1
|
Chang F, Rowart P, Salvatore SR, Rom O, Mascal M, Schopfer FJ. The emerging significance of furan fatty acids in food, nutrition, and potential therapeutic use. Food Chem 2025; 479:143759. [PMID: 40090194 PMCID: PMC12070325 DOI: 10.1016/j.foodchem.2025.143759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
The emerging significance of furan fatty acids (FuFAs) is explored at the intersection of food, chemistry, nutrition, and therapeutics. FuFAs, with a distinctive furan ring incorporated into fatty acyl chains, are minor yet bioactive constituents of dietary lipids known for their unique chemical properties. This review examines FuFA biosynthesis in various organisms, highlighting their occurrence in food products. We also address the challenges of FuFA instability, which influence their availability and impact on food science. The chemical synthesis of FuFAs is reviewed, paving the way for future animal and human studies. FuFAs exhibit potent antioxidant and anti-inflammatory effects, with growing evidence of their role in metabolic health. Recent research suggests that FuFAs may extend benefits beyond omega-3 fatty acids in promoting cardiovascular and metabolic health. By consolidating current knowledge and identifying gaps, this review sets the stage for future research to harness the therapeutic potential of FuFAs.
Collapse
Affiliation(s)
- Fei Chang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Pascal Rowart
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Sonia R Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Oren Rom
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Mark Mascal
- Department of Chemistry, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| |
Collapse
|
2
|
Chaslin M, Maroun G, Durand E, Bonafos B, Assou S, Chaiyut J, Vaysse L, Ferrer V, Liengprayoon S, Brioche T, Pessemesse L, Macart M, Bertrand-Gaday C, Pers YM, Coudray C, Brondello JM, Casas F, Feillet-Coudray C. Furan fatty acids supplementation in obese mice reverses hepatic steatosis and protects against cartilage degradation. Biomed Pharmacother 2025; 187:118072. [PMID: 40253827 DOI: 10.1016/j.biopha.2025.118072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/11/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Obesity is a major global health problem associated with numerous metabolic dysfunctions, an increased risk of developing Metabolic Associated Steatotic Liver Disease (MASLD) and osteoarthritis. Recently, we demonstrated that in Diet-induced-Obesity (DIO) mouse model, preventive furan fatty acids (FuFA-F2) supplementation, a natural compounds found in many foods, reduced the onset of metabolic disorders and increased muscle mass. Here, we aimed to determine whether a short FuFA-F2 supplementation is capable of providing beneficial health effects in obese mice, notably by reversing metabolic disorders and limiting cartilage degradation. 6-month-old obese C57Bl/6 J mice were fed for four additional weeks on a high-fat and high-sucrose (HFHS) diet, supplemented or not with FuFA-F2 (40 mg/day/kg of body weight). Liver triglyceride content and histologic analysis revealed that 4 weeks of FuFA-F2 supplementation fully reversed hepatic steatosis in obese mice. Liver RNA-sequencing analysis highlighted that FuFA-F2 partly reversed the gene expression signature induced by the HFHS diet and favorably changed the expression of many genes known to be involved in the development of hepatic steatosis such as Pcsk9, Stard4, Insig1 and Sulf2. We also found that FuFA-F2 supplementation increased skeletal muscle mass and protected against cartilage degradation and synovitis induced by obesity. Our findings demonstrated that FuFA-F2 supplementation for 4 weeks in obese mice was enough to reverse the development of MASLD, promote an increase in skeletal muscle mass and protect against cartilage degradation induced by the HFHS diet. This study highlights that nutritional supplementation with FuFA-F2 could be an effective approach to treat obesity-related disorders.
Collapse
Affiliation(s)
| | - Georges Maroun
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France
| | - Erwann Durand
- Qualisud, Univ Montpellier, CIRAD, Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Said Assou
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France
| | - Jatuporn Chaiyut
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | - Laurent Vaysse
- CIRAD, UPR BioWooEB, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Vincent Ferrer
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand; CIRAD, UPR BioWooEB, Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | - Yves-Marie Pers
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France; Montpellier University Hospital, Clinical immunology and osteoarticular diseases therapeutic Unit, Lapeyronie, Montpellier, France
| | | | - Jean-Marc Brondello
- Institute of Regenerative Medicine and Biotherapies (IRMB), Univ Montpellier, INSERM, Montpellier, France
| | | | | |
Collapse
|
3
|
Yang H, Wang Y, Luo K, Mossavar-Rahmani Y, Cordero C, Ostfeld RJ, Martinez C, Maldonado L, Pirzada A, Daviglus M, Yu B, Hu FB, Kaplan RC, Qi Q. Dietary patterns, serum metabolites and risk of cardiovascular disease in US Hispanic/Latino adults: a prospective analysis of the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). Am J Clin Nutr 2025:S0002-9165(25)00261-8. [PMID: 40389082 DOI: 10.1016/j.ajcnut.2025.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 03/26/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Healthy dietary patterns are recommended to prevent cardiovascular disease (CVD), yet the relationships among healthy dietary patterns, blood metabolite profile, and incident CVD are not well-understood. OBJECTIVE This study aimed to assess the associations of healthy dietary patterns and related serum metabolite profile with incident CVD in US Hispanic/Latino adults. METHODS The study included 13,922 participants aged 18-74 years from the Hispanic Community Health Study/Study of Latinos. Dietary pattern scores, including Healthy Eating Index (HEI)-2020, healthful Plant-based Diet Index (hPDI), and alternate Mediterranean diet score (aMED), were constructed at baseline (2008-2011) based on two 24-hour dietary recalls. The primary outcome was incident CVD, encompassing myocardial infarction, heart failure, and stroke. Dietary-pattern-associated metabolites were identified in a subsample of participants free of diabetes at baseline (n=4,096). Associations of dietary pattern scores, individual metabolites and metabolite scores with incident CVD were evaluated using multivariable Cox regression. RESULTS During a median 9.7-year follow-up period, 260 CVD events occurred among 13,922 participants. After adjusting for demographic, socioeconomic and behavioral factors, higher dietary pattern scores were associated with lower risk of CVD (hazard ratios [HRs]=0.53 [95% confidence interval: 0.30, 0.92], 0.50 [0.27, 0.91] and 0.62 [0.36, 1.07] for HEI-2020, hPDI and aMED, respectively, by comparing the highest tertile to the lowest tertile). A total of 60 metabolites were identified to be associated with all three dietary pattern scores, including 45 metabolites positively and 15 metabolites negatively associated with dietary pattern scores. A total metabolite score based on these 60 dietary-pattern-associated metabolites was negatively associated with risk of CVD after multivariable adjustment (HR=0.57 [0.35, 0.92] by comparing the highest tertile to the lowest tertile). CONCLUSIONS Healthier diet patterns and related serum metabolite profile were associated with lower risk of CVD in US Hispanic/Latino adults.
Collapse
Affiliation(s)
- Hongbo Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Robert J Ostfeld
- Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Claudia Martinez
- Department of Medicine, Cardiovascular Division, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Luis Maldonado
- Division of Environmental Health, Department of Preventive Medicine, University of Southern California, California, USA
| | - Amber Pirzada
- Institute for Minority Health Research, University of Illinois Chicago, IL, USA
| | - Martha Daviglus
- Department of Preventive Medicine, University of Illinois Chicago, IL, USA
| | - Bing Yu
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center, Houston, TX, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
4
|
Feng J, Wang JP, Hu JR, Li P, Lv P, He HC, Cheng XW, Cao Z, Han JJ, Wang Q, Su Q, Liu LX. Multi-omics reveals the associations among the fecal metabolome, intestinal bacteria, and serum indicators in patients with hepatocellular carcinoma. World J Gastroenterol 2025; 31:104996. [PMID: 40309232 PMCID: PMC12038548 DOI: 10.3748/wjg.v31.i15.104996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, is a key contributor to cancer-related deaths globally. However, HCC diagnosis solely based on blood biochemical markers lacks both sensitivity and specificity. AIM To investigate alterations of the fecal metabolome and intestinal bacteria and reveal the correlations among differential metabolites, distinct bacteria, and serum indicators. METHODS To uncover potentially effective therapeutic targets for HCC, we utilized non-targeted liquid chromatography-mass spectrometry and high-throughput DNA sequencing targeting the 16S rRNA gene. This comprehensive approach allowed us to investigate the metabolome and microbial community structure of feces samples obtained from patients with HCC. Furthermore, we conducted an analysis to assess the interplay between the fecal metabolome and intestinal bacterial population. RESULTS In comparison to healthy controls, a notable overlap of 161 differential metabolites and 3 enriched Kyoto Encyclopedia of Genes and Genomes pathways was observed in the HCC12 (comprising patients with stage I and II HCC) and HCC34 groups (comprising patients with stage III and IV HCC). Lachnospira, Streptococcus, and Veillonella had significant differences in abundance in patients with HCC. Notably, Streptococcus and Veillonella exhibited significant correlations with serum indicators such as alpha-fetoprotein (AFP). Meanwhile, several differential metabolites [e.g., 4-keto-2-undecylpyrroline, dihydrojasmonic acid, 1,8-heptadecadiene-4,6-diyne-3,10-diol, 9(S)-HOTrE] also exhibited significant correlations with serum indicators such as γ-glutamyl transferase, total bilirubin, AFP, aspartate aminotransferase, and albumin. Additionally, these two genera also had significant associations with differential metabolites such as 1,2-Dipentadecanoyl-rac-glycerol (15:0/20:0/0:0), arachidoyl ethanolamide, and 4-keto-2-undecylpyrroline. CONCLUSION Our results suggest that the metabolome of fecal samples and the composition of intestinal bacteria hold promise as potential biomarkers for HCC diagnosis.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
- Department of Infectious Diseases and Hepatology, Shanxi Provincial People’s Hospital, Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Jun-Ping Wang
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Jian-Ran Hu
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, Shanxi Province, China
| | - Ping Li
- Department of Biological Science and Technology, Jinzhong University, Jinzhong 030619, Shanxi Province, China
| | - Pin Lv
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Hu-Cheng He
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Xiao-Wei Cheng
- Department of Interventional Therapy, Shanxi Provincial People’s Hospital, Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Zheng Cao
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Jia-Jing Han
- Department of Gastroenterology, Shanxi Provincial People’s Hospital, Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Qiang Wang
- Department of Infectious Diseases and Hepatology, Shanxi Provincial People’s Hospital, Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Qian Su
- Department of Infectious Diseases and Hepatology, Shanxi Provincial People’s Hospital, Affiliated to Shanxi Medical University, Taiyuan 030012, Shanxi Province, China
| | - Li-Xin Liu
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi Province, China
| |
Collapse
|
5
|
Zeng Y, Yang SH, Guo JL, Li Y, Lin T, Wang ZY. Metal-Free Catalytic Synthesis of Tetrasubstituted Furans from α-Hydroxy Ketones and Cyano Compounds. Molecules 2025; 30:1832. [PMID: 40333876 PMCID: PMC12029176 DOI: 10.3390/molecules30081832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/17/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
A novel method for the efficient and straightforward synthesis of tetrasubstituted furans is presented, employing a base-catalyzed reaction of α-hydroxy ketones and cyano compounds. The reaction proceeds under relatively mild conditions, utilizes readily available starting materials, and exhibits good functional group tolerance and high yields. Notably, this reaction obviates the need for expensive metal catalysts and introduces crucial functional groups such as amino and cyano moieties. Furthermore, it avoids the prerequisite functionalization of substrates, thereby enhancing atomic economy.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (Y.Z.); (S.-H.Y.); (J.-L.G.); (Y.L.); (T.L.)
| |
Collapse
|
6
|
Vikram VN, Chourasiya M, Kant R, Tadigoppula N. Ruthenium(II)-catalyzed synthesis of poly-substituted furans via intermolecular oxidative annulation of 3-(phenylethynyl) oxazolidin-2-ones. Org Biomol Chem 2025; 23:3567-3571. [PMID: 40126878 DOI: 10.1039/d4ob02098g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This study presents a new method for the synthesis of poly-substituted furans by an oxidative annulation reaction of ynamides in the presence of Ru(II) as a catalyst, copper(II) triflate Cu(OTf)2 as an oxidant, and cesium carbonate (Cs2CO3) as a base. The reaction shows broad substrate scope and compatibility with readily available starting materials, with yields ranging from good to excellent.
