1
|
Rumon MMH. Advances in cellulose-based hydrogels: tunable swelling dynamics and their versatile real-time applications. RSC Adv 2025; 15:11688-11729. [PMID: 40236573 PMCID: PMC11997669 DOI: 10.1039/d5ra00521c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/25/2025] [Indexed: 04/17/2025] Open
Abstract
Cellulose-derived hydrogels have emerged as game-changing materials in biomedical research, offering an exceptional combination of water absorption capacity, mechanical resilience, and innate biocompatibility. This review explores the intricate mechanisms that drive their swelling behaviour, unravelling how molecular interactions and network architectures work synergistically to enable efficient water retention and adaptability. Their mechanical properties are explored in depth, with a focus on innovative chemical modifications and cross-linking techniques that enhance strength, elasticity, and functional versatility. The versatility of cellulose-based hydrogels shines in applications such as wound healing, precision drug delivery, and tissue engineering, where their biodegradability, biocompatibility, and adaptability meet the demands of cutting-edge healthcare solutions. By weaving together recent breakthroughs in their development and application, this review highlights their transformative potential to redefine regenerative medicine and other biomedical fields. Ultimately, it emphasizes the urgent need for continued research to unlock the untapped capabilities of these extraordinary biomaterials, paving the way for new frontiers in healthcare innovation.
Collapse
Affiliation(s)
- Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University 66 Mohakhali Dhaka 1212 Bangladesh
| |
Collapse
|
2
|
Paul JK, Azmal M, Haque ANMSNB, Meem M, Talukder OF, Ghosh A. Unlocking the secrets of the human gut microbiota: Comprehensive review on its role in different diseases. World J Gastroenterol 2025; 31:99913. [PMID: 39926224 PMCID: PMC11718612 DOI: 10.3748/wjg.v31.i5.99913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/25/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
The human gut microbiota, a complex and diverse community of microorganisms, plays a crucial role in maintaining overall health by influencing various physiological processes, including digestion, immune function, and disease susceptibility. The balance between beneficial and harmful bacteria is essential for health, with dysbiosis - disruption of this balance - linked to numerous conditions such as metabolic disorders, autoimmune diseases, and cancers. This review highlights key genera such as Enterococcus, Ruminococcus, Bacteroides, Bifidobacterium, Escherichia coli, Akkermansia muciniphila, Firmicutes (including Clostridium and Lactobacillus), and Roseburia due to their well-established roles in immune regulation and metabolic processes, but other bacteria, including Clostridioides difficile, Salmonella, Helicobacter pylori, and Fusobacterium nucleatum, are also implicated in dysbiosis and various diseases. Pathogenic bacteria, including Escherichia coli and Bacteroides fragilis, contribute to inflammation and cancer progression by disrupting immune responses and damaging tissues. The potential for microbiota-based therapies, such as probiotics, prebiotics, fecal microbiota transplantation, and dietary interventions, to improve health outcomes is examined. Future research directions in the integration of multi-omics, the impact of diet and lifestyle on microbiota composition, and advancing microbiota engineering techniques are also discussed. Understanding the gut microbiota's role in health and disease is essential for formulating personalized, efficacious treatments and preventive strategies, thereby enhancing health outcomes and progressing microbiome research.
