1
|
Liu H, Wang D, Feng X, Liu L, Liu B, Zhu L, Sun J, Zuo X, Chen S, Liu J, Xian J, Zhang C, Yang W. Angelicin ameliorated ulcerative colitis through activating HDAC1-derived HIF-1α acetylation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156546. [PMID: 40058317 DOI: 10.1016/j.phymed.2025.156546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/12/2025] [Accepted: 02/15/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Ulcerative colitis (UC) is a stubborn disease that occurs globally. SSP-TXYF is a traditional Chinese medicine (TCM) compound, which is widely used in the treatment of UC, but its picking and preparation is complicated. Therefore, this work analyzes the components of SSP-TXYF to find an natural compound that can treat UC, and verifies its efficacy and mechanism, aiming to explore new natural compound with the same efficacy as SSP-TXYF. METHODS AND RESULTS In this study, we used the quality markers (Q-marker) strategy to analyze the SSP-TXYF. We obtained that angelicin (Ang) is the main active ingredient. Combined with reductive dimethyl labeling and tandem orthogonal proteolysis-activity-based protein profiling (rdTOP-ABPP) and network pharmacology, we found that ERK1/2 and HDAC1 may be the binding proteins. Then, we demonstrated that Ang not only suppresses inflammation in lipopolysaccharide-induced IEC-6 but also effectively inhibits 2,4,6-trinitrobenzenesulfonic acid-induced UC in vivo. Increasing the concentration of propionate and butyrate, activating GPR43 and GPR109A receptors, increasing ERK1/2 activity, promoting Sp1 phosphorylation, thus competitively inhibiting the combination of HIF-1α and HDAC1, and finally increasing the acetylation of HIF-1α is the molecular signaling mechanism for Ang. CONCLUSIONS In conclusion, Ang can improve the symptoms of UC in rats and activate the GPR/ERK/SP1/HDAC1/HIF-1α pathway in colonic epithelial cells to repair the damaged intestinal mucosal barrier (IMB). The key pharmacodynamic mechanism of Ang is consistent with SSP-TXYF, and it is preliminarily believed that Ang can be used as a new natural medicine for treating UC.
Collapse
Affiliation(s)
- Haifan Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dunfang Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue Feng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jingwei Sun
- Beijing University of Chinese Medicine, Beijing, China
| | - Xingbo Zuo
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyuan Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jianyao Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Xian
- Nanning Hospital of Traditional Chinese Medicine, Nanning, China
| | - Caijuan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Weipeng Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
Zhang Y, Zhu M, Dai Y, Gao L, Cheng L. Research Progress in Ulcerative Colitis: The Role of Traditional Chinese Medicine on Gut Microbiota and Signaling Pathways. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2277-2336. [PMID: 39756829 DOI: 10.1142/s0192415x24500885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Ulcerative colitis (UC), one among other refractory diseases worldwide, has shown an increasing trend of progression to colorectal cancer in recent years. In the treatment of UC, traditional Chinese medicine has demonstrated good efficacy, with a high cure rate, fewer adverse effects, great improvement in the quality of patient survival, and reduction in the tendency of cancerous transformation. It shows promise as a complementary and alternative therapy. This review aims to evaluate and discuss the current research on UC, signaling pathways, and gut microbiota. We also summarized the mechanisms of action of various Chinese medicines (active ingredients or extracts) and herbal formulas, through signaling pathways and gut microbiota, with the expectation that they can provide references and evidence for treating UC and preventing inflammation-associated colorectal cancer by traditional Chinese medicine. We illustrate that multiple signaling pathways, such as TLR4, STAT3, PI3K/Akt, NF-[Formula: see text]B, and Keap1/Nrf2, can be inhibited by Chinese herbal treatments through the combined regulation of signaling pathways and gut microbiota, which can act individually or synergistically to inhibit intestinal inflammatory cell infiltration, attenuate gut oxidative responses, and repair the intestinal barrier.
