1
|
Le Y, Zhou L, He Y, Zhou J, Zhan J, Zhang H, Chen X, Xiong J, Fang Z, Xiang X. SNX5 facilitates the progression of gastric cancer by increasing the membrane localization of LRP5. Oncogene 2025; 44:1182-1196. [PMID: 39922976 DOI: 10.1038/s41388-025-03298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/05/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Endocytosis is essential for cancer cell motility, which is predominantly mediated by the sorting nexin (SNX) family. Previous studies have demonstrated that SNX5 is elevated in several tumors, while its clinical significance and underlying mechanism in gastric cancer (GC) remain uninvestigated. In this study, we reported that SNX5 is highly expressed in GC and promotes the malignant biological behavior of GC cells. Its upregulation is closely related to poor prognosis in GC patients. Mechanistically, we observed an interaction between SNX5 and low-density lipoprotein receptor-related protein5 (LRP5) in GC cells. SNX5 inhibits LRP5 internalization and promotes its recycling to the cell membrane, which prevents LRP5 from being degraded in the lysosome. The increased membrane localization of LRP5 facilitates β-catenin stabilization, thus activating the Wnt signaling pathway, leading to tumorigenesis and progression.
Collapse
Affiliation(s)
- Yi Le
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Ling Zhou
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Yan He
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Juanjuan Zhou
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Jinbo Zhan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Hongjiao Zhang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Xiao Chen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China.
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China.
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| | - Xiaojun Xiang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, 1519 Dongyue Avenue, Nanchang, 330006, Jiangxi, China.
- Department of Jiangxi Key Laboratory for Individualized Cancer Therapy, 17 Yongwai Street, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
2
|
Yang H, Wang Z, Xiong W, Zhou L, Yu S. Heliox alleviates ischemia-reperfusion-induced damage to neuronal cells by repressing the USP46-SNX5 Axis-triggered ferroptosis. Exp Neurol 2025; 386:115175. [PMID: 39909216 DOI: 10.1016/j.expneurol.2025.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
BACKGROUND Cerebral ischemia-reperfusion (I/R) causes brain cell dysfunction and death. Heliox treatment shows therapeutic benefits in treating certain respiratory conditions. Here, we explore the mechanism by which heliox alleviates ferroptosis of neuronal cells injured by I/R treatment. METHOD OGD/R-treated SH-SY5Y cells were used and screened for USPs whose expression is induced by OGD/R but suppressed by heliox treatment. Mass spectrometry was conducted to identify proteins that interact with USP46. The impact of SNX5 deficiency on the ferroptosis of USP46-overexpressing neuronal cells following sequential OGD/R and heliox treatment was also explored. Finally, the effect of USP46 overexpression on brain cell ferroptosis in a cerebral I/R rat model was explored. RESULTS Deubiquitinase USP46 is targeted by heliox treatment in neuronal cells. USP46 expression is stimulated by I/R, and its overexpression enhances ferroptosis in I/R-treated neuronal cells. USP46 interacts with and deubiquitinates SNX5, a ferroptosis promoter, thereby increasing its stability. The knockdown of SNX5 abolishes the ferroptosis-promoting effect of USP46 in I/R-treated neuronal cells. Excessive USP46 attenuates the protective effect of heliox treatment on I/R-triggered cerebral damage in a rat model. CONCLUSION These observations highlight the ferroptosis-promoting function of the USP46-SNX5 axis in I/R-treated neuronal cells.
Collapse
Affiliation(s)
- Hualing Yang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China; Department of Anesthesiology, Xiamen Humanity Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Wei Xiong
- Fujian Medical University, Fuzhou, Fujian, China; Department of Anesthesiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China.