Collapse
Affiliation(s)
- Vikrant Nawal Vikram
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P.-226031, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC campus, Ghaziabad, U.P.-201002, India
| | - Mohit Chourasiya
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P.-226031, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC campus, Ghaziabad, U.P.-201002, India
| | - Ruchir Kant
- Division of Molecular and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, U.P.-226031, India
| | - Narender Tadigoppula
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow, U.P.-226031, India.
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC campus, Ghaziabad, U.P.-201002, India
| |
Collapse
|
7
|
Merheb C, Gerbal-Chaloin S, Casas F, Diab-Assaf M, Daujat-Chavanieu M, Feillet-Coudray C. Omega-3 Fatty Acids, Furan Fatty Acids, and Hydroxy Fatty Acid Esters: Dietary Bioactive Lipids with Potential Benefits for MAFLD and Liver Health. Nutrients 2025; 17:1031. [PMID: 40292496 PMCID: PMC11945187 DOI: 10.3390/nu17061031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/30/2025] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is the most common form of chronic liver disease, for which only resmetirom has recently received FDA approval. Prevention is crucial, as it can help manage and potentially reverse the progression of MAFLD to more severe stages. Omega-3 fatty acids, which are a type of polyunsaturated fatty acid (PUFA), have numerous beneficial effects in health and disease, including liver disease. Other bioactive lipids, such as furanic fatty acids (FuFA) and hydroxy fatty acid esters (FAHFA), have also demonstrated several benefits on relevant markers of liver dysfunction in animal and cell models. However, the effects of FAHFAs on hepatic steatosis are inconsistent, and studies on the impact of FuFAs in MAFLD are scarce. Further and more extensive research is required to better understand their role in liver health. The aim of this narrative review is to provide a brief overview of the potential effects of omega-3 fatty acids and other bioactive lipids, such as FuFAs and FAHFAs, on liver disease, with a focus on MAFLD.
Collapse
Affiliation(s)
- Camil Merheb
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), F-34000 Montpellier, France; (C.M.); (S.G.-C.)
| | - Sabine Gerbal-Chaloin
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), F-34000 Montpellier, France; (C.M.); (S.G.-C.)
| | - François Casas
- Dynamique du Muscle et Métabolisme (DMEM), University Montpellier, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), F-34295 Montpellier, France; (F.C.); (C.F.-C.)
| | - Mona Diab-Assaf
- Tumorigenesis Molecular and Anticancer Pharmacology, Faculty of Sciences-II, Lebanese University, Beyrouth 1500, Lebanon;
| | - Martine Daujat-Chavanieu
- Institute for Regenerative Medicine and Biotherapy (IRMB), University Montpellier, Institut National de la Santé et de la Recherche Médicale (INSERM), CHU Montpellier, F-34000 Montpellier, France
| | - Christine Feillet-Coudray
- Dynamique du Muscle et Métabolisme (DMEM), University Montpellier, Institut National de Recherche pour L’agriculture, L’alimentation et L’environnement (INRAE), F-34295 Montpellier, France; (F.C.); (C.F.-C.)
| |
Collapse
|
8
|
Huang XY, Gao SJ, Ge D, Ma M, Shen ZL, Chu XQ. Modular Synthesis of Furans with Four Nonidentical Substituents by Aqueous Defluorinative Reaction of Trifluoromethyl Enones with Two Nucleophiles. Org Lett 2025; 27:462-469. [PMID: 39719377 DOI: 10.1021/acs.orglett.4c04488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
A three-component reaction of trifluoromethyl enones, phosphine oxides, and alcohols in water solution is developed. This defluorinative reaction occurs through a cascade process involving defluorophosphorylation, defluoroalkyloxylation, and defluoroheteroannulation, enabling the modular synthesis of furans with four distinct substituents: C2-alkyloxy, C3-trifluoromethyl, C4-phosphoryl, and C5-(hetero)aryl groups. Moreover, apart from alcohol substrates, the scope of nucleophiles could be further extended to phenols, azacycles, or sulfonamide.
Collapse
Affiliation(s)
- Xue-Ying Huang
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shu-Ji Gao
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Danhua Ge
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
9
|
Sinclair AJ. Navigating my career in lipid research. Eur J Clin Nutr 2025; 79:1-6. [PMID: 38802606 PMCID: PMC11717703 DOI: 10.1038/s41430-024-01452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Affiliation(s)
- Andrew J Sinclair
- Faculty of Health, Deakin University, Burwood, VIC, 3125, Australia.
- Department of Nutrition, Dietetics and Food, Notting Hill, VIC, 3168, Australia.
| |
Collapse
|
10
|
Muli S, Schnermann ME, Merdas M, Rattner J, Achaintre D, Perrar I, Goerdten J, Alexy U, Scalbert A, Schmid M, Floegel A, Keski-Rahkonen P, Oluwagbemigun K, Nöthlings U. Metabolomics signatures of sweetened beverages and added sugar are related to anthropometric measures of adiposity in young individuals: results from a cohort study. Am J Clin Nutr 2024; 120:879-890. [PMID: 39059709 PMCID: PMC11473401 DOI: 10.1016/j.ajcnut.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND The associations of sweetened beverages (SBs) and added sugar (AS) intake with adiposity are still debated. Metabolomics could provide insights into the mechanisms linking their intake to adiposity. OBJECTIVES We aimed to identify metabolomics biomarkers of intake of low- and no-calorie sweetened beverages (LNCSBs), sugar-sweetened beverages (SSBs), and ASs and to investigate their associations with body mass index, body fat percentage, and waist circumference. METHODS We analyzed 3 data sets from the Dortmund Nutritional and Anthropometric Longitudinally Designed (DONALD) cohort study, of children who provided 2 urine samples (n = 297), adolescents who provided a single urine sample (n = 339), and young adults who provided a single plasma sample (n = 195). Urine and plasma were analyzed using untargeted metabolomics. Dietary intakes were assessed using 3-d weighed dietary records. The random forest, partial least squares, and least absolute shrinkage and selection operator were jointly used for metabolite selection. We examined associations of intakes with metabolites and anthropometric measures using linear and mixed-effects regression. RESULTS In adolescents, LNCSB were positively associated with acesulfame (β: 0.0012; 95% confidence interval [CI]: 0.0006, 0.0019) and saccharin (β: 0.0009; 95% CI: 0.0002, 0.0015). In children, the association was observed with saccharin (β: 0.0016; 95% CI: 0.0005, 0.0027). In urine and plasma, SSBs were positively associated with 1-methylxanthine (β: 0.0005; 95% CI: 0.0003, 0.0008; and β: 0.0010, 95% CI 0.0004, 0.0015, respectively) and 5-acetylamino-6-amino-3-methyluracil (β: 0.0005; 95% CI: 0.0002, 0.0008; and β: 0.0009; 95% CI: 0.0003, 0.0014, respectively). AS was associated with urinary sucrose (β: 0.0095; 95% CI: 0.0069, 0.0121) in adolescents. Some of the food-related metabolomics profiles were also associated with adiposity measures. CONCLUSIONS We identified SBs- and AS-related metabolites, which may be important for understanding the interplay between these intakes and adiposity in young individuals.
Collapse
Affiliation(s)
- Samuel Muli
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany.
| | - Maike E Schnermann
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Mira Merdas
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Jodi Rattner
- International Agency for Research on Cancer (IARC), Lyon, France
| | - David Achaintre
- International Agency for Research on Cancer (IARC), Lyon, France
| | - Ines Perrar
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Jantje Goerdten
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology (BIPS), Bremen, Germany
| | - Ute Alexy
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | | | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital Bonn, Bonn, Germany
| | - Anna Floegel
- Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology (BIPS), Bremen, Germany; Section of Dietetics, Faculty of Agriculture and Food Sciences, Hochschule Neubrandenburg, Neubrandenburg, Germany
| | | | - Kolade Oluwagbemigun
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Ute Nöthlings
- Unit of Nutritional Epidemiology, Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Landberg R, Karra P, Hoobler R, Loftfield E, Huybrechts I, Rattner JI, Noerman S, Claeys L, Neveu V, Vidkjaer NH, Savolainen O, Playdon MC, Scalbert A. Dietary biomarkers-an update on their validity and applicability in epidemiological studies. Nutr Rev 2024; 82:1260-1280. [PMID: 37791499 PMCID: PMC11317775 DOI: 10.1093/nutrit/nuad119] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
The aim of this literature review was to identify and provide a summary update on the validity and applicability of the most promising dietary biomarkers reflecting the intake of important foods in the Western diet for application in epidemiological studies. Many dietary biomarker candidates, reflecting intake of common foods and their specific constituents, have been discovered from intervention and observational studies in humans, but few have been validated. The literature search was targeted for biomarker candidates previously reported to reflect intakes of specific food groups or components that are of major importance in health and disease. Their validity was evaluated according to 8 predefined validation criteria and adapted to epidemiological studies; we summarized the findings and listed the most promising food intake biomarkers based on the evaluation. Biomarker candidates for alcohol, cereals, coffee, dairy, fats and oils, fruits, legumes, meat, seafood, sugar, tea, and vegetables were identified. Top candidates for all categories are specific to certain foods, have defined parent compounds, and their concentrations are unaffected by nonfood determinants. The correlations of candidate dietary biomarkers with habitual food intake were moderate to strong and their reproducibility over time ranged from low to high. For many biomarker candidates, critical information regarding dose response, correlation with habitual food intake, and reproducibility over time is yet unknown. The nutritional epidemiology field will benefit from the development of novel methods to combine single biomarkers to generate biomarker panels in combination with self-reported data. The most promising dietary biomarker candidates that reflect commonly consumed foods and food components for application in epidemiological studies were identified, and research required for their full validation was summarized.
Collapse
Affiliation(s)
- Rikard Landberg
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Prasoona Karra
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | - Rachel Hoobler
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | - Erikka Loftfield
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Inge Huybrechts
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Jodi I Rattner
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Stefania Noerman
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Liesel Claeys
- International Agency for Research on Cancer, Molecular Mechanisms and Biomarkers Group, Lyon, France
| | - Vanessa Neveu
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| | - Nanna Hjort Vidkjaer
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Otto Savolainen
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Mary C Playdon
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
- Cancer Control and Population Sciences Program, Huntsman Cancer Institute, University of Utah Salt Lake City, UT, USA
| | - Augustin Scalbert
- International Agency for Research on Cancer, Nutrition and Metabolism Branch, Lyon, France
| |
Collapse
|
12
|
Zarei I, Eloranta AM, Klåvus A, Väistö J, Lehtonen M, Mikkonen S, Koistinen VM, Sallinen T, Haapala EA, Lintu N, Soininen S, Haikonen R, Atalay M, Schwab U, Auriola S, Kolehmainen M, Hanhineva K, Lakka TA. Eight-year diet and physical activity intervention affects serum metabolites during childhood and adolescence: A nonrandomized controlled trial. iScience 2024; 27:110295. [PMID: 39055945 PMCID: PMC11269805 DOI: 10.1016/j.isci.2024.110295] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Long-term lifestyle interventions in childhood and adolescence can significantly improve cardiometabolic health, but the underlying molecular mechanisms remain poorly understood. To address this knowledge gap, we conducted an 8-year diet and physical activity intervention in a general population of children. The research revealed that the intervention influenced 80 serum metabolites over two years, with 17 metabolites continuing to be affected after eight years. The intervention primarily impacted fatty amides, including palmitic amide, linoleamide, oleamide, and others, as well as unsaturated fatty acids, acylcarnitines, phospholipids, sterols, gut microbiota-derived metabolites, amino acids, and purine metabolites. Particularly noteworthy were the pronounced changes in serum fatty amides. These serum metabolite alterations could represent molecular mechanisms responsible for the observed benefits of long-term lifestyle interventions on cardiometabolic and overall health since childhood. Understanding these metabolic changes may provide valuable insights into the prevention of cardiometabolic and other non-communicable diseases since childhood.
