1
|
Zheng Q, Gao Y, Han M, Wang Y, Liu H, Cao G, Wang T, Zhang H, Li Z. Inhibiting Immune Crosstalk by Modulation of the Intracellular Function and Extracellular Environment of Diseased Microglia to Boost Parkinson's Disease Therapy. ACS NANO 2025; 19:19177-19197. [PMID: 40366277 DOI: 10.1021/acsnano.5c01068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Microglia usually phagocytose excessive α-synuclein (α-syn) aggregates and turn into diseased analogues in Parkinson's disease (PD), which can present α-syn-associated antigens, secrete cytokines and chemokines to recruit peripheral immune cells, and form strong immune crosstalk to aggravate PD progression. Hence, targeting the diseased microglia and inhibiting their immune crosstalk emerge as promising strategies for PD therapy. Herein, we reprogram the diseased microglia to efficiently degrade α-syn aggregates and neutralize neuroinflammatory factors to reduce the detrimental immune crosstalk and enhance therapeutic efficacy using rationally designed core-shell IHM nanoparticles, which consist of a ligustilide-functionalized Cu2-xSe nanoparticle (CSL NP) core and a hybrid cell membrane shell. The CSL NPs can redress the diseased microglia to reduce over-presented antigens by dual roles of reducing microglial RAGE-mediated phagocytosis of α-syn aggregates and increasing the microglial mature cathepsin D (m-CTSD) to efficiently degrade α-syn aggregates. The hybrid cell membrane shell is formed by a MES23.5 cell membrane (MCM) and IFN-γ-treated RAW264.7 cell membrane (IRCM). It can not only target diseased microglia by the specific interactions between VCAM-1 on the MCM and α4β1 integrin on the microglial membrane but also absorb and reduce the secretion of neuroinflammatory factors by diseased microglia through upregulated neuroinflammatory cytokine receptors such as IL1R1, TNFR1, and CCR2 on the surface of IRCM. The biomimetic core-shell IHM nanoparticles can be effectively delivered into the brain via meningeal lymphatic vessels to modulate the diseased microglia for boosting PD therapy. Our study demonstrates the promise of targeting diseased microglia to reduce their immune crosstalk in the treatment of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Qing Zheng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yifan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Mengxiao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yusong Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hanghang Liu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
- Hubei Key Laboratory of Natural Products Research and Development and College of Biological and Pharmaceutical Science, China Three Gorges University, Yichang 443002, China
| | - Guozhi Cao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Tingting Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Yang S, Xue J, Li Z, Zhang S, Zhang Z, Huang Z, Yung KKL, Lai KWC. Deep Learning-Based Ion Channel Kinetics Analysis for Automated Patch Clamp Recording. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404166. [PMID: 39737527 PMCID: PMC12083860 DOI: 10.1002/advs.202404166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Indexed: 01/01/2025]
Abstract
The patch clamp technique is a fundamental tool for investigating ion channel dynamics and electrophysiological properties. This study proposes the first artificial intelligence framework for characterizing multiple ion channel kinetics of whole-cell recordings. The framework integrates machine learning for anomaly detection and deep learning for multi-class classification. The anomaly detection excludes recordings that are incompatible with ion channel behavior. The multi-class classification combined a 1D convolutional neural network, bidirectional long short-term memory, and an attention mechanism to capture the spatiotemporal patterns of the recordings. The framework achieves an accuracy of 97.58% in classifying 124 test datasets into six categories based on ion channel kinetics. The utility of the novel framework is demonstrated in two applications: Alzheimer's disease drug screening and nanomatrix-induced neuronal differentiation. In drug screening, the framework illustrates the inhibitory effects of memantine on endogenous channels, and antagonistic interactions among potassium, magnesium, and calcium ion channels. For nanomatrix-induced differentiation, the classifier indicates the effects of differentiation conditions on sodium and potassium channels associated with action potentials, validating the functional properties of differentiated neurons for Parkinson's disease treatment. The proposed framework is promising for enhancing the efficiency and accuracy of ion channel kinetics analysis in electrophysiological research.
