1
|
Miller R, Nemeth A, Taggart JL, Hall MAK, Akwe J. Serving Vietnam Veterans Hospitalized Outside the VA System: A Scoping Review of Presumptive Service-Related Illnesses and Presentations. J Gen Intern Med 2025:10.1007/s11606-025-09601-8. [PMID: 40375044 DOI: 10.1007/s11606-025-09601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/29/2025] [Indexed: 05/18/2025]
Abstract
BACKGROUND Recent legislation, the MISSION Act and the PACT Act, expanded access to and utilization of non-Department of Veterans Affairs (VA) health care; more Veterans now receive care from non-VA healthcare providers. Hospitalists outside the VA may be less familiar with Veterans' service-related exposures and presumptive service-related conditions. We aimed to summarize research findings on service-related exposures and conditions among Vietnam War Veterans. METHODS Using Arksey and O'Malley's methodological framework for scoping reviews, we searched PubMed, EMBASE, and Web of Science databases in June 2023. References were imported into EndNote and screened using Covidence collaborative review software. Two reviewers assessed eligibility, with disagreements resolved by a third, then one extracted data. We included papers published in 1998 or later focused on US Vietnam Veterans, excluding genetic/modeling studies, study protocols, case reports/series, clinical trials, and papers without relevance to hospital medicine. RESULTS We identified 1185 papers; 251 were duplicates, 450 were excluded through title/abstract review, and 335 were excluded after full-text review. A total of 149 studies were included. The exposures mentioned most frequently were Agent Orange/unspecified herbicides (n = 55), violence/combat (n = 14), and infectious disease (n = 9). The most common conditions were PTSD (n = 39), neuropsychiatric conditions (n = 35), cancer (n = 19), metabolic/endocrine disease (n = 11), and neurological dysfunction (n = 11). Overall mortality was addressed in 13 studies. CONCLUSIONS The current literature highlights numerous service-related exposures and conditions recognized by the VA, which may assist hospitalists caring for Vietnam Veterans outside the VA.
Collapse
Affiliation(s)
- Robert Miller
- New Orleans VA Medical Center, New Orleans, LA, USA.
- Tulane University Medical School, New Orleans, LA, USA.
| | - Attila Nemeth
- VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - J Luke Taggart
- New Orleans VA Medical Center, New Orleans, LA, USA
- Tulane University Medical School, New Orleans, LA, USA
| | - Mary Ann Kirkconnell Hall
- Division of Hospital Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Joyce Akwe
- Division of Hospital Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta VA Health Care System/VISN 7 Clinical Resource Hub, Atlanta, GA, USA
| |
Collapse
|
2
|
Li Y, Liu X, Chen M, Yi S, He X, Xiao C, Huang D. DNA methylation-based age estimation from semen: Genome-wide marker identification and model development. Forensic Sci Int Genet 2025; 76:103215. [PMID: 39752798 DOI: 10.1016/j.fsigen.2024.103215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 03/04/2025]
Abstract
DNA methylation at age-related CpG (AR-CpG) sites holds significant promise for forensic age estimation. However, somatic models perform poorly in semen due to unique methylation dynamics during spermatogenesis, and current studies are constrained by the limited coverage of methylation microarrays. This study aimed to identify novel semen-specific AR-CpG sites using double-enzyme reduced representation bisulfite sequencing (dRRBS) and validate these markers, alongside previously reported sites and neighboring CpGs, using bisulfite amplicon sequencing (BSAS) to develop robust age estimation models. A methylome-wide association study was conducted on semen samples from 21 healthy Chinese men across three age groups, generating over 4 million CpG sites per sample at ≥ 5 × depth. Analysis of 721,840 shared CpG sites revealed that more than 95 % were not covered by conventional methylation microarrays. Differential methylation and correlation analyses identified 139 AR-CpG sites. A two-stage validation process using multiplex PCR-based BSAS was performed. In the first stage, 47 top dRRBS-identified AR-CpG sites, 26 literature-reported sites, and 242 neighboring CpGs were assessed in 129 semen samples (22-64 years), validating 31 dRRBS, 26 literature-reported, and 152 neighboring CpGs as age-related. The second stage examined 154 CpG sites in 247 samples (22-67 years), confirming 71 AR-CpG sites with |rho| > 0.50. Among these, chr2:129071885 (cg19998819) emerged as the strongest age-associated marker (rho = 0.81). Using the second BSAS dataset, age estimation models were developed with multiple linear regression and random forest (RF) algorithms within a repeated nested cross-validation (CV) framework (10-fold outer CV with 10-fold inner CV, repeated 10 times). The RF models demonstrated superior accuracy across feature subsets of 5-25 CpGs. The optimized 9-CpG RF model achieved an average root mean square error of 4.73 years (4.62-4.96, SD=0.10) and an average mean absolute error of 3.30 years (3.23-3.43, SD=0.06). This study demonstrates the utility of dRRBS for large-scale AR-CpG discovery and provides a robust age estimation model and a comprehensive reference database of semen-specific AR-CpG sites for forensic applications.
