1
|
Kovačević Z, Pilipović A, Meheš M, Bischof S. Zero Waste Concept in Production of PLA Biocomposites Reinforced with Fibers Derived from Wild Plant ( Spartium junceum L.) and Energy Crop ( Sida hermaphrodita (L.) Rusby). Polymers (Basel) 2025; 17:235. [PMID: 39861307 PMCID: PMC11769562 DOI: 10.3390/polym17020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
This research follows the principles of circular economy through the zero waste concept and cascade approach performed in two steps. Our paper focuses on the first step and explores the characteristics of developed biocomposite materials made from a biodegradable poly(lactic acid) polymer (PLA) reinforced with natural fibers isolated from the second generation of biomass (agricultural biomass and weeds). Two plants, Spartium junceum L. (SJL) and Sida hermaphrodita (SH), were applied. To enhance their mechanical, thermal, and antimicrobial properties, their modification was performed with environmentally friendly additives-linseed oil (LO), organo-modified montmorillonite nanoclay (MMT), milled cork (MC), and zinc oxide (ZnO). The results revealed that SH fibers exhibited 38.92% higher tensile strength than SJL fibers. Composites reinforced with SH fibers modified only with LO displayed a 27.33% increase in tensile strength compared to neat PLA. The addition of LO improved the thermal stability of both biocomposites by approximately 5-7 °C. Furthermore, the inclusion of MMT filler significantly reduced the flammability, lowering the heat release rate to 30.25%, and enabling the categorization of developed biocomposite in a group of flame retardants. In the second step, all waste streams generated during the fibers extraction process are repurposed into the production of solid biofuels (pellets, briquettes) or biogas (bio)methane.
Collapse
Affiliation(s)
- Zorana Kovačević
- Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28 a, 10000 Zagreb, Croatia
| | - Ana Pilipović
- Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10002 Zagreb, Croatia;
| | - Mario Meheš
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia;
| | - Sandra Bischof
- Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 28 a, 10000 Zagreb, Croatia
| |
Collapse
|
2
|
Assis M, L Breitenbach G, Martí M, Sánchez-Safont E, Alfaro-Peyró A, Cabedo L, Garcia-Verdugo E, Andrés J, Serrano-Aroca Á. Synergistic Integration of α-Ag 2WO 4 into PLA/PBAT for the Development of Electrospun Membranes: Advancing Structural Integrity and Antimicrobial Efficacy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63404-63418. [PMID: 39509654 DOI: 10.1021/acsami.4c16618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The rising resistance of various pathogens and the demand for materials that prevent infections drive the need to develop broad-spectrum antimicrobial membranes capable of combating a range of microorganisms, thereby enhancing safety in biomedical and industrial applications. Herein, we introduce a simple and efficient technique to engineer membranes composed of polylactic acid (PLA) and polybutylene adipate terephthalate (PBAT) biopolymers and α-Ag2WO4 particles using an electrospinning technique. The corresponding structural, thermal, mechanical, and antimicrobial properties were characterized. X-ray diffraction (XRD) patterns confirmed the integration of crystalline α-Ag2WO4 within the polymer matrix. Scanning electron microscopy (SEM) and Raman confocal microscopy revealed uniformly dispersed α-Ag2WO4 particles in the electrospun fibers, influencing their diameter and surface roughness. Thermal analysis indicated adjustments in the thermal stability and crystallinity of the composites with an increasing α-Ag2WO4 content. Dynamic mechanical analysis (DMA) highlighted variations in storage modulus and glass transition temperatures due to interactions between α-Ag2WO4 and polymer chains, with tensile tests showing an increase in elastic modulus and ultimate tensile strength as the α-Ag2WO4 content increased. Antimicrobial assessments revealed that PLA/PBAT membranes with α-Ag2WO4 showed pronounced antibacterial activity, forming inhibition halos across all samples against Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and Mycobacterium smegmatis (a surrogate for Mycobacterium tuberculosis). These membranes also exhibited potent antiviral activity against bacteriophage phi 6, a surrogate for SARS-CoV-2, suggesting potential applications in combating infections caused by enveloped viruses. The antimicrobial activities are attributed to the generation of reactive oxygen species (ROS) and the controlled release of Ag+ ions. This work underscores the multifaceted capabilities of α-Ag2WO4-enhanced PLA/PBAT membranes in combating bacterial and viral growth, where both durability and microbial resistance are critical. Taken together, our findings provide a solution for obtaining advanced materials to be applied in a wide range of industrial applications, such as filtration systems, food preservation, antimicrobial coatings, protective textiles, and cleaning products.
