1
|
Wang X, Wang L, Zhang Y, Zhang M, Zhang D, Zhou L. Efficient co-stabilization of arsenic and cadmium in farmland soil by schwertmannite under long-term flooding-drying condition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:124005. [PMID: 38648965 DOI: 10.1016/j.envpol.2024.124005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/16/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Simultaneously stabilizing of arsenic (As) and cadmium (Cd) in co-contaminated soil presents substantial challenges due to their contrasting chemical properties. Schwertmannite (Sch) is recognized as a potent adsorbent for As pollution, with alkali modification showing promising results in the simultaneous immobilization of both As and Cd. This study systematically investigated the long-term stabilization efficacy of alkali-modified Sch in Cd-As co-contaminated farmland soil over a 200-day flooding-drying period. The results revealed that As showed significant mobility in flooded conditions, whereas Cd exhibited increased soil availability under drying phases. The addition of Sch did not affect the trends in soil pH and Eh fluctuations; nonetheless, it led to an augmentation in the levels of amorphous iron oxides and SO42- concentration in soil pore water. At a dosage of 0.5% Sch, there was a notable decrease in the mobility and soil availability of As and Cd under both flooding (34.5% and 53.6% at Day 50) and drying conditions (27.0% and 29.4% at Day 130), primarily promoting the transformation of labile metal(loid) fraction into amorphous iron oxide-bound forms. Throughout the flooding-drying treatment period, Sch maintained stable mineral morphology and mineralogical phase, highlighting its long-term stabilization effect. The findings of this study emphasize the promising application of Sch-based soil remediation agents in mitigating the challenges arising from As-Cd co-contamination. Further research is warranted to explore their application in real farmland settings and their impact on the uptake of toxic metal(loid)s by plants.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lijie Wang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yiming Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Mingjiang Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Dejin Zhang
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Lixiang Zhou
- Department of Environmental Engineering, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
2
|
Legesse TG, Dong G, Dong X, Qu L, Chen B, Daba NA, Sorecha EM, Zhu W, Lei T, Shao C. The extreme wet and large precipitation size increase carbon uptake in Eurasian meadow steppes: Evidence from natural and manipulated precipitation experiments. ENVIRONMENTAL RESEARCH 2023; 237:117029. [PMID: 37659645 DOI: 10.1016/j.envres.2023.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The distribution of seasonal precipitation would profoundly affect the dynamics of carbon fluxes in terrestrial ecosystems. However, little is known about the impacts of extreme precipitation and size events on ecosystem carbon cycle when compared to the effects of average precipitation amount. The study involved an analysis of carbon fluxes and water exchange using the eddy covariance and chamber based techniques during the growing seasons of 2015-2017 in Bayan, Mongolia and 2019-2021 in Hulunbuir, Inner Mongolia, respectively. The components of carbon fluxes and water exchange at each site were normalized to evaluate of relative response among carbon fluxes and water exchange. The investigation delved into the relationship between carbon fluxes and extreme precipitation over five gradients (control, dry spring, dry summer, wet spring and wet summer) in Hulunbuir meadow steppe and distinct four precipitation sizes (0.1-2, 2-5, 5-10, and 10-25 mm d-1) in Bayan meadow steppe. The wet spring and summer showed the greatest ecosystem respiration (ER) relative response values, 76.2% and 73.5%, respectively, while the dry spring (-16.7%) and dry summer (14.2%) showed the lowest values. Gross primary production (GPP) relative response improved with wet precipitation gradients, and declined with dry precipitation gradients in Hulunbuir meadow steppe. The least value in net ecosystem CO2 exchange (NEE) was found at 10-25 mm d-1 precipitation size in Bayan meadow steppe. Similarly, the ER and GPP increased with size of precipitation events. The structural equation models (SEM) satisfactorily fitted the data (χ2 = 43.03, d.f. = 11, p = 0.215), with interactive linkages among soil microclimate, water exchange and carbon fluxes components regulating NEE. Overall, this study highlighted the importance of extreme precipitation and event size in influencing ecosystem carbon exchange, which is decisive to further understand the carbon cycle in meadow steppes.
