1
|
Nunes LGA, Rosario FJ, Urschitz J. In vivo placental gene modulation via sonoporation. Placenta 2025; 166:109-116. [PMID: 39477696 PMCID: PMC12014858 DOI: 10.1016/j.placenta.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/25/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Placental dysregulation frequently results in pregnancy complications that impact fetal well-being and potentially predispose the infant to diseases later in life. Thus, efforts to understand the molecular mechanisms underlying placental disorders are crucial to aid the development of effective treatments to restore placental function. Currently, the most common methods used for trophoblast-specific gene modulation in the laboratory are transgenic animals and lentiviral trophectoderm transduction. The generation of transgenic animal lines is costly and requires a considerable amount of time to generate and maintain, while the integration preference of lentiviruses, actively transcribed genes, may result in genotoxicity. Therefore, there is much interest in the development of non-viral in vivo transfection techniques for use in both research and clinical settings. Herein, we describe a non-viral, minimally invasive method for in vivo placental gene modulation through sonoporation, an ultrasound-mediated transfection technique wherein the application of ultrasound on target tissues is used to direct the uptake of DNA vectors. In this method, plasmids are bound to lipid microbubbles, which are then injected into the maternal bloodstream and ultimately delivered to the placenta when subjected to low-frequency ultrasound. Syncytiotrophoblasts are directly exposed to maternal blood and, therefore highly accessible to therapeutic agents in the maternal circulation. This technique can be used to modulate gene expression and, subsequently, the function of the placenta, circumventing the requirement to generate transgenic animals. Sonoporation also offers a safer alternative to existing viral techniques, making it not only an advantageous research tool but also a potentially adaptable technique in clinical settings.
Collapse
Affiliation(s)
- Lance G A Nunes
- Institute for Biogenesis Research, University of Hawai'i, Honolulu, HI, United States
| | - Fredrick J Rosario
- Department of Obstetrics and Gynecology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| | - Johann Urschitz
- Institute for Biogenesis Research, University of Hawai'i, Honolulu, HI, United States.
| |
Collapse
|
2
|
Yuan H, Xiao P, Wang F, Guo C, Pan S, Jiang M, Hou S, Sun Y, Wang Y, Zhang Y, Yin T, He H, Gou J, Tang X. Linoleic acid co-administration promotes oral delivery of exenatide-loaded butyrate-decorated nanocapsules. J Control Release 2025; 382:113744. [PMID: 40246242 DOI: 10.1016/j.jconrel.2025.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Epithelial cell entrance and trans-epithelial transport are two essential processes that directly affect the efficacy of oral delivery of nanocarriers. Herein, a hydroxyethyl starch-based nanocapsule dual decorated with butyrate and octadecylamine (ODA) was first constructed to enhance transporter-mediated endocytosis and trans-epithelial transport, while reducing exenatide (EXT) loss during absorption. The epithelial barrier was then treated with linoleic acid (LA), which functioned as a cell membrane fluidity regulator. This treatment further improved oral delivery efficiency by lowering the energy cost of endocytosis through fluidizing of the cell membrane and increasing monocarboxylate transporter 1 (MCT1) expression on cell surfaces. The findings revealed that LA upregulated MCT1 expression by 3.26-fold, increased the cellular uptake of nanocapsules co-modified with butyrate and ODA by 4.52-fold, decreased ATP consumption for uptake in LA-pretreated Caco-2 cells to only 18.64 % of that in untreated Caco-2 cells, and increased their transcellular transport by 1.72-fold in a Caco-2/HT29-MTX-E12 co-culture monolayer. Therefore, the oral administration of EXT-loaded Bu-PEG-ODA NCs with LA significantly enhanced the oral bioavailability of EXT (Bu-PEG-ODA NCs group: 10.10 %, Bu-PEG-ODA NCs + LA group: 14.84 %), leading to a significant hypoglycemic effect with a 16.06 % relative pharmacological availability. This dosing strategy exhibited efficacious blood glucose control and pancreatic function recovery capabilities in the type 2 diabetes rat model. This study presents a unique co-optimization strategy based on two key processes in the oral absorption of nanocarriers, yielding significant advancements in the oral bioavailability of nanomedicines and improving their therapeutic efficacy.
