1
|
Ge Y, Wu L, Mei S, Wu J. Nanomaterials: Promising Tools for the Diagnosis and Treatment of Myocardial Infarction. Int J Nanomedicine 2025; 20:1747-1768. [PMID: 39958320 PMCID: PMC11829642 DOI: 10.2147/ijn.s500146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/24/2025] [Indexed: 02/18/2025] Open
Abstract
Myocardial infarction (MI) is the leading cause of mortality from cardiovascular diseases. Rapid diagnosis and effective treatment are critical for improving patient prognosis. Although current diagnostic and therapeutic approaches have made significant progress, they still face challenges such as ischemia-reperfusion injury, microcirculatory disorders, adverse cardiac remodeling, and inflammatory responses. These issues highlight the urgent need for innovative solutions. Nanomaterials, with their diverse types, excellent physicochemical properties, biocompatibility, and targeting capabilities, offer promising potential in addressing these challenges. Advances in nanotechnology have increasingly drawn attention to the application of nanomaterials in both diagnosing and treating myocardial infarction. We summarize the pathophysiological mechanisms and staging of myocardial infarction. We systematically review the applications of nanomaterials in MI diagnosis, including the detection of biomarkers and imaging techniques, as well as in MI treatment, encompassing anti-inflammatory effects, antioxidant stress, inhibition of fibrosis, promotion of angiogenesis, and cardiac conduction repair. We analyze the existing challenges and provide insights into future research directions and potential solutions. Specifically, we discuss the need for rigorous safety assessments, long-term efficacy studies, and the development of robust strategies for translating laboratory findings into clinical practice. In conclusion, nanotechnology holds significant promise as a new strategy for diagnosing and treating myocardial infarction. Its potential to enhance clinical outcomes and revolutionize patient care makes it an exciting area of research with practical applications in real-world clinical settings.
Collapse
Affiliation(s)
- Yanmin Ge
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Lincong Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Shuyang Mei
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Junduo Wu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| |
Collapse
|
2
|
Liu X, Liu H, Nie H, Tian L, Shi Y, Lai W, Xi Z, Lin B. Oil mist particulate matter induces myocardial tissue injury by impairing fatty acid metabolism and mitochondrial bioenergetics function via inhibiting the PPAR alpha signaling pathway in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125340. [PMID: 39581367 DOI: 10.1016/j.envpol.2024.125340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/10/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Air pollution is a significant concern for human health, particularly in relation to cardiovascular damage. Currently, the precise mechanisms underlying myocardial tissue injury induced by air pollution remain to be fully elucidated. Oil mist particulate matter (OMPM) is a key environmental factor that has been linked to increased mortality from cardiovascular diseases. The research aims to explore the detrimental effects and underlying molecular mechanisms of OMPM exposure on myocardial tissue. In this study, we established exposure models with different concentrations of OMPM both in vivo and in vitro to assess their deleterious effects on myocardial tissue. The results indicated that OMPM exposure induced alterations in myocardial enzymes and large accumulation of lipid droplets in rat myocardial tissue, with a dose-dependent increase in cell apoptosis, oxidative stress, and inflammatory responses, accompanied by mitochondrial structural damage and dysfunction. Proteomic analysis suggested that OMPM induced myocardial tissue damage is closely associated with changes in mitochondrial biological functions and fatty acid metabolism, possibly through inhibition of the PPAR signaling pathway. Further experiments using a PPARα agonist (WY-14643) and PPARα siRNA transfection cell model demonstrated that WY-14643 could mitigate abnormal fatty acid metabolism, mitochondrial dysfunction, and cell apoptosis caused by OMPM exposure. Overall, the study suggests that OMPM exposure disrupts myocardial fatty acid metabolism, contributes to mitochondrial damage and dysfunction through targeted inhibition of the PPAR signaling pathway, and ultimately results in cardiomyocyte apoptosis and myocardial tissue injury.