Collapse
Affiliation(s)
- Marcelo Assis
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| | - Gabriela L Breitenbach
- Department of Inorganic and Organic Chemistry, Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Miguel Martí
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| | - Estefanía Sánchez-Safont
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Adrian Alfaro-Peyró
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Eduardo Garcia-Verdugo
- Department of Inorganic and Organic Chemistry, Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Juan Andrés
- Department of Physical and Analytical Chemistry, Universitat Jaume I (UJI), Castelló de la Plana 12071, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Translational Research Centre San Alberto Magno, Catholic University of Valencia San Vicente Mártir (UCV), Valencia 46001, Spain
| |
Collapse
|
3
|
Mena-Prado I, Navas-Ortiz E, Fernández-García M, Blázquez-Blázquez E, Limbo S, Rollini M, Martins DM, Bonilla AM, Del Campo A. Enhancing functional properties of compostable materials with biobased plasticizers for potential food packaging applications. Int J Biol Macromol 2024; 280:135538. [PMID: 39306182 DOI: 10.1016/j.ijbiomac.2024.135538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
The demand of non-toxic and biobased plasticizers is substantially growing, particularly in biodegradable thermoplastics-based packaging applications. Herein, a derivative of citric acid (CITREM-LR10), usually used as food additive, was evaluated for the first time as plasticizer in PLA and Ecovio® biopolymers. Films containing 10 %(w/w) of CITREM-LR10 were prepared and compared with films plasticized with another biobased compound, SOFT-NSAFE, derived from acetic acid. The incorporation of both plasticizers provokes a slight reduction of the glass transition, however, only CITREM-LR10 was able to augment the elongation at break value of PLA films. A further evaluation of the films by Raman confocal microscopy showed the segregation of the CITREM-LR10 in microdomains, which could explain the enhanced elongation at break value, behaving as stress concentrators. In addition, CITREM-LR10 provides antimicrobial activity against S. aureus and both plasticizers give antioxidant properties, and almost negligible diffusion in food simulated solution. Composting studies showed that the plasticizers do not have effect on the disintegration rate of the films. In spite of these outstanding properties, the water vapour and oxygen barrier properties of the films worsen with its incorporation, therefore, the inclusion of fillers in the material together with the plasticizers would be necessary to improve such properties for food packaging applications.
Collapse
Affiliation(s)
- Ignacio Mena-Prado
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Elena Navas-Ortiz
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Blázquez-Blázquez
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Sara Limbo
- DeFENS, Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Manuela Rollini
- DeFENS, Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Daniele Maria Martins
- DeFENS, Department of Food, Environmental and Nutritional Science, Università degli Studi di Milano, Via G. Celoria 2, 20133 Milano, Italy
| | - Alexandra Muñoz Bonilla
- Instituto de Ciencia y Tecnología de Polímeros, ICTP-CSIC, C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Adolfo Del Campo
- Institute of Cerámica y Vidrio, ICV-CSIC, C/Kelsen 5, 28049, Campus de Cantoblanco, Madrid, Spain.
| |
Collapse
|
4
|
Buntinx M, Vanheusden C, Hermans D. Processing and Properties of Polyhydroxyalkanoate/ZnO Nanocomposites: A Review of Their Potential as Sustainable Packaging Materials. Polymers (Basel) 2024; 16:3061. [PMID: 39518271 PMCID: PMC11548525 DOI: 10.3390/polym16213061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The escalating environmental concerns associated with conventional plastic packaging have accelerated the development of sustainable alternatives, making food packaging a focus area for innovation. Bioplastics, particularly polyhydroxyalkanoates (PHAs), have emerged as potential candidates due to their biobased origin, biodegradability, and biocompatibility. PHAs stand out for their good mechanical and medium gas permeability properties, making them promising materials for food packaging applications. In parallel, zinc oxide (ZnO) nanoparticles (NPs) have gained attention for their antimicrobial properties and ability to enhance the mechanical and barrier properties of (bio)polymers. This review aims to provide a comprehensive introduction to the research on PHA/ZnO nanocomposites. It starts with the importance and current challenges of food packaging, followed by a discussion on the opportunities of bioplastics and PHAs. Next, the synthesis, properties, and application areas of ZnO NPs are discussed to introduce their potential use in (bio)plastic food packaging. Early research on PHA/ZnO nanocomposites has focused on solvent-assisted production methods, whereas novel technologies can offer additional possibilities with regard to industrial upscaling, safer or cheaper processing, or more specific incorporation of ZnO NPs in the matrix or on the surface of PHA films or fibers. Here, the use of solvent casting, melt processing, electrospinning, centrifugal fiber spinning, miniemulsion encapsulation, and ultrasonic spray coating to produce PHA/ZnO nanocomposites is explained. Finally, an overview is given of the reported effects of ZnO NP incorporation on thermal, mechanical, gas barrier, UV barrier, and antimicrobial properties in ZnO nanocomposites based on poly(3-hydroxybutyrate), poly(3-hydroxybutyrate-co-3-hydroxyvalerate), and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). We conclude that the functionality of PHA materials can be improved by optimizing the ZnO incorporation process and the complex interplay between intrinsic ZnO NP properties, dispersion quality, matrix-filler interactions, and crystallinity. Further research regarding the antimicrobial efficiency and potential migration of ZnO NPs in food (simulants) and the End-of-Life will determine the market potential of PHA/ZnO nanocomposites as active packaging material.