Collapse
Affiliation(s)
- Jibon Kumar Paul
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Mahir Azmal
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - ANM Shah Newaz Been Haque
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Meghla Meem
- Faculty of Medicine, Dhaka University, Dhaka 1000, Bangladesh
| | - Omar Faruk Talukder
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Ajit Ghosh
- Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| |
Collapse
|
3
|
Bejenaru LE, Segneanu AE, Bejenaru C, Bradu IA, Vlase T, Herea DD, Văruţ MC, Bălăşoiu RM, Biţă A, Radu A, Mogoşanu GD, Ciocîlteu MV. Thermoresponsive Gels with Rosemary Essential Oil: A Novel Topical Carrier for Antimicrobial Therapy and Drug Delivery Applications. Gels 2025; 11:61. [PMID: 39852032 PMCID: PMC11765333 DOI: 10.3390/gels11010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
This study investigates the development and comprehensive characterization of innovative thermoresponsive gels incorporating rosemary essential oil (RoEO) encapsulated in poly(lactic-co-glycolic acid) (PLGA) microparticles, with a focus on their potential applications in topical antimicrobial and wound healing therapies. RoEO, renowned for its robust antimicrobial, antioxidant, and wound-healing properties, was subjected to detailed chemical profiling using gas chromatography-mass spectrometry (GC-MS), which identified oxygenated monoterpenes as its dominant constituents. PLGA microparticles were synthesized through an optimized oil-in-water emulsion technique, ensuring high encapsulation efficiency and structural integrity. These microparticles were thoroughly characterized using Fourier-transform infrared (FTIR) spectroscopy to confirm functional group interactions, scanning electron microscopy (SEM) for surface morphology, X-ray diffraction (XRD) for crystalline properties, and thermal analysis for stability assessment. The synthesized microparticles displayed uniform size distribution and efficient encapsulation, demonstrating compatibility with the gel matrix. Two distinct thermoresponsive gel formulations were developed using varying ratios of Poloxamer 407 and Poloxamer 188 to achieve optimal performance. The gels were evaluated for key physicochemical properties, including pH, gelation temperature, viscosity, and rheological behavior. Both formulations exhibited thermoresponsive gelation at skin-compatible temperatures (27.6 °C and 32.9 °C), favorable pH levels (6.63 and 6.40), and shear-thinning behavior suitable for topical application. Antimicrobial efficacy was assessed against common pathogens associated with skin infections, including Staphylococcus aureus, Escherichia coli, and Candida albicans. The RoEO-PLGA-loaded gels demonstrated significant inhibitory effects, confirming their potential as effective carriers for controlled and localized drug delivery. These findings underscore the promising application of RoEO-PLGA-loaded thermoresponsive gels in addressing challenges associated with topical antimicrobial therapies and wound care, offering an innovative approach to enhancing therapeutic outcomes. By integrating the bioactive potential of RoEO with the advanced delivery capabilities of PLGA microparticles and thermoresponsive gels, this study paves the way for the development of next-generation formulations tailored to meet the specific needs of localized drug delivery in skin health management.
Collapse
Affiliation(s)
- Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Adina-Elena Segneanu
- Institute for Advanced Environmental Research, West University of Timişoara, 4 Oituz Street, 300086 Timişoara, Romania; (A.-E.S.); (I.A.B.); (T.V.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Ionela Amalia Bradu
- Institute for Advanced Environmental Research, West University of Timişoara, 4 Oituz Street, 300086 Timişoara, Romania; (A.-E.S.); (I.A.B.); (T.V.)
| | - Titus Vlase
- Institute for Advanced Environmental Research, West University of Timişoara, 4 Oituz Street, 300086 Timişoara, Romania; (A.-E.S.); (I.A.B.); (T.V.)
- Research Center for Thermal Analyzes in Environmental Problems, West University of Timişoara, 16 Johann Heinrich Pestalozzi Street, 300115 Timişoara, Romania
| | - Dumitru-Daniel Herea
- National Institute of Research and Development for Technical Physics, 47 Dimitrie Mangeron Avenue, 700050 Iaşi, Romania;
| | - Marius Ciprian Văruţ
- Department of Physics, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Roxana Maria Bălăşoiu
- Department of Biochemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - Andrei Biţă
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Antonia Radu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania; (L.E.B.); (A.B.); (G.D.M.)
| | - Maria Viorica Ciocîlteu
- Department of Instrumental and Analytical Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania;
| |
Collapse
|
4
|
Guo C, Jiang X, Guo X, Ou L. An Evolutionary Review of Hemoperfusion Adsorbents: Materials, Preparation, Functionalization, and Outlook. ACS Biomater Sci Eng 2024; 10:3599-3611. [PMID: 38776416 DOI: 10.1021/acsbiomaterials.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Accumulation of pathogenic factors in the blood may cause irreversible damage and may even be life-threatening. Hemoperfusion is an effective technique for eliminating pathogenic factors, which is widely used in the treatment of various diseases including liver failure, renal failure, sepsis, and others. Hemoperfusion adsorbents are crucial in this process as they specifically bind and remove the target pathogenic factors. This review describes the development of hemoperfusion adsorbents, detailing the different properties exhibited by inorganic materials, organic polymers, and new materials. Advances in natural and synthetic polymers and novel materials manufacturing techniques have driven the expansion of hemoperfusion adsorbents in clinical applications. Stimuli-responsive (smart responsive) adsorbents with controllable molecular binding properties have many promising and environmentally friendly biomedical applications. Knowledge gaps, future research directions, and prospects for hemoperfusion adsorbents are discussed.