Collapse
Affiliation(s)
- Tsegaye Gemechu Legesse
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang Dong
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaobing Dong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems (SKLHIGA), College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Luping Qu
- Forest Ecology Stable Isotope Center, Forestry College, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baorui Chen
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Nano Alemu Daba
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Eba Muluneh Sorecha
- State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wen Zhu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tinajie Lei
- State Engineering Laboratory of Efficient Water Use of Crops and Disaster Loss Mitigation/Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of China, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Changliang Shao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Kerl CF, Basallote MD, Käberich M, Oldani E, Cerón Espejo NP, Colina Blanco AE, Cánovas CR, Nieto JM, Planer-Friedrich B. Consequences of sea level rise for high metal(loid) loads in the Ría of Huelva estuary sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162354. [PMID: 36822435 DOI: 10.1016/j.scitotenv.2023.162354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Ría of Huelva, located in southwestern Spain, is a highly metal(loid)-contaminated estuary system where sediments are exceeding action limits in an increasing order for Cd, Zn, Pb, Cu, and As. With a predicted sea level rise over the next 50 years, the estuary will be subject to flooding with brackish water or seawater. To evaluate the risk of metal(loid) mobilization under future climate scenarios, different locations along the estuary were sampled at different depths. Samples were flooded with river water, brackish water, and seawater under different short- and long-term laboratory setups. Potential metal(loid) mobilization showed that water quality standards for As, Pb, Zn, Ni, Cu, and Cd could be exceeded upon seawater flooding. However, metal(loid) mobilization was not predictable solely based on sediment loads. The driving factors for cation and anion mobility were identified to be mainly pH under low salinity and competitive desorption under high salinity conditions. Further drivers such as wave movement or labile C input in C-limited systems were found to enhance metal(loid) mobilization. Long-term flooding of intact sediment cores revealed that sea level rise will have different effects on the estuary system depending on duration of flooding. Short-term flooding in the near future will first affect alkaline sediments and enhance currently low cation mobilization, while anion mobilization due to reductive Fe dissolution will remain high. Once acidic sediments further inland are flooded with seawater, highest contaminant mobilization can be expected as high salinity will further enhance already high cation mobilization under acidic pH. Long-term flooding with seawater will neutralize the sediment pH and limit cation mobilization compared to acidic pH. However, the contaminant load stored in the estuary is so high that, extrapolating data obtained, mobilization could last for >1000 years, e.g. for As, Pb, and Al.
Collapse
Affiliation(s)
- Carolin F Kerl
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - M Dolores Basallote
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva 21071, Spain
| | - Merle Käberich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Erica Oldani
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Nathalia P Cerón Espejo
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Andrea E Colina Blanco
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Carlos Ruiz Cánovas
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva 21071, Spain
| | - José Miguel Nieto
- Department of Earth Sciences & Research Center on Natural Resources, Health and the Environment (RENSMA), University of Huelva, Huelva 21071, Spain
| | - Britta Planer-Friedrich
- Environmental Geochemistry, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
4
|
