/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer stem cells (CSCs) play a central role in tumor progression, recurrence, and resistance to conventional therapies, making them a critical focus in oncology research. This review provides a comprehensive analysis of CSC biology, emphasizing their self-renewal, differentiation, and dynamic interactions with the tumor microenvironment (TME). Key signaling pathways, including Wnt, Notch, and Hedgehog, are discussed in detail to highlight their potential as therapeutic targets. Current methodologies for isolating CSCs are critically examined, addressing their advantages and limitations in advancing precision medicine. Emerging technologies, such as CRISPR/Cas9 and single-cell sequencing, are explored for their transformative potential in unraveling CSC heterogeneity and informing therapeutic strategies. The review also underscores the pivotal role of the TME in supporting CSC survival, promoting metastasis, and contributing to therapeutic resistance. Challenges arising from CSC-driven tumor heterogeneity and dormancy are analyzed, along with strategies to mitigate these barriers, including novel therapeutics and targeted approaches. Ethical considerations and the integration of artificial intelligence in designing CSC-specific therapies are discussed as essential elements of future research. The manuscript advocates for a multi-disciplinary approach that combines innovative technologies, advanced therapeutics, and collaborative research to address the complexities of CSCs. By bridging existing gaps in knowledge and fostering advancements in personalized medicine, this review aims to guide the development of more effective cancer treatment strategies, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Syed Arman Rabbani
- Department of Clinical Pharmacy, RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Shakta Mani Satyam
- Department of Pharmacology, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Imran Rashid Rangraze
- Department of Internal Medicine, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Adil Farooq Wali
- Department of Medicinal Chemistry, RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
34
|
Liu D, Liu L, Che X, Wu G. Discovery of paradoxical genes: reevaluating the prognostic impact of overexpressed genes in cancer. Front Cell Dev Biol 2025; 13:1525345. [PMID: 39911323 PMCID: PMC11794808 DOI: 10.3389/fcell.2025.1525345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Oncogenes are typically overexpressed in tumor tissues and often linked to poor prognosis. However, recent advancements in bioinformatics have revealed that many highly expressed genes in tumors are associated with better patient outcomes. These genes, which act as tumor suppressors, are referred to as "paradoxical genes." Analyzing The Cancer Genome Atlas (TCGA) confirmed the widespread presence of paradoxical genes, and KEGG analysis revealed their role in regulating tumor metabolism. Mechanistically, discrepancies between gene and protein expression-affected by pre- and post-transcriptional modifications-may drive this phenomenon. Mechanisms like upstream open reading frames and alternative splicing contribute to these inconsistencies. Many paradoxical genes modulate the tumor immune microenvironment, exerting tumor-suppressive effects. Further analysis shows that the stage- and tumor-specific expression of these genes, along with their environmental sensitivity, influence their dual roles in various signaling pathways. These findings highlight the importance of paradoxical genes in resisting tumor progression and maintaining cellular homeostasis, offering new avenues for targeted cancer therapy.
Collapse
Affiliation(s)
| | | | - Xiangyu Che
- *Correspondence: Guangzhen Wu, ; Xiangyu Che,
| | | |
Collapse
|
35
|
Leng F, Huang J, Wu L, Zhang J, Lin X, Deng R, Zhu J, Li Z, Li Z, Wang Y, Zhang H, Lu D, Kipps TJ, Zhang S. Targeting ROR2 homooligomerization disrupts ROR2-dependent signaling and suppresses stem-like cell properties of human breast adenocarcinoma. iScience 2025; 28:111589. [PMID: 39829682 PMCID: PMC11742321 DOI: 10.1016/j.isci.2024.111589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 01/22/2025] Open
Abstract
Breast cancer stem-like cells (CSCs) are enriched following treatment with chemotherapy, and posited as having a high level of plasticity and enhanced tumor-initiation capacity, which can enable cancer relapse. Here, we show that such features are shared by breast cancer (BCA) cells that express receptor tyrosine kinase-like orphan receptor (ROR2), which is expressed primarily during embryogenesis and by various cancers. We find that Wnt5a can induce ROR2 homooligomerization to activate noncanonical Wnt signaling and enhance tumor-initiation capacity of BCA cells. Molecular analysis reveals that the cysteine-rich domain and transmembrane domain are required for ROR2 homooligomerization to activate ROR2. Treatment with a newly generated monoclonal antibody (mAb) specific for ROR2 can block Wnt5a-induced ROR2 homooligomerization, ROR2-dependent noncanonical Wnt signaling, and impair the capacity of BCA patient-derived xenografts to initiate tumor in immune-deficient mice. Collectively, these results indicate that targeting ROR2 (e.g., using mAb) suppresses BCA stemness and, thereby, may prevent BCA relapse.