Collapse
Affiliation(s)
- Mieke Buntinx
- Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (C.V.); (D.H.)
- Imec, Imo-Imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Chris Vanheusden
- Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (C.V.); (D.H.)
- Imec, Imo-Imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Dries Hermans
- Materials and Packaging Research & Services (MPPR&S), Institute for Materials Research (Imo-Imomec), Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium; (C.V.); (D.H.)
- Imec, Imo-Imomec, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| |
Collapse
|
5
|
Vanheusden C, Samyn P, Vackier T, Steenackers H, D'Haen J, Peeters R, Buntinx M. Fabrication of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/ZnO Nanocomposite Films for Active Packaging Applications: Impact of ZnO Type on Structure-Property Dynamics. Polymers (Basel) 2024; 16:1861. [PMID: 39000717 PMCID: PMC11243840 DOI: 10.3390/polym16131861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Bio-based and biodegradable polyhydroxyalkanoates (PHAs) have great potential as sustainable packaging materials. The incorporation of zinc oxide nanoparticles (ZnO NPs) could further improve their functional properties by providing enhanced barrier and antimicrobial properties, although current literature lacks details on how the characteristics of ZnO influence the structure-property relationships in PHA/ZnO nanocomposites. Therefore, commercial ZnO NPs with different morphologies (rod-like, spherical) and silane surface modification are incorporated into poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) via extrusion and compression molding. All ZnO NPs are homogeneously distributed in the PHBHHx matrix at 1, 3 and 5 wt.%, but finer dispersion is achieved with modified ZnO. No chemical interactions between ZnO and PHBHHx are observed due to a lack of hydroxyl groups on ZnO. The fabricated nanocomposite films retain the flexible properties of PHBHHx with minimal impact of ZnO NPs on crystallization kinetics and the degree of crystallinity (53 to 56%). The opacity gradually increases with ZnO loading, while remaining translucent up to 5 wt.% ZnO and providing an effective UV barrier. Improved oxygen barrier and antibacterial effects against S. aureus are dependent on the intrinsic characteristics of ZnO rather than its morphology. We conclude that PHBHHx retains its favorable processing properties while producing nanocomposite films that are suitable as flexible active packaging materials.
Collapse
Affiliation(s)
- Chris Vanheusden
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Pieter Samyn
- Department Circular Economy and Renewable Materials, SIRRIS, Gaston Geenslaan 8, 3001 Leuven, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, 3001 Leuven, Belgium
| | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, 3001 Leuven, Belgium
| | - Jan D'Haen
- Analytical & Microscopical Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Roos Peeters
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| | - Mieke Buntinx
- Materials and Packaging Research & Services, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Wetenschapspark 27, 3590 Diepenbeek, Belgium
| |
Collapse
|
6
|
Karami-Eshkaftaki Z, Saei-Dehkordi S, Albadi J, Moradi M, Saei-Dehkordi SS. Coated composite paper with nano-chitosan/cinnamon essential oil-nanoemulsion containing grafted CNC@ZnO nanohybrid; synthesis, characterization and inhibitory activity on Escherichia coli biofilm developed on grey zucchini. Int J Biol Macromol 2024; 258:128981. [PMID: 38158064 DOI: 10.1016/j.ijbiomac.2023.128981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
This investigation aims to highlight the applicability of a potent eco-friendly developed composite film to combat the Escherichia coli biofilm formed in a model food system. ZnO nanoparticles (NPs) synthesized using green methods were anchored on the surface of cellulose nanocrystals (CNCs). Subsequently, nano-chitosan (NCh) solutions were used to disperse the synthesized nanoparticles and cinnamon essential oil (CEO). These solutions, containing various concentrations of CNC@ZnO NPs and CEO, were sequentially coated onto cellulosic papers to inhibit Escherichia coli biofilms on grey zucchini slices. Six films were developed, and Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, biodegradation, and mechanical properties were assessed. The film containing 5 % nano-emulsified CEO + 3 % dispersed CNC@ZnO nano-hybrid in an NCh solution was selected for further testing since it exhibited the largest zone of inhibition (34.32 mm) against E. coli and the highest anti-biofilm activity on biofilms developed on glass surfaces. The efficacy of the film against biofilms on zucchini surfaces was temperature-dependent. During 60 h, the selected film resulted in log reductions of approximately 4.5 logs, 2.85 logs, and 1.57 logs at 10 °C, 25 °C, and 37 °C, respectively. Applying the selected film onto zucchini surfaces containing biofilm structures leads to the disappearance of the distinctive three-dimensional biofilm framework. This innovative anti-biofilm film offers considerable potential in combatting biofilm issues on food surfaces. The film also preserved the sensory quality of zucchini evaluated for up to 60 days.