Collapse
Affiliation(s)
- Xuan Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Huanliang Liu
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Huipeng Nie
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Lei Tian
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Yue Shi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Wenqing Lai
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China
| | - Zhuge Xi
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| | - Bencheng Lin
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin, 300050, China.
| |
Collapse
|
3
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
4
|
Makhado BP, Oladipo AO, Gumbi NN, De Kock LA, Andraos C, Gulumian M, Nxumalo EN. Unravelling the toxicity of carbon nanomaterials - From cellular interactions to mechanistic understanding. Toxicol In Vitro 2024; 100:105898. [PMID: 39029601 DOI: 10.1016/j.tiv.2024.105898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/03/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The application of carbon nanomaterials in diverse fields has substantially increased their demand for commercial usage. Within the earliest decade, the development of functional materials has further increased the significance of this element. Despite the advancements recorded, the potential harmful impacts of embracing carbon nanomaterials for biological applications must be balanced against their advantages. Interestingly, many studies have neglected the intriguing and dynamic cellular interaction of carbon nanomaterials and the mechanistic understanding of their property-driven behaviour, even though common toxicity profiles have been reported. Reiterating the toxicity issue, several researchers conclude that these materials have minimal toxicity and may be safe for contact with biological systems at certain dosages. Here, we aim to provide a report on the significance of some of the properties that influence their toxicity. After that, a description of the implication of nanotoxicology in humans and living systems, revealing piece by piece their exposure routes and possible risks, will be provided. Then, an extensive discussion of the mechanistic puzzle modulating the interface between various human cellular systems and carbon nanomaterials such as carbon nanotubes, carbon dots, graphene, fullerenes, and nanodiamonds will follow. Finally, this review also sheds light on the organization that handles the risk associated with nanomaterials.
Collapse
Affiliation(s)
- Bveledzani P Makhado
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Roodepoort 1710, South Africa
| | - Nozipho N Gumbi
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Lueta A De Kock
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa
| | - Charlene Andraos
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa; National Institute for Occupational Health (NIOH), National Health Laboratory Service (NHLS), Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University Potchefstroom, South Africa
| | - Edward N Nxumalo
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering, and Technology, University of South Africa, Roodepoort 1710, South Africa.
| |
Collapse
|
5
|
Zhang M, Zhao Y, Lv B, Jiang H, Li Z, Cao J. Engineered Carrier-Free Nanosystem-Induced In Situ Therapeutic Vaccines for Potent Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47270-47283. [PMID: 39189605 DOI: 10.1021/acsami.4c09925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In situ vaccines that can stimulate tumor immune response have emerged as a breakthrough in antitumor therapy. However, the immunosuppressed tumor microenvironment and insufficient infiltration of immune cells lead to ineffective antitumor immunity. Hence, a biomimetic carrier-free nanosystem (BCC) to induce synergistic phototherapy/chemotherapy-driven in situ vaccines was designed. A carrier-free nanosystem was developed using phototherapeutic reagents CyI and celastrol as raw materials. In vitro and in vivo studies have shown that under NIR light irradiation, BCC-mediated photo/chemotherapy not only accelerates the release of drugs to deeper parts of tumors, achieving timing and light-controlled drug delivery to result in cell apoptosis, but also effectively stimulates the antitumor response to induce in situ vaccine, which could invoke long-lasting antitumor immunity to inhibit tumor metastasis and eliminate distant tumor. This therapeutic strategy holds promise for priming robust innate and adaptive immune responses, arresting cancer progression, and inducing tumor dormancy.