Collapse
Affiliation(s)
- Chen Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xinbang Jiang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Xiaofang Guo
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Lailiang Ou
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Stimuli-Responsive Boron-Based Materials in Drug Delivery. Int J Mol Sci 2023; 24:ijms24032757. [PMID: 36769081 PMCID: PMC9917063 DOI: 10.3390/ijms24032757] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Drug delivery systems, which use components at the nanoscale level as diagnostic tools or to release therapeutic drugs to particular target areas in a regulated manner, are a fast-evolving field of science. The active pharmaceutical substance can be released via the drug delivery system to produce the desired therapeutic effect. The poor bioavailability and irregular plasma drug levels of conventional drug delivery systems (tablets, capsules, syrups, etc.) prevent them from achieving sustained delivery. The entire therapy process may be ineffective without a reliable delivery system. To achieve optimal safety and effectiveness, the drug must also be administered at a precision-controlled rate and the targeted spot. The issues with traditional drug delivery are overcome by the development of stimuli-responsive controlled drug release. Over the past decades, regulated drug delivery has evolved considerably, progressing from large- and nanoscale to smart-controlled drug delivery for several diseases. The current review provides an updated overview of recent developments in the field of stimuli-responsive boron-based materials in drug delivery for various diseases. Boron-containing compounds such as boron nitride, boronic acid, and boron dipyrromethene have been developed as a moving field of research in drug delivery. Due to their ability to achieve precise control over drug release through the response to particular stimuli (pH, light, glutathione, glucose or temperature), stimuli-responsive nanoscale drug delivery systems are attracting a lot of attention. The potential of developing their capabilities to a wide range of nanoscale systems, such as nanoparticles, nanosheets/nanospheres, nanotubes, nanocarriers, microneedles, nanocapsules, hydrogel, nanoassembly, etc., is also addressed and examined. This review also provides overall design principles to include stimuli-responsive boron nanomaterial-based drug delivery systems, which might inspire new concepts and applications.
Collapse
|
6
|
Ejeromedoghene O, Zuo X, Oderinde O, Yao F, Adewuyi S, Fu G. Photochromic Behavior of Inorganic Superporous Hydrogels Fabricated from Different Reacting Systems of Polymeric Deep Eutectic Solvents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Yuan Z, Ding J, Zhang Y, Huang B, Song Z, Meng X, Ma X, Gong X, Huang Z, Ma S, Xiang S, Xu W. Components, mechanisms and applications of stimuli-responsive polymer gels. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Bektas EI, Gurel Pekozer G, Kök FN, Torun Kose G. Evaluation of natural gum-based cryogels for soft tissue engineering. Carbohydr Polym 2021; 271:118407. [PMID: 34364550 DOI: 10.1016/j.carbpol.2021.118407] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/10/2021] [Accepted: 07/04/2021] [Indexed: 01/18/2023]
Abstract
In this study, three natural biomaterials, Locust bean gum (LBG), Xanthan gum (XG), and Mastic gum (MG), were combined to form cryogel scaffolds. Thermal and chemical characterizations revealed the successful blend formation from LBG-XG (LX) and LBG-XG-MG (LXM) polymers. All blends resulted in macro-porous scaffolds with interconnected pore structures under the size of 400 μm. The swollen cryogels had similar mechanical properties compared with other polysaccharide-based cryogels. The mean tensile and compressive modulus values of the wet cryogels were in the range of 3.5-11.6 kPa and 82-398 kPa, respectively. The sustained release of the small molecule Kartogenin from varying concentrations and ratios of cryogels was in between 32 and 66% through 21 days of incubation. Physical, mechanical, and chemical properties make LX and LXM polysaccharide-based cryogels promising candidates for cartilage and other soft tissue engineering, and drug delivery applications.