Collapse
Affiliation(s)
- Shengjie Yang
- Department of Biomedical EngineeringCity University of Hong KongTat Chee Avenue, Kowloon TongKowloonHong Kong SARChina
| | - Jiaqi Xue
- Department of Biomedical EngineeringCity University of Hong KongTat Chee Avenue, Kowloon TongKowloonHong Kong SARChina
| | - Ziqi Li
- Department of Biomedical EngineeringCity University of Hong KongTat Chee Avenue, Kowloon TongKowloonHong Kong SARChina
| | - Shiqing Zhang
- JNU‐HKUST Joint Laboratory for Neuroscience and Innovative Drug ResearchCollege of PharmacyJinan University601 West Huangpu Road, TianheGuangzhou510632China
| | - Zhang Zhang
- School of Public HealthGuangzhou Medical UniversityXinzao, PanyuGuangzhou511436China
| | - Zhifeng Huang
- Department of ChemistryChinese University of Hong KongShatinNew TerritoriesHong Kong SARChina
| | - Ken Kin Lam Yung
- Department of Science and Environmental StudiesEducation University of Hong Kong10 Lo Ping RoadTai PoNew TerritoriesHong Kong SARChina
| | - King Wai Chiu Lai
- Department of Biomedical EngineeringCity University of Hong KongTat Chee Avenue, Kowloon TongKowloonHong Kong SARChina
| |
Collapse
|
3
|
Jiang L, Zhang X, Wang S, Zhang J, Chen J, Lu J, Yao L, Jin W, Li N, Li Q. Functional Monomers Equipped Microgel System for Managing Parkinson's Disease by Intervening Chemokine Axis-mediated Nerve Cell Communications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410070. [PMID: 39721010 PMCID: PMC11831437 DOI: 10.1002/advs.202410070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Indexed: 12/28/2024]
Abstract
The complex pathology of Parkinson's disease (PD) requires comprehensive understanding and multi-pronged interventions for communication between nerve cells. Despite new developments in nanotechnology in the treatment of PD, in-depth exploration of their biological effects, in particular, the specific mechanisms of inflammation inhibition are lacking. Herein, using the stable cascade catalysis channel formed by polydopamine (PDA), imidazole groups, and Cu ions, a microgel system comprising functional monomers [superoxide dismutase (SOD) with double bonds, PDA, 2-methacryloyloxy ethyl phosphorylcholine (MPC), and Cu ions] is proposed for managing PD. The microgel can be efficiently delivered to the brain aided by MPC, after which a multi-level regulatory strategy targeting neurons and microglia can be initiated. The catalytic activity cascade elicited by SOD and Cu ions can regulate the anti-inflammatory phenotypic transformation of microglia by relieving oxidative stress. Meanwhile, the dopamine (DA) released from PDA can facilitate DA storage and neurogenesis, inhibiting CX3CL1 release and the CX3CR1 receptor on microglia and further regulating the CX3CL1/CX3CR1-NF-κB-NLRP3 signaling pathway in microglia to inhibit neuroinflammation. Therefore, the proposed microgel delivery system with functional monomers represents a promising therapeutic strategy for managing neuroinflammation and promoting neurogenesis in PD by intervening chemokine axis-mediated communication between neurons and microglia.
Collapse
Affiliation(s)
- Lin Jiang
- College of Life SciencesChina Jiliang UniversityHangzhou310018China
| | - Xu Zhang
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450052China
| | - Shun Wang
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450052China
| | - Jiangkuan Zhang
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450052China
| | - Junyang Chen
- School of Life SciencesZhengzhou UniversityZhengzhou450001China
| | - Jiachuan Lu
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450052China
| | - Liting Yao
- College of Life SciencesChina Jiliang UniversityHangzhou310018China
| | - Weiwei Jin
- College of Life SciencesChina Jiliang UniversityHangzhou310018China
| | - Nan Li
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450052China
| | - Qing Li
- Department of NeurologyThe Second Affiliated Hospital of Zhengzhou UniversityZhengzhou UniversityZhengzhou450052China
| |
Collapse
|
4
|
Pham KY, Khanal S, Bohara G, Rimal N, Song SH, Nguyen TTK, Hong IS, Cho J, Kang JS, Lee S, Choi DY, Yook S. HDAC6 inhibitor-loaded brain-targeted nanocarrier-mediated neuroprotection in methamphetamine-driven Parkinson's disease. Redox Biol 2025; 79:103457. [PMID: 39700694 PMCID: PMC11722933 DOI: 10.1016/j.redox.2024.103457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024] Open
Abstract
The dynamic equilibrium between acetylation and deacetylation is vital for cellular homeostasis. Parkinson's disease (PD), a neurodegenerative disorder marked by α-synuclein (α-syn) accumulation and dopaminergic neuron loss in the substantia nigra, is associated with a disruption of this balance. Therefore, correcting this imbalance with histone deacetylase (HDAC) inhibitors represents a promising treatment strategy for PD. CAY10603 (CAY) is a potent and selective HDAC6 inhibitor. However, because of its poor water solubility and short biological half-life, it faces clinical limitations. Herein, we engineered lactoferrin-decorated CAY-loaded poly(lactic-co-glycolic acid) nanoparticles (denoted as PLGA@CAY@Lf NPs) to effectively counter methamphetamine (Meth)-induced PD. PLGA@CAY@Lf NPs showed enhanced blood-brain barrier crossing and significant brain accumulation. Notably, CAY released from PLGA@CAY@Lf NPs restored the disrupted acetylation balance in PD, resulting in neuroprotection by reversing mitochondrial dysfunction, suppressing reactive oxygen species, and inhibiting α-syn accumulation. Additionally, PLGA@CAY@Lf NPs treatment normalized dopamine and tyrosine hydroxylase levels, reduced neuroinflammation, and improved behavioral impairments. These findings underscore the potential of PLGA@CAY@Lf NPs in treating Meth-induced PD and suggest that an innovative HDAC6-inhibitor-based strategy can be used to treat PD.