| | - Liying Zhou
- Department of Anesthesiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shuai Yu
- Department of Anesthesiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
3
|
Liu Y, Tian W, Ge C, Zhang C, Huang Z, Zhang C, Yang Y, Tian H. SNX17 mediates STAT3 activation to promote hepatocellular carcinoma progression via a retromer dependent mechanism. Int J Biol Sci 2025; 21:2762-2779. [PMID: 40303303 PMCID: PMC12035908 DOI: 10.7150/ijbs.110506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Endocytosis has emerged as a key regulator of malignant behavior in cancer. Members of the sorting nexin (SNX) family have been found to be dysregulated in various cancers and play significant roles in regulating tumor metastasis. However, the role and mechanism of SNX17 in hepatocellular carcinoma (HCC) progression remain largely unknown. Here, we found that upregulation of SNX17 in HCC was associated with poor prognosis. Overexpression of SNX17 promoted HCC cell proliferation, migration, invasion, and metastasis, whereas silencing SNX17 expression resulted in opposite effects. Knockdown of SNX17 induced G1/S phase arrest and apoptosis. We discovered that SNX17 directly interacted with STAT3 and increased its phosphorylation in a retromer-dependent manner. SNX17-retromer complex acted as a platform for IL-6-induced STAT3 activation. Activated STAT3 then increased c-Myc expression and promoted mitochondrial oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis. SNX17 overexpression-induced OXPHOS was reversed by c-Myc inhibitor. Knockdown of STAT3 expression or treatment with a STAT3 inhibitor significantly attenuated SNX17-enhanced proliferation and invasion. Taken together, our results indicate that SNX17 promotes HCC cell proliferation and metastasis through direct interaction with STAT3 in a retromer-dependent manner, thereby activating the STAT3/c-Myc signaling pathway and enhancing OXPHOS. These findings suggest that SNX17 is a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Yuqi Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Ge
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Canxue Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Huang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chi Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Yang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Tian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Pathology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
- The Key Laboratory of Molecular Pathology (Hepatobiliary Diseases) of Guangxi, Baise 533000, China
| |
Collapse
|
4
|
Liu Y, Wu Y, Deng H, Li W, Cui L, Rong J, Zhao J. A polylysine/hyaluronan-based core-shell nanoparticle triggers drug delivery by ATP/hyaluronidase dual stimuli for inducing apoptosis of breast cancer cells. Int J Biol Macromol 2024; 277:134188. [PMID: 39084428 DOI: 10.1016/j.ijbiomac.2024.134188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The limitations of self-assembled polymeric nanoparticles for cancer therapy, including instability in the bloodstream, non-specific targeting of cancer cells, and unregulated intracellular drug delivery, were effectively addressed by the development of core-shell SNX@PLL-FPBA/mHA NPs. The core was SNX@PLL-FPBA NPs prepared from polylysine conjugated 3-fluoro-4-carboxyphenylboronic acid (PLL-FPBA) self-assembly and SNX encapsulation, while the shell was methacrylate-modified hyaluronic acid (mHA) adhering to the core by electrostatic interactions and subsequently stabilized by photo-crosslinking, without the use of any organic solvent. SNX@PLL-FPBA/mHA NPs exhibited good stability in varying ionic strengths (0-0.30 M NaCl), pH levels (6.8 and 7.4), and plasma environments mimicking the blood, ensuring their efficacy in systemic circulation. The drug delivery from the nanoparticles was highly sensitive to ATP/Hyals stimuli (82 % within 48 h), closely mimicking the intracellular environment of breast cancer cells. The nanoparticles demonstrated good hemocompatibility and non-toxicity towards human skin fibroblasts. Efficient internalization of SNX@PLL-FPBA/mHA NPs by MCF-7 and MDA-MB-231 breast cancer cells was observed by CLSM and flow cytometry. The intracellular ATP/Hyals stimuli triggered the rapid drug delivery and induced cellular apoptosis. Thus, SNX@PLL-FPBA/mHA NPs were a promising drug nanocarrier for breast cancer therapy, offering improved stability, targeted delivery, and controlled drug release to enhance treatment outcomes.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Yan Wu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Haotian Deng
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Wanying Li
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Lishu Cui
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China
| | - Jianhua Rong
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China
| | - Jianhao Zhao
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511436, China; Engineering Research Center of Artificial Organs and Materials, Ministry of Education, Guangzhou 511436, China.