Collapse
Affiliation(s)
- Ezgi Irem Bektas
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey
| | - Gorke Gurel Pekozer
- Department of Biomedical Engineering, Faculty of Electrical and Electronics Engineering, Yildiz Technical University, Istanbul 34220, Turkey.
| | - Fatma Neşe Kök
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Istanbul Technical University, Istanbul 34467, Turkey.
| | - Gamze Torun Kose
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul 34755, Turkey.
| |
Collapse
|
9
|
Bandehali S, Parvizian F, Hosseini SM, Matsuura T, Drioli E, Shen J, Moghadassi A, Adeleye AS. Planning of smart gating membranes for water treatment. CHEMOSPHERE 2021; 283:131207. [PMID: 34157628 DOI: 10.1016/j.chemosphere.2021.131207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
The use of membranes in desalination and water treatment has been intensively studied in recent years. The conventional membranes however have various problems such as uncontrollable pore size and membrane properties, which prevents membranes from quickly responding to alteration of operating and environmental conditions. As a result the membranes are fouled, and their separation performance is lowered. The preparation of smart gating membranes inspired by cell membranes is a new method to face these challenges. Introducing stimuli-responsive functional materials into traditional porous membranes and use of hydrogels and microgels can change surface properties and membrane pore sizes under different conditions. This review shows potential of smart gating membranes in water treatment. Various types of stimuli-response such as those of thermo-, pH-, ion-, molecule-, UV light-, magnetic-, redox- and electro-responsive gating membranes along with various gel types such as those of polyelectrolyte, PNIPAM-based, self-healing hydrogels and microgel based-smart gating membranes are discussed. Design strategies, separation mechanisms and challenges in fabrication of smart gating membranes in water treatment are also presented. It is demonstrated that experimental and modeling and simulation results have to be utilized effectively to produce smart gating membranes.
Collapse
Affiliation(s)
- Samaneh Bandehali
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Fahime Parvizian
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Sayed Mohsen Hosseini
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran.
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| | - Enrico Drioli
- Institute on Membrane Technology, National Research Council of Italy (CNR-ITM), Via P. Bucci 17/C, Rende, CS, 87036, Italy; Department of Environmental and Chemical Engineering, University of Calabria, Via P. Bucci 45A, 87036, Rende, CS, Italy.
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Abdolreza Moghadassi
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Arak, 38156-8-8349, Iran
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697-2175, USA
| |
Collapse
|
10
|
Ali I, Ali A, Ali A, Ramzan M, Hussain K, Xudong L, Jin Z, Titton Dias OA, Weimin Y, Haoyi L, Liyan Z, Sain M. Highly electro‐responsive composite gel based on functionally tuned graphene filled polyvinyl chloride. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Imdad Ali
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
- Department of Mechanical Engineering QUEST Nawabshah Sindh Pakistan
| | - Ahsan Ali
- Department of Mechanical Engineering QUEST Nawabshah Sindh Pakistan
| | - Ahmed Ali
- Department of Electrical Engineering Sukkur IBA University Sindh Pakistan
| | - Muhammad Ramzan
- Department of Mechanical Engineering QUEST Nawabshah Sindh Pakistan
| | - Khalid Hussain
- Department of Mechanical Engineering QUEST Nawabshah Sindh Pakistan
| | - Li Xudong
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Zhan Jin
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Otavio Augusto Titton Dias
- Centre for Biocomposites and Biomaterials Processing, Graduate Department of Forestry University of Toronto Toronto Ontario Canada
| | - Yang Weimin
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Li Haoyi
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Zhang Liyan
- College of Mechanical and Electrical Engineering Beijing University of Chemical Technology Beijing P.R. China
| | - Mohini Sain
- Centre for Biocomposites and Biomaterials Processing, Graduate Department of Forestry University of Toronto Toronto Ontario Canada
| |
Collapse
|
11
|
Intelligent Polymers, Fibers and Applications. Polymers (Basel) 2021; 13:polym13091427. [PMID: 33925249 PMCID: PMC8125737 DOI: 10.3390/polym13091427] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/21/2022] Open
Abstract
Intelligent materials, also known as smart materials, are capable of reacting to various external stimuli or environmental changes by rearranging their structure at a molecular level and adapting functionality accordingly. The initial concept of the intelligence of a material originated from the natural biological system, following the sensing–reacting–learning mechanism. The dynamic and adaptive nature, along with the immediate responsiveness, of the polymer- and fiber-based smart materials have increased their global demand in both academia and industry. In this manuscript, the most recent progress in smart materials with various features is reviewed with a focus on their applications in diverse fields. Moreover, their performance and working mechanisms, based on different physical, chemical and biological stimuli, such as temperature, electric and magnetic field, deformation, pH and enzymes, are summarized. Finally, the study is concluded by highlighting the existing challenges and future opportunities in the field of intelligent materials.