Collapse
Affiliation(s)
- Ya Li
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Xiaozhao Liu
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Maomin Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Ximiao He
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Center for Genomics and Proteomics Research, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - Daixin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
3
|
Khodasevich D, Gladish N, Daredia S, Bozack AK, Shen H, Nwanaji-Enwerem JC, Needham BL, Rehkopf DH, Cardenas A. Exposome-wide association study of environmental chemical exposures and epigenetic aging in the national health and nutrition examination survey. Aging (Albany NY) 2025; 17:408-430. [PMID: 39938123 PMCID: PMC11892924 DOI: 10.18632/aging.206201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Epigenetic clocks can serve as pivotal biomarkers linking environmental exposures with biological aging. However, research on the influence of environmental exposures on epigenetic aging has largely been limited to a small number of chemicals and specific populations. We harnessed data from the National Health and Nutrition Examination Survey 1999-2000 and 2001-2002 cycles to examine exposome-wide associations between environmental exposures and epigenetic aging. A total of 8 epigenetic aging biomarkers were obtained from whole blood in 2,346 participants ranging from 50-84 years of age. A total of 64 environmental exposures including phthalates, metals, pesticides, dioxins, and polychlorinated biphenyls (PCBs) were measured in blood and urine. Associations between log2-transformed/standardized exposure measures and epigenetic age acceleration (EAA) were assessed using survey-weighted generalized linear regression. A 1 standard deviation (SD) increase in log2 serum cadmium levels was associated with higher GrimAge acceleration (beta = 1.23 years, p = 3.63e-06), higher GrimAge2 acceleration (beta = 1.27 years, p = 1.62e-05), and higher DunedinPoAm (beta = 0.02, p = 2.34e-05). A 1 SD increase in log2 serum cotinine levels was associated with higher GrimAge2 acceleration (beta = 1.40 years, p = 6.53e-04) and higher DunedinPoAm (beta = 0.03, p = 6.31e-04). Associations between cadmium and EAA across several clocks persisted in sensitivity models adjusted for serum cotinine levels, and other associations involving lead, dioxins, and PCBs were identified. Several environmental exposures are associated with epigenetic aging in a nationally representative US adult population, with particularly strong associations related to cadmium and cotinine across several epigenetic clocks.