Collapse
Affiliation(s)
- Yuyi Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Mingfang Zhu
- Graduate School, Zunyi Medical University Zunyi, P. R. China
| | - Yueying Dai
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, P. R. China
| | - Longying Gao
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| | - Limin Cheng
- Department of Anorectal, The First Affiliated Hospital of Heilongjiang, University of Chinese Medicine Harbin, P. R. China
| |
Collapse
|
3
|
Yang S, Huang J, Tan W, Xia X, Gan D, Ren Y, Su H, Xiang M. Xiaoyankangjun tablet alleviates dextran sulfate sodium-induced colitis in mice by regulating gut microbiota and JAK2/STAT3 pathway. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:44. [PMID: 39133435 PMCID: PMC11319580 DOI: 10.1007/s13659-024-00468-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Xiaoyankangjun tablet (XYKJP) is a traditional Chinese medicine formulation used to treat intestinal disorders in clinical practice. However, the specific therapeutic mechanism of action of XYKJP in colitis has not yet been elucidated. This study aimed to reveal the multifaceted mechanisms of action of XYKJP in treating colitis. The model established based on DSS-induced colitis in C57BL/6 mice was employed to estimate the effect of XYKJP on colitis, which was then followed by histological assessment, 16S rRNA sequencing, RT-qPCR, ELISA, and Western blot. XYKJP alleviated the symptoms of DSS-induced colitis mainly by reducing oxidative stress, inflammatory responses, and intestinal mucosal repair in colitis tissues. In addition, XYKJP regulated the intestinal flora by increasing the relative abundance of Akkermansia and Bifidobacterium and reducing the relative abundance of Coriobacteriaceae_UCG-002. Mechanistically, XYKJP increased the content of short-chain fatty acids (SCFAs) in the feces, particularly propanoic acid and butyric acid, activated their specific receptor GPR43/41, furthermore activated the Nrf2/HO-1 pathway, and suppressed the JAK2/STAT3 pathway. XYKJP significantly alleviated the symptoms of experimental colitis and functioned synergistically by regulating the intestinal flora, increasing the production of SCFAs, and activating their specific receptors, thereby repressing oxidative stress and inflammation.
Collapse
Affiliation(s)
- Suqin Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Jingtao Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China
| | - Wenjing Tan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Xiankun Xia
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Dali Gan
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Yalei Ren
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China
| | - Hanwen Su
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, People's Republic of China.
| | - Meixian Xiang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, Hubei, People's Republic of China.
| |
Collapse
|
4
|
Mok HL, Cheng KW, Xu Y, Huang C, Lyu C, Xu J, Hu D, Zhu L, Lin C, Tan HY, Bian Z. Modified Zhenwu Decoction suppresses chronic colitis via targeting macrophage CCR2/Fyn/p38 MAPK signaling axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155694. [PMID: 38733904 DOI: 10.1016/j.phymed.2024.155694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/15/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is associated with intestinal macrophage infiltration due to disruption of the mucosal barrier and bacterial invasion. Therefore, it is crucial to identify therapeutic agents capable of attenuating the macrophage-induced inflammatory response to preserve mucosal homeostasis and immune tolerance. The modified Zhenwu decoction (CDD-2103) is a novel herbal formulation developed based on the principles of Traditional Chinese medicine. To date, there are no clinically approved herbal formulations for UC with a well-known mechanism of action on macrophages. PURPOSE The objective of this study was to systematically investigate the inhibitory effect of the active fraction of CDD-2103 in a mouse model of chronic colitis and delineate the mechanisms underlying its inhibitory action. METHODS CDD-2103 was extracted into four fractions using organic solvents with increasing polarity. A chronic 49-day dextran sulfate sodium (DSS)-induced colitis mice model, closely resembling human clinical conditions, was used to examine the effect of CDD-2103 on chronic colitis. To confirm the effect of CDD-2103 on macrophages in this chronic colitis model, adoptive macrophage transfer and CCL2 supplementation were conducted. The mechanisms of action of CDD-2103 were further elucidated utilizing bone marrow-derived macrophages (BMDMs). Transcriptome analysis was conducted to gain insights into the underlying mechanism of action of CDD-2103 in BMDMs. RESULTS Our in vitro and in vivo findings demonstrated that the ethanol-enriched fraction of CDD-2103 exhibited significant anti-inflammatory effects, leading to the suppression of colitis severity. This effect was associated with diminished accumulation of colonic macrophages in the lamina propria of CDD-2103-intervened colitis mice. Specifically, CDD-2103 inhibited CCR2/L2-mediated proinflammatory macrophage infiltration into the colon without affecting macrophage proliferation. Mechanistically, CDD-2103 inhibited Fyn expression-mediated p38 MAPK activation and subsequently suppressed CCR2 expression in BMDMs. CONCLUSIONS Collectively, our study supports the potential use of CDD-2103 to limit macrophage infiltration, thereby reducing inflammation during UC treatment. CDD-2103 and the components in the ethanolic fraction are promising candidates for the development of novel drugs for UC management. Additionally, our study underscores Fyn-mediated CCR2 expression as a potential therapeutic target for the management of UC.