Collapse
|
12
|
Czaderna-Lekka A, Kozanecki M, Matusiak M, Kadlubowski S. Phase transitions of poly(oligo(ethylene glycol) methyl ether methacrylate)-water systems. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Budkov YA, Kalikin NN, Kolesnikov AL. Molecular theory of the electrostatic collapse of dipolar polymer gels. Chem Commun (Camb) 2021; 57:3983-3986. [PMID: 33885675 DOI: 10.1039/d0cc08296a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop a new quantitative molecular theory of liquid-phase dipolar polymer gels. We model monomer units of the polymer network as a couple of charged sites separated by a fluctuating distance. For the first time, within the random phase approximation, we have obtained an analytical expression for the electrostatic free energy of the dipolar gel. Depending on the coupling parameter of dipole-dipole interactions and the ratio of the dipole length to the subchain Kuhn length, we describe the gel collapse induced by electrostatic interactions in the good solvent regime as a first-order phase transition. This transition can be realized at reasonable physical parameters of the system (temperature, solvent dielectric constant, and dipole moment of monomer units). The obtained results could be potentially used in modern applications of stimuli-responsive polymer gels and microgels, such as drug delivery, nanoreactors, molecular uptake, coatings, superabsorbents, etc.
Collapse
Affiliation(s)
- Yury A Budkov
- School of Applied Mathematics, HSE University, Tallinskaya St. 34, 123458 Moscow, Russia. and G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya St., 1, 153045 Ivanovo, Russia
| | - Nikolai N Kalikin
- G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Academicheskaya St., 1, 153045 Ivanovo, Russia
| | - Andrei L Kolesnikov
- Institut für Nichtklassische Chemie e.V., Permoserstr. 15, 04318 Leipzig, Germany
| |
Collapse
|
14
|
Camara MC, Campos EVR, Monteiro RA, do Espirito Santo Pereira A, de Freitas Proença PL, Fraceto LF. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J Nanobiotechnology 2019; 17:100. [PMID: 31542052 PMCID: PMC6754856 DOI: 10.1186/s12951-019-0533-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/14/2019] [Indexed: 01/23/2023] Open
Abstract
Pesticides and fertilizers are widely used to enhance agriculture yields, although the fraction of the pesticides applied in the field that reaches the targets is less than 0.1%. Such indiscriminate use of chemical pesticides is disadvantageous due to the cost implications and increasing human health and environmental concerns. In recent years, the utilization of nanotechnology to create novel formulations has shown great potential for diminishing the indiscriminate use of pesticides and providing environmentally safer alternatives. Smart nano-based pesticides are designed to efficiently delivery sufficient amounts of active ingredients in response to biotic and/or abiotic stressors that act as triggers, employing targeted and controlled release mechanisms. This review discusses the current status of stimuli-responsive release systems with potential to be used in agriculture, highlighting the challenges and drawbacks that need to be overcome in order to accelerate the global commercialization of smart nanopesticides.