Collapse
Affiliation(s)
- Feng Leng
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jiajia Huang
- State Key Laboratory of Oncology in South China, Department of Medical Oncology, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Liufeng Wu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jianchao Zhang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xinxin Lin
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Ruhuan Deng
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jinhang Zhu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zhen Li
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Zhenghao Li
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Yimeng Wang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Han Zhang
- Xenta Biomedical Science Co., Ltd, Guangzhou 510060, China
| | - Desheng Lu
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Thomas J. Kipps
- Moores Cancer Center, University of California, San Diego, San Diego, CA 92037, USA
| | - Suping Zhang
- Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Pharmacology, School of Basic Medical Sciences, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
- Moores Cancer Center, University of California, San Diego, San Diego, CA 92037, USA
| |
Collapse
|
36
|
Filippi A, Deculescu-Ioniță T, Hudiță A, Baldasici O, Gălățeanu B, Mocanu MM. Molecular Mechanisms of Dietary Compounds in Cancer Stem Cells from Solid Tumors: Insights into Colorectal, Breast, and Prostate Cancer. Int J Mol Sci 2025; 26:631. [PMID: 39859345 PMCID: PMC11766403 DOI: 10.3390/ijms26020631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Cancer stem cells (CSC) are known to be the main source of tumor relapse, metastasis, or multidrug resistance and the mechanisms to counteract or eradicate them and their activity remain elusive. There are different hypotheses that claim that the origin of CSC might be in regular stem cells (SC) and, due to accumulation of mutations, these normal cells become malignant, or the source of CSC might be in any malignant cell that, under certain environmental circumstances, acquires all the qualities to become CSC. Multiple studies indicate that lifestyle and diet might represent a source of wellbeing that can prevent and ameliorate the malignant phenotype of CSC. In this review, after a brief introduction to SC and CSC, we analyze the effects of phenolic and non-phenolic dietary compounds and we highlight the molecular mechanisms that are shown to link diets to CSC activation in colon, breast, and prostate cancer. We focus the analysis on specific markers such as sphere formation, CD surface markers, epithelial-mesenchymal transition (EMT), Oct4, Nanog, Sox2, and aldehyde dehydrogenase 1 (ALDH1) and on the major signaling pathways such as PI3K/Akt/mTOR, NF-κB, Notch, Hedgehog, and Wnt/β-catenin in CSC. In conclusion, a better understanding of how bioactive compounds in our diets influence the dynamics of CSC can raise valuable awareness towards reducing cancer risk.
Collapse
Affiliation(s)
- Alexandru Filippi
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Teodora Deculescu-Ioniță
- Department of Pharmacognosy, Phytochemistry and Phytotherapy, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| | - Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Oana Baldasici
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuță”, 400015 Cluj-Napoca, Romania;
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.H.); (B.G.)
| | - Maria-Magdalena Mocanu
- Department of Biochemistry and Biophysics, “Carol Davila” University of Medicine and Pharmacy of Bucharest, 050474 Bucharest, Romania;
| |
Collapse
|
37
|
Sarkar H, Lee E, Lopez-Darwin SL, Kang Y. Deciphering normal and cancer stem cell niches by spatial transcriptomics: opportunities and challenges. Genes Dev 2025; 39:64-85. [PMID: 39496456 PMCID: PMC11789490 DOI: 10.1101/gad.351956.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Cancer stem cells (CSCs) often exhibit stem-like attributes that depend on an intricate stemness-promoting cellular ecosystem within their niche. The interplay between CSCs and their niche has been implicated in tumor heterogeneity and therapeutic resistance. Normal stem cells (NSCs) and CSCs share stemness features and common microenvironmental components, displaying significant phenotypic and functional plasticity. Investigating these properties across diverse organs during normal development and tumorigenesis is of paramount research interest and translational potential. Advancements in next-generation sequencing (NGS), single-cell transcriptomics, and spatial transcriptomics have ushered in a new era in cancer research, providing high-resolution and comprehensive molecular maps of diseased tissues. Various spatial technologies, with their unique ability to measure the location and molecular profile of a cell within tissue, have enabled studies on intratumoral architecture and cellular cross-talk within the specific niches. Moreover, delineation of spatial patterns for niche-specific properties such as hypoxia, glucose deprivation, and other microenvironmental remodeling are revealed through multilevel spatial sequencing. This tremendous progress in technology has also been paired with the advent of computational tools to mitigate technology-specific bottlenecks. Here we discuss how different spatial technologies are used to identify NSCs and CSCs, as well as their associated niches. Additionally, by exploring related public data sets, we review the current challenges in characterizing such niches, which are often hindered by technological limitations, and the computational solutions used to address them.