Collapse
Affiliation(s)
- Dennis Khodasevich
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
| | - Nicole Gladish
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
| | - Saher Daredia
- Division of Epidemiology, Berkeley Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Anne K. Bozack
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
| | - Hanyang Shen
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
| | - Jamaji C. Nwanaji-Enwerem
- Department of Emergency Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Belinda L. Needham
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - David H. Rehkopf
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
- Department of Health Policy, Stanford University, Palo Alto, CA 94305, USA
- Department of Medicine (Primary Care and Population Health), Stanford University, Palo Alto, CA 94305, USA
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
- Department of Sociology, Stanford University, Palo Alto, CA 94305, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health, Stanford University, Palo Alto, CA 94305, USA
- Department of Pediatrics, Stanford University, Palo Alto, CA 94305, USA
| |
Collapse
|
4
|
Choi BY, Ryoo SW, Son SY, Lee JH, Min KB, Min JY. Epigenetics-Based Age Acceleration Associated with 2,3,7,8 TCDD Exposure in Older Americans. Int J Mol Sci 2025; 26:1478. [PMID: 40003942 PMCID: PMC11855520 DOI: 10.3390/ijms26041478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is highly toxic with potential impacts on aging. While previous studies have linked TCDD exposure to reduced telomere length and altered sperm DNA methylation (DNAm) age, its relationship with epigenetic aging remains unclear. This study investigated the association between serum TCDD levels and epigenetic clocks derived from DNAm in whole blood in older adults. Using data from the 1999-2002 National Health and Nutrition Examination Survey, we analyzed 589 participants aged 50 to 79 years with available blood TCDD and DNA methylation measures. Blood TCDD levels were measured by high-resolution gas chromatography/isotope-dilution high-resolution mass spectrometry. The six DNAm-based epigenetic clocks included Horvath Age, Hannum Age, SkinBlood Age, Pheno Age, Grim Age, and Grim Age2. Multivariable regression analysis showed significant associations between TCDD levels and Horvath Age, Hannum Age, Pheno Age, Grim Age, and Grim Age2. However, when using lipid-adjusted TCDD levels, significant associations remained only for PhenoAge (β = 0.73; SE, 0.31; p = 0.0258) and Grim Age2 (β = 0.44; SE, 0.21; p = 0.0472). The strongest non-linear trends were observed for PhenoAge, Grim Age, and Grim Age2, suggesting a threshold-dependent impact of TCDD on DNAm aging processes. Our findings suggest that TCDD exposure is associated with accelerated epigenetic aging, particularly in mortality-related clocks, with a dose-dependent and non-linear pattern.
Collapse
Affiliation(s)
- Baek-Yong Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (B.-Y.C.); (S.-W.R.); (S.-Y.S.); (J.-H.L.)
| | - Seung-Woo Ryoo
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (B.-Y.C.); (S.-W.R.); (S.-Y.S.); (J.-H.L.)
| | - Seok-Yoon Son
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (B.-Y.C.); (S.-W.R.); (S.-Y.S.); (J.-H.L.)
| | - Ji-Hyeon Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (B.-Y.C.); (S.-W.R.); (S.-Y.S.); (J.-H.L.)
| | - Kyoung-Bok Min
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (B.-Y.C.); (S.-W.R.); (S.-Y.S.); (J.-H.L.)
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul 03080, Republic of Korea
| | - Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| |
Collapse
|
5
|
Geris R, Malta M, Soares LA, de Souza Neta LC, Pereira NS, Soares M, Reis VDS, Pereira MDG. A Review about the Mycoremediation of Soil Impacted by War-like Activities: Challenges and Gaps. J Fungi (Basel) 2024; 10:94. [PMID: 38392767 PMCID: PMC10890077 DOI: 10.3390/jof10020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
(1) Background: The frequency and intensity of war-like activities (war, military training, and shooting ranges) worldwide cause soil pollution by metals, metalloids, explosives, radionuclides, and herbicides. Despite this environmentally worrying scenario, soil decontamination in former war zones almost always involves incineration. Nevertheless, this practice is expensive, and its efficiency is suitable only for organic pollutants. Therefore, treating soils polluted by wars requires efficient and economically viable alternatives. In this sense, this manuscript reviews the status and knowledge gaps of mycoremediation. (2) Methods: The literature review consisted of searches on ScienceDirect and Web of Science for articles (1980 to 2023) on the mycoremediation of soils containing pollutants derived from war-like activities. (3) Results: This review highlighted that mycoremediation has many successful applications for removing all pollutants of war-like activities. However, the mycoremediation of soils in former war zones and those impacted by military training and shooting ranges is still very incipient, with most applications emphasizing explosives. (4) Conclusion: The mycoremediation of soils from conflict zones is an entirely open field of research, and the main challenge is to optimize experimental conditions on a field scale.