Collapse
Affiliation(s)
- Marcela Candido Camara
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
| | - Estefânia Vangelie Ramos Campos
- São Paulo State University - UNESP, Institute of Science and Technology, Sorocaba, SP, Brazil
- Human and Natural Sciences Center, Federal University of ABC, Santo André, SP, Brazil
| | | | | | | | | |
Collapse
|
15
|
Mrinalini M, Prasanthkumar S. Recent Advances on Stimuli‐Responsive Smart Materials and their Applications. Chempluschem 2019; 84:1103-1121. [DOI: 10.1002/cplu.201900365] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/25/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Madoori Mrinalini
- Polymers & Functional Materials DivisionCSIR-Indian Institute of Chemical Technology (IICT) Tarnaka Hyderabad- 500007, Telangana India
- Academy of Scientific and Innovation Research (AcSIR) Kamla Nehru Nagar, Ghaziabad Uttar Pradesh 201002 India
| | - Seelam Prasanthkumar
- Polymers & Functional Materials DivisionCSIR-Indian Institute of Chemical Technology (IICT) Tarnaka Hyderabad- 500007, Telangana India
- Academy of Scientific and Innovation Research (AcSIR) Kamla Nehru Nagar, Ghaziabad Uttar Pradesh 201002 India
| |
Collapse
|
16
|
Menges J, Klingel S, Oesterschulze E, Bart HJ. Exploiting Direct Laser Writing for Hydrogel Integration into Fragile Microelectromechanical Systems. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2494. [PMID: 31159238 PMCID: PMC6603525 DOI: 10.3390/s19112494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
The integration of chemo-responsive hydrogels into fragile microelectromechanical systems (MEMS) with reflective surfaces in the micron to submicron range is presented. Direct laser writing (DLW) for 3D microstructuring of chemoresponsive "smart" hydrogels on sensitive microstructures is demonstrated and discussed in detail, by production of thin hydrogel layers and discs with a controllable lateral size of 2 to 5 µm and a thickness of some hundred nm. Screening results of polymerizing laser settings for precision microstructuring were determined by controlling crosslinking and limiting active chain diffusion during polymerization with macromers. Macromers are linear polymers with a tunable amount of multifunctional crosslinker moieties, giving access to a broad range of different responsive hydrogels. To demonstrate integration into fragile MEMS, the gel was deposited by DLW onto a resonator with a 200 nm thick sensing plate with high precision. To demonstrate the applicability for sensors, proof of concept measurements were performed. The polymer composition was optimized to produce thin reproducible layers and the feasibility of 3D structures with the same approach is demonstrated.
Collapse
Affiliation(s)
- Julian Menges
- Department of Mechanical and Process Engineering, Chair of Separation Science and Technology, TU Kaiserslautern, 67663 Kaiserslautern, Germany.
| | - Steffen Klingel
- Department of Physics, Physics and Technology of Nanostructures, Nano Structuring Center, TU Kaiserslautern, 67663 Kaiserslautern, Germany.
| | - Egbert Oesterschulze
- Department of Physics, Physics and Technology of Nanostructures, Nano Structuring Center, TU Kaiserslautern, 67663 Kaiserslautern, Germany.
| | - Hans-Jörg Bart
- Department of Mechanical and Process Engineering, Chair of Separation Science and Technology, TU Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
17
|
Gu S, Yang L, Li S, Yang J, Zhang B, Yang J. Thermo- and glucose-sensitive microgels with improved salt tolerance for controlled insulin release in a physiological environment. POLYM INT 2018. [DOI: 10.1002/pi.5634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shiling Gu
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Liu Yang
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Shirui Li
- Department of Endocrinology; China-Japan Friendship Hospital; Beijing China
| | - Junjiao Yang
- College of Science; Beijing University of Chemical Technology; Beijing China
| | - Bo Zhang
- Department of Endocrinology; China-Japan Friendship Hospital; Beijing China
| | - Jing Yang
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| |
Collapse
|
18
|
Drozdov A, deClaville Christiansen J. Mechanical response and equilibrium swelling of temperature-responsive gels. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.06.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Zhang M, Song CC, Du FS, Li ZC. Supersensitive Oxidation-Responsive Biodegradable PEG Hydrogels for Glucose-Triggered Insulin Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25905-25914. [PMID: 28714308 DOI: 10.1021/acsami.7b08372] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Reactive oxygen species (ROS)-responsive polymers and hydrogels represent an emerging family of intelligent materials owing to the key functions of ROS in physiological processes or pathological diseases. Nonetheless, the weaknesses such as low sensitivity, slow response, instability, and low mechanical strength are associated with the limited ROS-responsive polymeric or supramolecular hydrogels. In this study, a novel type of oxidation-responsive degradable hydrogels was fabricated by the redox-initiated radical polymerization of a 4-arm-poly(ethylene glycol) (PEG) acrylic macromonomer that possesses a H2O2-cleavable phenylboronic acid linker in each of the arms. The macroscopic hydrogels have the features of good cytocompatibility, moderate mechanical strength, and fast response toward H2O2 of low concentration, owing to the covalently cross-linked hydrophilic PEG network and high sensitivity of the linker. They could encapsulate biomacromolecules, such as insulin and glucose oxidase (GOx), with high efficacy, affording a new glucose-responsive insulin-delivery platform on the basis of enzymatic transformation of a biochemical signal (glucose) into an oxidative stimulus (H2O2). Interestingly, in vitro results demonstrate that the same GOx-loaded hydrogel exhibited disparate degradation modes under different triggering molecules, that is, bulk degradation by H2O2 and surface erosion by glucose. Moreover, compared to the macroscopic hydrogel, the nanogel with a diameter of ∼160 nm prepared by inverse emulsion polymerization showed a much higher degradation rate even under triggering of 20 μM H2O2, a pathologically available concentration in vivo.