Collapse
Affiliation(s)
- Haoyang Yuan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Peifu Xiao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Fan Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Chen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Shu Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Mai Jiang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Shicheng Hou
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yunong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yibo Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
3
|
Khaparde A, Mathias GP, Poornachandra B, Thirumalesh MB, Shetty R, Ghosh A. Gene therapy for retinal diseases: From genetics to treatment. Indian J Ophthalmol 2024; 72:1091-1101. [PMID: 39078952 PMCID: PMC11451791 DOI: 10.4103/ijo.ijo_2902_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 04/19/2024] [Indexed: 10/06/2024] Open
Abstract
The gene therapy approach for retinal disorders has been considered largely over the last decade owing to the favorable outcomes of the US Food and Drug Administration-approved commercial gene therapy, Luxturna. Technological advances in recent years, such as next-generation sequencing, research in molecular pathogenesis of retinal disorders, and precise correlations with their clinical phenotypes, have contributed to the progress of gene therapies for various diseases worldwide, and more recently in India as well. Thus, considerable research is being conducted for the right choice of vectors, transgene engineering, and accessible and cost-effective large-scale vector production. Many retinal disease-specific clinical trials are presently being conducted, thereby necessitating the collation of such information as a ready reference for the scientific and clinical community. In this article, we present an overview of existing gene therapy research, which is derived from an extensive search across PubMed, Google Scholar, and clinicaltrials.gov sources. This contributes to prime the understanding of basic aspects of this cutting-edge technology and information regarding current clinical trials across many different conditions. This information will provide a comprehensive evaluation of therapies in existing use/research for personalized treatment approaches in retinal disorders.
Collapse
Affiliation(s)
- Ashish Khaparde
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
| | - Grace P Mathias
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - B Poornachandra
- Department of Vitreo Retina Services, Narayana Nethralaya, Manipal, Karnataka, India
| | - M B Thirumalesh
- Department of Vitreo Retina Services, Narayana Nethralaya, Manipal, Karnataka, India
| | - Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bengaluru, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Manipal, Karnataka, India
| |
Collapse
|
4
|
Pierce GF, Fong S, Long BR, Kaczmarek R. Deciphering conundrums of adeno-associated virus liver-directed gene therapy: focus on hemophilia. J Thromb Haemost 2024; 22:1263-1289. [PMID: 38103734 DOI: 10.1016/j.jtha.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/07/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Adeno-associated virus gene therapy has been the subject of intensive investigation for monogenic disease gene addition therapy for more than 25 years, yet few therapies have been approved by regulatory agencies. Most have not progressed beyond phase 1/2 due to toxicity, lack of efficacy, or both. The liver is a natural target for adeno-associated virus since most serotypes have a high degree of tropism for hepatocytes due to cell surface receptors for the virus and the unique liver sinusoidal geometry facilitating high volumes of blood contact with hepatocyte cell surfaces. Recessive monogenic diseases such as hemophilia represent promising targets since the defective proteins are often synthesized in the liver and secreted into the circulation, making them easy to measure, and many do not require precise regulation. Yet, despite initiation of many disease-specific clinical trials, therapeutic windows are often nonexistent, resulting in excess toxicity and insufficient efficacy. Iterative progress built on these attempts is best illustrated by hemophilia, with the first regulatory approvals for factor IX and factor VIII gene therapies eventually achieved 25 years after the first gene therapy studies in humans. Although successful gene transfer may result in the production of sufficient transgenic protein to modify the disease, many emerging questions on durability, predictability, reliability, and variability of response have not been answered. The underlying biology accounting for these heterogeneous responses and the interplay between host and virus is the subject of intense investigation and the subject of this review.