Collapse
Affiliation(s)
- Regina Geris
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Marcos Malta
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Luar Aguiar Soares
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Lourdes Cardoso de Souza Neta
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Natan Silva Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Miguel Soares
- Institute of Chemistry, Federal University of Bahia, Barão de Jeremoabo Street, s/n, Campus Ondina, 40170-115 Salvador, BA, Brazil
| | - Vanessa da Silva Reis
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| | - Madson de Godoi Pereira
- Department of Exact and Earth Sciences, Bahia State University, Silveira Martins Street, N. 2555, Cabula, 41150-000 Salvador, BA, Brazil
| |
Collapse
|
6
|
Xiao C, Li Y, Chen M, Yi S, Huang D. Improved age estimation from semen using sperm-specific age-related CpG markers. Forensic Sci Int Genet 2023; 67:102941. [PMID: 37820545 DOI: 10.1016/j.fsigen.2023.102941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/25/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
Accurate age estimation from semen has the potential to greatly narrow the pool of unidentified suspects in sexual assault investigations. However, previous efforts utilizing semen age-related CpG (AR-CpG) markers have shown lower accuracy compared to blood AR-CpG-based methods. This discrepancy may be attributed to DNA methylation (DNAm) interferences from "round cells" such as leukocytes and immature sperm cells in semen. This study aimed to develop age calculators based on sperm-specific AR-CpG markers and to achieve performance-improved age estimates from sperm DNA. Through an analysis of publicly available MethylationEPIC microarray data from 90 sperm samples of healthy males aged 22-51 years, we identified 31 sperm-specific AR-CpG markers with absolute Pearson's R values > 0.5 and Benjamini-Hochberg adjusted p values < 0.013. The top 19 AR-CpG markers with the largest absolute R values and beta ranges > 0.10, along with 3 reported semen AR-CpG markers (cg06304190, cg06979108, and cg12837463), were integrated into two methylation SNaPshot panels (Ⅰ and Ⅱ), each containing 11 markers. The 21 qualified AR-CpG markers showed absolute R values ≥ 0.427 in an independent validation cohort of 253 sperm DNA samples (22-67 years), with cg21843517 exhibiting the strongest age correlation (R = 0.853). The optimal models, constructed using sperm DNAm data of the training set (n = 214, 22-67 years) and markers from panel Ⅰ (n = 11), panel Ⅱ (n = 10), or both panels, achieved mean absolute errors (MAEs) of 2.526-4.746, 3.890-5.715, and > 9.800 years on the test sets of sperm (n = 39, 23-64 years), semen (same donors as the sperm test set), and whole blood (n = 40, 22-65 years), respectively. The simplified models incorporating 3, 5, 9, or 14 AR-CpG markers (MAE = 2.918-4.139 years for sperm) still outperformed the Lee et al. original model (MAE = 6.444 years for semen) and the reconstructed panel Lee model (MAE = 6.011 years for sperm). The final models, utilizing all sperm DNAm data (n = 253) and markers from panel Ⅰ, panel Ⅱ, or both panels, yielded mean MAEs of 2.587, 2.766, and 2.200 years, respectively, on the 50 test sets generated by 5 repeats of 10-fold cross-validations. Additionally, multiple markers in both panels demonstrated the ability to discern sperm or semen from blood with 100% accuracy. In summary, our study substantiates the potential of sperm-specific AR-CpG markers for precise age estimation from sperm DNA, providing an improved toolset for forensic investigations.