Collapse
Affiliation(s)
- Heung Lam Mok
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Ka Wing Cheng
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yiqi Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chunhua Huang
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Cheng Lyu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Jiaruo Xu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Die Hu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lin Zhu
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Chengyuan Lin
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| | - Zhaoxiang Bian
- Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong SAR, China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
5
|
Zhu L, Liang J. Network pharmacological prediction of the mechanism of action of Shen-Zhu-Lian-Bai Decoction in the treatment of ulcerative colitis. Sci Rep 2024; 14:14183. [PMID: 38902425 PMCID: PMC11190269 DOI: 10.1038/s41598-024-64683-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
The incidence of ulcerative colitis (UC) is on the rise globally. Shen-Zhu-Lian-Bai decoction (SZLBD) can relieve the clinical symptoms of UC. This study aimed to investigate the underlying molecular mechanism of SZLBD in the treatment of UC. The key treatment targets of SZLBD for UC were obtained based on the online database, and combined with the STRING database and Cytoscape 3.7.2 software, PPI network was constructed and visualized. The GEO database was utilized to validate the expression levels of core targets in UC. Metascape database GO functional annotation and KEGG pathway enrichment analysis. Molecular docking technology was used to verify the docking of core compounds with key targets. RT-qPCR and Western Blot were used to detect the expression of key targets in HCoEpiC cells for verification. After screening, 67 targets shared by SZLBD and UC were obtained. It is predicted that IL-6, IL-1B, and AKT1 might be the key targets of SZLBD in the treatment of UC. Quercetin was the main active ingredient. GEO results showed that the expression levels of IL-6, IL-1B and AKT1 were higher in the UC group compared to the control group. GO and KEGG analyses showed that these targets were related to apoptosis and inflammation. The results of molecular docking demonstrated that the AKT1 gene, a key target of quercetin, had the highest affinity of -9.2 kcal/mol. Cell experiments found that quercetin could affect the expression of IL-6, IL-1B, and AKT1. This study preliminarily explored and verified the mechanism of action of SZLBD in the treatment of UC, which provides a theoretical basis for subsequent in vivo mechanism studies.
Collapse
Affiliation(s)
- Li Zhu
- Anorectal Surgery, Shenzhen TCM Anorectal Hospital, Shenzhen, Guangdong, China.
- Anorectal Surgery, Meizhou People's Hospital, Meizhou, Guangdong, China.