Collapse
Affiliation(s)
- Min Zhang
- School of Pharmacy, Qingdao University, Qingdao 266071, China
- Institute of Biomedical Materials and Engineering, College of Materials Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yifan Zhao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Bai Lv
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Huimei Jiang
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Zequn Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Jie Cao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Shen H, Zhang C, Li S, Liang Y, Lee LT, Aggarwal N, Wun KS, Liu J, Nadarajan SP, Weng C, Ling H, Tay JK, Wang DY, Yao SQ, Hwang IY, Lee YS, Chang MW. Prodrug-conjugated tumor-seeking commensals for targeted cancer therapy. Nat Commun 2024; 15:4343. [PMID: 38773197 PMCID: PMC11109227 DOI: 10.1038/s41467-024-48661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/08/2024] [Indexed: 05/23/2024] Open
Abstract
Prodrugs have been explored as an alternative to conventional chemotherapy; however, their target specificity remains limited. The tumor microenvironment harbors a range of microorganisms that potentially serve as tumor-targeting vectors for delivering prodrugs. In this study, we harness bacteria-cancer interactions native to the tumor microbiome to achieve high target specificity for prodrug delivery. We identify an oral commensal strain of Lactobacillus plantarum with an intrinsic cancer-binding mechanism and engineer the strain to enable the surface loading of anticancer prodrugs, with nasopharyngeal carcinoma (NPC) as a model cancer. The engineered commensals show specific binding to NPC via OppA-mediated recognition of surface heparan sulfate, and the loaded prodrugs are activated by tumor-associated biosignals to release SN-38, a chemotherapy compound, near NPC. In vitro experiments demonstrate that the prodrug-loaded microbes significantly increase the potency of SN-38 against NPC cell lines, up to 10-fold. In a mouse xenograft model, intravenous injection of the engineered L. plantarum leads to bacterial colonization in NPC tumors and a 67% inhibition in tumor growth, enhancing the efficacy of SN-38 by 54%.
Collapse
Affiliation(s)
- Haosheng Shen
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Changyu Zhang
- Ningbo Institute of Dalian University of Technology, Ningbo, China
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shengjie Li
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yuanmei Liang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Li Ting Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Nikhil Aggarwal
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
| | - Kwok Soon Wun
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National Centre for Engineering Biology (NCEB), Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Liu
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Saravanan Prabhu Nadarajan
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng Weng
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Hua Ling
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Wilmar International Limited, Singapore, Singapore
| | - Joshua K Tay
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Otolaryngology-Head and Neck Surgery, National University of Singapore, Singapore, Singapore
| | - De Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - In Young Hwang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Food, Chemical and Biotechnology, Singapore Institute of Technology, Singapore, Singapore.
| | - Yung Seng Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Wook Chang
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National Centre for Engineering Biology (NCEB), Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Zhang Y, Cheng Y, Zhao W, Song F, Cao Y. Effects of Halloysite Nanotubes and Multi-walled Carbon Nanotubes on Kruppel-like Factor 15-Mediated Downstream Events in Mouse Hearts After Intravenous Injection. Cardiovasc Toxicol 2024; 24:408-421. [PMID: 38411850 DOI: 10.1007/s12012-024-09844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
Halloysite nanotubes (HNTs) are nanomaterials (NMs) derived from natural clays and have been considered as biocompatible NMs for biomedical uses. However, the cardiovascular toxicity of HNTs has not been thoroughly investigated. In this study, we compared the cardiotoxicity of HNTs and multi-walled carbon nanotubes (MWCNTs), focusing on the changes in Kruppel-like factor (KLF)-mediated signaling pathways. Mice were intravenously injected with 50 µg NMs, once a day, for 5 days, and then mouse hearts were removed for experiments. While HNTs or MWCNTs did not induce obvious pathological changes, RNA-sequencing data suggested the alterations of KLF gene expression. We further confirmed an increase of Klf15 positive cells, accompanied by changes in Klf15-related gene ontology (GO) terms. We noticed that most of the changed GO terms are related with the regulation of gene expression, and we confirmed that the NMs increased myoneurin (Mynn) but decreased snail family transcriptional repressor 1 (Snai1), two transcription factors (TFs) related with Klf15. Besides, the changed GO terms also include metal ion binding and positive regulation of glucose import, and we verified an increase of phosphoenolpyruvate carboxykinase 1 (Pck1) and insulin receptor (Insr). However, HNTs and MWCNTs only showed minimal impact on cell death signaling pathways, and no increase in apoptotic sites was observed after NM treatment. We concluded that intravenous administration of HNTs and MWCNTs activated a protective TF, namely Klf15 in mouse aortas, to alter gene expression and signaling pathways related with metal ion binding and glucose import.