| |
Collapse
|
5
|
Wang B, Wei Z, Xu M, Shu H, Fan Z. Identification of key ferroptosis genes and subtypes in kidney renal clear cell carcinoma. Discov Oncol 2024; 15:492. [PMID: 39331243 PMCID: PMC11436560 DOI: 10.1007/s12672-024-01363-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Tumour immunity is highly important for the occurrence and development of tumours, and many cancers are resistant to ferroptosis. This study aims to explore the relationship between ferroptosis-related genes (FRGs) and the immunological characteristics of kidney renal clear cell carcinoma (KIRC). We obtained RNA-seq profiles and clinical data of KIRC patients from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and identified CD44 and GLRX5 as the key FRGs involved in KIRC immune infiltration through Spearman's correlation analysis. Based on the expression of CD44 and GLRX5, the consensus clustering algorithm was used to classify the TCGA-KIRC samples into two clusters. A nomogram was constructed to evaluate the prognosis of KIRC patients. ESTIMATE, CIBERSORT, and single-sample gene set enrichment analysis (ssGSEA) were performed to evaluate immune infiltration between the two clusters. A weighted gene co-expression network analysis (WGCNA) was used to identify the most relevant genes to the clusters and immunity. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The external dataset GSE53757 was used to validate the immunological features between the two clusters. Cluster 2 patients had more active immune infiltration and might be more sensitive to immunotherapy; Cluster 2 patients also had a worse prognosis and might be at a more advanced stage of KIRC. We identified key ferroptosis-related genes and subgroups involved in the immune infiltration of KIRC, which is highly important for exploring the molecular mechanisms and treatments of KIRC.
Collapse
Affiliation(s)
- Biao Wang
- Department of Urology, The Central Hospital of Xiaogan, Xiaogan, 432000, Hubei, China
| | - Zhuo Wei
- Department of Urology, The Central Hospital of Xiaogan, Xiaogan, 432000, Hubei, China
| | - Man Xu
- Affiliated Eye Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Hui Shu
- Department of Urology, The Central Hospital of Xiaogan, Xiaogan, 432000, Hubei, China.
| | - Zheqi Fan
- Department of Urology, The Central Hospital of Xiaogan, Xiaogan, 432000, Hubei, China.
| |
Collapse
|
6
|
Yan H, Xing Z, Liu S, Gao P, Wang Q, Guo G. CALCR exacerbates renal cell carcinoma progression via stabilizing CD44. Aging (Albany NY) 2024; 16:10765-10783. [PMID: 38985127 PMCID: PMC11272109 DOI: 10.18632/aging.205586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 01/04/2024] [Indexed: 07/11/2024]
Abstract
The calcitonin receptor (CALCR) is an essential protein for maintaining calcium homeostasis and has been reported to be upregulated in numerous cancers. However, the molecular role of CALCR in renal cell carcinoma (RCC) is not well understood. In this study, we identified the overexpression of CALCR in RCC using human tissue chip by immunohistochemical (IHC) staining, which was associated with a poor prognosis. Functionally, CALCR depletion inhibited RCC cell proliferation and migration, and induced cell apoptosis and cycle arrest. CALCR is also essential for in vivo tumor formation. Mechanistically, we demonstrated that CALCR could directly bind to CD44, preventing CD44 protein degradation and thereby upregulating CD44 expression. Moreover, a deficiency in CD44 significantly attenuated the promoting role of CALCR on RCC cell proliferation, migration and anti-apoptosis capacities. Collectively, CALCR exacerbates RCC progression via stabilizing CD44, offering a fundamental basis for considering CALCR as a potential therapeutic target for RCC patients.
Collapse
Affiliation(s)
- Haiyang Yan
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zhaohui Xing
- Department of Urology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, China
| | - Shuai Liu
- Department of Urology, The Third Affiliated Hospital of Qiqihar Medical College, Qiqihaer, Heilongjiang 161099, China
| | - Peng Gao
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Qingli Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Guiying Guo
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
7
|
Garcia Delgado L, Derome A, Longpré S, Giroux-Dansereau M, Basbous G, Lavoie C, Saucier C, Denault JB. Spatiotemporal regulation of the hepatocyte growth factor receptor MET activity by sorting nexins 1/2 in HCT116 colorectal cancer cells. Biosci Rep 2024; 44:BSR20240182. [PMID: 38836326 PMCID: PMC11196213 DOI: 10.1042/bsr20240182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Cumulative research findings support the idea that endocytic trafficking is crucial in regulating receptor signaling and associated diseases. Specifically, strong evidence points to the involvement of sorting nexins (SNXs), particularly SNX1 and SNX2, in the signaling and trafficking of the receptor tyrosine kinase (RTK) MET in colorectal cancer (CRC). Activation of hepatocyte growth factor (HGF) receptor MET is a key driver of CRC progression. In the present study, we utilized human HCT116 CRC cells with SNX1 and SNX2 genes knocked out to demonstrate that their absence leads to a delay in MET entering early endosomes. This delay results in increased phosphorylation of both MET and AKT upon HGF stimulation, while ERK1/2 (extracellular signal-regulated kinases 1 and 2) phosphorylation remains unaffected. Despite these changes, HGF-induced cell proliferation, scattering, and migration remain similar between the parental and the SNX1/2 knockout cells. However, in the absence of SNX1 and SNX2, these cells exhibit increased resistance to TRAIL-induced apoptosis. This research underscores the intricate relationship between intracellular trafficking, receptor signaling, and cellular responses and demonstrates for the first time that the modulation of MET trafficking by SNX1 and SNX2 is critical for receptor signaling that may exacerbate the disease.