Collapse
Affiliation(s)
- Hirak Sarkar
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Department of Computer Science, Princeton, New Jersey 08544, USA
| | - Eunmi Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Sereno L Lopez-Darwin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA;
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, New Jersey 08544, USA
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| |
Collapse
|
38
|
Shao X, Zhao X, Wang B, Fan J, Wang J, An H. Tumor microenvironment targeted nano-drug delivery systems for multidrug resistant tumor therapy. Theranostics 2025; 15:1689-1714. [PMID: 39897552 PMCID: PMC11780529 DOI: 10.7150/thno.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
In recent years, nano-drug delivery systems (Nano-DDS) that target the tumor microenvironment (TME) to overcome multidrug resistance (MDR) have become a research hotspot in the field of cancer therapy. By precisely targeting the TME and regulating its unique pathological features, such as hypoxia, weakly acidic pH, and abnormally expressed proteins, etc., these Nano-DDS enable effective delivery of therapeutic agents and reversal of MDR. This scientific research community is increasing its investment in the development of diversified systems and exploring their anti-drug resistance potential. Therefore, it is particularly important to conduct a comprehensive review of the research progress of TME-targeted Nano-DDS in recent years. After a brief introduction of TME and tumor MDR, the design principle and structure of liposomes, polymer micelles and inorganic nanocarriers are focused on, and their characteristics as TME-targeted nanocarriers are described. It also demonstrates how these systems break through the cancer MDR treatment through various targeting mechanisms, discusses their synthetic innovation, research results and resistance overcoming mechanisms. The review was concluded with deliberations on the key challenges and future outlooks of targeting TME Nano-DDS in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China
| | - Hailong An
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, 300401, Tianjin, PR China
| |
Collapse
|
39
|
Merle C, Fre S. Recording Lineage History with Cellular Barcodes in the Mammary Epithelium and in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:77-94. [PMID: 39821021 DOI: 10.1007/978-3-031-70875-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Lineage tracing methods have extensively advanced our understanding of physiological cell behaviour in vivo and in situ and have vastly contributed to decipher the phylogeny and cellular hierarchies during normal and tumour development. In recent years, increasingly complex systems have been developed to track thousands of cells within a given tissue or even entire organisms. Cellular barcoding comprises all techniques designed to genetically label single cells with unique DNA sequences or with a combination of fluorescent proteins, in order to trace their history and lineage production in space and time. We distinguish these two types of cellular barcoding as genetic or optical barcodes. Furthermore, transcribed cellular barcodes can integrate the lineage information with single-cell profiling of each barcoded cell. This enables the potential identification of specific markers or signalling pathways defining distinct stem cell states during development, but also signals promoting tumour growth and metastasis or conferring therapy resistance.In this chapter, we describe recent advances in cellular barcoding technologies and outline experimental and computational challenges. We discuss the biological questions that can be addressed using single-cell dynamic lineage tracing, with a focus on the study of cellular hierarchies in the mammary epithelium and in breast cancer.
Collapse
Affiliation(s)
- Candice Merle
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France
| | - Silvia Fre
- Laboratory of Genetics and Developmental Biology, Institut Curie, INSERM U934, CNRS UMR3215, Paris, France.
| |
Collapse
|
40
|
Lichtenstein AV. Rethinking the Evolutionary Origin, Function, and Treatment of Cancer. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:19-31. [PMID: 40058971 DOI: 10.1134/s0006297924603575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 09/29/2024] [Accepted: 12/08/2024] [Indexed: 05/13/2025]
Abstract
Despite remarkable progress in basic oncology, practical results remain unsatisfactory. This discrepancy is partly due to the exclusive focus on processes within the cancer cell, which results in a lack of recognition of cancer as a systemic disease. It is evident that a wise balance is needed between two alternative methodological approaches: reductionism, which would break down complex phenomena into smaller units to be studied separately, and holism, which emphasizes the study of complex systems as integrated wholes. A consistent holistic approach has so far led to the notion of cancer as a special organ, stimulating debate about its function and evolutionary significance. This article discusses the role of cancer as a mechanism of purifying selection of the gene pool, the correlation between hereditary and sporadic cancer, the cancer interactome, and the role of metastasis in a lethal outcome. It is also proposed that neutralizing the cancer interactome may be a novel treatment strategy.