Collapse
Affiliation(s)
- Yimin Zhang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yujia Cheng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
8
|
Shen C, Ding X, Ruan J, Ruan F, Hu W, Huang J, He C, Yu Y, Zuo Z. Black phosphorus quantum dots induce myocardial inflammatory responses and metabolic disorders in mice. J Environ Sci (China) 2024; 137:53-64. [PMID: 37980037 DOI: 10.1016/j.jes.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 11/20/2023]
Abstract
As an ultrasmall derivative of black phosphorus (BP) sheets, BP quantum dots (BP-QDs) have been effectively used in many fields. Currently, information on the cardiotoxicity induced by BP-QDs remains limited. We aimed to evaluate BP-QD-induced cardiac toxicity in mice. Histopathological examination of heart tissue sections was performed. Transcriptome sequencing, real-time quantitative PCR (RT‒qPCR), western blotting, and enzyme-linked immunosorbent assay (ELISA) assays were used to detect the mRNA and/or protein expression of proinflammatory cytokines, nuclear factor kappa B (NF-κB), phosphatidylinositol 3 kinase-protein kinase B (PI3K-AKT), peroxisome proliferator-activated receptor gamma (PPARγ), and glucose/lipid metabolism pathway-related genes. We found that heart weight and heart/body weight index (HBI) were significantly reduced in mice after intragastric administration of 0.1 or 1 mg/kg BP-QDs for 28 days. In addition, obvious inflammatory cell infiltration and increased cardiomyocyte diameter were observed in the BP-QD-treated groups. Altered expression of proinflammatory cytokines and genes related to the NF-κB signaling pathway further confirmed that BP-QD exposure induced inflammatory responses. In addition, BP-QD treatment also affected the PI3K-AKT, PPARγ, thermogenesis, oxidative phosphorylation, and cardiac muscle contraction signaling pathways. The expression of genes related to glucose/lipid metabolism signaling pathways was dramatically affected by BP-QD exposure, and the effect was primarily mediated by the PPAR signaling pathway. Our study provides new insights into the toxicity of BP-QDs to human health.
Collapse
Affiliation(s)
- Chao Shen
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiaoyan Ding
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jinpeng Ruan
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Fengkai Ruan
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Weiping Hu
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jiyi Huang
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Chengyong He
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yi Yu
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Zhenghong Zuo
- Department of Nephrology, State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Fujian Clinical Research Center for Chronic Glomerular Disease, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
Scafa Udriște A, Burdușel AC, Niculescu AG, Rădulescu M, Grumezescu AM. Metal-Based Nanoparticles for Cardiovascular Diseases. Int J Mol Sci 2024; 25:1001. [PMID: 38256075 PMCID: PMC10815551 DOI: 10.3390/ijms25021001] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are the leading cause of death and disability. While there are many therapeutic alternatives available for the management of CVDs, the majority of classic therapeutic strategies were found to be ineffective at stopping or significantly/additionally slowing the progression of these diseases, or they had unfavorable side effects. Numerous metal-based nanoparticles (NPs) have been created to overcome these limitations, demonstrating encouraging possibilities in the treatment of CVDs due to advancements in nanotechnology. Metallic nanomaterials, including gold, silver, and iron, come in various shapes, sizes, and geometries. Metallic NPs are generally smaller and have more specialized physical, chemical, and biological properties. Metal-based NPs may come in various forms, such as nanoshells, nanorods, and nanospheres, and they have been studied the most. Massive potential applications for these metal nanomaterial structures include supporting molecular imaging, serving as drug delivery systems, enhancing radiation-based anticancer therapy, supplying photothermal transforming effects for thermal therapy, and being compounds with bactericidal, fungicidal, and antiviral qualities that may be helpful for cardiovascular diseases. In this context, the present paper aims to review the applications of relevant metal and metal oxide nanoparticles in CVDs, creating an up-to-date framework that aids researchers in developing more efficient treatment strategies.