| | - Jinghua Liang
- Anorectal Surgery, Shenzhen TCM Anorectal Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
6
|
Wang C, Yu H, Li Z, Wu J, Gao P, He S, Tang D, Wang Q, Liu H, Lv H, Liu J. Novel applications of Yinhua Miyanling tablets in ulcerative colitis treatment based on metabolomics and network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155366. [PMID: 38537445 DOI: 10.1016/j.phymed.2024.155366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/13/2023] [Accepted: 01/14/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Yinhua Miyanling tablets (YMT), comprising 10 Chinese medicinal compounds, is a proprietary Chinese medicine used in the clinical treatment of urinary tract infections. Medicinal compounds, extracts, or certain monomeric components in YMT all show good effect on ulcerative colitis (UC). However, no evidence supporting YMT as a whole prescription for UC treatment is available. PURPOSE To evaluate the anti-UC activity of YMT and elucidate the underlying mechanisms. The objective of the study was to provide evidence for the add-on development of YMT to treat UC. METHODS First, YMT's protective effect on the intestinal barrier was evaluated using a lipopolysaccharide (LPS)-induced Caco-2 intestinal injury model. Second, the UC mouse model was established using dextran sodium sulfate (DSS) to determine YMT's influence on symptoms, inflammatory factors, intestinal barrier, and histopathological changes in the colon. Third, an integrated method combining metabolomics and network pharmacology was employed to screen core targets and key metabolic pathways with crucial roles in YMT's therapeutic effect on UC. Molecular docking was employed to identify the key targets with high affinity. Finally, western blotting was performed to validate the mechanism of YMT action against UC. RESULTS YMT enhanced the transepithelial electrical resistance value and improved the expression of proteins of the tight junctions dose-dependently in LPS-induced Caco-2 cells. UC mice treated with YMT exhibited alleviated pathological lesions of the colon tissue in the in vivo pharmacodynamic experiments. The colonic lengths tended to be normal, and the levels of inflammatory factors (TNF-α, IL-6, and iNOS) along with those of the core enzymes (MPO, MDA, and SOD) improved. YMT effectively ameliorated DSS-induced colonic mucosal injury; pathological changes along with ultrastructure damage were significantly alleviated (evidenced by a relatively intact colon tissue, recovery of epithelial damage, repaired gland, reduced infiltration of inflammatory cells and epithelial cells arranged closely with dense microvilli). Seven key targets (IL-6, TNF-α, MPO, COX-2, HK2, TPH, and CYP1A2) and four key metabolic pathways (arachidonic acid metabolism, linoleate metabolism, glycolysis, and gluconeogenesis and tyrosine biosynthesis) were identified to play vital roles in the treatment on UC using YMT. CONCLUSIONS YMT exerts beneficial therapeutic effects on UC by regulating multiple endogenous metabolites, targets, and metabolic pathways, suggestive of its potential novel application in UC treatment.
Collapse
Affiliation(s)
- Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Hui Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Junzhe Wu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Peng Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Shanmei He
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Daohao Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Hanlin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Haoming Lv
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, PR China; Research Center of Natural Drugs, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
7
|
Li C, Yang J, Chu L, Tian J, Xiao J, Huang Y, Wang Q, Guo B, Huang L, Hu Y, Luo Y. The function of Bazhen decoction in rescuing progeroid cell senescence via facilitating G-quadruplex resolving and telomere elongation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117694. [PMID: 38163559 DOI: 10.1016/j.jep.2023.117694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/20/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Bazhen decoction is one of the most extensively used Traditional Chinese medicine (TCM) prescriptions for treatment of aging related diseases. However, due to the complexity of the components, the pharmacological mechanism of Bazhen decoction is still limited. AIM OF THE STUDY In this study, with the aim of helping the clinical precision medicine of TCM, we try out a systematic analysis for dissecting the molecular mechanism of complicated TCM prescription: Bazhen decoction. We identify the pharmacological mechanism of Bazhen decoction in telomere elongation as revealed by systematic analysis. MATERIALS AND METHODS By RNA sequencing and transcriptome analysis of Bazhen decoction treated wild type cells, we reveal the transcriptome profile induced by Bazhen decoction. We utilized the cells derived from Werner syndrome (WS) mice, which is known to be dysfunctional in telomere elongation due to the deficiency of DNA helicase Wrn. By Western blot, qPCR, Immunofluorescence, flow cytometry, telomere FISH, and SA-β-Gal staining, we verify the transcriptome data and confirm the pharmacological function of Bazhen decoction and its drug containing serum in telomere elongation and reversing progeroid cell senescence. RESULTS We reveal that Bazhen decoction may systematically regulate multiple anti-aging pathways, including stem cell regulation, protein homeostasis, cardiovascular function, neuronal function, anti-inflammation, anti-DNA damage induced stress, DNA helicase activity and telomere lengthening. We find that Bazhen decoction and its drug containing serum could up-regulate multiple DNA helicases and telomere regulating proteins. The increased DNA helicases promote the resolving of G-quadruplex (G4) structures, and facilitate DNA replication and telomere elongation. These improvements also endow the cellular resistance to DNA damages induced by replication stress, and rescue the WS caused cellular senescence. CONCLUSIONS Together these data suggest that Bazhen decoction up-regulate the expression of DNA helicases, thus facilitate G4 resolving and telomere maintenance, which rescue the progeroid cellular senescence and contribute to its anti-aging properties. Our data reveal a new molecular mechanism of Bazhen decoction in anti-aging related diseases via elongating telomere, this may shed light in the application of Bazhen decoction in multiple degenerative diseases caused by telomere erosion.