Collapse
Affiliation(s)
- Anatoly V Lichtenstein
- N. N. Blokhin National Medical Research Centre of Oncology, Ministry of Health of the Russian Federation, Moscow, 115478, Russia.
| |
Collapse
|
41
|
Ma D, Liang R, Luo Q, Song G. Pressure loading regulates the stemness of liver cancer stem cells via YAP/BMF signaling axis. J Cell Physiol 2025; 240:e31451. [PMID: 39358905 DOI: 10.1002/jcp.31451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Cancer stem cells (CSCs) are considered the major cause of the occurrence, progression, chemoresistance/radioresistance, recurrence, and metastasis of cancer. Increased interstitial fluid pressure (IFP) is a key feature of solid tumors. Our previous study showed that the distribution of liver cancer stem cells (LCSCs) correlated with the mechanical heterogeneity within liver cancer tissues. However, the regulation of liver cancer's mechanical microenvironment on the LCSC stemness is not fully understood. Here, we employed a cellular pressure-loading device to investigate the effects of normal IFP (5 mmHg), as well as increased IFP (40 and 200 mmHg) on the stemness of LCSCs. Compared to the control LCSCs (exposure to 5 mmHg pressure loading), the LCSCs exposed to 40 mmHg pressure loading exhibited significantly upregulated expression of CSC markers (CD44, EpCAM, Nanog), enhanced sphere and colony formation capacities, and tumorigenic potential, whereas continuously increased pressure to 200 mmHg suppressed the LCSC characteristics. Mechanistically, pressure loading regulated Yes-associated protein (YAP) activity and Bcl-2 modifying factor (BMF) expression. YAP transcriptionally regulated BMF expression to affect the stemness of LCSCs. Knockdown of YAP and overexpression of BMF attenuated pressure-mediated stemness and tumorgenicity, while YAP-deficient and BMF-deletion recused pressure-dependent stemness on LCSCs, suggesting the involvement of YAP/BMF signaling axis in this process. Together, our findings provide a potential target for overcoming the stemness of CSCs and elucidate the significance of increased IFP in cancer progression.
Collapse
Affiliation(s)
- Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
42
|
Dai Q, Zhu J, Yang J, Zhang CY, Yang WJ, Pan BS, Yang XR, Guo W, Wang BL. Construction of a Cancer Stem Cell related Histone Acetylation Regulatory Genes Prognostic Model for Hepatocellular Carcinoma via Bioinformatics Analysis: Implications for Tumor Chemotherapy and Immunity. Curr Stem Cell Res Ther 2025; 20:103-122. [PMID: 38561604 DOI: 10.2174/011574888x305642240327041753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Cancer stem cells (CSC) play an important role in the development of Liver Hepatocellular Carcinoma (LIHC). However, the regulatory mechanisms between acetylation- associated genes (HAGs) and liver cancer stem cells remain unclear. OBJECTIVE To identify a set of histone acetylation genes (HAGs) with close associations to liver cancer stem cells (LCSCs), and to construct a prognostic model that facilitates more accurate prognosis assessments for LIHC patients. METHODS LIHC expression data were downloaded from the public databases. Using mRNA expression- based stemness indices (mRNAsi) inferred by One-Class Logistic Regression (OCLR), Differentially Expressed Genes (DEGs) (mRNAsi-High VS. mRNAsi-Low groups) were intersected with DEGs (LIHC VS. normal samples), as well as histone acetylation-associated genes (HAGs), to obtain mRNAsi-HAGs. A risk model was constructed employing the prognostic genes, which were acquired through univariate Cox and Least Shrinkage and Selection Operator (LASSO) regression analyses. Subsequently, independent prognostic factors were identified via univariate and multivariate Cox regression analyses and then a nomogram for prediction of LIHC survival was developed. Additionally, immune infiltration and drug sensitivity analysis were performed to explore the relationships between prognostic genes and immune cells. Finally, the expressions of selected mRNAsi-HAGs were validated in the LIHC tumor sphere by quantitative Reverse Transcription Polymerase Chain Reaction (qRT-PCR) assay and western blot analysis. RESULTS Among 13 identified mRNAsi-HAGs, 3 prognostic genes (HDAC1, HDAC11, and HAT1) were selected to construct a risk model (mRNAsi-HAGs risk score = 0.02 * HDAC1 + 0.09 * HAT1 + 0.05 * HDAC11). T-stage, mRNAsi, and mRNAsi-HAGs risk scores were identified as independent prognostic factors to construct the nomogram, which was proved to predict the survival probability of LIHC patients effectively. We subsequently observed strongly positive correlations between mRNAsi-HAGs risk score and tumor-infiltrating T cells, B cells and macrophages/monocytes. Moreover, we found 8 drugs (Mitomycin C, IPA 3, FTI 277, Bleomycin, Tipifarnib, GSK 650394, AICAR and EHT 1864) had significant correlations with mRNAsi-HAGs risk scores. The expression of HDAC1 and HDAC11 was higher in CSC-like cells in the tumor sphere. CONCLUSION This study constructed a mRNAsi and HAGs-related prognostic model, which has implications for potential immunotherapy and drug treatment of LIHC.