Collapse
Affiliation(s)
- Iman Zarei
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Aino-Maija Eloranta
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Anton Klåvus
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juuso Väistö
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, Kuopio, Finland
- LC-MS Metabolomics Center, Biocenter Kuopio, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ville M. Koistinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Turku, Finland
| | - Taisa Sallinen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eero A. Haapala
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Niina Lintu
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Sonja Soininen
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Physician and Nursing Services, Health and Social Services Centre, Wellbeing Services County of North Savo, Varkaus, Finland
| | - Retu Haikonen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mustafa Atalay
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Science, University of Eastern Finland, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Kati Hanhineva
- Institute of Public Health and Clinical Nutrition, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Food Chemistry and Food Development Unit, Department of Biochemistry, University of Turku, Turku, Finland
| | - Timo A. Lakka
- Institute of Biomedicine, School of Medicine, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| |
Collapse
|
13
|
Wang J, Zheng M, Jia Q, Ren Q, Wu J. Synthesis of Highly Substituted Furans via Intermolecular Enynone-Aldehyde Cross-Coupling/Cyclization Catalyzed by N-Heterocyclic Carbenes. Org Lett 2024; 26:4868-4872. [PMID: 38832854 DOI: 10.1021/acs.orglett.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A new strategy for facile access to multifunctionalized furans via N-heterocyclic carbene-catalyzed cross-coupling/cyclization of ynenones with aldehydes has been explored. This protocol features readily obtainable starting materials, mild and metal-free conditions, broad substrate scope, good functional group tolerance, excellent yields, and easy scale-up. Synthetic utility of the protocol has been further corroborated through functionalization of complex substrates and postmodifications of the product.
Collapse
Affiliation(s)
- Jie Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Mingyue Zheng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Qianfa Jia
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Qiao Ren
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Science, Southwest University, Chongqing 400715, P. R. China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
14
|
Samaey A, Vázquez-Castellanos JF, Caenepeel C, Evenepoel P, Vermeire S, Raes J, Knops N. Effects of fecal microbiota transplantation for recurrent Clostridium difficile infection in children on kidney replacement therapy: a pilot study. Pediatr Nephrol 2024; 39:1201-1212. [PMID: 37775582 DOI: 10.1007/s00467-023-06168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Recurrent Clostridium difficile infection (rCDI) is a rising problem in children with chronic diseases. Fecal microbiota transplantation (FMT) is a recent alternative for rCDI patients who do not respond to conventional treatment. FMT could have an additional positive effect on the intestinal dysbiosis and accumulation of uremic retention molecules (URM) associated with chronic kidney disease (CKD). Our aim was to investigate the clinical efficacy of FMT for rCDI in children with CKD together with the effect on dysbiosis and URM levels. METHODS We analyzed stool and blood samples before and until 3 months after FMT in 3 children between 4 and 8 years old with CKD and rCDI. The microbiome was analyzed by 16 s rRNA sequencing. URM were analyzed with ultra-performance liquid chromatography-tandem mass spectrometry. CRP and fecal calprotectin were analyzed as parameters for systemic and gut inflammation, respectively. RESULTS CDI resolved after FMT in all three without adverse events; one patient needed a second FMT. No significant effect on CRP and calprotectin was observed. Stool samples demonstrated a reduced richness and bacterial diversity which did not improve after FMT. We did observe a trend in the decrease of specific URM up to 3 months after FMT. CONCLUSION FMT is an effective treatment for rCDI in patients with CKD. Analysis of the microbiome showed an important intestinal dysbiosis that, besides a significant reduction in Clostridium difficile, did not significantly change after FMT. A trend for reduction was seen in some of the measured URM after FMT.
Collapse
Affiliation(s)
- An Samaey
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, Leuven, Belgium.
| | - Jorge Francisco Vázquez-Castellanos
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Louvain, Belgium
| | - Clara Caenepeel
- Translational Research Center for Gastrointestinal Disorders (TARGID), UZ Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Nephrology, Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Gastroenterology &, Hepatology University Hospitals Leuven, and Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jeroen Raes
- Department of Microbiology and Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Noël Knops
- Department of Pediatric Nephrology and Solid Organ Transplantation, UZ Leuven, Leuven, Belgium
- Department of Pediatrics, Groene Hart Ziekenhuis, Gouda, the Netherlands
| |
Collapse
|
15
|
Li K, Song X, Li H, Kuang X, Liu S, Liu R, Li D. Mussel oil is superior to fish oil in preventing atherosclerosis of ApoE -/- mice. Front Nutr 2024; 11:1326421. [PMID: 38410635 PMCID: PMC10894946 DOI: 10.3389/fnut.2024.1326421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Objectives The present study aimed to explore the preventive effect of mussel oil (MO) on atherosclerosis and the potential mechanism in apolipoprotein E-null (ApoE-/-) mice. Methods ApoE-/- mice were fed with a high-fat and high-cholesterol chow and given corn oil (CO), fish oil (FO), MO, or aspirin (ASP, dissolved in CO) by gavage for 12 weeks. The total n-3 polyunsaturated fatty acids (PUFAs) in MO (51.01%) and FO (46.82%) were comparable (mainly C22:6n-3 and C20:5n-3). Wild-type mice were fed with a normal chow and given equivalent CO as health control (CON). Results Compared with the CON group, obvious atherosclerotic plaque appeared at aorta and aortic sinus in the CO group. Compared with the CO group, MO but not FO had a significantly smaller atherosclerotic plaque area in the aorta. The aortic atherosclerotic plaque area was comparable in the MO, CON, and ASP groups. The MO group had a significantly smaller atherosclerotic plaque area, lower lipid deposition, lower contents of smooth muscle cell (SMC), and slightly lower contents of macrophage at the aortic sinus than the FO group. Serum concentrations of IL-1β, NF-κB, and VCAM-1 were comparable in the MO and FO groups and were significantly lower than the CO group. Compared with the CO group, the MO group but not FO group had significantly lower aortic protein levels of p65NF-κB, p38MAPK, and VCAM-1. The aortic protein levels of p-p65NF-κB and p-p38MAPK were significantly lower in the MO group than the FO group. Conclusion In conclusion, MO is more potent than FO in preventing atherosclerosis, and the possible mechanism may be by downregulating p38MAPK/NF-κB signaling pathway, decreasing VCAM-1 and macrophage, and inhibiting proliferation and migration of SMC.
Collapse
Affiliation(s)
- Kelei Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaolei Song
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Huiying Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaotong Kuang
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Shiyi Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Run Liu
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
16
|
Watanabe S, Omagari A, Yamada R, Matsumoto A, Kimura Y, Makita N, Hiyama E, Okamoto Y, Okabe R, Sano T, Sato T, Suzuki M, Saito S, Anai T. Mutations in the genes responsible for the synthesis of furan fatty acids resolve the light-induced off-odor in soybean oil. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1239-1249. [PMID: 38016933 DOI: 10.1111/tpj.16560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023]
Abstract
Soybean oil is the second most produced edible vegetable oil and is used for many edible and industrial materials. Unfortunately, it has the disadvantage of 'reversion flavor' under photooxidative conditions, which produces an off-odor and decreases the quality of edible oil. Reversion flavor and off-odor are caused by minor fatty acids in the triacylglycerol of soybean oil known as furan fatty acids, which produce 3-methyl-2,4-nonanedione (3-MND) upon photooxidation. As a solution to this problem, a reduction in furan fatty acids leads to a decrease in 3-MND, resulting in a reduction in the off-odor induced by light exposure. However, there are no reports on the genes related to the biosynthesis of furan fatty acids in soybean oil. In this study, four mutant lines showing low or no furan fatty acid levels in soybean seeds were isolated from a soybean mutant library. Positional cloning experiments and homology search analysis identified two genes responsible for furan fatty acid biosynthesis in soybean: Glyma.20G201400 and Glyma.04G054100. Ectopic expression of both genes produced furan fatty acids in transgenic soybean hairy roots. The structure of these genes is different from that of the furan fatty acid biosynthetic genes in photosynthetic bacteria. Homologs of these two group of genes are widely conserved in the plant kingdom. The purified oil from the furan fatty acid mutant lines had lower amounts of 3-MND and reduced off-odor after light exposure, compared with oil from the wild-type.
Collapse
Affiliation(s)
- Satoshi Watanabe
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga, 840-8502, Japan
| | - Ayako Omagari
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga, 840-8502, Japan
| | - Risa Yamada
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga, 840-8502, Japan
| | - Akane Matsumoto
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga, 840-8502, Japan
| | - Yuta Kimura
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga, Saga, 840-8502, Japan
| | - Naruto Makita
- Research & Development Center, J-Oil Mills, Inc., 7-41 Daikoku-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0053, Japan
| | - Erina Hiyama
- Research & Development Center, J-Oil Mills, Inc., 7-41 Daikoku-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0053, Japan
| | - Yuki Okamoto
- Research & Development Center, J-Oil Mills, Inc., 7-41 Daikoku-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0053, Japan
| | - Ryo Okabe
- Research & Development Center, J-Oil Mills, Inc., 7-41 Daikoku-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0053, Japan
| | - Takashi Sano
- Research & Development Center, J-Oil Mills, Inc., 7-41 Daikoku-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0053, Japan
| | - Toshiro Sato
- Research & Development Center, J-Oil Mills, Inc., 7-41 Daikoku-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0053, Japan
| | - Mototaka Suzuki
- Research & Development Center, J-Oil Mills, Inc., 7-41 Daikoku-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0053, Japan
| | - Sanshiro Saito
- Research & Development Center, J-Oil Mills, Inc., 7-41 Daikoku-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0053, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, Fukuoka, 819-0395, Japan
| |
Collapse
|
17
|
Gangai S, Fernandes R, Mhaske K, Narayan R. Cu(ii)-catalyzed aerobic oxidative coupling of furans with indoles enables expeditious synthesis of indolyl-furans with blue fluorescence. RSC Adv 2024; 14:1239-1249. [PMID: 38174245 PMCID: PMC10762296 DOI: 10.1039/d3ra08226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
With the purpose of incorporating sustainability in chemical processes, there has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions and processes. In this work, we have explored the atom-economic oxidative coupling between two important electron-rich heterocycles - indoles and furans - using commonly available, inexpensive metal catalyst CuCl2·2H2O (<0.25$ per g) to develop an expeditious synthesis of indolyl-furans. Moreover, the reaction proceeded well in the presence of the so-called 'ultimate oxidant' - air, without the need for any external ligand or additive. The reaction was found to be scalable and to work even under partially aqueous conditions. This makes the methodology highly economical, practical, operationally simple and sustainable. In addition, the methodology provides direct access to novel indole-furan-thiophene (IFT)-based electron-rich π-conjugated systems, which show green-yellow fluorescence with large Stokes shift and high quantum yields. Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by the nucleophilic attack by furan.