Collapse
Affiliation(s)
- Chao Xiao
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Hubei Key Laboratory of the Forensic Science, Hubei University of Police, Wuhan, Hubei 430035, PR China.
| | - Ya Li
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Maomin Chen
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Shaohua Yi
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China
| | - Daixin Huang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| |
Collapse
|
7
|
Dolce A, Della Torre S. Sex, Nutrition, and NAFLD: Relevance of Environmental Pollution. Nutrients 2023; 15:nu15102335. [PMID: 37242221 DOI: 10.3390/nu15102335] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease and represents an increasing public health issue given the limited treatment options and its association with several other metabolic and inflammatory disorders. The epidemic, still growing prevalence of NAFLD worldwide cannot be merely explained by changes in diet and lifestyle that occurred in the last few decades, nor from their association with genetic and epigenetic risk factors. It is conceivable that environmental pollutants, which act as endocrine and metabolic disruptors, may contribute to the spreading of this pathology due to their ability to enter the food chain and be ingested through contaminated food and water. Given the strict interplay between nutrients and the regulation of hepatic metabolism and reproductive functions in females, pollutant-induced metabolic dysfunctions may be of particular relevance for the female liver, dampening sex differences in NAFLD prevalence. Dietary intake of environmental pollutants can be particularly detrimental during gestation, when endocrine-disrupting chemicals may interfere with the programming of liver metabolism, accounting for the developmental origin of NAFLD in offspring. This review summarizes cause-effect evidence between environmental pollutants and increased incidence of NAFLD and emphasizes the need for further studies in this field.
Collapse
Affiliation(s)
- Arianna Dolce
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
8
|
Malecki KMC, Andersen JK, Geller AM, Harry GJ, Jackson CL, James KA, Miller GW, Ottinger MA. Integrating Environment and Aging Research: Opportunities for Synergy and Acceleration. Front Aging Neurosci 2022; 14:824921. [PMID: 35264945 PMCID: PMC8901047 DOI: 10.3389/fnagi.2022.824921] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/25/2022] Open
Abstract
Despite significant overlaps in mission, the fields of environmental health sciences and aging biology are just beginning to intersect. It is increasingly clear that genetics alone does not predict an individual’s neurological aging and sensitivity to disease. Accordingly, aging neuroscience is a growing area of mutual interest within environmental health sciences. The impetus for this review came from a workshop hosted by the National Academies of Sciences, Engineering, and Medicine in June of 2020, which focused on integrating the science of aging and environmental health research. It is critical to bridge disciplines with multidisciplinary collaborations across toxicology, comparative biology, epidemiology to understand the impacts of environmental toxicant exposures and age-related outcomes. This scoping review aims to highlight overlaps and gaps in existing knowledge and identify essential research initiatives. It begins with an overview of aging biology and biomarkers, followed by examples of synergy with environmental health sciences. New areas for synergistic research and policy development are also discussed. Technological advances including next-generation sequencing and other-omics tools now offer new opportunities, including exposomic research, to integrate aging biomarkers into environmental health assessments and bridge disciplinary gaps. This is necessary to advance a more complete mechanistic understanding of how life-time exposures to toxicants and other physical and social stressors alter biological aging. New cumulative risk frameworks in environmental health sciences acknowledge that exposures and other external stressors can accumulate across the life course and the advancement of new biomarkers of exposure and response grounded in aging biology can support increased understanding of population vulnerability. Identifying the role of environmental stressors, broadly defined, on aging biology and neuroscience can similarly advance opportunities for intervention and translational research. Several areas of growing research interest include expanding exposomics and use of multi-omics, the microbiome as a mediator of environmental stressors, toxicant mixtures and neurobiology, and the role of structural and historical marginalization and racism in shaping persistent disparities in population aging and outcomes. Integrated foundational and translational aging biology research in environmental health sciences is needed to improve policy, reduce disparities, and enhance the quality of life for older individuals.
Collapse
Affiliation(s)
- Kristen M. C. Malecki
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Kristen M. C. Malecki,
| | | | - Andrew M. Geller
- United States Environmental Protection Agency, Office of Research and Development, Durham, NC, United States
| | - G. Jean Harry
- Division of National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Chandra L. Jackson
- Division of Intramural Research, Department of Health and Human Services, Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, United States
- Department of Health and Human Services, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, United States
| | - Katherine A. James
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Denver, Denver, CO, United States
| | - Gary W. Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, United States
| | - Mary Ann Ottinger
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|