Collapse
Grants
- 81772263, 81972000, 81872355, 82072715, 82172348 National Natural Science Foundation of China
- 82202608, 81902139 National Natural Science Foundation of China Youth Fund
- 2018ZSLC05, 2020ZSLC54, 2020ZSLC31 Specialized Fund for the clinical research of Zhongshan Hospital affiliated Fudan University
- 2021ZSCX28 Science Foundation of Zhongshan Hospital, Fudan University
- 2021ZSGG08 Excellent backbone of Zhongshan Hospital, Fudan University
- shslczdzk03302 construction project of clinical key disciplines in Shanghai
- YDZX20193502000002 Key medical and health projects of Xiamen
- BSZK-2023-A18 Shanghai Baoshan Medical Key Specialty
- 2019YFC1315800, 2019YFC1315802 National Key R&D Program of China
- 81830102 State Key Program of National Natural Science of China
- 2019CXJQ02 Shanghai Municipal Health Commission Collaborative Innovation Cluster Project
- 19441905000, 21140900300 Shanghai Science and Technology Commission
Collapse
Affiliation(s)
- Qian Dai
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun-Yan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Wen-Jing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bai-Shen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Cancer Center, Shanghai Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bei-Li Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
43
|
Kim H, Jung SH, Jo S, Han JW, Yoon M, Lee JH. Anti‑angiogenic effect of Bryopsis plumosa‑derived peptide via aquaporin 3 in non‑small cell lung cancer. Int J Oncol 2025; 66:5. [PMID: 39611488 PMCID: PMC11637497 DOI: 10.3892/ijo.2024.5711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024] Open
Abstract
Developing novel anti‑angiogenic agents with minimal toxicity is notably challenging for cancer therapeutics. The discovery and development of peptides, whether derived from natural sources or synthesized, has potential for developing anti‑angiogenic agents characterized by their ability to penetrate cancer cells, high specificity and low toxicity. The present study identified a Bryopsis plumose‑derived anticancer and anti‑angiogenesis marine‑derived peptide 06 (MP06). A 22‑amino acid peptide was synthesized and conjugated with fluorescein isothiocyanate (FITC‑MP06) for intracellular localization in H1299 non‑small cell lung cancer cells. Regulatory effects of this peptide on the viability, migration and self‑renewal of lung cancer cells was assessed. Furthermore, anti‑angiogenic effect of MP06 was investigated by monitoring vascular tube formation in human umbilical vein endothelial cells and a zebrafish model. Aquaporin (AQP)3, a membrane channel in various tissues, is involved in regulating stemness, epithelial‑mesenchymal transition (EMT) and angiogenesis. MP06 downregulated AQP3 expression. Consistently, AQP3 knockdown by RNA silencing downregulated its gene expression, leading to a decrease in stemness, EMT and angiogenesis properties in H1299 cells. MP06 could thus serve as a novel therapeutic target with anticancer and angiogenesis properties for non‑small cell lung cancer.