Collapse
Affiliation(s)
- Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa GEC Campus, Farmagudi Goa-403401 India
| |
Collapse
|
18
|
Müller F, Conrad J, Hammerschick T, Vetter W. Enrichment and structural assignment of geometric isomers of unsaturated furan fatty acids. Anal Bioanal Chem 2023; 415:6333-6343. [PMID: 37599331 PMCID: PMC10558370 DOI: 10.1007/s00216-023-04908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Furan fatty acids (FuFAs) are valuable minor fatty acids, which are known for their excellent radical scavenging properties. Typically, the furan moiety is embedded in an otherwise saturated carboxyalkyl chain. Occasionally, these classic FuFAs are accompanied by low amounts of unsaturated furan fatty acids (uFuFAs), which additionally feature one double bond in conjugation with the furan moiety. A recent study produced evidence for the occurrence of two pairs of E-/Z-uFuFA isomers structurally related to saturated uFuFAs. Here, we present a strategy that allowed such trace compounds to be enriched to a level suited for structure determination by NMR. Given the low amounts and the varied abundance ratio of the four uFuFA isomers, the isolation of individual compounds was not pursued. Instead, the entire isomer mixture was enriched to an amount and purity suitable for structure investigation with contemporary NMR methods. Specifically, lipid extracted from 150 g latex, the richest known source of FuFAs, was subsequently fractionated by countercurrent chromatography (CCC), silver ion, and silica gel column chromatography. Analysis of the resulting mixture of four uFuFAs isomers (2.4 mg in an abundance ratio of 56:23:11:9) by different NMR techniques including PSYCHE verified that the structures of the two most abundant isomers were E-9-(3-methyl-5-pentylfuran-2-yl)non-8-enoic acid and E-9-(3-methyl-5-pent-1-enylfuran-2-yl)nonanoic acid. Additionally, we introduced a computer-based method to generate an averaged chromatogram from freely selectable GC/MS runs of CCC fractions without the necessity of pooling aliquots. This method was found to be suitable to simplify subsequent enrichment steps.
Collapse
Affiliation(s)
- Franziska Müller
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart, 70599, Germany
| | - Jürgen Conrad
- Department of Bioorganic Chemistry (130b), Institute of Chemistry, University of Hohenheim, Garbenstr. 30, Stuttgart, 70599, Germany
| | - Tim Hammerschick
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart, 70599, Germany
| | - Walter Vetter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart, 70599, Germany.
| |
Collapse
|
19
|
Pelletier F, Durand E, Chaiyut J, Bronstein C, Pessemesse L, Vaysse L, Liengprayoon S, Gaillet S, Brioche T, Bertrand-Gaday C, Coudray C, Sultan A, Feillet-Coudray C, Casas F. Furan fatty acid extracted from Hevea brasiliensis latex increases muscle mass in mice. Biomed Pharmacother 2023; 166:115330. [PMID: 37595430 DOI: 10.1016/j.biopha.2023.115330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Skeletal muscle is essential for locomotion and plays a crucial role in energy homeostasis. It is regulated by nutrition, genetic factors, physical activity and hormones. Furan fatty acids (FuFAs) are minor fatty acids present in small quantities in food from plants and animals origin. Recently, we showed that a preventive nutritional supplementation with furan fatty acid in a DIO mouse model reduces metabolic disorders. The present study was designed to determine the influence of FuFA-F2 extracted from Hevea brasiliensis latex on skeletal muscle phenotype. In C2C12 myotubes we found that FuFA-F2 whatever the concentration used increased protein content. We revealed that in C2C12 myotubes FuFA-F2 (10 µM) increases protein synthesis as shown by the stimulation of mTOR phosphorylation. Next, to confirm in vivo our results C57Bl6 mice were supplemented by oral gavage with vehicle or FuFA-F2 (20 mg/kg) for 3 and a half weeks. We found that mice supplemented with FuFA-F2 had a greater lean mass than the control mice. In line with this observation, we revealed that FuFA-F2 increased muscle mass and promoted more oxidative muscle metabolism in mice as attested by cytochrome c oxidase activity. In conclusion, we demonstrated that FuFA-F2 stimulates muscle anabolism in mice in vitro and in vivo, mimicking in part physical activity. This study highlights that in vivo FuFA-F2 may have health benefits by increasing muscle mass and oxidative metabolism.
Collapse
Affiliation(s)
| | - Erwann Durand
- CIRAD, UMR Qualisud, 34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | - Jatuporn Chaiyut
- Kasetsart Agricultural and Agro-industrial Product Improvement Institute, Kasetsart University, Bangkok, Thaïland
| | | | | | - Laurent Vaysse
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart Agricultural and Agro-industrial Product Improvement Institute, Kasetsart University, Bangkok, Thaïland
| | | | | | | | | | - Ariane Sultan
- Département d'Endocrinologie, Diabète, Nutrition Inserm 1411, CHU de Montpellier, Univ Montpellier, Montpellier, France
| | | | | |
Collapse
|
20
|
Miao Z, Zeng FF, Tian Y, Xiao C, Yan Y, Jiang Z, Fu Y, Chen YM, Zheng JS. Furan fatty acid metabolite CMPF is associated with lower risk of type 2 diabetes, but not chronic kidney disease: a longitudinal population-based cohort study. Am J Clin Nutr 2023; 118:637-645. [PMID: 37482300 DOI: 10.1016/j.ajcnut.2023.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) is a strong biomarker of fish and n-3 polyunsaturated fatty acid (PUFA) intake. The relationship of CMPF with human health has been controversial, especially for type 2 diabetes and chronic kidney disease. OBJECTIVE We performed a prospective cohort study to examine the association of serum CMPF with incident type 2 diabetes and chronic kidney disease. METHODS In the Guangzhou Nutrition and Health Study, during a median follow-up of 8.8 y, we used a multivariable-adjusted Poisson regression model to investigate the association of baseline serum CMPF with the incidence of type 2 diabetes (1470 participants and 170 incident cases) and chronic kidney disease (1436 participants and 112 incident cases). We also examined the association of serial measures of serum CMPF with glycemic and renal function biomarkers. Mediation analysis was also performed to examine the contribution of CMPF in the association between marine n-3 PUFAs and risk of type 2 diabetes or chronic kidney disease. RESULTS Each standard deviation increase in baseline serum CMPF was associated with an 18% lower risk of type 2 diabetes (relative risk: 0.82, 95% confidence interval [CI]: 0.68, 0.99) but was not associated with chronic kidney disease (relative risk: 0.95; 95% CI: 0.77-1.16). Correlation analyses of CMPF with glycemic and renal function biomarkers showed similar results. Mediation analysis suggested that serum CMPF contributed to the inverse association between erythrocyte marine n-3 PUFAs and incident type 2 diabetes (proportion mediated 37%, P-mediation = 0.022). CONCLUSIONS Our findings suggest that serum CMPF was associated with a lower risk of type 2 diabetes but not chronic kidney disease. This study also suggests that CMPF may be a functional metabolite underlying the protective relationship between marine n-3 PUFA intake and type 2 diabetes.
Collapse
Affiliation(s)
- Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Fang-Fang Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Yunyi Tian
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Congmei Xiao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yan Yan
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zengliang Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yu-Ming Chen
- Department of Epidemiology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China; Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
21
|
Dore L, Durand E, Bonafos B, Chaiyut J, Vaysse L, Liengprayoon S, Gaillet S, Pessemesse L, Lambert K, Bertrand-Gaday C, Coudray C, Sultan A, Casas F, Feillet-Coudray C. Preventive nutritional supplementation with furan fatty acid in a DIO mouse model increases muscle mass and reduces metabolic disorders. Biomed Pharmacother 2023; 164:114945. [PMID: 37263166 DOI: 10.1016/j.biopha.2023.114945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023] Open
Abstract
The increase in obesity has become a major global health problem and is associated with numerous metabolic dysfunctions. Furan fatty acids (FuFAs) are minor lipids present in our diet. Recently we showed that FuFA-F2 extracted from Hevea brasiliensis latex stimulates muscle anabolism in mice in vitro and in vivo, mimicking in part physical activity. While skeletal muscle is essential for energy metabolism and is the predominant site of insulin-mediated glucose uptake in the post prandial state, our results suggested that FuFA-F2 could have favorable effects against obesity. The aim of this work was therefore to study whether a preventive nutritional supplementation with FuFA-F2 (40 mg or 110 mg/day/kg of body weight) in a diet-induced obesity (DIO) mouse model may have beneficial effects against obesity and liver and skeletal muscle metabolic dysfunction. We showed that 12 weeks of FuFA-F2 supplementation in DIO mice decreased fat mass, increased lean mass and restored normal energy expenditure. In addition, we found that FuFA-F2 improved insulin sensitivity. We revealed that FuFA-F2 increased muscle mass but had no effect on mitochondrial function and oxidative stress in skeletal muscle. Furthermore, we observed that FuFA-F2 supplementation reduced liver steatosis without impact on mitochondrial function and oxidative stress in liver. Our findings demonstrated for the first time that a preventive nutritional supplementation with a furan fatty acid in DIO mice reduced metabolic disorders and was able to mimic partly the positive effects of physical activity. This study highlights that nutritional FuFA-F2 supplementation could be an effective approach to treat obesity and metabolic syndrome.
Collapse
Affiliation(s)
| | - Erwann Durand
- CIRAD, UMR Qualisud, 34398 Montpellier, France; Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| | | | - Jatuporn Chaiyut
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | - Laurent Vaysse
- CIRAD, UPR BioWooEB, 34398 Montpellier, France; BioWooEB, Univ Montpellier, CIRAD, Montpellier, France
| | - Siriluck Liengprayoon
- Kasetsart agricultural and agro-industrial product improvement institute, Kasetsart University, Bangkok, Thailand
| | | | | | | | | | | | - Ariane Sultan
- Service Diabète-Nutrition, Université Montpellier, PHYMEDEXP, Montpellier, France
| | | | | |
Collapse
|
22
|
Bernard L, Chen J, Kim H, Wong KE, Steffen LM, Yu B, Boerwinkle E, Rebholz CM. Metabolomics of Dietary Intake of Total, Animal, and Plant Protein: Results from the Atherosclerosis Risk in Communities (ARIC) Study. Curr Dev Nutr 2023; 7:100067. [PMID: 37304852 PMCID: PMC10257224 DOI: 10.1016/j.cdnut.2023.100067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 06/13/2023] Open
Abstract
Background Dietary consumption has traditionally been studied through food intake questionnaires. Metabolomics can be used to identify blood markers of dietary protein that may complement existing dietary assessment tools. Objectives We aimed to identify associations between 3 dietary protein sources (total protein, animal protein, and plant protein) and serum metabolites using data from the Atherosclerosis Risk in Communities Study. Methods Participants' dietary protein intake was derived from a food frequency questionnaire administered by an interviewer, and fasting serum samples were collected at study visit 1 (1987-1989). Untargeted metabolomic profiling was performed in 2 subgroups (subgroup 1: n = 1842; subgroup 2: n = 2072). Multivariable linear regression models were used to assess associations between 3 dietary protein sources and 360 metabolites, adjusting for demographic factors and other participant characteristics. Analyses were performed separately within each subgroup and meta-analyzed with fixed-effects models. Results In this study of 3914 middle-aged adults, the mean (SD) age was 54 (6) y, 60% were women, and 61% were Black. We identified 41 metabolites significantly associated with dietary protein intake. Twenty-six metabolite associations overlapped between total protein and animal protein, such as pyroglutamine, creatine, 3-methylhistidine, and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid. Plant protein was uniquely associated with 11 metabolites, such as tryptophan betaine, 4-vinylphenol sulfate, N-δ-acetylornithine, and pipecolate. Conclusions The results of 17 of the 41 metabolites (41%) were consistent with those of previous nutritional metabolomic studies and specific protein-rich food items. We discovered 24 metabolites that had not been previously associated with dietary protein intake. These results enhance the validity of candidate markers of dietary protein intake and introduce novel metabolomic markers of dietary protein intake.