Collapse
Affiliation(s)
- Glenn F Pierce
- World Federation of Hemophilia, Montreal, Quebec, Canada.
| | - Sylvia Fong
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Brian R Long
- BioMarin Pharmaceutical Inc, Research and Early Development, Novato, California, USA
| | - Radoslaw Kaczmarek
- Department of Pediatrics, Indiana University School of Medicine, Wells Center for Pediatric Research, Indiana, USA; Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw, Poland
| |
Collapse
|
5
|
Zangi AR, Amiri A, Pazooki P, Soltanmohammadi F, Hamishehkar H, Javadzadeh Y. Non-viral and viral delivery systems for hemophilia A therapy: recent development and prospects. Ann Hematol 2024; 103:1493-1511. [PMID: 37951852 DOI: 10.1007/s00277-023-05459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/17/2023] [Indexed: 11/14/2023]
Abstract
Recent advancements have focused on enhancing factor VIII half-life and refining its delivery methods, despite the well-established knowledge that factor VIII deficiency is the main clotting protein lacking in hemophilia. Consequently, both viral and non-viral delivery systems play a crucial role in enhancing the quality of life for hemophilia patients. The utilization of viral vectors and the manipulation of non-viral vectors through targeted delivery are significant advancements in the field of cellular and molecular therapies for hemophilia. These developments contribute to the progression of treatment strategies and hold great promise for improving the overall well-being of individuals with hemophilia. This review study comprehensively explores the application of viral and non-viral vectors in cellular (specifically T cell) and molecular therapy approaches, such as RNA, monoclonal antibody (mAb), and CRISPR therapeutics, with the aim of addressing the challenges in hemophilia treatment. By examining these innovative strategies, the study aims to shed light on potential solutions to enhance the efficacy and outcomes of hemophilia therapy.
Collapse
Affiliation(s)
- Ali Rajabi Zangi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Ala Amiri
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Pouya Pazooki
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Soltanmohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, 5166-15731, Iran
| | - Yousef Javadzadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166-15731, Iran.
| |
Collapse
|
6
|
Lawton SM, Manson MA, Fan MN, Chao TY, Chen CY, Kim P, Campbell C, Cai X, Vander Kooi A, Miao CH. Ultrasound-mediated gene delivery specifically targets liver sinusoidal endothelial cells for sustained FVIII expression in hemophilia A mice. Mol Ther 2024; 32:969-981. [PMID: 38341614 PMCID: PMC11163219 DOI: 10.1016/j.ymthe.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/30/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The ability to target the native production site of factor VIII (FVIII)-liver sinusoidal endothelial cells (LSECs)-can improve the outcome of hemophilia A (HA) gene therapy. By testing a matrix of ultrasound-mediated gene delivery (UMGD) parameters for delivering a GFP plasmid into the livers of HA mice, we were able to define specific conditions for targeted gene delivery to different cell types in the liver. Subsequently, two conditions were selected for experiments to treat HA mice via UMGD of an endothelial-specific human FVIII plasmid: low energy (LE; 50 W/cm2, 150 μs pulse duration) to predominantly target endothelial cells or high energy (HE; 110 W/cm2, 150 μs pulse duration) to predominantly target hepatocytes. Both groups of UMGD-treated mice achieved persistent FVIII activity levels of ∼10% over 84 days post treatment; however, half of the HE-treated mice developed low-titer inhibitors while none of the LE mice did. Plasma transaminase levels and histological liver examinations revealed minimal transient liver damage that was lower in the LE group than in the HE group. These results indicate that UMGD can safely target LSECs with a lower-energy condition to achieve persistent FVIII gene expression, demonstrating that this novel technology is highly promising for therapeutic correction of HA.