Collapse
Affiliation(s)
- Khang-Yen Pham
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Shristi Khanal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Ganesh Bohara
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Nikesh Rimal
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea
| | - Sang-Hoon Song
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Thoa Thi Kim Nguyen
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - In-Sun Hong
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, 21565, Republic of Korea
| | - Jinkyung Cho
- College of Sport Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Dong-Young Choi
- College of Pharmacy, Yeungnam University, Gyeongbuk, 38541, Republic of Korea.
| | - Simmyung Yook
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Sharma R, Kour A, Dewangan HK. Enhancements in Parkinson's Disease Management: Leveraging Levodopa Optimization and Surgical Breakthroughs. Curr Drug Targets 2025; 26:17-32. [PMID: 39350551 DOI: 10.2174/0113894501319817240919103802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 02/19/2025]
Abstract
Parkinson's disease (PD) is a complex neurological condition caused due to inheritance, environment, and behavior among various other parameters. The onset, diagnosis, course of therapy, and future of PD are thoroughly examined in this comprehensive review. This review also presents insights into pathogenic mechanisms of reactive microgliosis, Lewy bodies, and their functions in the evolution of PD. It addresses interaction complexity with genetic mutations, especially in genes such as UCH-L1, parkin, and α-synuclein, which illuminates changes in the manner dopaminergic cells handle proteins and use proteases. This raises the improved outcomes and life quality for those with PD. Potential treatments for severe PD include new surgical methods like Deep Brain Stimulation (DBS). Further, exploration of non-motor manifestations, such as cognitive impairment, autonomic dysfunction, and others, is covered in this review article. These symptoms have a significant impact on patients' quality of life. Furthermore, one of the emerging therapeutic routes that are being investigated is neuroprotective medicines that aim to prevent the aggregation of α-synuclein and interventions that modify the progression of diseases. The review concludes by stressing the dynamic nature of PD research and the potential game-changing impact of precision medicines on current approaches to therapy.
Collapse
Affiliation(s)
- Ritika Sharma
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Avneet Kour
- Chitkara College of Pharmacy, Chitkara University, Punjab-140401, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University NH-95, Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
6
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
7
|
Liu Y, Liu Y, Shi P, Hu X, Fan X, Wu Y, Pan J, Bai Q, Li Q. Single-atom nanozyme liposome-integrated microneedles for in situ drug delivery and anti-inflammatory therapy in Parkinson's disease. J Nanobiotechnology 2024; 22:643. [PMID: 39427214 PMCID: PMC11490154 DOI: 10.1186/s12951-024-02924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
Treatment for Parkinson's disease (PD) has been impeded by inefficient treatment results and multiple membrane barriers during drug delivery. This study reports the design, synthesis, and application of microneedles (MNs) loaded with mitochondrion-targeted liposome encapsulated iron (Fe)-isolated single-atom nanozymes (Mito@Fe-ISAzyme, MFeI), called MFeI MNs, for in situ drug delivery into the brain parenchyma and efficient enrichment of drugs in lesion sites. In in vitro experiments, MFeI can scavenge reactive oxygen species (ROS) and protect the neurons via mitochondrial targeting, guaranteeing the subsequent treatment of PD. Using PD mouse models, we compared the intravenous injection of MFeI with the brain in situ administration of MFeI MNs (in situ MFeI MNs). Results showed that in situ MFeI MNs significantly improved the deep penetration of the drug into brain parenchyma, especially in the vital pathological sites such as the substantia nigra pars compacta and striatum. Importantly, ROS elimination and neuroinflammatory remission in the lesion site were observed, thereby efficiently alleviating the behavioral disorders and pathological symptoms of PD mice. Therefore, the MNs system for in situ single-atom nanozyme liposome delivery exhibits great potential in PD treatment.