Collapse
Affiliation(s)
- Alexandru Scafa Udriște
- Department 4 Cardio-Thoracic Pathology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania (A.-G.N.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
10
|
Zhao N, Yuan W. Antibacterial, conductive nanocomposite hydrogel based on dextran, carboxymethyl chitosan and chitosan oligosaccharide for diabetic wound therapy and health monitoring. Int J Biol Macromol 2023; 253:126625. [PMID: 37657577 DOI: 10.1016/j.ijbiomac.2023.126625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/03/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Diabetic severe wound healing is challenging and also carries a high risk of bacterial infection and may be accompanied by serious complications. Electrical stimulation (ES) can effectively promote wound healing, but its effectiveness is often limited by incomplete contact between the electrodes and the wound site. In order to improve the efficiency of electrical stimulation utilization and to avoid wound infection, a multi-dynamically crosslinked nanocomposite hydrogel was prepared from dextran modified with aldehyde groups and phenylboronic acid esters (Dex-FA-BA), carboxymethyl chitosan (CMCS), polyaniline grafted chitosan oligosaccharide (CP), and Epigallocatechin Gallate/Ca2+ modified melanin-like nanoparticles (CEMNPs), based on dynamic Schiff base bonds, phenylboronic acid/diol interactions, and hydrogen bonding. The CEMNPs have good photothermal conversion properties and antioxidant activity and can also enhance the mechanical properties of the hydrogel system. The CP endows the hydrogel with good electrical conductivity and sensing properties and can record the respiratory and heart rate of rats in real time. Based on the convolutional neural networks (CNN) algorithm constructed by ResNet9, the respiratory and heart rate signals can be distinguished with 93.9 % accuracy. This multifunctional nanocomposite hydrogel can provide a new strategy to promote chronic wound healing and achieve health monitoring effectively.
Collapse
Affiliation(s)
- Nuoya Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
11
|
Shokrollahi P, Omidi Y, Cubeddu LX, Omidian H. Conductive polymers for cardiac tissue engineering and regeneration. J Biomed Mater Res B Appl Biomater 2023; 111:1979-1995. [PMID: 37306139 DOI: 10.1002/jbm.b.35293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/17/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Cardiovascular diseases, such as myocardial infarction, are considered a significant global burden and the leading cause of death. Given the inability of damaged cardiac tissue to self-repair, cell-based tissue engineering and regeneration may be the only viable option for restoring normal heart function. To maintain the normal excitation-contraction coupling function of cardiac tissue, uniform electronic and ionic conductance properties are required. To transport cells to damaged cardiac tissues, several techniques, including the incorporation of cells into conductive polymers (CPs) and biomaterials, have been utilized. Due to the complexity of cardiac tissues, the success of tissue engineering for the damaged heart is highly dependent on several variables, such as the cell source, growth factors, and scaffolds. In this review, we sought to provide a comprehensive overview of the electro CPs and biomaterials used in the engineering and regeneration of heart tissue.
Collapse
Affiliation(s)
- Parvin Shokrollahi
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Luigi X Cubeddu
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, USA
| |
Collapse
|
12
|
Xuan L, Ju Z, Skonieczna M, Zhou P, Huang R. Nanoparticles-induced potential toxicity on human health: Applications, toxicity mechanisms, and evaluation models. MedComm (Beijing) 2023; 4:e327. [PMID: 37457660 PMCID: PMC10349198 DOI: 10.1002/mco2.327] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/04/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Nanoparticles (NPs) have become one of the most popular objects of scientific study during the past decades. However, despite wealth of study reports, still there is a gap, particularly in health toxicology studies, underlying mechanisms, and related evaluation models to deeply understanding the NPs risk effects. In this review, we first present a comprehensive landscape of the applications of NPs on health, especially addressing the role of NPs in medical diagnosis, therapy. Then, the toxicity of NPs on health systems is introduced. We describe in detail the effects of NPs on various systems, including respiratory, nervous, endocrine, immune, and reproductive systems, and the carcinogenicity of NPs. Furthermore, we unravels the underlying mechanisms of NPs including ROS accumulation, mitochondrial damage, inflammatory reaction, apoptosis, DNA damage, cell cycle, and epigenetic regulation. In addition, the classical study models such as cell lines and mice and the emerging models such as 3D organoids used for evaluating the toxicity or scientific study are both introduced. Overall, this review presents a critical summary and evaluation of the state of understanding of NPs, giving readers more better understanding of the NPs toxicology to remedy key gaps in knowledge and techniques.