Collapse
Affiliation(s)
- Laiyen Garcia Delgado
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Amélie Derome
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Samantha Longpré
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
| | | | - Ghenwa Basbous
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
| | - Christine Lavoie
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Centre de Recherche Clinique CHUS
| | - Caroline Saucier
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
- Centre de Recherche Clinique CHUS
| | - Jean-Bernard Denault
- Department of Pharmacology and Physiology
- Pharmacology Institute of Sherbrooke (IPS)
- Université de Sherbrooke’s Cancer Research Institute (IRCUS), Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, QC J1H 5N4, Canada
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences
| |
Collapse
|
8
|
Yuan L, Meng Y, Xiang J. SNX16 is required for hepatocellular carcinoma survival via modulating the EGFR-AKT signaling pathway. Sci Rep 2024; 14:13093. [PMID: 38849490 PMCID: PMC11161632 DOI: 10.1038/s41598-024-64015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Sorting nexin 16 (SNX16), a pivotal sorting nexin, emerges in tumor progression complexity, fueling research interest. However, SNX16's biological impact and molecular underpinnings in hepatocellular carcinoma (HCC) remain elusive. This study probes SNX16's function, clinical relevance via mRNA, and protein expression in HCC. Overexpression/knockdown assays of SNX16 were employed to elucidate impacts on HCC cell invasion, proliferation, and EMT. Additionally, the study delved into SNX16's regulation of the EGFR-AKT signaling cascade mechanism. SNX16 overexpression in HCC correlates with poor patient survival; enhancing proliferation, migration, invasion, and tumorigenicity, while SNX16 knockdown suppresses these processes. SNX16 downregulation curbs phospho-EGFR, dampening AKT signaling. EGFR suppression counters SNX16-overexpression-induced HCC proliferation, motility, and invasiveness. Our findings delineate SNX16's regulatory role in HCC, implicating it as a prospective therapeutic target.
Collapse
Affiliation(s)
- Lebin Yuan
- Department of General Surgery, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Yanqiu Meng
- Oncology Department, First Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiajia Xiang
- Molecular Centre Laboratory, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
9
|
Wang ZQ, Wu ZX, Wang ZP, Bao JX, Wu HD, Xu DY, Li HF, Xu YY, Wu RX, Dai XX. Pan-cancer analysis of NUP155 and validation of its role in breast cancer cell proliferation, migration, and apoptosis. BMC Cancer 2024; 24:353. [PMID: 38504158 PMCID: PMC10953186 DOI: 10.1186/s12885-024-12039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
NUP155 is reported to be correlated with tumor development. However, the role of NUP155 in tumor physiology and the tumor immune microenvironment (TIME) has not been previously examined. This study comprehensively investigated the expression, immunological function, and prognostic significance of NUP155 in different cancer types. Bioinformatics analysis revealed that NUP155 was upregulated in 26 types of cancer. Additionally, NUP155 upregulation was strongly correlated with advanced pathological or clinical stages and poor prognosis in several cancers. Furthermore, NUP155 was significantly and positively correlated with DNA methylation, tumor mutational burden, microsatellite instability, and stemness score in most cancers. Additionally, NUP155 was also found to be involved in TIME and closely associated with tumor infiltrating immune cells and immunoregulation-related genes. Functional enrichment analysis revealed a strong correlation between NUP155 and immunomodulatory pathways, especially antigen processing and presentation. The role of NUP155 in breast cancer has not been examined. This study, for the first time, demonstrated that NUP155 was upregulated in breast invasive carcinoma (BRCA) cells and revealed its oncogenic role in BRCA using molecular biology experiments. Thus, our study highlights the potential value of NUP155 as a biomarker in the assessment of prognostic prediction, tumor microenvironment and immunotherapeutic response in pan-cancer.