Collapse
Affiliation(s)
- Chuanbiao Li
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Jun Yang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Lili Chu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Jie Tian
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Jinchao Xiao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guizhou, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guizhou, China
| | - Qianqian Wang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Bing Guo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China
| | - Liming Huang
- The Second Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guizhou, China
| | - Ying Hu
- Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guizhou, China.
| | - Ying Luo
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guizhou, China.
| |
Collapse
|
8
|
Sun Y, Zhang Y, Wang T, Wen L, Xing T, Peng J, Liang Y. Picroside III Ameliorates Colitis in Mice: A Study Based on Colon Transcriptome and Fecal 16S Amplicon Profiling. Chem Biodivers 2023; 20:e202301806. [PMID: 38009836 DOI: 10.1002/cbdv.202301806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Picroside III (Pic), an iridoid glycoside derived from Picrorhiza scrophulariiflora, exhibits therapeutic potential in mending damage to the intestinal mucosa. This study aimed to explore Pic's regulatory impact on intestinal inflammation and the gut microbiota in mice with dextran sulfate sodium (DSS)-induced colitis. The findings revealed that pretreatment with Pic mitigated the DSS-induced escalation of the disease activity index (DAI), alleviated intestinal damage, and attenuated intestinal inflammation in mice. RNA-seq analysis, complemented by experimental validation, elucidated that Pic significantly hindered Akt phosphorylation in the colon tissues of colitis-afflicted mice. Furthermore, 16S rRNA sequencing demonstrated that Pic pretreatment effectively rectified microbial dysbiosis in colitis mice by elevating the abundance of Lactobacillus murinus and Lactobacillus gasseri. These observations suggest that Pic's efficacy in colitis treatment stems from its inhibition of intestinal inflammation via the suppression of the PI3K-Akt pathway and modulation of gut microbiota. This study contributes novel scientific insights into the potential application of Pic in the management of inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Yating Sun
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China, 518036
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yingdi Zhang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China, 518036
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Tao Wang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China, 518036
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Liping Wen
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Tianhang Xing
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Jiao Peng
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China, 518036
- School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou, China
| | - Yue Liang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, China, 518036
| |
Collapse
|
9
|
Wu P, Chang C, Zhu G, Zhai L, Zhang X, Huan Q, Gao Z, Deng H, Liang Y, Xiao H. Network Pharmacology Study of Bioactive Components and Molecular Mechanisms of the Glycoside Fraction from Picrorhiza scrophulariiflora Against Experimental Colitis. Drug Des Devel Ther 2023; 17:1531-1546. [PMID: 37249930 PMCID: PMC10224697 DOI: 10.2147/dddt.s407339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/29/2023] [Indexed: 05/31/2023] Open
Abstract
Purpose To explore the potential mechanism of glycosidic fraction of Picrorhiza scrophulariiflora Pennell (GPS) extract for the treatment of colitis using UPLC-QTOF-MS analysis, network pharmacology and experimental research. Methods The active components of GPS extract were identified by UPLC-QTOF-MS analysis and extracted their targets from the databases, which was used for network pharmacology analysis. Kyoto Encyclopedia of genes and genomes (KEGG) pathway analysis was performed to discover potential therapeutic mechanisms, and the network pharmacology results were then validated by in vivo and in vitro experiments. Results The results showed that GPS extract significantly alleviated the clinical signs of colitis, including body weight, disease activity index, colon shortening, and colon tissue damage, and inhibited the transcription and production of colonic IL-1β and IL-6 in DSS-induced colitis mice. In vitro, GPS extract also significantly suppressed nitric oxide (NO) production, iNOS expression, IL-1β and IL-6 transcription of LPS-activated RAW 264.7 cells. Network pharmacology integrated with experimental validation identified that GPS extract significantly suppressed Akt, p38, ERK, and JNK phosphorylation in vivo and in vitro, and luteolin, apocynin, caffeic acid, caffeic acid methyl ester, luteoloside, picroside II, aucubin, cinnamic acid, vanillic acid, and sweroside were the main components responsible for the anti-inflammatory effect of GPS. These findings demonstrate that the potential anti-inflammatory effect of GPS extract against colitis is achieved through suppressing PI3K/Akt and MAPK pathways, and that the abovementioned active components mainly exerted its anti-inflammatory effect. Conclusion The therapeutic effect of GPS extract on colitis is related to PI3K/Akt and MAPK pathways, which is a promising remedy for colitis therapy.