Collapse
Affiliation(s)
- Lauren Bernard
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hyunju Kim
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kari E. Wong
- Metabolon, Research Triangle Park, Morrisville, NC, USA
| | - Lyn M. Steffen
- Division of Epidemiology and Community Health, University of Minnesota School of Public Health, Minneapolis, MN, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
- Human Genome Sequencing Center, Baylor Colleague of Medicine, Houston, TX, USA
| | - Casey M. Rebholz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
23
|
Targeted quantitation of furan fatty acids in edible oils by gas chromatography/triple quadrupole tandem mass spectrometry (GC-TQ/MS). Food Chem 2023; 404:134521. [DOI: 10.1016/j.foodchem.2022.134521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
|
24
|
Müller F, Hammerschick T, Vetter W. Geometrical and positional isomers of unsaturated furan fatty acids in food. Lipids 2023; 58:69-79. [PMID: 36408796 DOI: 10.1002/lipd.12364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/14/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Furan fatty acids (FuFA) are important antioxidants found in low concentrations in many types of food. In addition to conventional FuFA which normally feature saturated carboxyalkyl and alkyl chains, a few previous studies indicated the FuFA co-occurrence of low shares of unsaturated furan fatty acids (uFuFA). For their detailed analysis, the potential uFuFA were enriched by centrifugal partition chromatography (CPC) or countercurrent chromatography (CCC) followed by silver ion chromatography from a 4,7,10,13,16,19-docosahexaenoic acid ethyl ester oil, a 5,8,11,14,17-eicosapentaenoic acid ethyl ester oil and a latex glove extract. Subsequent gas chromatography with mass spectrometry (GC/MS) analysis enabled the detection of 16 individual uFuFA isomers with a double bond in conjugation with the central furan moiety. In either case, four instead of two uFuFA isomers previously reported in food, respectively, were detected by GC/MS. These isomers showed characteristic elution and abundance patterns in GC/MS chromatograms which indicated the presence of two pairs of cis/trans-isomers (geometrical isomers).
Collapse
Affiliation(s)
- Franziska Müller
- Institute of Food Chemistry (170b), University of Hohenheim, Stuttgart, Germany
| | - Tim Hammerschick
- Institute of Food Chemistry (170b), University of Hohenheim, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
25
|
Park JS, Kim DH, Choi HI, Kim CS, Bae EH, Ma SK, Kim SW. 3-Carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF) induces cell death through ferroptosis and acts as a trigger of apoptosis in kidney cells. Cell Death Dis 2023; 14:78. [PMID: 36732325 PMCID: PMC9894909 DOI: 10.1038/s41419-023-05601-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Ferroptosis is a cell death mechanism characterized by intracellular iron accumulation and lipid peroxidation. Effects of uremic toxins on ferroptosis in the kidney are not well understood. We investigated whether protein-bound uremic toxins induce ferroptosis, resulting in cell death, using the bilateral ureteral obstruction (BUO) mouse model and kidney cells. In BUO mice, we observed elevated lipid peroxidation, increased iron concentration, and decreased glutathione peroxidase 4 (GPX4) expression. Levels of transferrin receptor 1 and system Xc-, which are involved in iron transport and storage, were also elevated, while those of ferritin heavy and light chains (FHC and FLC) were reduced. Treatment of HK-2 and NRK49F kidney cells with CMPF decreased GSH levels and the expression of GPX4, FHC, and FLC, and increased levels of ROS, lipid peroxidation, and intracellular iron concentration. CMPF-induced and erastin-induced decreases in GPX4 levels and increases in Bax and cytochrome C levels were counteracted by ferrostatin-1 pretreatment. However, GPX4 mRNA levels, protein abundance, or promoter activity were not restored by Z-VAD-FMK, a multi-caspase inhibitor. These results suggest that ferroptosis induced by CMPF treatment induces apoptosis, and inhibition of ferroptosis reduces apoptosis, suggesting that ferroptosis plays a role in triggering cell death by apoptosis.
Collapse
Affiliation(s)
- Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 61469, Korea.
| |
Collapse
|
26
|
Gürdeniz G, Kim M, Brustad N, Ernst M, Russo F, Stokholm J, Bønnelykke K, Hougaard D, Rasmussen M, Cohen A, Chawes B. Furan fatty acid metabolite in newborns predicts risk of asthma. Allergy 2023; 78:429-438. [PMID: 36254396 DOI: 10.1111/all.15554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Intake of fish-oil and fatty fish during pregnancy has been shown to reduce the risk of childhood asthma but biomarkers of such intake are lacking. OBJECTIVE To establish biomarkers of prenatal fish-oil exposure from newborn dry blood spot metabolomics profiles and assess their relevance for childhood asthma risk stratification. METHODS The Danish COPSAC2010 mother-child cohort was utilized to investigate the effect of a double-blinded randomized controlled trial of fish-oil supplementation during pregnancy on dry blood spot liquid-chromatography mass spectrometry-based metabolomics profiles of 677 newborns. We thereafter investigated the association between fish-oil associated biomarkers in the newborn and development of asthma-related outcomes. Replication was sought in the independent observational COPSAC2000 cohort with 387 newborn metabolomics profiles. RESULTS The newborn metabolomics profiles differed between children in the fish-oil vs. placebo group in COPSAC2010 (area under the receiver operator curve = 0.94 ± 0.03, p < .001). The fish-oil metabolomics profile and the top biomarker, 3-carboxy-4-methyl-5-propyl-2-furan propanoic acid (CMPF) were both associated with a decreased risk of asthma by age 6 years (HR = 0.89, p = .002 and HR = 0.67, p = .005, respectively). In COPSAC2000 , newborn CMPF level was also inversely associated with asthma risk by age 6 years (HR = 0.69, p = .01). Troublesome lung symptoms and common infections in the first 3 years were also inversely associated with newborn CMPF levels in both cohorts. CONCLUSIONS Newborn children's blood levels of the furan fatty acid metabolite CMPF reflect fish-oil and fatty fish intake during pregnancy and are associated with a lower risk of asthma across two cohorts, which could aid newborn screening for childhood asthma.
Collapse
Affiliation(s)
- Gözde Gürdeniz
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Section of Chemometrics and Analytical Technologies, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Min Kim
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Nicklas Brustad
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Francesco Russo
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| | - David Hougaard
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Morten Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
- Section of Chemometrics and Analytical Technologies, Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Arieh Cohen
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Gentofte, Denmark
| |
Collapse
|
27
|
Lauriola M, Farré R, Evenepoel P, Overbeek SA, Meijers B. Food-Derived Uremic Toxins in Chronic Kidney Disease. Toxins (Basel) 2023; 15:116. [PMID: 36828430 PMCID: PMC9960799 DOI: 10.3390/toxins15020116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Patients with chronic kidney disease (CKD) have a higher cardiovascular risk compared to the average population, and this is partially due to the plasma accumulation of solutes known as uremic toxins. The binding of some solutes to plasma proteins complicates their removal via conventional therapies, e.g., hemodialysis. Protein-bound uremic toxins originate either from endogenous production, diet, microbial metabolism, or the environment. Although the impact of diet on uremic toxicity in CKD is difficult to quantify, nutrient intake plays an important role. Indeed, most uremic toxins are gut-derived compounds. They include Maillard reaction products, hippurates, indoles, phenols, and polyamines, among others. In this review, we summarize the findings concerning foods and dietary components as sources of uremic toxins or their precursors. We then discuss their endogenous metabolism via human enzyme reactions or gut microbial fermentation. Lastly, we present potential dietary strategies found to be efficacious or promising in lowering uremic toxins plasma levels. Aligned with current nutritional guidelines for CKD, a low-protein diet with increased fiber consumption and limited processed foods seems to be an effective treatment against uremic toxins accumulation.
Collapse
Affiliation(s)
- Mara Lauriola
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Ricard Farré
- Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, 3000 Leuven, Belgium
| | - Pieter Evenepoel
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| | | | - Björn Meijers
- Laboratory of Nephrology and Renal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
28
|
Jiang Q, Li T, Chen W, Huo Y, Mou X, Zhao W. Microbial regulation of offspring diseases mediated by maternal-associated microbial metabolites. Front Microbiol 2022; 13:955297. [PMID: 36406399 PMCID: PMC9672376 DOI: 10.3389/fmicb.2022.955297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The microbiota plays a crucial role in individuals’ early and long-term health. Previous studies indicated that the microbial regulation of health may start before birth. As the in utero environment is (nearly) sterile, the regulation is probably be originated from maternal microbiota and mediated by their metabolites transferred across the placenta. After the birth, various metabolites are continuously delivered to offspring through human milk feeding. Meanwhile, some components, for example, human milk oligosaccharides, in human milk can only be fermented by microbes, which brings beneficial effects on offspring health. Hence, we speculated that human milk-derived metabolites may also play roles in microbial regulation. However, reports between maternal-associated microbial metabolites and offspring diseases are still lacking and sparsely distributed in several fields. Also, the definition of the maternal-associated microbial metabolite is still unclear. Thus, it would be beneficial to comb through the current knowledge of these metabolites related to diseases for assisting our goals of early prediction, early diagnosis, early prevention, or early treatment through actions only on mothers. Therefore, this review aims to present studies showing how researchers came to the path of investigating these metabolites and then to present studies linking them to the development of offspring asthma, type 1 diabetes mellitus, food allergy, neonatal necrotizing enterocolitis, or autism spectrum disorder. Potential English articles were collected from PubMed by searching terms of disease(s), maternal, and a list of microbial metabolites. Articles published within 5 years were preferred.
Collapse
Affiliation(s)
- Qingru Jiang
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Tian Li
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Wei Chen
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yingfang Huo
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xiangyu Mou
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Xiangyu Mou,
| | - Wenjing Zhao
- Center for Infection and Immunity Studies, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Wenjing Zhao,
| |
Collapse
|
29
|
Müller F, Hermann-Ene V, Schmidpeter I, Hammerschick T, Vetter W. Furan Fatty Acids in Some 20 Fungi Species: Unique Profiles and Quantities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12620-12628. [PMID: 36154124 DOI: 10.1021/acs.jafc.2c05100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Furan fatty acids (FuFAs) are a group of excellent antioxidants in food. Since data in fungi were scarce, 37 commercial or collected edible and meadow fungi were analyzed on FuFA patterns and contents. FuFA amounts in fresh fungi ranged from not detectable (n = 2) to 40 mg/100 g fungi dry weight. Fresh samples of the popular edible fungi genera Agaricus and Pleurotus showed comparable FuFA contents of 9.0-33 mg/100 g fungi dry weight. The unique FuFA profile of the fungi was dominated by 9-(3,4-dimethyl-5-pentylfuran-2-yl)-nonanoic acid (9D5). In addition, the uncommon 9-(3,4-dimethyl-5-butylfuran-2-yl)-nonanoic acid (9D4) was present in 30% of the samples with contents of up to 0.2 mg/100 g fungi dry weight. Countercurrent separation techniques were used to isolate the main FuFA 9D5, to verify the presence of 9D4, and to determine ultra-traces of 11-(3,4-dimethyl-5-pentylfuran-2-yl)-undecanoic acid (11D5), which may have been assimilated by the fungi from the substrate.
Collapse
Affiliation(s)
- Franziska Müller
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart 70593, Germany
| | - Vanessa Hermann-Ene
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart 70593, Germany
| | - Isabell Schmidpeter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart 70593, Germany
| | - Tim Hammerschick
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart 70593, Germany
| | - Walter Vetter
- Department of Food Chemistry (170b), Institute of Food Chemistry, University of Hohenheim, Garbenstr. 28, Stuttgart 70593, Germany
| |
Collapse
|
30
|
Owumi SE, Arunsi UO, Oyewumi OM, Altayyar A. Accidental lead in contaminated pipe-borne water and dietary furan intake perturbs rats' hepatorenal function altering oxidative, inflammatory, and apoptotic balance. BMC Pharmacol Toxicol 2022; 23:76. [PMID: 36180958 PMCID: PMC9526313 DOI: 10.1186/s40360-022-00615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Inadvertent exposure to furan and Pb is associated with hepatorenal abnormalities in humans and animals. It is perceived that these two chemical species may work in synergy to orchestrate liver and kidney damage. Against this background, we investigated the combined effect of furan and incremental lead (Pb) exposure on hepatorenal dysfunction. Wistar rats (n = 30; 150 g) were treated for 28 days accordingly: Control; FUR (8 mg/kg), PbAc (100 µg/L), FUR + PbAc1 (8 mg/kg FUR + 1 µg/L PbAc); FUR + PbAc1 (8 mg/kg FUR + 10 µg/L PbAc), and FUR + PbAc1 (8 mg/kg FUR + 100 µg/L PbAc). Biomarkers of hepatorenal function, oxidative stress, inflammation, DNA damage, and apoptosis were examined. Furan and incrementally Pb exposure increased the levels of hepatorenal biomarkers and oxidative and pro-inflammatory mediators, including lipid peroxidation, reactive oxygen and nitrogen species, and interleukin-1 beta. Increased DNA damage, caspases- 9 and -3, and atypical histoarchitecture of the hepatorenal tissues exemplified furan and Pb treatment-related perturbations. Furthermore, the levels of antioxidants and IL-10 were also suppressed. Furan and Pb dose-dependently exacerbated hepatorenal derangements by altering the redox and inflammatory rheostats, worsened DNA damage, and related apoptotic onset that may potentiate hepatorenal disorders in humans and animals. The findings validate the synergistic effect of furan and Pb in the pathophysiology of kidney and liver disorders.