Collapse
Affiliation(s)
- Zi-Qiong Wang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhi-Xuan Wu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zong-Pan Wang
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
| | - Jing-Xia Bao
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hao-Dong Wu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Di-Yan Xu
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hong-Feng Li
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yi-Yin Xu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China
| | - Rong-Xing Wu
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China.
| | - Xuan-Xuan Dai
- Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, 100 Minjiang Avenue, Quzhou, Zhejiang, 324000, Zhejiang, China.
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
10
|
Jiang K, Xu LZ, Ning JZ, Cheng F. FAP promotes clear cell renal cell carcinoma progression via activating the PI3K/AKT/mTOR signaling pathway. Cancer Cell Int 2023; 23:217. [PMID: 37752545 PMCID: PMC10523722 DOI: 10.1186/s12935-023-03073-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
OBJECTIVE Herein, we aimed at exploring the FAP expression in clear cell renal cell carcinoma (ccRCC) along with its clinical implication. METHODS Using computational tools analysis of different freely accessible gene databases, the expression pattern, clinical importance, co-expressed genes, and signaling pathways of FAP in ccRCC were thoroughly investigated. FAP expression was examined in clinical ccRCC specimens through qRT-PCR, western blotting and immunohistochemistry. Furthermore, in vitro and in vivo experiments were carried out using flow cytometry, CCK-8, wound-healing and Transwell assays, as well as xenograft tumor model, respectively. RESULTS FAP levels were found to be significantly elevated in ccRCC based on bioinformatic data from public databases. Patients who exhibited higher expression levels of FAP had poorer prognoses, according to Kaplan-Meier analysis of survival data. In addition, diagnostic and prognostic value of FAP in ccRCC was figured out by ROC curve and prognostic nomogram model. In vitro study revealed that the over-expression FAP accelerated cell proliferation, migration as well as invasion, and suppressed cell apoptosis, but silencing of FAP had the opposite effect. FAP suppression reduced the PI3K/AKT/mTOR pathway's stimulation, whereas FAP up-regulation increased the stimulation of the pathway. Blocking the PI3K/AKT/mTOR signaling pathway with the dual PI3K/mTOR inhibitor BEZ235 repressesed cancer-promoting effect of FAP. Additionally, we found that the downregulation of FAP was effective at slowing tumor progression in vivo. CONCLUSION It is possible that FAP could be a reliable biomarker for the diagnosis and prognosis of ccRCC because of its role in the ccRCC progression via triggering the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Kun Jiang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Li-Zhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
11
|
Qian J, Chen C, Zhao C, Xu X, Xu Y, Zhang Y, Qian C. Hsa_circRNA_0084043 promoting tumorigenesis in glioma through miR-577 sponging. Heliyon 2023; 9:e19219. [PMID: 37662721 PMCID: PMC10469075 DOI: 10.1016/j.heliyon.2023.e19219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Circular RNAs (circRNAs) are important non-coding RNAs (ncRNAs) involved in the development of multiple human diseases, especially cancers. circRNA_0084043 is significantly involved in the progression of melanoma. However, whether circRNA_0084043 is associated with glioma remains unknown. In this study, the upregulation of circRNA_0084043 in glioma and the association between circRNA_0084043 and glioma grade were identified. Our results showed that circRNA_0084043 is significantly involved in the proliferative, migratory, and invasive capacities of glioma cells. The results obtained from starBase, luciferase reporter assays, RNA immunoprecipitation assays, and RNA pull-down assays demonstrated that circRNA_0084043 acts as a direct sponge for miR-577. TargetScan algorithm was used to identify potential miR-577 targets, it was found that sorting nexin 5 (SNX5) is a candidate bound to miR-577. Finally, cell experiments testified that circRNA_0084043 enhanced growth, migration and invasion of glioma through the regulation of miR-577-mediated SNX5. Taken together, we concluded that circRNA_0084043 in the miR-577/SNX5 axis can be used as a candidate target for glioma therapy.