Collapse
Affiliation(s)
- Lihui Xuan
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Zhao Ju
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| | - Magdalena Skonieczna
- Department of Systems Biology and EngineeringInstitute of Automatic ControlSilesian University of TechnologyGliwicePoland
- Biotechnology Centre, Silesian University of TechnologyGliwicePoland
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyDepartment of Radiation BiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ruixue Huang
- Department of Occupational and Environmental HealthXiangya School of Public HealthCentral South UniversityChangshaHunanChina
| |
Collapse
|
13
|
Villanueva-Flores F, Garcia-Atutxa I, Santos A, Armendariz-Borunda J. Toward a New Generation of Bio-Scaffolds for Neural Tissue Engineering: Challenges and Perspectives. Pharmaceutics 2023; 15:1750. [PMID: 37376198 DOI: 10.3390/pharmaceutics15061750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neural tissue engineering presents a compelling technological breakthrough in restoring brain function, holding immense promise. However, the quest to develop implantable scaffolds for neural culture that fulfill all necessary criteria poses a remarkable challenge for material science. These materials must possess a host of desirable characteristics, including support for cellular survival, proliferation, and neuronal migration and the minimization of inflammatory responses. Moreover, they should facilitate electrochemical cell communication, display mechanical properties akin to the brain, emulate the intricate architecture of the extracellular matrix, and ideally allow the controlled release of substances. This comprehensive review delves into the primary requisites, limitations, and prospective avenues for scaffold design in brain tissue engineering. By offering a panoramic overview, our work aims to serve as an essential resource, guiding the creation of materials endowed with bio-mimetic properties, ultimately revolutionizing the treatment of neurological disorders by developing brain-implantable scaffolds.
Collapse
Affiliation(s)
- Francisca Villanueva-Flores
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Campus Chihuahua, Av. Heroico Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chihuahua, Mexico
| | - Igor Garcia-Atutxa
- Máster en Bioinformática y Bioestadística, Universitat Oberta de Catalunya, Rambla del Poblenou, 156, 08018 Barcelona, Spain
| | - Arturo Santos
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45201, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45201, Jalisco, Mexico
- Instituto de Biología Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
14
|
Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. Int J Mol Sci 2022; 23:ijms232315343. [PMID: 36499665 PMCID: PMC9739793 DOI: 10.3390/ijms232315343] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes are increasingly used in nanomedicine and material chemistry research, mostly because of their small size over a large surface area. Due to their properties, they are very attractive candidates for use in medicine and as drug carriers, contrast agents, biological platforms, and so forth. Carbon nanotubes (CNTs) may affect many organs, directly or indirectly, so there is a need for toxic effects evaluation. The main mechanisms of toxicity include oxidative stress, inflammation, the ability to damage DNA and cell membrane, as well as necrosis and apoptosis. The research concerning CNTs focuses on different animal models, functionalization, ways of administration, concentrations, times of exposure, and a variety of properties, which have a significant effect on toxicity. The impact of pristine CNTs on toxicity in rodent models is being increasingly studied. However, it is immensely difficult to compare obtained results since there are no standardized tests. This review summarizes the toxicity issues of pristine CNTs in rodent models, as they are often the preferred model for human disease studies, in different organ systems, while considering the various factors that affect them. Regardless, the results showed that the majority of toxicological studies using rodent models revealed some toxic effects. Even with different properties, carbon nanotubes were able to generate inflammation, fibrosis, or biochemical changes in different organs. The problem is that there are only a small amount of long-term toxicity studies, which makes it impossible to obtain a good understanding of later effects. This article will give a greater overview of the situation on toxicity in many organs. It will allow researchers to look at the toxicity of carbon nanotubes in a broader context and help to identify studies that are missing to properly assess toxicity.
Collapse
|
15
|
MR S, Nallamuthu I, Dongzagin S, Anand T. Toxicological evaluation of PLA/PVA-Naringenin nanoparticles: in vitro and in vivo studies. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|