Collapse
Affiliation(s)
| | | | - Meng-Ni Fan
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Ting-Yen Chao
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Chun-Yu Chen
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Peter Kim
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Xiaohe Cai
- Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Carol H Miao
- Seattle Children's Research Institute, Seattle, WA, USA; University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Anderson CD, Arthur JA, Zhang Y, Bharucha N, Karakikes I, Shohet RV. Non-viral in vivo cytidine base editing in hepatocytes using focused ultrasound targeted microbubbles. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:733-737. [PMID: 37662969 PMCID: PMC10468349 DOI: 10.1016/j.omtn.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
CRISPR-Cas9-based genome editing technologies, such as base editing, have the potential for clinical translation, but delivering nucleic acids into target cells in vivo is a major obstacle. Viral vectors are widely used but come with safety concerns, while current non-viral methods are limited by low transfection efficiency. Here we describe a new method to deliver CRISPR-Cas9 base editing vectors to the mouse liver using focused ultrasound targeted microbubble destruction (FUTMD). We demonstrate, using the example of cytosine base editing of the Pde3b gene, that FUTMD-mediated delivery of cytosine base editing vectors can introduce stop codons (up to ∼2.5% on-target editing) in mouse liver cells in vivo. However, base editing specificity is less than one might hope with these DNA constructs. Our findings suggest that FUTMD-based gene editing tools can be rapidly and transiently deployed to specific organs and sites, providing a powerful platform for the development of non-viral genome editing therapies. Non-viral delivery also reveals greater off-target base exchange in vivo than in vitro.
Collapse
Affiliation(s)
- Cynthia D. Anderson
- Department of Medicine, John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA
| | - Jennifer Ataam Arthur
- Department of Cardiothoracic Surgery and Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 943054, USA
| | - Yuan Zhang
- Department of Cardiothoracic Surgery and Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 943054, USA
| | - Nike Bharucha
- Department of Cardiothoracic Surgery and Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 943054, USA
| | - Ioannis Karakikes
- Department of Cardiothoracic Surgery and Cardiovascular Institute, Stanford University, 240 Pasteur Drive, Palo Alto, CA 943054, USA
| | - Ralph V. Shohet
- Department of Medicine, John A. Burns School of Medicine, 651 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
8
|
Wen Z, Liu C, Teng Z, Jin Q, Liao Z, Zhu X, Huo S. Ultrasound meets the cell membrane: for enhanced endocytosis and drug delivery. NANOSCALE 2023; 15:13532-13545. [PMID: 37548587 DOI: 10.1039/d3nr02562d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Endocytosis plays a crucial role in drug delivery for precision therapy. As a non-invasive and spatiotemporal-controllable stimulus, ultrasound (US) has been utilized for improving drug delivery efficiency due to its ability to enhance cell membrane permeability. When US meets the cell membrane, the well-known cavitation effect generated by US can cause various biophysical effects, facilitating the delivery of various cargoes, especially nanocarriers. The comprehension of recent progress in the biophysical mechanism governing the interaction between ultrasound and cell membranes holds significant implications for the broader scientific community, particularly in drug delivery and nanomedicine. This review will summarize the latest research results on the biological effects and mechanisms of US-enhanced cellular endocytosis. Moreover, the latest achievements in US-related biomedical applications will be discussed. Finally, challenges and opportunities of US-enhanced endocytosis for biomedical applications will be provided.