Zhou M, Liu Z, Zhang B, Yang J, Hu B. Interaction between arsenic metabolism genes and arsenic leads to a lose-lose situation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119971. [PMID: 36055451 DOI: 10.1016/j.envpol.2022.119971] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are essential for modifying arsenic morphology, mobility, and toxicity. Still, knowledge of the microorganisms responsible for arsenic metabolism in specific arsenic-contaminated fields, such as metallurgical plants is limited. We sampled on-field soils from three depths at 70 day intervals to explore the distribution and transformation of arsenic in the soil. Arsenic-metabolizing microorganisms were identified from the mapped gene sequences. Arsenic metabolism pathways were constructed with metagenomics and AsChip analysis (a high-throughput qPCR chip for arsenic metabolism genes). It has been shown in the result that 350 genera of arsenic-metabolizing microorganisms carrying 17 arsenic metabolism genes in field soils were identified, as relevant to arsenic reduction, arsenic methylation, arsenic respiration, and arsenic oxidation, respectively. Arsenic reduction genes were the only genes shared by the 10 high-ranking arsenic-metabolizing microorganisms. Arsenic reduction genes (arsABCDRT and acr3) accounted for 73.47%-78.11% of all arsenic metabolism genes. Such genes dominated arsenic metabolism, mediating the reduction of 14.11%-19.86% of As(V) to As(III) in 0-100 cm soils. Arsenic reduction disrupts microbial energy metabolism, DNA replication and repair and membrane transport. Arsenic reduction led to a significant decrease in the abundance of 17 arsenic metabolism genes (p < 0.0001). The critical role of arsenic-reducing microorganisms in the migration and transformation of arsenic in metallurgical field soils, was emphasized with such results. These results were of pronounced significance for understanding the transformation behavior of arsenic and the precise regulation of arsenic in field soil.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Environmental Engineering, College of Environmental & Resources Sciences, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- Department of Environmental Engineering, College of Environmental & Resources Sciences, Zhejiang University, Hangzhou, China
| | - Baofeng Zhang
- Zhejiang Hangzhou Ecological Environment Monitoring Center, Hangzhou, China
| | - Jiawen Yang
- Department of Environmental Engineering, College of Environmental & Resources Sciences, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, College of Environmental & Resources Sciences, Zhejiang University, Hangzhou, China; Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Carrillo-González R, González-Chávez MCA, Cazares GO, Luna JL. Trace element adsorption from acid mine drainage and mine residues on nanometric hydroxyapatite. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:280. [PMID: 35292869 DOI: 10.1007/s10661-022-09887-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Mining Ag, Cu, Pb, and Zn sulfides by flotation produces great volume of residues, which oxidized through time and release acid solutions. Leachates from tailing heaps are a concern due to the risk of surface water pollution. Hydroxyapatite nanoparticles may remove trace elements from acid leachate collected from an oxidized tailing heap (pH ranged 1.69 ± 0.3 to 2.23 ± 0.16; [SO42-] = 58 ± 0.67 to 60.69 ± 0.39 mmol). Based on the batch experiments under standard conditions, the average removal efficiency was 96%, 92%, 86%, and 67% for Cd, Pb, Zn, and Cu, respectively. The Zn adsorption was modeled by the Freundlich equation, but Cd, Cu, and Pb isotherms do not fit to Freundlich nor Lagmuir equations. Adsorption and other mechanisms occur during trace elements removal by hydroxyapatite. In the polymetallic system, trace elements saturate the specific surface of hydroxyapatite in the following order Zn, Cd, Cu, and Pb. The pH values must be higher than 7.5 to adsorb trace elements. The dose of 3.8% of hydroxyapatite to acid mine drainage removed efficiently > 80% of the soluble Fe, Cu, Mn, Zn, Cd, Ni, and Pb: 4020.0, 37.3, 34.8, 432.0, 4.4, 0.7, and 0.11 mg L-1 from leachate A and 3357.1, 46.6, 27.8, 569.0, 4.7, 0.6, and 1.7 from leachate B, respectively. The application of 0.7% of hydroxyapatite decreased the extractable Pb in unoxidized tailing heaps from 272 to 100 mg kg-1. It is likely to use hydroxyapatite to control trace element mobility from mine residues to surrounding soils and surface water.
Collapse
Affiliation(s)
- Rogelio Carrillo-González
- Programa de Edafología, Colegio de Postgraduados, Carretera México-Texcoco km 36.5, 56106, Texcoco, Mexico.
| | - M C A González-Chávez
- Programa de Edafología, Colegio de Postgraduados, Carretera México-Texcoco km 36.5, 56106, Texcoco, Mexico
| | - G Ortiz Cazares
- Programa de Edafología, Colegio de Postgraduados, Carretera México-Texcoco km 36.5, 56106, Texcoco, Mexico
| | - J López Luna
- Instituto de Estudios Ambientales, Universidad de La Sierra Juárez, 68725, Ixtlán de Juárez, Oaxaca, Mexico
| |
Collapse
|