Collapse
Affiliation(s)
- Mei Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Cheng-Cheng Song
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University , Beijing 100871, China
| |
Collapse
|
20
|
Yang C, Liu Z, Chen C, Shi K, Zhang L, Ju XJ, Wang W, Xie R, Chu LY. Reduced Graphene Oxide-Containing Smart Hydrogels with Excellent Electro-Response and Mechanical Properties for Soft Actuators. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15758-15767. [PMID: 28425695 DOI: 10.1021/acsami.7b01710] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel reduced graphene oxide/poly(2-acrylamido-2-methylpropanesulfonic acid-co-acrylamide) (rGO/poly(AMPS-co-AAm)) nanocomposite hydrogel that possesses excellent electro-response and mechanical properties has been successfully developed. The rGO nanosheets that homogeneously dispersed in the hydrogels could provide prominent conductive platforms for promoting the ion transport inside the hydrogels to generate significant osmotic pressure between the outside and inside of such nanocomposite hydrogels. Thus, the electro-responsive rate and degree of the hydrogel for both deswelling and bending performances become rapid and remarkable. Moreover, the enhanced mechanical properties including both the tensile strength and compressive strength of rGO/poly(AMPS-co-AAm) hydrogels are improved by the hydrogen-bond interactions between the rGO nanosheets and polymer chains, which could dissipate the strain energy in the polymeric networks of the hydrogels. The proposed rGO/poly(AMPS-co-AAm) nanocomposite hydrogels with improved mechanical properties exhibit rapid, significant, and reversible electro-response, which show great potential for developing remotely controlled electro-responsive hydrogel systems, such as smart actuators and soft manipulators.
Collapse
Affiliation(s)
- Chao Yang
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Chen Chen
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Kun Shi
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Lei Zhang
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, Jiangsu 211816, P. R. China
| |
Collapse
|
21
|
Insight into halloysite nanotubes-loaded gellan gum hydrogels for soft tissue engineering applications. Carbohydr Polym 2017; 163:280-291. [DOI: 10.1016/j.carbpol.2017.01.064] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/09/2017] [Accepted: 01/17/2017] [Indexed: 12/23/2022]
|
22
|
Abstract
Biological systems found in nature provide excellent stimuli-responsive functions. The camouflage adaptation of cephalopods (octopus, cuttlefish), rapid stiffness change of sea cucumbers, opening of pine cones in response to humidity, and rapid closure of Venus flytraps upon insect touch are some examples of nature's smart systems. Although current technologies are still premature to mimic these sophisticated structures and functions in smart biological systems, recent work on stimuli-responsive programmable matter has shown great progress. Stimuli-responsive materials based on hydrogels, responsive nanocomposites, hybrid structures, shape memory polymers, and liquid crystal elastomers have demonstrated excellent responsivities to various stimuli such as temperature, light, pH, and electric field. However, the technologies in these stimuli-responsive materials are still not sophisticated enough to demonstrate the ultimate attributes of an ideal programmable matter: fast and reversible reconfiguration of programmable matter into complex and robust shapes. Recently, reconfigurable (or programmable) matter that reversibly changes its structure/shape or physical/chemical properties in response to external stimuli has attracted great interest for applications in sensors, actuators, robotics, and smart systems. In particular, key attributes of programmable matter including fast and reversible reconfiguration into complex and robust 2D and 3D shapes have been demonstrated by various approaches. In this Account, we review focused areas of smart materials with special emphasis on the material and device structure designs to enhance the response time, reversibility, multistimuli responsiveness, and smart adhesion for efficient shape transformation and functional actuations. First, the capability of fast reconfiguration of 2D and 