Collapse
Affiliation(s)
- Zahra Karami-Eshkaftaki
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran
| | - Siavash Saei-Dehkordi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord 34141, Iran.
| | - Jalal Albadi
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord 34141, Iran
| | - Mehran Moradi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - S Saeid Saei-Dehkordi
- PhD graduate, Department of Chemistry, Faculty of Science, Yazd University, Yazd, Iran
| |
Collapse
|
7
|
Mena-Prado I, Reinosa JJ, Fernández-García M, Fernández JF, Muñoz-Bonilla A, Del Campo A. Evaluation of poly(lactic acid) and ECOVIO based biocomposites loaded with antimicrobial sodium phosphate microparticles. Int J Biol Macromol 2023; 253:127488. [PMID: 37852395 DOI: 10.1016/j.ijbiomac.2023.127488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Herein, biobased composite materials based on poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) as matrices, sodium hexametaphosphate microparticles (E452i, food additive microparticles, 1 and 5 wt%) as antimicrobial filler and acetyl tributyl citrate (ATBC, 15 wt%) as plasticizer, were developed for potential food packaging applications. Two set of composite films were obtained by melt-extrusion and compression molding, i) based on PLA matrix and ii) based on Ecovio® matrix (PLA/PBAT blend). Thermal characterization by thermogravimetric analysis and differential scanning calorimetry demonstrated that the incorporation of E452i particles improved thermal stability and crystallinity, while the mechanical test showed an increase in the Young's modulus. E452i particles also provide antimicrobial properties to the films against food-borne bacteria Listeria innocua and Staphylococcus aureus, with bacterial reduction percentages higher than 50 % in films with 5 wt% of particles. The films also preserved their disintegradability as demonstrated by an exhaustive characterization of the films under industrial composting conditions. Therefore, the results obtained in this work reveal the potential of these biocomposites as appropriated materials for antibacterial and compostable food packaging films.
Collapse
Affiliation(s)
- I Mena-Prado
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - J J Reinosa
- Encapsulae S.L., C/ Lituania, 10, nave 2, 12006 Castellón, Spain
| | - M Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - J F Fernández
- Instituto de Cerámica y Vidrio (ICV-CSIC), C/ Kelsen 5, 28049 Madrid, Spain
| | - A Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - A Del Campo
- Instituto de Cerámica y Vidrio (ICV-CSIC), C/ Kelsen 5, 28049 Madrid, Spain.
| |
Collapse
|
8
|
Correia TR, Almeida RHG, Campos GN, Santos CC, Colaço MV, Figueiredo MAG, Sousa AMF, Silva ALN. Advantages of treating sponge-gourd waste by mechanical refining on the properties of fiber-based poly(butylene adipate-co-terephthalate)/polylactide biocomposites. AN ACAD BRAS CIENC 2023; 95:e20230003. [PMID: 37672400 DOI: 10.1590/0001-3765202320230003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/25/2023] [Indexed: 09/08/2023] Open
Abstract
This study compares the morphology, thermal, and dynamic-mechanical properties of composites based on polybutylene adipate terephthalate/polylactide biocomposites with sponge gourd waste treated code as R, and non-treated sponge gourd, coded as NR, by mechanical disc refining after milled process. Extrusion followed by compression molding was used to produce biocomposites with fiber contents of 0, 2.5, 5, 10, and 15% wt/wt for R and NR sponge gourd fibers. Scanning electron microscopy analysis reveals that NR has the morphology of a rigid tubular shape, whereas R is a thinner, twisted, and fibrillated fiber. Regardless of the type of sponge gourd fiber used, the thermal stability of the composite decreases as the sponge gourd content increases. At 25°C, the biocomposite with 10%wt/wt R fiber has the highest storage modulus value. The comparison of Tangent peak values reveals that the presence of sponge gourd fibers reduces the energy dissipation of the biocomposites. The analysis of the loss modulus at 25°C reveals that R fiber contributes more to the reduction of energy dissipation of the biocomposites than NR. Furthermore, the Cole-Cole plot shows that R and NR fibers are dispersed and do not significantly change the homogeneity of the biopolymer systems.