Collapse
Affiliation(s)
- Solomon E Owumi
- ChangeLab-Changing Life Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Room NB302 Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo, 200004, Nigeria.
| | - Uche O Arunsi
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Omolola M Oyewumi
- ChangeLab-Changing Life Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, Room NB302 Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo, 200004, Nigeria
| | - Ahmad Altayyar
- Department of Cancer Immunology and Biotechnology, School of Medicine, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
31
|
Liang J, Shalaby N, Rigling M, Wagner T, Heimbach J, Fries A, Kohlus R, Zhang Y. Characterization of Hay-like Off-Odor in Basil Samples after Various Processing and Strategies for Reducing the Off-Odor. Food Res Int 2022; 162:112080. [DOI: 10.1016/j.foodres.2022.112080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/27/2022]
|
32
|
Romanotto A, Langner J, Sander M, Müller F, Vetter W. Furan fatty acid concentrations in tea infusions prepared from green, black, and herbal teas. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Anna Romanotto
- Department Macromulecules and Natural material PiCA Prüfinstitut Chemische Analytik GmbH Berlin Berlin Germany
| | - Jeanette Langner
- Department Macromulecules and Natural material PiCA Prüfinstitut Chemische Analytik GmbH Berlin Berlin Germany
| | - Martin Sander
- Department Macromulecules and Natural material PiCA Prüfinstitut Chemische Analytik GmbH Berlin Berlin Germany
| | - Franziska Müller
- Institute of Food Chemistry (170b) University of Hohenheim Stuttgart Germany
| | - Walter Vetter
- Institute of Food Chemistry (170b) University of Hohenheim Stuttgart Germany
| |
Collapse
|
33
|
Novel Biomolecules in the Pathogenesis of Gestational Diabetes Mellitus 2.0. Int J Mol Sci 2022; 23:ijms23084364. [PMID: 35457182 PMCID: PMC9031541 DOI: 10.3390/ijms23084364] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Gestational diabetes mellitus (GDM) has become a major public health problem and one of the most discussed issues in modern obstetrics. GDM is associated with serious adverse perinatal outcomes and long-term health consequences for both the mother and child. Currently, the importance and purposefulness of finding a biopredictor that will enable the identification of women with an increased risk of developing GDM as early as the beginning of pregnancy are highly emphasized. Both “older” molecules, such as adiponectin and leptin, and “newer” adipokines, including fatty acid-binding protein 4 (FABP4), have proven to be of pathophysiological importance in GDM. Therefore, in our previous review, we presented 13 novel biomolecules, i.e., galectins, growth differentiation factor-15, chemerin, omentin-1, osteocalcin, resistin, visfatin, vaspin, irisin, apelin, FABP4, fibroblast growth factor 21, and lipocalin-2. The purpose of this review is to present the potential and importance of another nine lesser known molecules in the pathogenesis of GDM, i.e., 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), angiopoietin-like protein-8 (ANGPTL-8), nesfatin-1, afamin, adropin, fetuin-A, zonulin, secreted frizzled-related proteins (SFRPs), and amylin. It seems that two of them, fetuin-A and zonulin in high serum levels, may be applied as biopredictors of GDM.
Collapse
|
34
|
The Interplay between Uremic Toxins and Albumin, Membrane Transporters and Drug Interaction. Toxins (Basel) 2022; 14:toxins14030177. [PMID: 35324674 PMCID: PMC8949274 DOI: 10.3390/toxins14030177] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 01/10/2023] Open
Abstract
Uremic toxins are a heterogeneous group of molecules that accumulate in the body due to the progression of chronic kidney disease (CKD). These toxins are associated with kidney dysfunction and the development of comorbidities in patients with CKD, being only partially eliminated by dialysis therapies. Importantly, drugs used in clinical treatments may affect the levels of uremic toxins, their tissue disposition, and even their elimination through the interaction of both with proteins such as albumin and cell membrane transporters. In this context, protein-bound uremic toxins (PBUTs) are highlighted for their high affinity for albumin, the most abundant serum protein with multiple binding sites and an ability to interact with drugs. Membrane transporters mediate the cellular influx and efflux of various uremic toxins, which may also compete with drugs as substrates, and both may alter transporter activity or expression. Therefore, this review explores the interaction mechanisms between uremic toxins and albumin, as well as membrane transporters, considering their potential relationship with drugs used in clinical practice.
Collapse
|
35
|
Gürdeniz G, Uusitupa M, Hermansen K, Savolainen MJ, Schwab U, Kolehmainen M, Brader L, Cloetens L, Herzig KH, Hukkanen J, Rosqvist F, Ulven SM, Gunnarsdóttir I, Thorsdottir I, Oresic M, Poutanen KS, Risérus U, Åkesson B, Dragsted LO. Analysis of the SYSDIET Healthy Nordic Diet randomized trial based on metabolic profiling reveal beneficial effects on glucose metabolism and blood lipids. Clin Nutr 2022; 41:441-451. [PMID: 35007813 DOI: 10.1016/j.clnu.2021.12.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Intake assessment in multicenter trials is challenging, yet important for accurate outcome evaluation. The present study aimed to characterize a multicenter randomized controlled trial with a healthy Nordic diet (HND) compared to a Control diet (CD) by plasma and urine metabolic profiles and to associate them with cardiometabolic markers. METHODS During 18-24 weeks of intervention, 200 participants with metabolic syndrome were advised at six centres to eat either HND (e.g. whole-grain products, berries, rapeseed oil, fish and low-fat dairy) or CD while being weight stable. Of these 166/159 completers delivered blood/urine samples. Metabolic profiles of fasting plasma and 24 h pooled urine were analysed to identify characteristic diet-related patterns. Principal components analysis (PCA) scores (i.e. PC1 and PC2 scores) were used to test their combined effect on blood glucose response (primary endpoint), serum lipoproteins, triglycerides, and inflammatory markers. RESULTS The profiles distinguished HND and CD with AUC of 0.96 ± 0.03 and 0.93 ± 0.02 for plasma and urine, respectively, with limited heterogeneity between centers, reflecting markers of key foods. Markers of fish, whole grain and polyunsaturated lipids characterized HND, while CD was reflected by lipids containing palmitoleic acid. The PC1 scores of plasma metabolites characterizing the intervention is associated with HDL (β = 0.05; 95% CI: 0.02, 0.08; P = 0.001) and triglycerides (β = -0.06; 95% CI: -0.09, -0.03; P < 0.001). PC2 scores were related with glucose metabolism (2 h Glucose, β = 0.1; 95% CI: 0.05, 0.15; P < 0.001), LDL (β = 0.06; 95% CI: 0.01, 0.1; P = 0.02) and triglycerides (β = 0.11; 95% CI: 0.06, 0.15; P < 0.001). For urine, the scores were related with LDL cholesterol. CONCLUSIONS Plasma and urine metabolite profiles from SYSDIET reflected good compliance with dietary recommendations across the region. The scores of metabolites characterizing the diets associated with outcomes related with cardio-metabolic risk. Our analysis therefore offers a novel way to approach a per protocol analysis with a balanced compliance assessment in larger multicentre dietary trials. The study was registered at clinicaltrials.gov with NCT00992641.
Collapse
Affiliation(s)
- Gözde Gürdeniz
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark; Department of Food Science, University of Copenhagen, Frederiksberg, Denmark.
| | - Matti Uusitupa
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Markku J Savolainen
- Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, Oulu, Finland
| | - Ursula Schwab
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Lea Brader
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lieselotte Cloetens
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden
| | - Karl-Heinz Herzig
- Institute of Biomedicine and Biocenter of Oulu, University of Oulu, Finland; Department of Psychiatry, Kuopio University Hospital, Kuopio, Finland
| | - Janne Hukkanen
- Institute of Clinical Medicine, Department of Internal Medicine, University of Oulu, Oulu, Finland
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Uppsala University, Sweden
| | - Stine Marie Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingibjörg Gunnarsdóttir
- Unit for Nutrition Research, Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland; Unit for Nutrition Research, Landspitali National University Hospital, Reykjavik, Iceland
| | - Inga Thorsdottir
- Unit for Nutrition Research, Faculty of Food Science and Nutrition, University of Iceland, Reykjavík, Iceland; Unit for Nutrition Research, Landspitali National University Hospital, Reykjavik, Iceland
| | - Matej Oresic
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland; VTT Technical Research Centre of Finland, Espoo, Finland
| | - Kaisa S Poutanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; VTT Technical Research Centre of Finland, Espoo, Finland
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Uppsala University, Sweden
| | - Björn Åkesson
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, Lund, Sweden; Department of Clinical Nutrition, Skåne University Hospital, Lund, Sweden
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
36
|
A Distinctive Human Metabolomics Alteration Associated with Osteopenic and Osteoporotic Patients. Metabolites 2021; 11:metabo11090628. [PMID: 34564444 PMCID: PMC8466514 DOI: 10.3390/metabo11090628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/09/2023] Open
Abstract
Osteoporosis is a common progressive metabolic bone disease resulting in decreased bone mineral density (BMD) and a subsequent increase in fracture risk. The known bone markers are not sensitive and specific enough to reflect the balance in the bone metabolism. Finding a metabolomics-based biomarker specific for bone desorption or lack of bone formation is crucial for predicting bone health earlier. This study aimed to investigate patients' metabolomic profiles with low BMD (LBMD), including those with osteopenia (ON) and osteoporosis (OP), compared to healthy controls. An untargeted mass spectrometry (MS)-based metabolomics approach was used to analyze serum samples. Results showed a clear separation between patients with LBMD and control (Q2 = 0.986, R2 = 0.994), reflecting a significant difference in the dynamic of metabolic processes between the study groups. A total of 116 putatively identified metabolites were significantly associated with LBMD. Ninety-four metabolites were dysregulated, with 52 up- and 42 downregulated in patients with LBMD compared to controls. Histidine metabolism, aminoacyl-tRNA biosynthesis, glyoxylate, dicarboxylate metabolism, and biosynthesis of unsaturated fatty acids were the most common metabolic pathways dysregulated in LBMD. Furthermore, 35 metabolites were significantly dysregulated between ON and OP groups, with 11 up- and 24 downregulated in ON compared to OP. Among the upregulated metabolites were 3-carboxy-4-methyl-5-propyl-2-2furanopropionic acid (CMPF) and carnitine derivatives (i.e., 3-hydroxy-11-octadecenoylcarnitine, and l-acetylcarnitine), whereas phosphatidylcholine (PC), sphingomyelin (SM), and palmitic acid (PA) were among the downregulated metabolites in ON compared to OP. This study would add a layer to understanding the possible metabolic alterations associated with ON and OP. Additionally, this identified metabolic panel would help develop a prediction model for bone health and OP progression.