Collapse
Affiliation(s)
- Jin Qian
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, Anhui, China
| | - Chunyan Chen
- Department of Gastroenterology and Hepatology, Jinling Hospital, Southern Medical University, Nanjing, China
| | - Changping Zhao
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, Anhui, China
| | - Xing Xu
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, Anhui, China
| | - Yingna Xu
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, Anhui, China
| | - Yong Zhang
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, Anhui, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Wang T, Feng L, Shi Z, Yang L, Yu X, Wu J, Sun J, Zhang J, Feng Y, Wang W. A negative feedback loop between KLF9 and the EMT program dictates metastasis of hepatocellular carcinoma. J Cell Mol Med 2023; 27:2372-2384. [PMID: 37400979 PMCID: PMC10424290 DOI: 10.1111/jcmm.17823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023] Open
Abstract
Metastasis is the primary cause of death of hepatocellular carcinoma (HCC), while the mechanism underlying this severe disease remains largely unclear. The Kruppel-like factor (KLF) family is one of the largest transcription factor families that control multiple physiologic and pathologic processes by governing the cellular transcriptome. To identify metastatic regulators of HCC, we conducted gene expression profiling on the MHCC97 cell series, a set of subclones of the original MHCC97 that was established by in vivo metastasis selection therefore harbouring differential metastatic capacities. We found that the expression of KLF9, a member of the KLF family, was dramatically repressed in the metastatic progeny clone of the MHCC97 cells. Functional studies revealed overexpression of KLF9 suppressed HCC migration in vitro and metastasis in vivo, while knockdown of KLF9 was sufficient to promote cell migration and metastasis accordingly. Mechanistically, we found the expression of KLF9 can reverse the pro-metastatic epithelial-mesenchymal transition (EMT) program via direct binding to the promoter regions of essential mesenchymal genes, thus repressing their expression. Interestingly, we further revealed that KLF9 was, in turn, directly suppressed by a mesenchymal transcription factor Slug, suggesting an intriguing negative feedback loop between KLF9 and the EMT program. Using clinical samples, we found that KLF9 was not only downregulated in HCC tissue compared to its normal counterparts but also further reduced in the HCC samples of whom had developed metastatic lesions. Together, we established a critical transcription factor that represses HCC metastasis, which is clinically and mechanically significant in HCC therapies.
Collapse
Affiliation(s)
- Tao Wang
- Department of Interventional OncologyRenji Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Limin Feng
- Zhejiang University School of MedicineHangzhouChina
| | - Zhong Shi
- Department of Medical OncologyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouChina
| | - Lixian Yang
- First Affiliated HospitalInstitute of Translational Medicine, Zhejiang University School of MedicineHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Xiaofu Yu
- Department of Thoracic RadiotherapyZhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of SciencesHangzhouChina
| | - Jinsong Wu
- College of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Jirui Sun
- Department of PathologyBaoding NO.1 Central HospitalBaodingChina
| | - Jinku Zhang
- Department of PathologyBaoding NO.1 Central HospitalBaodingChina
| | - Yuxiong Feng
- First Affiliated HospitalInstitute of Translational Medicine, Zhejiang University School of MedicineHangzhouChina
- Cancer CenterZhejiang UniversityHangzhouChina
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhouChina
- Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
13
|
Luo G, Wang L, Zheng Z, Gao B, Lei C. Cuproptosis-Related Ferroptosis genes for Predicting Prognosis in kidney renal clear cell carcinoma. Eur J Med Res 2023; 28:176. [PMID: 37189176 PMCID: PMC10184413 DOI: 10.1186/s40001-023-01137-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is a main subtype of kidney cancers. Cuproptosis and ferroptosis are correlated with immune infiltration and prognosis in tumors. However, the role of Cuproptosis-related Ferroptosis genes (CRFGs) in KIRC has rarely been fully understood. Therefore, we constructed a prognostic signature based on different expression of CRFGs in KIRC. All raw data of this study were extracted from public TCGA datasets. Cuproptosis and Ferroptosis genes were collected from the previous research. Finally, a total of 36 significantly different CRFGs were identified from TCGA-KIRC cohort. Six-gene signature (TRIB3, SLC2A3, PML, CD44, CDKN2A and MIOX) was identified by LASSO Cox regression based on the significantly different CRFGs. The CRFGs signature was correlated with worse overall survival and the AUC was 0.750. Functional enrichment indicated that CRFGs were mainly enriched in metabolism, drug resistance, tumor immunity pathways. Besides, the IC50 and immune checkpoint differentially expressed between different groups. The proposed 6-CRFGs signature is a promising biomarker to predict clinical outcomes and therapeutic responses for KIRC patient.