Collapse
Affiliation(s)
- Thiago R Correia
- Universidade do Estado do Rio de Janeiro, Instituto de Química, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Renan Henriques G Almeida
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas Professora Eloisa Mano, Avenida Horário Macedo, 2013, Bloco J, Cidade Universitária, 21941-598 Rio de Janeiro, RJ, Brazil
| | - Gustavo N Campos
- Universidade do Estado do Rio de Janeiro, Instituto de Química, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Caio C Santos
- Universidade do Estado do Rio de Janeiro, Instituto de Química, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Marcos Vinicius Colaço
- Universidade do Estado do Rio de Janeiro, Instituto de Física, Rua São Francisco Xavier, 524, Bloco B, Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Marco Antonio G Figueiredo
- Universidade do Estado do Rio de Janeiro, Instituto de Química, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Ana Maria F Sousa
- Universidade do Estado do Rio de Janeiro, Instituto de Química, Rua São Francisco Xavier, 524, Pavilhão Haroldo Lisboa da Cunha, Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Ana Lúcia N Silva
- Universidade Federal do Rio de Janeiro, Instituto de Macromoléculas Professora Eloisa Mano, Avenida Horário Macedo, 2013, Bloco J, Cidade Universitária, 21941-598 Rio de Janeiro, RJ, Brazil
- Programa de Engenharia Ambiental, Universidade Federal do Rio de Janeiro, Avenida Horário Macedo, 2013, Bloco J, Cidade Universitária, 21941-598 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
9
|
Lu J, Qiu Y, Muhmood A, Zhang L, Wang P, Ren L. Appraising co-composting efficiency of biodegradable plastic bags and food wastes: Assessment microplastics morphology, greenhouse gas emissions, and changes in microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162356. [PMID: 36822427 DOI: 10.1016/j.scitotenv.2023.162356] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable plastic bags (BPBs) to collect food waste and microplastics (MPs) produced from their biodegradation have received considerable scientific attention recently. Therefore, the current study was carried out to assess the co-composting efficiency of biodegradable plastic bags (polylactic acid (PLA) + polybutylene terephthalate (PBAT) + ST20 and PLA + PBAT+MD25) and food waste. The variations in greenhouse gas (GHG) emissions, microbial community and compost fertility were likewise assessed. Compared with the control, PLA + PBAT+ST20 and PLA + PBAT+MD25 both accelerated organic matter degradation and increased temperature. Moreover, PLA + PBAT+ST20 aggravated CH4 and CO2 emissions by 12.10 % and 11.01 %, respectively. PLA + PBAT+MD25 decreased CH4 and CO2 emissions by 5.50 % and 9.12 %, respectively. Meanwhile, compared with PLA + PBAT+ST20, the combined effect of plasticizer and inorganic additive in PLA + PBAT+MD25, reduced the NO3--N contents, seed germination index (GI) and compost maturity. Furthermore, adding BPBs changed the richness and diversity of the bacterial community (Firmicutes, Proteobacteria and Bacteroidetes). Likewise, redundancy analysis (RDA) showed that the co-compost system of BPBs and food waste accelerated significantly bacterial community succession from Firmicutes and Bacteroidetes at the initial stage to Proteobacteria and Actinobacteria at the mature stage, increased co-compost temperature to over 64 °C and extended thermophilic composting phase, and promoted the degradation of MPs. Additionally, according to structural equation model quantification results, the inorganic additive of PLA + PBAT+MD25 had more serious toxicity to microorganisms and had significantly adverse effects on GI through CO2-C (λ = -0.415, p < 0.05) and NO3--N (λ = -0.558, p < 0.001), thus reduced compost fertility and quality. The results also indicated that the BPBs with ST20 as an additive could be more suitable for industrial composting than the BPBs with MD25 as an additive. This study provided a vital basis for understanding the potential environmental and human health risks of the MPs' generated by the degradation of BPBs in compost.