Collapse
|
37
|
Rumora AE, Guo K, Alakwaa FM, Andersen ST, Reynolds EL, Jørgensen ME, Witte DR, Tankisi H, Charles M, Savelieff MG, Callaghan BC, Jensen TS, Feldman EL. Plasma lipid metabolites associate with diabetic polyneuropathy in a cohort with type 2 diabetes. Ann Clin Transl Neurol 2021; 8:1292-1307. [PMID: 33955722 PMCID: PMC8164865 DOI: 10.1002/acn3.51367] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The global rise in type 2 diabetes is associated with a concomitant increase in diabetic complications. Diabetic polyneuropathy is the most frequent type 2 diabetes complication and is associated with poor outcomes. The metabolic syndrome has emerged as a major risk factor for diabetic polyneuropathy; however, the metabolites associated with the metabolic syndrome that correlate with diabetic polyneuropathy are unknown. METHODS We conducted a global metabolomics analysis on plasma samples from a subcohort of participants from the Danish arm of Anglo-Danish-Dutch study of Intensive Treatment of Diabetes in Primary Care (ADDITION-Denmark) with and without diabetic polyneuropathy versus lean control participants. RESULTS Compared to lean controls, type 2 diabetes participants had significantly higher HbA1c (p = 0.0028), BMI (p = 0.0004), and waist circumference (p = 0.0001), but lower total cholesterol (p = 0.0001). Out of 991 total metabolites, we identified 15 plasma metabolites that differed in type 2 diabetes participants by diabetic polyneuropathy status, including metabolites belonging to energy, lipid, and xenobiotic pathways, among others. Additionally, these metabolites correlated with alterations in plasma lipid metabolites in type 2 diabetes participants based on neuropathy status. Further evaluating all plasma lipid metabolites identified a shift in abundance, chain length, and saturation of free fatty acids in type 2 diabetes participants. Importantly, the presence of diabetic polyneuropathy impacted the abundance of plasma complex lipids, including acylcarnitines and sphingolipids. INTERPRETATION Our explorative study suggests that diabetic polyneuropathy in type 2 diabetes is associated with novel alterations in plasma metabolites related to lipid metabolism.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Kai Guo
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
- Department of Biomedical SciencesUniversity of North DakotaGrand ForksNorth Dakota
| | - Fadhl M. Alakwaa
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | | | - Evan L. Reynolds
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Marit E. Jørgensen
- Steno Diabetes Center CopenhagenGentofteDenmark
- University of Southern DenmarkOdenseDenmark
| | - Daniel R. Witte
- Department of Public HealthAarhus UniversityAarhusDenmark
- Danish Diabetes AcademyOdenseDenmark
| | - Hatice Tankisi
- Department of Clinical NeurophysiologyAarhus UniversityAarhusDenmark
| | - Morten Charles
- Department of Public HealthAarhus UniversityAarhusDenmark
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Brian C. Callaghan
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Troels S. Jensen
- Danish Pain Research CenterDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
38
|
Transformation of 3-(Furan-2-yl)-1,3-di(het)arylpropan-1-ones to Prop-2-en-1-ones via Oxidative Furan Dearomatization/2-Ene-1,4,7-triones Cyclization. Molecules 2021; 26:molecules26092637. [PMID: 33946475 PMCID: PMC8124928 DOI: 10.3390/molecules26092637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The approach to 3-(furan-2-yl)-1,3-di(het)arylprop-2-en-1-ones based on the oxidative dearomatization of 3-(furan-2-yl)-1,3-di(het)arylpropan-1-ones followed by an unusual cyclization of the formed di(het)aryl-substituted 2-ene-1,4,7-triones has been developed. The cyclization step is related to the Paal-Knorr synthesis, but the furan ring formation is accompanied in this case by a formal shift of the double bond through the formation of a fully conjugated 4,7-hydroxy-2,4,6-trien-1-one system or its surrogate.
Collapse
|
39
|
Chen VY, Kwon O. Unified Approach to Furan Natural Products via Phosphine-Palladium Catalysis. Angew Chem Int Ed Engl 2021; 60:8874-8881. [PMID: 33533120 PMCID: PMC8016739 DOI: 10.1002/anie.202015232] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/12/2021] [Indexed: 01/14/2023]
Abstract
Polyalkyl furans are widespread in nature, often performing important biological roles. Despite a plethora of methods for the synthesis of tetrasubstituted furans, the construction of tetraalkyl furans remains non-trivial. The prevalence of alkyl groups in bioactive furan natural products, combined with the desirable bioactivities of tetraalkyl furans, calls for a general synthetic protocol for polyalkyl furans. This paper describes a Michael-Heck approach, using sequential phosphine-palladium catalysis, for the preparation of various polyalkyl furans from readily available precursors. The versatility of this method is illustrated by the total syntheses of nine distinct polyalkylated furan natural products belonging to different classes, namely the furanoterpenes rosefuran, sesquirosefuran, and mikanifuran; the marine natural products plakorsins A, B, and D and plakorsin D methyl ester; and the furan fatty acids 3D5 and hydromumiamicin.
Collapse
Affiliation(s)
- Violet Yijang Chen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1659 (USA)
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095-1659 (USA)
| |
Collapse
|
40
|
Alvarado K, Durand E, Vaysse L, Liengprayoon S, Gaillet S, Coudray C, Casas F, Feillet-Coudray C. Effets bénéfiques potentiels des acides gras furaniques, des lipides alimentaires bioactifs. CAHIERS DE NUTRITION ET DE DIÉTÉTIQUE 2021. [DOI: 10.1016/j.cnd.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
B Gowda SG, Minami Y, Gowda D, Furuko D, Chiba H, Hui SP. Lipidomic analysis of non-esterified furan fatty acids and fatty acid compositions in dietary shellfish and salmon by UHPLC/LTQ-Orbitrap-MS. Food Res Int 2021; 144:110325. [PMID: 34053529 DOI: 10.1016/j.foodres.2021.110325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023]
Abstract
Lipids such as furan fatty acids (F-acids) are the valuable minor bioactive components of food such as fatty fish and plants. They are reported to have positive health benefits, including antioxidant and anti-inflammatory activities. Despite their importance, limited studies are focusing on F-acid determination in dietary seafood. This study aimed to identify and profile non-esterified F-acids and free fatty acids in total lipid extract of seafood such as shellfish and salmon. The lipidomic analysis using liquid chromatography-linear trap quadrupole-orbitrap mass spectrometry led to identifying seven types of free F-acids in shellfish (n = 5) and salmon (n = 4). The identified F-acids were confirmed by their high-resolution masses and acquired mass spectra. The relative concentrations of F-acids in shellfish range from 0.01 to 10.93 mg/100 g of the fillet, and in salmon, 0.01 to 14.21 mg/100 g of the fillet. The results revealed the highest abundance of F-acids in Sakhalin surf clam, Japanese scallop, and a fatty salmon trout. Besides, relative levels of saturated, monounsaturated, and polyunsaturated fatty acids (PUFAs) in these seafoods were compared with each other, suggesting basket clams and salmon trout to have significantly higher levels of PUFAs. The dietary seafoods enriched with F-acids and PUFAs may have possible health benefits. Hence, the applied technique could be a promising tool for rapid detection and analysis of non-esterified fatty acids in food.
Collapse
Affiliation(s)
- Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Yusuke Minami
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Daisuke Furuko
- Graduate School of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma, Nishi-4-3-1-15, Higashi-ku, Sapporo 007-0894, Japan.
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
42
|
Chen VY, Kwon O. Unified Approach to Furan Natural Products via Phosphine‐Palladium Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Violet Yijang Chen
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095-1659 USA
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry University of California, Los Angeles Los Angeles CA 90095-1659 USA
| |
Collapse
|
43
|
Diboun I, Al-Mansoori L, Al-Jaber H, Albagha O, Elrayess MA. Metabolomics of Lean/Overweight Insulin-Resistant Females Reveals Alterations in Steroids and Fatty Acids. J Clin Endocrinol Metab 2021; 106:e638-e649. [PMID: 33053159 DOI: 10.1210/clinem/dgaa732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/08/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND The global diabetes epidemic is largely attributed to obesity-triggered metabolic syndrome. However, the impact of insulin resistance (IR) prior to obesity on the high prevalence of diabetes and the molecular mediators remain largely unknown. This study aims to compare the metabolic profiling of apparently healthy lean/overweight participants with IR and insulin sensitivity (IS), and identify the metabolic pathways underlying IR. METHODS In this cross-sectional study, clinical and metabolic data for 200 seemingly healthy young female participants (100 IR and 100 IS) was collected from Qatar Biobank. Orthogonal partial least square analysis was performed to assess the extent of separation between individuals from the 2 groups based on measured metabolites. Classical linear models were used to identify the metabolic signature of IR, followed by elastic-net-regularized generalized linear model (GLMNET) and receiver operating characteristic (ROC) analysis to determine top metabolites associated with IR. RESULTS Compared to lean/overweight participants with IS, those with IR showed increased androgenic steroids, including androsterone glucuronide, in addition to various microbiota byproducts, such as the phenylalanine derivative carboxyethylphenylalanine. On the other hand, participants with IS had elevated levels of long-chain fatty acids. A ROC analysis suggested better discriminatory performance using 20 metabolites selected by GLMNET in comparison to the classical clinical traits (area under curve: 0.93 vs 0.73, respectively). CONCLUSION Our data confirm the multifactorial mechanism of IR with a diverse spectrum of emerging potential biomarkers, including steroids, long-chain fatty acids, and microbiota metabolites. Further studies are warranted to validate these markers for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ilhame Diboun
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | | - Hend Al-Jaber
- Biomedical Research Center (BRC), Qatar University, Doha, Qatar
| | - Omar Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | | |
Collapse
|
44
|
Barenie Ms Rd MJ, Freemas Ms JA, Baranauskas PhD MN, Goss Msk CS, Freeman Ms KL, Chen Ms X, Dickinson Ms SL, Fly PhD Cfs AD, Kawata PhD K, Chapman PhD Facsm RF, Mickleborough PhD TD. Effectiveness of a combined New Zealand green-lipped mussel and Antarctic krill oil supplement on markers of exercise-induced muscle damage and inflammation in untrained men. J Diet Suppl 2020; 19:184-211. [PMID: 33292022 DOI: 10.1080/19390211.2020.1853649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Green-lipped mussel oil (PCSO-524®) has been shown to attenuate signs and symptoms of exercise-induced muscle damage (EIMD), and krill oil has been shown to have a protective effect against cytokine-induced tissue degradation. The purpose of this study was to compare the effects of PCSO-524® and ESPO-572® (75% PCSO-524® and 25% krill oil) on signs and symptoms of EIMD. Fifty-one untrained men consumed 600 mg/d of PCSO-524® (n = 24) or ESPO-572® (n = 27) for 26 d prior to and 72 h following a downhill running bout. Delayed onset muscle soreness (DOMS), pressure pain threshold, limb swelling, range of motion (ROM), isometric torque, and blood markers of inflammation and muscle damage were assessed at baseline, 24, 48 and 72 h post-eccentric exercise. ESPO-572® was 'at least as good as' PCSO-524® and both blends were superior (p < 0.05) to placebo in lessening the increase in DOMS at 24, 48, 72 h. ESPO-572® and PCSO-524® were protective against joint ROM loss compared to placebo (p < 0.05) at 48 and 72 h. Notably, at 24 and 48 h, joint ROM was higher in the ESPO-572® compared to the PCSO-524® group (p < 0.05). No differences between the two blends for the other markers were found. ESPO-572® is 'at least as good' as PCSO-524® in reducing markers of muscle damage and soreness following eccentric exercise and was superior to PCSO-524® in protecting against the loss in joint ROM during recovery. Our data support the use of ESPO-572®, a combination of green-lipped mussel and krill oil, in mitigating the deleterious effects of EIMD.