Collapse
Affiliation(s)
- Ying Liu
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Henan, 450000, China
- Henan Key Laboratory of Chronic Disease Management, Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan, 450000, China
| | - Ye Liu
- Department of Anaesthesiology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, 100026, China
| | - Peimiao Shi
- The Affiliated Tengzhou Central People's Hospital of Xuzhou Medical University, Shandong, 277500, China
| | - Xiaopeng Hu
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Henan, 450000, China
| | - Xiaowan Fan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Henan, 450000, China
| | - Yalong Wu
- Henan Key Laboratory of Chronic Disease Management, Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan, 450000, China
| | - Jiangpeng Pan
- Henan Key Laboratory of Chronic Disease Management, Henan Provincial People's Hospital, Central China Fuwai Hospital of Zhengzhou University, Henan, 450000, China
| | - Qian Bai
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Henan, 450000, China
| | - Qing Li
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Henan, 450000, China.
| |
Collapse
|
8
|
Kumar J, Karim A, Sweety UH, Sarma H, Nurunnabi M, Narayan M. Bioinspired Approaches for Central Nervous System Targeted Gene Delivery. ACS APPLIED BIO MATERIALS 2024; 7:4975-4997. [PMID: 38100377 DOI: 10.1021/acsabm.3c00842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Disorders of the central nervous system (CNS) which include a wide range of neurodegenerative and neurological conditions have become a serious global issue. The presence of CNS barriers poses a significant challenge to the progress of designing effective therapeutic delivery systems, limiting the effectiveness of drugs, genes, and other therapeutic agents. Natural nanocarriers present in biological systems have inspired researchers to design unique delivery systems through biomimicry. As natural resource derived delivery systems are more biocompatible, current research has been focused on the development of delivery systems inspired by bacteria, viruses, fungi, and mammalian cells. Despite their structural potential and extensive physiological function, making them an excellent choice for biomaterial engineering, the delivery of nucleic acids remains challenging due to their instability in biological systems. Similarly, the efficient delivery of genetic material within the tissues of interest remains a hurdle due to a lack of selectivity and targeting ability. Considering that gene therapies are the holy grail for intervention in diseases, including neurodegenerative disorders such as Alzheimer's disease, Parkinson's Disease, and Huntington's disease, this review centers around recent advances in bioinspired approaches to gene delivery for the prevention of CNS disorders.
Collapse
Affiliation(s)
- Jyotish Kumar
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Afroz Karim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Ummy Habiba Sweety
- Environmental Science and Engineering, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, 783370, Kokrajhar (BTR), Assam, India
| | - Md Nurunnabi
- The Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso (UTEP), El Paso, Texas 79968, United States
| |
Collapse
|
9
|
Castellani S, Mallamaci R, De Giglio E, Caponio A, Guerra L, Fracchiolla G, Trapani G, Kristan K, Cardone RA, Passantino G, Zizzo N, Franzino G, Larobina D, Trapani A, Conese M. Slightly viscous dispersions of mucoadhesive polymers as vehicles for nasal administration of dopamine and grape seed extract-loaded solid lipid nanoparticles. Int J Pharm 2024; 659:124255. [PMID: 38782151 DOI: 10.1016/j.ijpharm.2024.124255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
With the aim to find an alternative vehicle to the most used thermosensitive hydrogels for efficient nanotechnology-based nose-to-brain delivery approach for Parkinson's disease (PD) treatment, in this work we evaluated the Dopamine (DA) and the antioxidant grape seed-derived pro-anthocyanidins (Grape Seed Extract, GSE) co-loaded solid lipid nanoparticles (SLNs) put in slight viscous dispersions (SVDs). These SVDs were prepared by dispersion in water at low concentrations of mucoadhesive polymers to which SLN pellets were added. For the purpose, we investigated two polymeric blends, namely Poloxamer/Carbopol (PF-127/Carb) and oxidized alginate/Hydroxypropylmethyl cellulose (AlgOX/HPMC). Rheological studies showed that the two fluids possess Newtonian behaviour with a viscosity slightly higher that water. The pH values of the SVDs were mainly within the normal range of nasal fluid as well as almost no osmotic effect was associated to both SVDs. All the SVDs were capable to provide DA permeation through nasal porcine mucosa. Moreover, it was found that PF-127/Carb blend possesses penetration enhancer capability better than the Alg OX/HPMC combination. Flow cytometry studies demonstrated the uptake of viscous liquids incorporating fluorescent SLNs by human nasal RPMI 2650 cell in time-dependent manner. In conclusion, the SVD formulations may be considered promising alternatives to thermosensitive hydrogels strategy. Moreover, in a broader perspective, such SVD formulations may be also hopeful for treating various neurological diseases beyond PD treatment.