Collapse
Affiliation(s)
- Gang Luo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lini Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ziyu Zheng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Baobao Gao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Chong Lei
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
14
|
Wu Y, Terekhanova NV, Caravan W, Naser Al Deen N, Lal P, Chen S, Mo CK, Cao S, Li Y, Karpova A, Liu R, Zhao Y, Shinkle A, Strunilin I, Weimholt C, Sato K, Yao L, Serasanambati M, Yang X, Wyczalkowski M, Zhu H, Zhou DC, Jayasinghe RG, Mendez D, Wendl MC, Clark D, Newton C, Ruan Y, Reimers MA, Pachynski RK, Kinsinger C, Jewell S, Chan DW, Zhang H, Chaudhuri AA, Chheda MG, Humphreys BD, Mesri M, Rodriguez H, Hsieh JJ, Ding L, Chen F. Epigenetic and transcriptomic characterization reveals progression markers and essential pathways in clear cell renal cell carcinoma. Nat Commun 2023; 14:1681. [PMID: 36973268 PMCID: PMC10042888 DOI: 10.1038/s41467-023-37211-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Identifying tumor-cell-specific markers and elucidating their epigenetic regulation and spatial heterogeneity provides mechanistic insights into cancer etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched bulk proteogenomics data. By identifying 20 tumor-specific markers through a multi-omics tiered approach, we reveal an association between higher ceruloplasmin (CP) expression and reduced survival. CP knockdown, combined with spatial transcriptomics, suggests a role for CP in regulating hyalinized stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity analysis portrays tumor cell-intrinsic inflammation and epithelial-mesenchymal transition (EMT) as two distinguishing features of tumor subpopulations. Finally, BAP1 mutations are associated with widespread reduction of chromatin accessibility, while PBRM1 mutations generally increase accessibility, with the former affecting five times more accessible peaks than the latter. These integrated analyses reveal the cellular architecture of ccRCC, providing insights into key markers and pathways in ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Yige Wu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nadezhda V Terekhanova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Wagma Caravan
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Nataly Naser Al Deen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Preet Lal
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Siqi Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Chia-Kuei Mo
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Song Cao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yize Li
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Alla Karpova
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ruiyang Liu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Yanyan Zhao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Andrew Shinkle
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Ilya Strunilin
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Cody Weimholt
- Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Kazuhito Sato
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Lijun Yao
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Mamatha Serasanambati
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Xiaolu Yang
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Wyczalkowski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Houxiang Zhu
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Cui Zhou
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Reyka G Jayasinghe
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
| | - Daniel Mendez
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Michael C Wendl
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David Clark
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | | | - Yijun Ruan
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT, 06032, USA
| | - Melissa A Reimers
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Russell K Pachynski
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chris Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Scott Jewell
- Van Andel Institutes, Grand Rapids, MI, 49503, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Aadel A Chaudhuri
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Milan G Chheda
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin D Humphreys
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - James J Hsieh
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Li Ding
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO, 63108, USA.