Collapse
Affiliation(s)
- Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Luxi Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
10
|
Ayu D, Gea S, Andriayani, Telaumbanua DJ, Piliang AFR, Harahap M, Yen Z, Goei R, Tok AIY. Photocatalytic Degradation of Methylene Blue Using N-Doped ZnO/Carbon Dot (N-ZnO/CD) Nanocomposites Derived from Organic Soybean. ACS OMEGA 2023; 8:14965-14984. [PMID: 37151531 PMCID: PMC10157678 DOI: 10.1021/acsomega.2c07546] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/30/2023] [Indexed: 08/29/2023]
Abstract
This study reports on successful synthesis of carbon dots (CDs), nitrogen-doped zinc oxide (N-ZnO), and N-ZnO/CD nanocomposites as photocatalysts for degradation of methylene blue. The first part was the synthesis of CDs utilizing a precursor from soybean and ethylenediamine as a dopant by a hydrothermal method. The second part was the synthesis of N-ZnO with urea as the nitrogen dopant carried out by a calcination method in a furnace at 500 °C for 2 h in an N2 atmosphere (5 °C min-1). The third part was the synthesis of N-ZnO/CD nanocomposites. The characteristics of CDs, N-ZnO, and N-ZnO/CD nanocomposites were analyzed through Fourier transform infrared (FTIR), UV-vis absorbance, photoluminescence (PL), high-resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), thermal gravimetry analysis (TGA), field-emission scanning electron microscopy energy-dispersive spectroscopy (FESEM EDS), X-ray photoelectron spectroscopy (XPS), and Brunauer-Emmett-Teller (BET) analysis. Based on the HR-TEM analysis, the CDs had a spherical shape with an average particle size of 4.249 nm. Meanwhile, based on the XRD and HR-TEM characterization, the N-ZnO and N-ZnO/CD nanocomposites have wurtzite hexagonal structures. The materials of N-ZnO and N-ZnO/CD show increased adsorption in the visible light region and low energy gap E g. The E g values of N-ZnO and N-ZnO/CDs were found to be 2.95 and 2.81 eV, respectively, whereas the surface area (S BET) values 3.827 m2 g-1 (N-ZnO) and 3.757 m2 g-1(N-ZnO/CDs) belonged to the microporous structure. In the last part, the photocatalysts of CDs, N-ZnO, and N-ZnO/CD nanocomposites were used for degradation of MB (10 ppm) under UV-B light irradiation pH = 7.04 (neutral) for 60 min at room temperature. The N-ZnO/CD nanocomposites showed a photodegradation efficiency of 83.4% with a kinetic rate of 0.0299 min-1 higher than N-ZnO and CDs. The XRD analysis and FESEM EDS of the N-ZnO/CDs before and after three cycles confirm the stability of the photocatalyst with an MB degradation of 58.2%. These results have clearly shown that the N-ZnO/CD nanocomposites could be used as an ideal photocatalytic material for the decolorization of organic compounds in wastewater.
Collapse
Affiliation(s)
- Dinda
Gusti Ayu
- Postgraduate
School, Department of Chemistry, Faculty of Mathematics and Natural
Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
- Cellulosic
and Functional Materials Research Centre, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Saharman Gea
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
- Cellulosic
and Functional Materials Research Centre, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Andriayani
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Dewi Junita Telaumbanua
- Department
of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Averroes Fazlur Rahman Piliang
- Cellulosic
and Functional Materials Research Centre, Universitas Sumatera Utara, Medan 20155, Indonesia
- Department
of Physics, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20155, Indonesia
| | - Mahyuni Harahap
- Department
of Chemistry, Faculty of Science Technology and Information, Universitas Sari Mutiara Indonesia, Medan 20124, Indonesia
| | - Zhihao Yen
- School of
Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ronn Goei
- School of
Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Alfred Iing Yoong Tok
- School of
Materials Science and Engineering, Nanyang
Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
11
|
Meng D, Zhu G, Sun J, Li H, Gu X, Zhang S. Study on the biodegradation of polybutylene adipate-co-terephthalate/starch film containing deep eutectic solvent. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117419. [PMID: 36731403 DOI: 10.1016/j.jenvman.2023.117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Poly (butylene adipate-co-terephthalate) (PBAT) has attracted much attention as a biodegradable polymer, but its biodegradation speed is slow. Starch was blended with PBAT to develop daily packing film with high biodegradation speed, and deep eutectic solvent (DES) composed of choline chloride (CHCl)/glycerol (Gly) (molar ratio of 1:2) was used as a novel plasticizer. The hydrophilic starch is in favor of the breeding of microorganisms, at the same time DES can provide energy for the breeding. The degradation was traced in a simulated composting test using kitchen waste. After the PBAT/starch-DES film was buried in a mixture of food residue for 90 D, the relative weight molecular weight (Mw) of the PBAT decreased by about 50%. Furthermore, with the help of DES, the compatibility between PBAT and starch was improved, the PBAT/starch-DES film became more transparent than the PBAT and PBAT/starch film, and its tensile strength reached 7.9 MPa with an elongation at break of 335.6%. This work provided a simple and efficient solution to obtain rapidly degradable films.