Collapse
Affiliation(s)
- Stefano Castellani
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Rosanna Mallamaci
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Elvira De Giglio
- Department of Chemistry, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonello Caponio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Katja Kristan
- Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Rosa Angela Cardone
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Giuseppe Passantino
- Department of Veterinary Medicine, Pathological Anatomy, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Nicola Zizzo
- Department of Veterinary Medicine, Pathological Anatomy, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Giorgia Franzino
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri, Compositi e Biomateriali P. le Enrico Fermi, 1 80055 Naples, Italy
| | - Domenico Larobina
- Consiglio Nazionale delle Ricerche Istituto per i Polimeri, Compositi e Biomateriali P. le Enrico Fermi, 1 80055 Naples, Italy
| | - Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy.
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
10
|
Lin P, Zhang B, Yang H, Yang S, Xue P, Chen Y, Yu S, Zhang J, Zhang Y, Chen L, Fan C, Li F, Ling D. An artificial protein modulator reprogramming neuronal protein functions. Nat Commun 2024; 15:2039. [PMID: 38448420 PMCID: PMC10917760 DOI: 10.1038/s41467-024-46308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
Reversible protein phosphorylation, regulated by protein phosphatases, fine-tunes target protein function and plays a vital role in biological processes. Dysregulation of this process leads to aberrant post-translational modifications (PTMs) and contributes to disease development. Despite the widespread use of artificial catalysts as enzyme mimetics, their direct modulation of proteins remains largely unexplored. To address this gap and enable the reversal of aberrant PTMs for disease therapy, we present the development of artificial protein modulators (APROMs). Through atomic-level engineering of heterogeneous catalysts with asymmetric catalytic centers, these modulators bear structural similarities to protein phosphatases and exhibit remarkable ability to destabilize the bridging μ3-hydroxide. This activation of catalytic centers enables spontaneous hydrolysis of phospho-substrates, providing precise control over PTMs. Notably, APROMs, with protein phosphatase-like characteristics, catalytically reprogram the biological function of α-synuclein by directly hydrolyzing hyperphosphorylated α-synuclein. Consequently, synaptic function is reinforced in Parkinson's disease. Our findings offer a promising avenue for reprogramming protein function through de novo PTMs strategy.
Collapse
Affiliation(s)
- Peihua Lin
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China
| | - Hongli Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pengpeng Xue
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shiyi Yu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yixiao Zhang
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liwei Chen
- In-situ Center for Physical Sciences, School of Chemistry and Chemical Engineering, Shanghai Electrochemical Energy Device Research Center (SEED), Shanghai Jiao Tong University, Shanghai, 200240, China
- Future Battery Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201600, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, 310009, China.
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai, 200240, China.
- World Laureates Association (WLA) Laboratories, Shanghai, 201210, China.
| |
Collapse
|
11
|
Liu W, Ma C, Cao J, Zhou H, Guo T. Tet1 peptide and zinc (II)-adenine multifunctional module functionalized polycations as efficient siRNA carriers for Parkinson's disease. J Control Release 2024; 367:316-326. [PMID: 38253202 DOI: 10.1016/j.jconrel.2024.01.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
A bioreducible Zn (II)-adenine multifunctional module (BS) and Tet1 peptide were used to modify low-molecular-weight PEI3.5k (polyethyleneimine with molecular weight of 3.5 kDa)into a siRNA vector Zn-PB-T with high transfection efficiency in neurons. A GSH-responsive breakable disulfide spacer was introduced into BS to realize the controlled release of siRNA from the polyplexes in cytoplasm. Zn-PB showed >90% transfection rates in multiple cell lines (3 T3, HK-2, HepG2, 293 T, HeLa, PANC-1),and 1.8-folds higher EGFP knockdown rates than commercial Lipo2k in normal cell line 293 T and cancer cell line HepG2. And Zn-PB-T1 showed 4.7-4.9- and 8.0-8.1-folds higher transfection efficiency comparing to commercial Lipo2k and PEI25k (polyethyleneimine with molecular weight of 25 kDa) in PC12 cells respectively, 2.1-fold EGFP gene silencing efficiency (96.6% EGFP knockdown rates) superior to commercial Lipo2k in neurons. In Parkinson's model, Zn-PB-T1/SNCA-siRNA can effectively protect neurons against MPP+-induced cell death and apoptosis, increasing the cell survival rate to 84.6% and reducing the cell apoptosis rate to 10.8%. This work demonstrated the promising application prospects of the resulting efficient siRNA carriers in siRNA-mediated gene therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Weijie Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chunchao Ma
- Department of Neurology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.