3D structures in a reversible way is a critical requirement for programmable matter. For the fast and reversible reconfiguration, various approaches based on enhanced solvent diffusion rate through the porous or structured hydrogel materials, electrostatic repulsion between cofacial electrolyte nanosheets, and photothermal actuation are discussed. Second, the ability to reconfigure programmable matters into a variety of complex structures is beneficial for the use of reconfigurable matter in diverse applications. For the reconfiguration of planar 2D structures into complex 3D structures, asymmetric and multidirectional stress should be applied. In this regard, local hinges with stimuli-responsive stiffness, multilayer laminations with different responsiveness in individual layers, and origami and kirigami assembly approaches are reviewed. Third, multistimuli responsiveness will be required for the efficient reconfiguration of complex programmable matter in response to user-defined stimulus under different chemical and physical environments. In addition, with multistimuli responsiveness, the reconfigured shape can be temporarily affixed by one signal and disassembled by another signal at a user-defined location and time. Photoactuation depending on the chirality of carbon nanotubes and composite gels with different responsiveness will be discussed. Finally, the development of smart adhesives with on-demand adhesion strength is critically required to maintain the robust reconfigurable shapes and for the switching on/off of the binding between components or with target objects. Among various connectors and adhesives, thermoresponsive nanowire connectors, octopus-inspired smart adhesives, and elastomeric tiles with soft joints are described due to their potential applications in joints of deformable 3D structures and smart gripping systems.
Collapse
Affiliation(s)
- Hyunhyub Ko
- School
of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ali Javey
- Electrical
Engineering and Computer Sciences, University of California at Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
23
|
Taylor MJ, Tomlins P, Sahota TS. Thermoresponsive Gels. Gels 2017; 3:E4. [PMID: 30920501 PMCID: PMC6318636 DOI: 10.3390/gels3010004] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/14/2016] [Accepted: 12/16/2016] [Indexed: 01/08/2023] Open
Abstract
Thermoresponsive gelling materials constructed from natural and synthetic polymers can be used to provide triggered action and therefore customised products such as drug delivery and regenerative medicine types as well as for other industries. Some materials give Arrhenius-type viscosity changes based on coil to globule transitions. Others produce more counterintuitive responses to temperature change because of agglomeration induced by enthalpic or entropic drivers. Extensive covalent crosslinking superimposes complexity of response and the upper and lower critical solution temperatures can translate to critical volume temperatures for these swellable but insoluble gels. Their structure and volume response confer advantages for actuation though they lack robustness. Dynamic covalent bonding has created an intermediate category where shape moulding and self-healing variants are useful for several platforms. Developing synthesis methodology-for example, Reversible Addition Fragmentation chain Transfer (RAFT) and Atomic Transfer Radical Polymerisation (ATRP)-provides an almost infinite range of materials that can be used for many of these gelling systems. For those that self-assemble into micelle systems that can gel, the upper and lower critical solution temperatures (UCST and LCST) are analogous to those for simpler dispersible polymers. However, the tuned hydrophobic-hydrophilic balance plus the introduction of additional pH-sensitivity and, for instance, thermochromic response, open the potential for coupled mechanisms to create complex drug targeting effects at the cellular level.
Collapse
Affiliation(s)
- M Joan Taylor
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| | - Paul Tomlins
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| | - Tarsem S Sahota
- INsmart group, School of Pharmacy Faculty of Health & Life Sciences, De Montfort University, Leicester, LE1 9BH, UK.
| |
Collapse
|