Collapse
Affiliation(s)
- Dan Meng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guiyang Zhu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hongfei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xiaoyu Gu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Sheng Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
12
|
Bher A, Cho Y, Auras R. Boosting Degradation of Biodegradable Polymers. Macromol Rapid Commun 2023; 44:e2200769. [PMID: 36648129 DOI: 10.1002/marc.202200769] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/05/2023] [Indexed: 01/18/2023]
Abstract
Biodegradation of polymers in composting conditions is an alternative end-of-life (EoL) scenario for contaminated materials collected through the municipal solid waste management system, mainly when mechanical or chemical methods cannot be used to recycle them. Compostability certification requirements are time-consuming and expensive. Therefore, approaches to accelerate the biodegradation of these polymers in simulated composting conditions can facilitate and speed up the evaluation and selection of potential compostable polymer alternatives and inform faster methods to biodegrade these polymers in real composting. This review highlights recent trends, challenges, and future strategies to accelerate biodegradation by modifying the polymer properties/structure and the compost environment. Both abiotic and biotic methods show potential for accelerating the biodegradation of biodegradable polymers. Abiotic methods, such as the incorporation of additives, reduction of molecular weight, reduction of size and reactive blending, are potentially the most straightforward, providing a level of technology that allows for easy adoption and adaptability. Novel methods, including the concept of self-immolative and triggering the scission of polymer chains in specific conditions, are increasingly sought. In terms of biotic methods, dispersion/encapsulation of enzymes during the processing step, biostimulation of the environment, and bioaugmentation with specific microbial strains during the biodegradation process are promising to accelerate biodegradation.
Collapse
Affiliation(s)
- Anibal Bher
- School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| | - Yujung Cho
- School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| | - Rafael Auras
- School of Packaging, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
13
|
Iacovone C, Yulita F, Cerini D, Peña D, Candal R, Goyanes S, Pietrasanta LI, Guz L, Famá L. Effect of TiO 2 Nanoparticles and Extrusion Process on the Physicochemical Properties of Biodegradable and Active Cassava Starch Nanocomposites. Polymers (Basel) 2023; 15:polym15030535. [PMID: 36771837 PMCID: PMC9918894 DOI: 10.3390/polym15030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Biodegradable polymers have been strongly recognized as an alternative to replace traditional petrochemical plastics, which have become a global problem due to their long persistence in the environment. In this work, the effect of the addition of titanium dioxide nanoparticles (TiO2NP) on the morphology, physicochemical properties and biodegradation under industrial composting conditions of cassava starch-based nanocomposites obtained by extrusion at different screw speeds (80 and 120 rpm) were investigated. Films performed at 120 rpm (S120 and S120-TiO2NP) showed completely processed starch and homogeneously distributed nanoparticles, leading to much more flexible nanocomposites than those obtained at 80 rpm. The incorporation of TiO2NP led to an increase in storage modulus of all films and, in the case of S120-TiO2NP, to higher strain at break values. From the Kohlrausch-Williams-Watts theoretical model (KWW), an increase in the relaxation time of the nanocomposites was observed due to a decrease in the number of polymer chains involved in the relaxation process. Additionally, S120-TiO2NP showed effective protection against UV light, greater hydrophobicity and faster biodegradation in compost, resulting in a promising material for food packaging applications.
Collapse
Affiliation(s)
- Carolina Iacovone
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Federico Yulita
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Daniel Cerini
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Daniel Peña
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Roberto Candal
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, Universidad Nacional de San Martín, San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Silvia Goyanes
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Lía I. Pietrasanta
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Centro de Microscopías Avanzadas y Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Lucas Guz
- Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad, Campus Miguelete, Universidad Nacional de San Martín, San Martín 1650, Provincia de Buenos Aires, Argentina
| | - Lucía Famá
- Laboratorio de Polímeros y Materiales Compuestos (LPMC), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Correspondence: ; Tel.: +54-11-5285-7511 (ext. 57511)
| |
Collapse
|
14
|
Experimental Study of the Impact of Trace Amounts of Acetylene and Methylacetylene on the Synthesis, Mechanical and Thermal Properties of Polypropylene. Int J Mol Sci 2022; 23:ijms232012148. [PMID: 36293003 PMCID: PMC9603376 DOI: 10.3390/ijms232012148] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
During the production of polymer-grade propylene, different processes are used to purify this compound and ensure that it is of the highest quality. However, some impurities such as acetylene and methyl acetylene are difficult to remove, and some of these impurities may be present in the propylene used to obtain polypropylene, which may have repercussions on the process. This study evaluates the impact of these acetylene and methyl acetylene impurities on the productivity of the polypropylene synthesis process and on the mechanical and thermal properties of the material obtained through the synthesis of eight samples with different concentrations of acetylene and eight samples with different concentrations of acetylene. We discovered that for the first concentrations of both acetylene (2 and 3 ppm) and methyl acetylene (0.03 and 0.1), the MFI, thermal recording, and mechanical properties of the resin were unaffected by the variation of the fluidity index, thermal degradation by TGA, and mechanical properties such as resistance to tension, bending, and impact. However, when the concentration exceeded 14 ppm for methyl acetylene and 12 ppm for acetylene, the resistance of this resin began to decrease linearly. Regarding production, this was affected by the first traces of acetylene and methyl acetylene progressively decreasing.