| | - Junpeng Cao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao Zhou
- Department of Biochemistry and Molecular Biology, College of Life Science, Nankai University, Tianjin 300071, China
| | - Tianying Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Shi S, Ren H, Xie Y, Yu M, Chen Y, Yang L. Engineering advanced nanomedicines against central nervous system diseases. MATERIALS TODAY 2023; 69:355-392. [DOI: 10.1016/j.mattod.2023.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Xu W, Chen Y, Yang R, Fu Y, Zhuang W, Wang Y, Liu Y, Zhang H. "Reaction"-Like Shaping of Self-Delivery Supramolecular Nanodrugs in the Nanoprecipitation Process. ACS NANO 2023; 17:18227-18239. [PMID: 37668306 DOI: 10.1021/acsnano.3c05229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Nanoprecipitation, which is achieved through the diffusion and precipitation of drug molecules in blended solvent and antisolvent phases, is a classic route for constructing nanodrugs (NDs) and previously directed by diffusion-controlled theory. However, the diffusion-controlled mechanism is out of date in the recent preparation of self-delivery supramolecular NDs (SDSNDs), characterized by the construction of drug nanoparticles through supramolecular interactions in the absence of carriers and surfactants. Herein, a "reaction"-like complement, contributed from supramolecular interactions, is proposed for the preparation of naphthoquinone SDSNDs. Different from the diffusion-controlled process, the formation rate of SDSNDs via the "reaction"-like process is almost constant and highly dependent on the supramolecular interaction-determined Gibbs free energy of molecular binding. Thus, the formation rate and drug availability of SDSNDs are greatly improved by engineering the supramolecular interactions, which facilitates the preparation of SDSNDs with expected sizes, components, and therapeutic functions. As a deep understanding of supramolecular-interaction-involved nanoprecipitation, the current "reaction"-like protocol not only provides a theoretical supplement for classic nanoprecipitation but also highlights the potential of nanoprecipitation in shaping self-assembled, coassembled, and metal-ion-associated SDSNDs.
Collapse
Affiliation(s)
- Wenzhe Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yang Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ruixu Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yiying Fu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Wanxin Zhuang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yonggang Wang
- Department of Cardiovascular Centre, The First Hospital of Jilin University, Changchun 130021, P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Optical Functional Theranostics Joint Laboratory of Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130021, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
14
|
Xu H, Ding X, Li L, Li Q, Li Z, Lin H. Tri-element nanozyme PtCuSe as an ingenious cascade catalytic machine for the amelioration of Parkinson's disease-like symptoms. Front Bioeng Biotechnol 2023; 11:1208693. [PMID: 37324436 PMCID: PMC10266212 DOI: 10.3389/fbioe.2023.1208693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Parkinson's disease (PD), as the second most common neurodegenerative disease after Alzheimer's, has become intractable with the increasing aging global population. The exploration of nanomedicine has broadened the opportunities for developing novel neuroprotective therapies. In particular, polymetallic functional nanomaterials have been widely used in the biomedicine field in recent years, exhibiting flexible and diversified functions and controllable properties. In this study, a tri-element nanozyme (PtCuSe nanozyme) has been developed with desirable CAT- and SOD-like activities for the cascade scavenging of reactive oxygen species (ROS). In particular, the nanozyme is suitable for relieving nerve cell damage by removing reactive oxygen species in cells and mitigating the behavioral and pathological symptoms in animal models of Parkinson's disease. Therefore, this ingenious tri-element nanozyme may have potential in the treatment of Parkinson's disease and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hongdang Xu
- Department of Anesthesiology, Henan Provincial Peoples Hospital, Peoples Hospital of Henan University, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xin Ding
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lingrui Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qing Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiye Li
- The Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongqi Lin
- Department of Anesthesiology, Henan Provincial Peoples Hospital, Peoples Hospital of Henan University, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
15
|
Raghavan A, Radhakrishnan M, Soren K, Wadnerkar P, Kumar A, Chakravarty S, Ghosh S. Biological Evaluation of Graphene Quantum Dots and Nitrogen-Doped Graphene Quantum Dots as Neurotrophic Agents. ACS APPLIED BIO MATERIALS 2023. [PMID: 37167607 DOI: 10.1021/acsabm.3c00099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Over time, developments in nano-biomedical research have led to the creation of a number of systems to cure serious illnesses. Tandem use of nano-theragnostics such as diagnostic and therapeutic approaches tailored to the individual disease treatment is crucial for further development in the field of biomedical advancements. Graphene has garnered attention in the recent times as a potential nanomaterial for tissue engineering and regenerative medicines owing to its biocompatibility among the several other unique properties it possesses. The zero-dimensional graphene quantum dots (GQDs) and their