Collapse
Affiliation(s)
- Peigen Wu
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Churui Chang
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Guanglin Zhu
- Traditional Chinese Medicine Hospital of Qijiang, Chongqing, People’s Republic of China
| | - Lixiang Zhai
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong Special Administrative Region, People’s Republic of China
| | - Xu Zhang
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Qiuchan Huan
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Zhengxian Gao
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| | - Huan Deng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
| | - Yue Liang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Haitao Xiao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, People’s Republic of China
- School of Pharmaceutical Sciences, Guizhou Medical University, University Town, Guizhou, People’s Republic of China
| |
Collapse
|
10
|
Zheng M, Hu Z, Wang Y, Wang C, Zhong C, Cui W, You J, Gao B, Sun X, La L. Zhen Wu decoction represses renal fibrosis by invigorating tubular NRF2 and TFAM to fuel mitochondrial bioenergetics. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154495. [PMID: 36257219 DOI: 10.1016/j.phymed.2022.154495] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Zhen Wu Decoction (ZWD) is a prescription from the classical text "Treatise on Exogenous Febrile Disease" and has been extensively used to control kidney diseases since the time of the Eastern Han Dynasty. HYPOTHESIS We hypothesized that ZWD limits tubular fibrogenesis by reinvigorating tubular bio-energetic capacity. STUDY DESIGN / METHODS A mouse model of chronic kidney disease (CKD) was established using unilateral ureteral obstruction (UUO). Three concentrations of ZWD, namely 25.2 g/kg (high dosage), 12.6 g/kg (middle dosage), and 6.3 g/kg (low dosage), were included to study the dose-effect relationship. Real-time qPCR was used to observe gene transcription in blood samples from patients with CKD. Different siRNAs were designed to study the role of mitochondrial transcription factor A (TFAM) and nuclear factor (erythroid-derived 2)-related factor 2 (NRF2) in transforming growth factor (TGF)-β1 induced fibrogenesis and mitochondrial damage. RESULTS We showed that ZWD efficiently attenuates renal function impairment and reduces renal interstitial fibrosis. TFAM and NRF2 were repressed, and the stimulator of interferon genes (STING) was activated in CKD patient blood sample. We further confirmed that ZWD activated TFAM depended on NRF2 as an important negative regulator of STING in mouse kidneys. Treatment with ZWD significantly reduced oxidative stress and inflammation by regulating the levels of oxidative phosphorylation (OXPHOS) and pro-inflammatory factors, such as interleukin-6, interleukin-1β, tumor necrosis factor receptor 1, and mitochondrial respiratory chain subunits. NRF2 inhibitors can weaken the ability of ZWD to increase TFAM expression and heal injured mitochondria, playing a similar role to that of STING inhibitors. Our study showed that ZWD elevates the expression of TFAM and mitochondrial respiratory chain subunits by promoting NRF2 activation, after suppressing mitochondrial membrane damage and cristae breakdown and restricting mitochondrial DNA (mtDNA) leakage into the cytoplasm to reduce STING activation. CONCLUSION ZWD maintains mitochondrial integrity and improves OXPHOS which represents an innovative insight into "strengthening Yang-Qi" theory. ZWD limits tubular fibrogenesis by reinvigorating tubular bioenergetic capacity.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhengyang Hu
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yibin Wang
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chao Zhong
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Cui
- Department of Imaging, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Junxiong You
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Baogui Gao
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xuegang Sun
- The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Lei La
- Department of Pharmacy, Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|