Collapse
Affiliation(s)
- Matthew J Barenie Ms Rd
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Jessica A Freemas Ms
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Marissa N Baranauskas PhD
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Curtis S Goss Msk
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Kadie L Freeman Ms
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Xiwei Chen Ms
- School of Public Health, Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Stephanie L Dickinson Ms
- School of Public Health, Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Alyce D Fly PhD Cfs
- School of Public Health, Department of Applied Health Science, Nutrition Sciences Laboratory, Indiana University, Bloomington, IN, USA
| | - Keisuke Kawata PhD
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Robert F Chapman PhD Facsm
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| | - Timothy D Mickleborough PhD
- School of Public Health, Department of Kinesiology, Human Performance and Exercise Biochemistry Laboratory, Bloomington, IN, USA
| |
Collapse
|
45
|
Dickson L, Tenon M, Svilar L, Fança-Berthon P, Martin JC, Rogez H, Vaillant F. Genipap (Genipa americana L.) juice intake biomarkers after medium-term consumption. Food Res Int 2020; 137:109375. [PMID: 33233077 DOI: 10.1016/j.foodres.2020.109375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 11/30/2022]
Abstract
Genipap (Genipa americana L.) is an exotic fruit largely consumed and well known, in Amazonian pharmacopeia, to treat anemia, measles and uterine cancer. It is also used as a diuretic, digestive, healing, laxative and antiseptic. The aim of this study was to apply an untargeted metabolomics strategy to determine biomarkers of food intake after short-term consumption of genipap juice. Sixteen healthy adult men were administered jenipap juice (250 mL) twice a day for three weeks. Before and after the three weeks of consumption. the subjects drank a control drink, and they consumed a standard diet. Urine was collected after 0-6 h, 6-12 h and 12-24 h. An ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS)-based metabolomics approach was applied to analyze the urine samples. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed to highlight experimental differences between groups. The value of the area under the curve (AUC) of the receiver operator characteristic (ROC) curve validated the identified biomarkers. Thirty-one statistically affected urinary metabolites were putatively identified and were mainly related to iridoids family, medium-chain fatty acids, and polyphenols. Also a group of urinary markers including dihydrocaffeic acid (DHCA), 1-(4-hydroxyphenyl)-1,2-propanediol and 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid were established as biomarkers of genipap consumption. Our findings have established a comprehensive panel of changes in the urinary metabolome and provided information to monitor endogenous alterations that are linked to genipap juice intake. These data should be used in further studies to understand the health implications of genipap juice consumption.
Collapse
Affiliation(s)
- Livia Dickson
- Federal University of Pará & Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Parque de Ciência e Tecnologia Guamá, Av. Perimetral da Ciência, km 01, Guamá 66075-750, Brazil; Naturex SA, 250 rue Pierre Bayle, BP81218, 84911 Avignon CEDEX 9, France; Centre International de Recherche Agronomique pour le Développement (CIRAD), Avenue Agropolis, TA50/PS4, 34398 Montpellier CEDEX 5, France; Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d'Avignon, Univ de La Réunion, Montpellier, France
| | - Mathieu Tenon
- Naturex SA, 250 rue Pierre Bayle, BP81218, 84911 Avignon CEDEX 9, France.
| | - Ljubica Svilar
- Aix Marseille Univ, INSERM, INRA, C2VN, CRIBIOM, 5-9, Boulevard Maurice Bourdet, CS 80501, 13205 Marseille CEDEX 01, France.
| | | | - Jean-Charles Martin
- Aix Marseille Univ, INSERM, INRA, C2VN, CRIBIOM, 5-9, Boulevard Maurice Bourdet, CS 80501, 13205 Marseille CEDEX 01, France.
| | - Hervé Rogez
- Federal University of Pará & Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Parque de Ciência e Tecnologia Guamá, Av. Perimetral da Ciência, km 01, Guamá 66075-750, Brazil
| | - Fabrice Vaillant
- Centre International de Recherche Agronomique pour le Développement (CIRAD), Avenue Agropolis, TA50/PS4, 34398 Montpellier CEDEX 5, France; Qualisud, Univ Montpellier, CIRAD, Montpellier SupAgro, Univ d'Avignon, Univ de La Réunion, Montpellier, France.
| |
Collapse
|
46
|
Choi PM, Bowes DA, O'Brien JW, Li J, Halden RU, Jiang G, Thomas KV, Mueller JF. Do food and stress biomarkers work for wastewater-based epidemiology? A critical evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 736:139654. [PMID: 32497888 DOI: 10.1016/j.scitotenv.2020.139654] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 05/25/2023]
Abstract
Dietary characteristics and oxidative stress are closely linked to the wellbeing of individuals. In recent years, various urinary biomarkers of food and oxidative stress have been proposed for use in wastewater-based epidemiology (WBE), in efforts to objectively monitor the food consumed and the oxidative stress experienced by individuals in a wastewater catchment. However, it is not clear whether such biomarkers are suitable for wastewater-based epidemiology. This study presents a suite of 30 urinary food and oxidative stress biomarkers and evaluates their applicability for WBE studies. This includes 22 biomarkers which were not previously considered for WBE studies. Daily per capita loads of biomarkers were measured from 57 wastewater influent samples from nine Australian catchments. Stability of biomarkers were assessed using laboratory scale sewer reactors. Biomarkers of consumption of vitamin B2, vitamin B3 and fibre, as well as a component of citrus had per capita loads in line with reported literature values despite susceptibility of degradation in sewer reactors. Consumption biomarkers of red meat, fish, fruit, other vitamins and biomarkers of stress had per capita values inconsistent with literature findings, and/or degraded rapidly in sewer reactors, indicating that they are unsuitable for use as WBE biomarkers in the traditional quantitative sense. This study serves to communicate the suitability of food and oxidative stress biomarkers for future WBE research.
Collapse
Affiliation(s)
- P M Choi
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia.
| | - D A Bowes
- Biodesign Center for Environmental Health Engineering, Arizona State University, United States of America; OneWaterOneHealth, Arizona State University Foundation, United States of America
| | - J W O'Brien
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - J Li
- Advanced Water Management Centre, The University of Queensland, Australia
| | - R U Halden
- Biodesign Center for Environmental Health Engineering, Arizona State University, United States of America; OneWaterOneHealth, Arizona State University Foundation, United States of America
| | - G Jiang
- Advanced Water Management Centre, The University of Queensland, Australia; School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - K V Thomas
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| | - J F Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Australia
| |
Collapse
|
47
|
Jaladanki CK, He Y, Zhao LN, Maurer-Stroh S, Loo LH, Song H, Fan H. Virtual screening of potentially endocrine-disrupting chemicals against nuclear receptors and its application to identify PPARγ-bound fatty acids. Arch Toxicol 2020; 95:355-374. [PMID: 32909075 PMCID: PMC7811525 DOI: 10.1007/s00204-020-02897-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022]
Abstract
Nuclear receptors (NRs) are key regulators of energy homeostasis, body development, and sexual reproduction. Xenobiotics binding to NRs may disrupt natural hormonal systems and induce undesired adverse effects in the body. However, many chemicals of concerns have limited or no experimental data on their potential or lack-of-potential endocrine-disrupting effects. Here, we propose a virtual screening method based on molecular docking for predicting potential endocrine-disrupting chemicals (EDCs) that bind to NRs. For 12 NRs, we systematically analyzed how multiple crystal structures can be used to distinguish actives and inactives found in previous high-throughput experiments. Our method is based on (i) consensus docking scores from multiple structures at a single functional state (agonist-bound or antagonist-bound), (ii) multiple functional states (agonist-bound and antagonist-bound), and (iii) multiple pockets (orthosteric site and alternative sites) of these NRs. We found that the consensus enrichment from multiple structures is better than or comparable to the best enrichment from a single structure. The discriminating power of this consensus strategy was further enhanced by a chemical similarity-weighted scoring scheme, yielding better or comparable enrichment for all studied NRs. Applying this optimized method, we screened 252 fatty acids against peroxisome proliferator-activated receptor gamma (PPARγ) and successfully identified 3 previously unknown fatty acids with Kd = 100-250 μM including two furan fatty acids: furannonanoic acid (FNA) and furanundecanoic acid (FUA), and one cyclopropane fatty acid: phytomonic acid (PTA). These results suggested that the proposed method can be used to rapidly screen and prioritize potential EDCs for further experimental evaluations.
Collapse
Affiliation(s)
- Chaitanya K Jaladanki
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Yang He
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Li Na Zhao
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Lit-Hsin Loo
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore
- Toxicity Mode-of-Action Discovery (ToxMAD) Platform, Innovations in Food and Chemical Safety Programme, Agency for Science, Technology, and Research (A*STAR), Singapore, 138671, Singapore
| | - Haiwei Song
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore, 138673, Singapore.
| | - Hao Fan
- Bioinformatics Institute (BII), Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix No. 07-01, Singapore, 138671, Singapore.
| |
Collapse
|
48
|
Yu XH, Shanklin J. Solving a furan fatty acid biosynthesis puzzle. J Biol Chem 2020; 295:9802-9803. [PMID: 32680970 DOI: 10.1074/jbc.h120.014701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 11/06/2022] Open
Abstract
Furan fatty acids (FuFAs), characterized by a central furan moiety, are widely dispersed in nature, but their biosynthetic origins are not clear. A new study from Lemke et al employs a full court press of genetics, genomics, biochemical, and advanced analytical techniques to dissect the biosynthetic pathway of mono- and dimethyl FuFAs and their intermediates in two related bacteria. These findings lay the foundation both for detailed study of these novel enzymes and for gaining further insights into FuFA functions.
Collapse
Affiliation(s)
- Xiao-Hong Yu
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York, USA
| | - John Shanklin
- Biochemistry and Cell Biology Department, Stony Brook University, Stony Brook, New York, USA .,Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
49
|
Dietary Approaches to Stop Hypertension (DASH) Score and Its Association with Sleep Quality in a National Survey of Middle-Aged and Older Men and Women. Nutrients 2020; 12:nu12051510. [PMID: 32455945 PMCID: PMC7284419 DOI: 10.3390/nu12051510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 11/23/2022] Open
Abstract
Complex processes appear to link sleep duration and quality with dietary patterns. Numerous studies show healthful benefits of the Dietary Approaches to Stop Hypertension (DASH) diet, but few have examined its association with sleep duration or quality. The current study tested cross-sectional associations of DASH diet quality score with sleep quality among adults. Analyses of participants were from the 2005–2008 wave of the National Health and Nutrition Examination Surveys (n = 3941 adults ≥30 years of age, complete data). We performed sex- and age group-stratified multiple OLS regression analyses with DASH total score and components as main predictors and sleep quality as main outcomes, adjusting sequentially for socio-demographic, behavioral and health-related factors. Sex and age differences in associations of DASH with sleep quality, adjusting for covariates, were also examined by incorporating two-way interaction terms between sex/age and the DASH score in each unstratified model. We found that the DASH diet score was inversely related to poor sleep-related daytime dysfunction adjusted by age, sex, demographic and socio-economic factors. Some sex-specific associations were detected between DASH diet component scores and sleep quality. Notably, the potassium DASH component was inversely associated with Factor 1 (“sleepiness and sleep disturbance”) among women. The fiber DASH component was associated with better sleep quality and inversely related to Factor 2 (“sleep-related daytime dysfunction”) in younger subjects. This study indicates health benefits of the DASH diet for sleep duration and quality. Future longitudinal studies and randomized placebo-controlled trials are required to ascertain protective effects.
Collapse
|
50
|
Wang Y, Pritchard GJ, Kimber MC. A General Convergent Strategy for the Synthesis of Tetra-Substituted Furan Fatty Acids (FuFAs). European J Org Chem 2020. [DOI: 10.1002/ejoc.202000234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yamin Wang
- School of Science; Department of Chemistry; Loughborough University; LE11 3TU Leicestershire UK
| | - Gareth J. Pritchard
- School of Science; Department of Chemistry; Loughborough University; LE11 3TU Leicestershire UK
| | - Marc C. Kimber
- School of Science; Department of Chemistry; Loughborough University; LE11 3TU Leicestershire UK
| |
Collapse
|