nitrogen-doped variant, nitrogen-doped GQDs (N-GQDs), have good biocompatibility, and optical and physicochemical properties. GQDs have been extensively researched owing to several factors such as their size, surface charge, and interactions with other molecules found in biological media. This work briefly elucidates the potential of electroactive GQDs as well as N-GQDs as neurotrophic agents. In vitro investigations employing the N2A cell line were used to evaluate the effectiveness of GQDs and N-GQDs as neurotrophic agents, wherein basic investigations such as SRB assay and neurite outgrowth assay were performed. The results inferred from immunohistochemistry followed by confocal imaging studies as well as quantitative real-time PCR (qPCR) studies corroborated those obtained from neurite outgrowth assay. We have also conducted a preliminary investigation of the pattern of gene expression for neurotrophic and gliotrophic growth factors using ex vivo neuronal and mixed glial cultures taken from the brains of postnatal day 2 mice pups. Overall, the studies indicated that GQDs and N-GQDs hold prospect as a framework for further development of neuroactive compounds for relevant central nervous system (CNS) purposes.
Collapse
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials Division, CSIR─Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mydhili Radhakrishnan
- Applied Biology Division, CSIR─Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kalyani Soren
- Applied Biology Division, CSIR─Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Arvind Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- CSIR─Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR─Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR─Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Bao L, Cui X, Bai R, Chen C. Advancing intestinal organoid technology to decipher nano-intestine interactions and treat intestinal disease. NANO RESEARCH 2022; 16:3976-3990. [PMID: 36465523 PMCID: PMC9685037 DOI: 10.1007/s12274-022-5150-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/17/2022] [Accepted: 10/06/2022] [Indexed: 06/17/2023]
Abstract
With research burgeoning in nanoscience and nanotechnology, there is an urgent need to develop new biological models that can simulate native structure, function, and genetic properties of tissues to evaluate the adverse or beneficial effects of nanomaterials on a host. Among the current biological models, three-dimensional (3D) organoids have developed as powerful tools in the study of nanomaterial-biology (nano-bio) interactions, since these models can overcome many of the limitations of cell and animal models. A deep understanding of organoid techniques will facilitate the development of more efficient nanomedicines and further the fields of tissue engineering and personalized medicine. Herein, we summarize the recent progress in intestinal organoids culture systems with a focus on our understanding of the nature and influencing factors of intestinal organoid growth. We also discuss biomimetic extracellular matrices (ECMs) coupled with nanotechnology. In particular, we analyze the application prospects for intestinal organoids in investigating nano-intestine interactions. By integrating nanotechnology and organoid technology, this recently developed model will fill the gaps left due to the deficiencies of traditional cell and animal models, thus accelerating both our understanding of intestine-related nanotoxicity and the development of nanomedicines.
Collapse
Affiliation(s)
- Lin Bao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700 China
| | - Ru Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100190 China
- The GBA National Institute for Nanotechnology Innovation, Guangzhou, 510700 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
17
|
The Encapsulation of Citicoline within Solid Lipid Nanoparticles Enhances Its Capability to Counteract the 6-Hydroxydopamine-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells. Pharmaceutics 2022; 14:pharmaceutics14091827. [PMID: 36145575 PMCID: PMC9506317 DOI: 10.3390/pharmaceutics14091827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
(1) Backgrond: Considering the positive effects of citicoline (CIT) in the management of some neurodegenerative diseases, the aim of this work was to develop CIT-Loaded Solid Lipid Nanoparticles (CIT-SLNs) for enhancing the therapeutic use of CIT in parkinsonian syndrome; (2) Methods: CIT-SLNs were prepared by the melt homogenization method using the self-emulsifying lipid Gelucire® 50/13 as lipid matrix. Solid-state features on CIT-SLNs were obtained with FT-IR, thermal analysis (DSC) and X-ray powder diffraction (XRPD) studies. (3) Results: CIT-SLNs showed a mean diameter of 201 nm, −2.20 mV as zeta potential and a high percentage of entrapped CIT. DSC and XRPD analyses evidenced a greater amorphous state of CIT in CIT-SLNs. On confocal microscopy, fluorescent SLNs replacing unlabeled CIT-SLNs released the dye selectively in the cytoplasm. Biological evaluation showed that pre-treatment of SH-SY5Y dopaminergic cells with CIT-SLNs (50 µM) before the addition of 40 µM 6-hydroxydopamine (6-OHDA) to mimic Parkinson’s disease’s degenerative pathways counteracts the cytotoxic effects induced by the neurotoxin, increasing cell viability with the consistent maintenance of both nuclear and cell morphology. In contrast, pre-treatment with CIT 50 and 60 µM or plain SLNs for 2 h followed by 6-OHDA (40 µM) did not significantly influence cell viability. (4) Conclusions: These data suggest an enhanced protection exerted by CIT-SLNs with respect to free CIT and prompt further investigation of possible molecular mechanisms that underlie this difference.