Collapse
Affiliation(s)
- Heabin Kim
- Department of Bio-material Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Seung-Hyun Jung
- Department of Bio-material Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Seonmi Jo
- Department of Biological Application & Technology, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jong Won Han
- Department of Ecology & Conservation, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Moongeun Yoon
- Department of Bio-material Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| | - Jei Ha Lee
- Department of Bio-material Research, National Marine Biodiversity Institute of Korea, Seocheon 33662, Republic of Korea
| |
Collapse
|
44
|
Niu Q, Ye S, Zhao L, Qian Y, Liu F. The role of liver cancer stem cells in hepatocellular carcinoma metastasis. Cancer Biol Ther 2024; 25:2321768. [PMID: 38393655 PMCID: PMC10896152 DOI: 10.1080/15384047.2024.2321768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Metastasis accounts for the vast majority of cancer deaths; however, this complex process has yet to be fully explained. To form metastases, cancer cells must undergo a series of steps, known as the "Metastatic cascade", each of which requires a specific functional transformation. Cancer stem cells (CSCs) play a vital role in tumor metastasis, but their dynamic behavior and regulatory mechanisms have not been fully elucidated. Based on the "Metastatic cascade" theory, this review summarizes the effect of liver CSCs on the metastatic biological programs that underlie the dissemination and metastatic growth of cancer cells. Liver CSCs have the capacity to initiate distant organ metastasis via EMT, and the microenvironment transformation that supports the ability of these cells to disseminate, evade immune surveillance, dormancy, and regenerate metastasis. Understanding the heterogeneity and traits of liver CSCs in these processes is critical for developing strategies to prevent and treat metastasis of advanced hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Qinghui Niu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Susu Ye
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liu Zhao
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanzhi Qian
- School Hospital, Qingdao University of Science and Technology, Qingdao, China
| | - Fengchao Liu
- Liver Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
45
|
Li C, Liang L, Liang J, Tian C, Wang J, Liu Y, Hong X, Gu F, Zhang K, Hu Y, Liu L, Zeng Y. IQGAP3 activates Hedgehog signaling to confer stemness and metastasis via up-regulating GLI1 in lung cancer. Sci Rep 2024; 14:31327. [PMID: 39732803 PMCID: PMC11682282 DOI: 10.1038/s41598-024-82793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Lung cancer ranks as the most prevalent malignant neoplasm worldwide, contributing significantly to cancer-related mortality. Stemness is a well-recognized factor underlying radiotherapy resistance, recurrence and metastasis in non-small-cell lung cancer (NSCLC) patients. Our prior investigations have established the role of IQ motif containing GTPase-activating protein 3 (IQGAP3) in mediating radiotherapy resistance in lung cancer, but its impact on lung cancer stemness remains unexplored. Our bioinformatics analysis results revealed a significant correlation between IQGAP3 and lung cancer stemness. Moreover, we found that IQGAP3 depletion in lung cancer cells resulted in reduced migration, invasion and sphere-forming capabilities. Through RNA sequencing, we identified GLI1 as a pivotal downstream effector of IQGAP3. The knockdown of IQGAP3 led to the downregulation of GLI1 mRNA and protein levels, which impeded the activation of the Hedgehog-GLI1 signaling pathway. Further, our results also indicated that GLI1 is the primary effector mediating IQGAP3's biological functions in lung cancer. These findings elucidate the role of IQGAP3 in promoting lung cancer stemness and metastasis through the Hedgehog pathway, facilitated by GLI1, highlighting the potential of IQGAP3 as a promising therapeutic target for lung cancer treatment.
Collapse
Affiliation(s)
- Chang Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Limei Liang
- Department of Respiratory and Critical Care Medicine, TongjiMedical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jinyan Liang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Juanjuan Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuting Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohua Hong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feifei Gu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kai Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
46
|
Li X, Han H, Yang K, Li S, Ma L, Yang Z, Zhao YX. Crosstalk between thyroid CSCs and immune cells: basic principles and clinical implications. Front Immunol 2024; 15:1476427. [PMID: 39776907 PMCID: PMC11703838 DOI: 10.3389/fimmu.2024.1476427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Thyroid cancer has become the most common endocrine malignancy. Although the majority of differentiated thyroid cancers have a favorable prognosis, advanced thyroid cancers, iodine-refractory thyroid cancers, and highly malignant undifferentiated carcinomas still face a serious challenge of poor prognosis and even death. Cancer stem cells are recognized as one of the central drivers of tumor evolution, recurrence and treatment resistance. A fresh viewpoint on the oncological aspects of thyroid cancer, including proliferation, invasion, recurrence, metastasis, and therapeutic resistance, has been made possible by the recent thorough understanding of the defining and developing features as well as the plasticity of thyroid cancer stem cells (TCSCs). The above characteristics of TCSCs are complicated and regulated by cell-intrinsic mechanisms (including activation of key stem signaling pathways, somatic cell dedifferentiation, etc.) and cell-extrinsic mechanisms. The complex communication between TCSCs and the infiltrating immune cell populations in the tumor microenvironment (TME) is a paradigm for cell-extrinsic regulators. This review introduces the current advances in the studies of TCSCs, including the origin of TCSCs, the intrinsic signaling pathways regulating the stemness of TCSCs, and emerging biomarkers; We further highlight the underlying principles of bidirectional crosstalk between TCSCs and immune cell populations driving thyroid cancer progression, recurrence, or metastasis, including the specific mechanisms by which immune cells maintain the stemness and other properties of TCSCs and how TCSCs reshape the immune microenvironmental landscape to create an immune evasive and pro-tumorigenic ecological niche. Finally, we outline promising strategies and challenges for targeting key programs in the TCSCs-immune cell crosstalk process to treat thyroid cancer.