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| | - Feng Chen
- Oncology Division, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Wu X, Xie W, Gong B, Fu B, Chen W, Zhou L, Luo L. Development of a TGF-β signaling-related genes signature to predict clinical prognosis and immunotherapy responses in clear cell renal cell carcinoma. Front Oncol 2023; 13:1124080. [PMID: 36776317 PMCID: PMC9911835 DOI: 10.3389/fonc.2023.1124080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Background Transforming growth factor (TGF)-β signaling is strongly related to the development and progression of tumor. We aimed to construct a prognostic gene signature based on TGF-β signaling-related genes for predicting clinical prognosis and immunotherapy responses of patients with clear cell renal cell carcinoma (ccRCC). Methods The gene expression profiles and corresponding clinical information of ccRCC were collected from the TCGA and the ArrayExpress (E-MTAB-1980) databases. LASSO, univariate and multivariate Cox regression analyses were conducted to construct a prognostic signature in the TCGA cohort. The E-MTAB-1980 cohort were used for validation. Kaplan-Meier (K-M) survival and time-dependent receiver operating characteristic (ROC) were conducted to assess effectiveness and reliability of the signature. The differences in gene enrichments, immune cell infiltration, and expression of immune checkpoints in ccRCC patients showing different risks were investigated. Results We constructed a seven gene (PML, CDKN2B, COL1A2, CHRDL1, HPGD, CGN and TGFBR3) signature, which divided the ccRCC patients into high risk group and low risk group. The K-M analysis indicated that patients in the high risk group had a significantly shorter overall survival (OS) time than that in the low risk group in the TCGA (p < 0.001) and E-MTAB-1980 (p = 0.012). The AUC of the signature reached 0.77 at 1 year, 0.7 at 3 years, and 0.71 at 5 years in the TCGA, respectively, and reached 0.69 at 1 year, 0.72 at 3 years, and 0.75 at 5 years in the E-MTAB-1980, respectively. Further analyses confirmed the risk score as an independent prognostic factor for ccRCC (p < 0.001). The results of ssGSEA that immune cell infiltration degree and the scores of immune-related functions were significantly increased in the high risk group. The CIBERSORT analysis indicated that the abundance of immune cell were significantly different between two risk groups. Furthermore, The risk score was positively related to the expression of PD-1, CTLA4 and LAG3.These results indicated that patients in the high risk group benefit more from immunotherapy. Conclusion We constructed a novel TGF-β signaling-related genes signature that could serve as an promising independent factor for predicting clinical prognosis and immunotherapy responses in ccRCC patients.
Collapse
|
16
|
Wu J, Liu H, Wang H, Wang Y, Cheng Q, Zhao R, Gao H, Fang L, Zhu F, Xue B. iTRAQ-based quantitative proteomic analysis of the liver regeneration termination phase after partial hepatectomy in mice. J Proteomics 2022; 267:104688. [PMID: 35914716 DOI: 10.1016/j.jprot.2022.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/17/2023]
Abstract
Liver regeneration (LR) is an important biological process after liver injury. As the "brake" in the process of LR, the termination phase of LR not only suppresses the continuous increase in liver volume but also effectively promotes the recovery of liver function. However, the mechanisms underlying the termination phase of LR are still not clear. In our study, we used isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis to determine the protein expression profiles of livers in the termination phase of mouse LR after partial hepatectomy (PH). We found that the expression of 197 proteins increased gradually during LR; in addition, 187 proteins were upregulated and 264 proteins were downregulated specifically in the termination phase of LR. The GO analysis of the proteins revealed the upregulation of "cell-cell adhesion" and "translation" and the downregulation of the "oxidation-reduction process". The KEGG pathway analysis showed that "biosynthesis of antibiotics" and "ribosomes" were significantly upregulated, while "metabolic pathways" were significantly downregulated. These analyses indicated that the termination phase of LR mainly focuses on restoring cellular structure and function. Differentially expressed proteins such as SNX5 were also screened out from biological processes. SIGNIFICANCE: The key regulatory factors in the termination phase of LR were studied by iTRAQ-based proteomics to lay a foundation for further study of the molecular mechanism and biomarkers of the termination phase of LR. This study will guide the clinical perioperative management of patients after hepatectomy.
Collapse
Affiliation(s)
- Jing Wu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - He Liu
- General surgery Department, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Haiquan Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yuqi Wang
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Qi Cheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Ruochen Zhao
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Hongliang Gao
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| | - Feng Zhu
- General surgery Department, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
17
|
Li DY, Wen JH, Liang S, Tang JX. The Essential Role of Sorting Nexin 5 in Virus-Induced Autophagy. Front Immunol 2022; 13:947384. [PMID: 35898490 PMCID: PMC9309476 DOI: 10.3389/fimmu.2022.947384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
|