Collapse
|
15
|
Mahmud J, Sarmast E, Shankar S, Lacroix M. Advantages of nanotechnology developments in active food packaging. Food Res Int 2022; 154:111023. [DOI: 10.1016/j.foodres.2022.111023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 01/04/2023]
|
16
|
Gioia C, Giacobazzi G, Vannini M, Totaro G, Sisti L, Colonna M, Marchese P, Celli A. End of Life of Biodegradable Plastics: Composting versus Re/Upcycling. CHEMSUSCHEM 2021; 14:4167-4175. [PMID: 34363734 PMCID: PMC8518687 DOI: 10.1002/cssc.202101226] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Indexed: 05/16/2023]
Abstract
Nowadays the issues related to the end of life of traditional plastics are very urgent due to the important pollution problems that plastics have caused. Biodegradable plastics can help to try to mitigate these problems, but even bioplastics need much attention to carefully evaluate the different options for plastic waste disposal. In this Minireview, three different end-of-life scenarios (composting, recycling, and upcycling) were evaluated in terms of literature review. As a result, the ability of bioplastics to be biodegraded by composting has been related to physical variables and materials characteristics. Hence, it is possible to deduce that the process is mature enough to be a good way to minimize bioplastic waste and valorize it for the production of a fertilizer. Recycling and upcycling options, which could open up many interesting new scenarios for the production of high-value materials, are less studied. Research in this area can be strongly encouraged.
Collapse
Affiliation(s)
- Claudio Gioia
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Greta Giacobazzi
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Micaela Vannini
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Grazia Totaro
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Laura Sisti
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Martino Colonna
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Paola Marchese
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials EngineeringUniversity of BolognaVia Terracini 2840131BolognaItaly
| |
Collapse
|
17
|
Aldas M, Ferri JM, Motoc DL, Peponi L, Arrieta MP, López-Martínez J. Gum Rosin as a Size Control Agent of Poly(Butylene Adipate-Co-Terephthalate) (PBAT) Domains to Increase the Toughness of Packaging Formulations Based on Polylactic Acid (PLA). Polymers (Basel) 2021; 13:polym13121913. [PMID: 34201407 PMCID: PMC8229187 DOI: 10.3390/polym13121913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/03/2022] Open
Abstract
Gum rosin (GR) was used as a natural additive to improve the compatibility between polylactic acid, PLA, and poly(butylene adipate-co-terephthalate, PBAT, blended with 20 wt.% of PBAT (PLA/PBAT). The PBAT was used as a soft component to increase the ductility of PLA and its fracture toughness. The coalescence of the PBAT domains was possible due to the plasticization effect of the GR component. These domains contributed to increasing the toughness of the final material due to the variation and control of the PBAT domains’ size and consequently, reducing the stress concentration points. The GR was used in contents of 5, 10, 15, and 20 phr. Consequently, the flexural properties were improved and the impact resistance increased up to 80% in PLA/PBAT_15GR with respect to the PLA/PBAT formulation. Field emission scanning electron microscope (FESEM) images allowed observing that the size of PBAT domains of 2–3 µm was optimal to reduce the impact stress. Differential scanning calorimetry (DSC) analysis showed a reduction of up to 8 °C on the PLA melting temperature and up to 5.3 °C of the PLA glass transition temperature in the PLA/PBAT_20GR formulation, which indicates an improvement in the processability of PLA. Finally, transparent films with improved oxygen barrier performance and increased hydrophobicity were obtained suggesting the potential interest of these blends for the food packaging industry.
Collapse
Affiliation(s)
- Miguel Aldas
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain;
- Departamento de Ciencia de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional, 170517 Quito, Ecuador
- Correspondence: (M.A.); (J.M.F.); Tel.: +593-999-736-444 (M.A.); +34-699-495-982 (J.M.F.)
| | - José Miguel Ferri
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain;
- Correspondence: (M.A.); (J.M.F.); Tel.: +593-999-736-444 (M.A.); +34-699-495-982 (J.M.F.)
| | - Dana Luca Motoc
- Department of Automotive and Transport Engineering, Transilvania University of Brasov, Eroilor Av., 500036 Brasov, Romania;
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
| | - Marina Patricia Arrieta
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain;
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Juan López-Martínez
- Instituto de Tecnología de Materiales (ITM), Universitat Politècnica de València (UPV), 03801 Alcoy, Spain;
| |
Collapse
|
18
|
Scaffaro R, Maio A, Gammino M, La Mantia FP. Effect of an organoclay on the photochemical transformations of a PBAT/PLA blend and morpho-chemical features of crosslinked networks. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2021.109549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|