Collapse
Affiliation(s)
- Xiaoxiao Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Hengtong Han
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Kaili Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Shouhua Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Libin Ma
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ze Yang
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yong-xun Zhao
- The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
47
|
Kinoshita J, Doden K, Sakimura Y, Hayashi S, Saito H, Tsuji T, Yamamoto D, Moriyama H, Minamoto T, Inaki N. Crosstalk Between Omental Adipose-Derived Stem Cells and Gastric Cancer Cells Regulates Cancer Stemness and Chemotherapy Resistance. Cancers (Basel) 2024; 16:4275. [PMID: 39766174 PMCID: PMC11674675 DOI: 10.3390/cancers16244275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Peritoneal metastasis (PM) remains a major challenge in patients with gastric cancer (GC) and occurs preferentially in adipose-rich organs, such as the omentum. Adipose-derived stem cells (ASCs) may influence cancer behavior. This study aimed to investigate whether ASCs isolated from the omentum can act as progenitors of cancer-associated fibroblasts (CAFs) and analyze their effects on the cancer stem cell (CSC) niche and the treatment resistance of GC cells. Methods: ASCs were isolated from the human omentum and their cellular characteristics were analyzed during co-culturing with GC cells. Results: ASCs express CAF markers and promote desmoplasia in cancer stroma in a mouse xenograft model. When co-cultured with GC cells, ASCs enhanced the sphere-forming efficiency of MKN45 and MKN74 cells. ASCs increased IL-6 secretion and enhanced the expression of Nanog and CD44v6 in GC cells; however, these changes were suppressed by the inhibition of IL-6. Xenograft mouse models co-inoculated with MKN45 cells and ASCs showed enhanced CD44v6 and Nanog expression and markedly reduced apoptosis induced by 5-FU treatment. Conclusion: This study improves our understanding of ASCs' role in PM treatment resistance and has demonstrated the potential for new treatment strategies targeting ASCs.
Collapse
Affiliation(s)
- Jun Kinoshita
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Kenta Doden
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Yusuke Sakimura
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Saki Hayashi
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Hiroto Saito
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Toshikatsu Tsuji
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Daisuke Yamamoto
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Hideki Moriyama
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| | - Toshinari Minamoto
- Japan Community Health Care Organization Kanazawa Hospital, Kanazawa 920-8610, Japan;
- Department of Molecular and Cellular Pathology, Kanazawa University, Kanazawa 920-8640, Japan
| | - Noriyuki Inaki
- Department of Gastrointestinal Surgery, Kanazawa University, Kanazawa 920-8641, Japan; (K.D.); (Y.S.); (S.H.); (H.S.); (T.T.); (D.Y.); (H.M.); (N.I.)
| |
Collapse
|
48
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
49
|
Czarnogórski MC, Czernicka A, Koper K, Petrasz P, Pokrywczyńska M, Juszczak K, Kowalski F, Drewa T, Adamowicz J. Cancer stem cells and their role in metastasis. Cent European J Urol 2024; 78:40-51. [PMID: 40371432 PMCID: PMC12073518 DOI: 10.5173/ceju.2024.0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/30/2024] [Indexed: 05/16/2025] Open
Abstract
Introduction Cancer, next to cardiovascular diseases, remains the primary concern of modern medicine in developed countries. Despite the unprecedented progress in targeted therapies and personalised medicine, including immunotherapy and gene therapy, we are still unable to efficiently treat many malignancies. One of the major obstacles to treating cancer is its ability to metastasise. Hence, a better understanding of cancer biology with emphasis on the metastasis formation may hold the key to further ameliorating cancer treatment. Nowadays, there is a growing body of evidence for the common denominator of neoplasia, which seems to be universal - cancer stem cells which are being found in a growing number of cancers. Material and methods We conducted a Web of Science and Medline database search using the terms "cancer stem cells", "carcinogenesis", and "stem cells" in conjunction with "metastasis", without setting time limits. Results The existence of cancer stem cells was proven both in animal models and in humans. We know beyond doubt that cancer stem cells may be found in bladder cancer, breast cancer, and colon cancer, among others. The cancer stem cells in the aforementioned cancers may initiate tumour formation ex vivo and thus theoretically lead to tumour recurrence. Their role in the formation of metastases, however, is still under investigation. Conclusions Although their exact role is yet to be identified, it is now obvious that cancer stem cells give rise to primary mass in solid tumours and differentiated cancer cells in leukaemias. However, the role of cancer stem cells in metastasis is still obscure.