Collapse
Affiliation(s)
- Zihao Wen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zihao Teng
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Quanyi Jin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Zhihuan Liao
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Xuan Zhu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Shuaidong Huo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
9
|
Kamimura K, Kanefuji T, Suda T, Yokoo T, Zhang G, Aoyagi Y, Liu D. Liver lobe-specific hydrodynamic gene delivery to baboons: A preclinical trial for hemophilia gene therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:903-913. [PMID: 37346981 PMCID: PMC10280096 DOI: 10.1016/j.omtn.2023.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023]
Abstract
Hydrodynamics-based gene transfer has been successfully employed for in vivo gene delivery to the liver of small animals by tail vein injection and of large animals using a computer-assisted and image-guided protocol. In an effort to develop a hydrodynamic gene delivery procedure clinically applicable for gene therapy, we have evaluated the safety and effectiveness of a lobe-specific hydrodynamic delivery procedure for hepatic gene delivery in baboons. Reporter plasmid was used to assess the gene delivery efficiency of the lobe-specific hydrodynamic gene delivery, and plasmid-carrying human factor IX gene was used to examine the pattern of long-term gene expression. The results demonstrated liver lobe-specific gene delivery, therapeutic levels of human factor IX gene expression lasting for >100 days, and the efficacy of repeated hydrodynamic gene delivery into the same liver lobes. Other than a transient increase in blood concentration of liver enzymes right after the injection, no significant adverse events were observed in animals during the study period. The results obtained from this first non-human primate study support the clinical applicability of the procedure for lobe-specific hydrodynamic gene delivery to liver.
Collapse
Affiliation(s)
- Kenya Kamimura
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
- Department of General Medicine, Niigata University School of Medicine, Niigata, Niigata 951-8510, Japan
| | - Tsutomu Kanefuji
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Takeshi Suda
- Department of Gastroenterology and Hepatology, Uonuma Institute of Community Medicine, Niigata University Medical and Dental Hospital, Minami Uonuma, Niigata 949-7302, Japan
| | - Takeshi Yokoo
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Guisheng Zhang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| | - Yutaka Aoyagi
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Niigata 951-8510, Japan
| | - Dexi Liu
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Abstract
Gene therapy is a powerful biological tool that is reshaping therapeutic landscapes for several diseases. Researchers are using both non-viral and viral-based gene therapy methods with success in the lab and the clinic. In the cancer biology field, gene therapies are expanding treatment options and the possibility of favorable outcomes for patients. While cellular immunotherapies and oncolytic virotherapies have paved the way in cancer treatments based on genetic engineering, recombinant adeno-associated virus (rAAV), a viral-based module, is also emerging as a potential cancer therapeutic through its malleability, specificity, and broad application to common as well as rare tumor types, tumor microenvironments, and metastatic disease. A wide range of AAV serotypes, promoters, and transgenes have been successful at reducing tumor growth and burden in preclinical studies, suggesting more groundbreaking advances using rAAVs in cancer are on the horizon.
Collapse
Affiliation(s)
- Patrick L. Mulcrone
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University, Indianapolis, IN 46202, USA
| | - Roland W. Herzog
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| | - Weidong Xiao
- Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Transcutaneous ultrasound mediated gene delivery into canine livers achieves therapeutic levels of FVIII expression. Blood Adv 2022; 6:3557-3568. [PMID: 35427415 PMCID: PMC9631573 DOI: 10.1182/bloodadvances.2021006016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/03/2022] [Indexed: 11/24/2022] Open
Abstract
Nonviral UMGD can achieve therapeutic levels of FVIII gene expression in a large animal model. UMGD targeting liver is safe without evidence of any lasting damage. A safe, effective, and inclusive gene therapy will significantly benefit a large population of patients with hemophilia. We used a minimally invasive transcutaneous ultrasound-mediated gene delivery (UMGD) strategy combined with microbubbles (MBs) to enhance gene transfer into 4 canine livers. A mixture of high-expressing, liver-specific human factor VIII (hFVIII) plasmid and MBs was injected into the hepatic vein via balloon catheter under fluoroscopy guidance with simultaneous transcutaneous UMGD treatment targeting a specific liver lobe. Therapeutic levels of hFVIII expression were achieved in all 4 dogs, and hFVIII levels were maintained at a detectable level in 3 dogs throughout the 60-day experimental period. Plasmid copy numbers correlated with hFVIII antigen levels, and plasmid-derived messenger RNA (mRNA) was detected in treated livers. Liver transaminase levels and histology analysis indicated minimal liver damage and a rapid recovery after treatment. These results indicate that liver-targeted transcutaneous UMGD is promising as a clinically feasible therapy for hemophilia A and other diseases.
Collapse
|