Collapse
Affiliation(s)
- Michał C. Czarnogórski
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Aleksandra Czernicka
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Krzysztof Koper
- Department of Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Piotr Petrasz
- Department of Urology and Urological Oncology, Multidisciplinary Regional Hospital in Gorzow Wielkopolski, Poland
| | - Marta Pokrywczyńska
- Department of Regenerative Medicine, Chair of Urology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Kajetan Juszczak
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Filip Kowalski
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Tomasz Drewa
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Jan Adamowicz
- Department and Chair of Urology and Andrology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
50
|
Guha TK, Esplin ED, Horning AM, Chiu R, Paul K, Weimer AK, Becker WR, Laquindanum R, Mills MA, Glen Esplin D, Shen J, Monte E, White S, Karathanos TV, Cotter D, Bi J, Ladabaum U, Longacre TA, Curtis C, Greenleaf WJ, Ford JM, Snyder MP. Single-cell spatial mapping reveals alteration of cell type composition and tissue microenvironment during early colorectal cancer formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.622725. [PMID: 39605357 PMCID: PMC11601668 DOI: 10.1101/2024.11.20.622725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer mortality in the United States. Familial adenomatous polyposis (FAP) is a hereditary syndrome that raises the risk of developing CRC, with total colectomy as the only effective prevention. Even though FAP is rare (0.5% of all CRC cases), this disease model is well suited for studying the early stages of malignant transformation as patients form many polyps reflective of pre-cancer states. In order to spatially profile and analyze the pre-cancer and tumor microenvironment, we have performed single-cell multiplexed imaging for 52 samples: 12 normal mucosa,16 FAP mucosa,18 FAP polyps, 2 FAP adenocarcinoma, and 4 sporadic colorectal cancer (CRCs) using Co-detection by Indexing (CODEX) imaging platform. The data revealed significant changes in cell type composition occurring in early stage polyps and during the malignant transformation of polyps to CRC. We observe a decrease in CD4+/CD8+ T cell ratio and M1/M2 macrophage ratio along the FAP disease continuum. Advanced dysplastic polyps show a higher population of cancer associated fibroblasts (CAFs), which likely alter the pre-cancer microenvironment. Within polyps and CRCs, we observe strong nuclear expression of beta-catenin and higher number neo-angiogenesis events, unlike FAP mucosa and normal colon counterparts. We identify an increase in cancer stem cells (CSCs) within the glandular crypts of the FAP polyps and also detect Tregs, tumor associated macrophages (TAMs) and vascular endothelial cells supporting CSC survival and proliferation. We detect a potential immunosuppressive microenvironment within the tumor 'nest' of FAP adenocarcinoma samples, where tumor cells tend to segregate and remain distant from the invading immune cells. TAMs were found to infiltrate the tumor area, along with angiogenesis and tumor proliferation. CAFs were found to be enriched near the inflammatory region within polyps and CRCs and may have several roles in supporting tumor growth. Neighborhood analyses between adjacent FAP mucosa and FAP polyps show significant differences in spatial location of cells based on functionality. For example, in FAP mucosa, naive CD4+ T cells alone tend to localize near the fibroblast within the stromal compartment. However, in FAP polyp, CD4+T cells colocalize with the macrophages for T cell activation. Our data are expected to serve as a useful resource for understanding the early stages of neogenesis and the pre-cancer microenvironment, which may benefit early detection, therapeutic intervention and future prevention.
Collapse
Affiliation(s)
- Tuhin K Guha
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Edward D Esplin
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | | | | | - Kristina Paul
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Annika K Weimer
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Meredith A Mills
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - D Glen Esplin
- Animal Reference Pathology, Salt Lake City, UT 84107
| | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
| | - Emma Monte
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Shannon White
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | | | - Daniel Cotter
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Joanna Bi
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| | - Uri Ladabaum
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - Teri A Longacre
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305
| | - Christina Curtis
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - William J Greenleaf
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - James M Ford
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
- Department of Medicine, Stanford School of Medicine, Stanford, CA 94305
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA 94305
| |
Collapse
|