Collapse
|
18
|
Domingues C, Santos A, Alvarez-Lorenzo C, Concheiro A, Jarak I, Veiga F, Barbosa I, Dourado M, Figueiras A. Where Is Nano Today and Where Is It Headed? A Review of Nanomedicine and the Dilemma of Nanotoxicology. ACS NANO 2022; 16:9994-10041. [PMID: 35729778 DOI: 10.1021/acsnano.2c00128] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Worldwide nanotechnology development and application have fueled many scientific advances, but technophilic expectations and technophobic demands must be counterbalanced in parallel. Some of the burning issues today are the following: (1) Where is nano today? (2) How good are the communication and investment networks between academia/research and governments? (3) Is there any spotlight application for nanotechnology? Nanomedicine is a particular arm of nanotechnology within the healthcare landscape, focused on diagnosis, treatment, and monitoring of emerging (such as coronavirus disease 2019, COVID-19) and contemporary (including diabetes, cardiovascular diseases, neurodegenerative disorders, and cancer) diseases. However, it may only represent the bright side of the coin. In fact, in the recent past, the concept of nanotoxicology has emerged to address the dark shadows of nanomedicine. The nanomedicine field requires more nanotoxicological studies to identify undesirable effects and guarantee safety. Here, we provide an overall perspective on nanomedicine and nanotoxicology as central pieces of the giant puzzle of nanotechnology. First, the impact of nanotechnology on education and research is highlighted, followed by market trends and scientific output tendencies. In the next section, the nanomedicine and nanotoxicology dilemma is addressed through the interplay of in silico, in vitro, and in vivo models with the support of omics and microfluidic approaches. Lastly, a reflection on the regulatory issues and clinical trials is provided. Finally, some conclusions and future perspectives are proposed for a clearer and safer translation of nanomedicines from the bench to the bedside.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Santos
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia, iMATUS, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ivana Jarak
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
| | - Francisco Veiga
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| | - Isabel Barbosa
- Univ. Coimbra, Faculty of Pharmacy, Phamaceutical Chemistry Laboratory, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ. Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ. Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ. Coimbra, Faculty of Pharmacy, Galenic and Pharmaceutical Technology Laboratory, 3000-548 Coimbra, Portugal
- LAQV-REQUIMTE, Galenic and Pharmaceutical Technology Laboratory, Faculty of Pharmacy, Univ. Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
19
|
Xu Z, Qu A, Zhang H, Wang W, Hao C, Lu M, Shi B, Xu L, Sun M, Xu C, Kuang H. Photoinduced elimination of senescent microglia cells in vivo by chiral gold nanoparticles. Chem Sci 2022; 13:6642-6654. [PMID: 35756519 PMCID: PMC9172567 DOI: 10.1039/d2sc01662a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/14/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is an age-related neurodegenerative disease, and the removal of senescent cells has been proved to be beneficial for improving age-associated pathologies in neurodegeneration disease. In this study, chiral gold nanoparticles (NPs) with different helical directions were synthesized to selectively induce the apoptosis of senescent cells under light illumination. By modifying anti-B2MG and anti-DCR2 antibodies, senescent microglia cells could be cleared by chiral NPs without damaging the activities of normal cells under illumination. Notably, l-P+ NPs exhibited about a 2-fold higher elimination efficiency than d-P- NPs for senescent microglia cells. Mechanistic studies revealed that the clearance of senescent cells was mediated by the activation of the Fas signaling pathway. The in vivo injection of chiral NPs successfully confirmed that the elimination of senescent microglia cells in the brain could further alleviate the symptoms of PD mice in which the alpha-synuclein (α-syn) in cerebrospinal fluid (CFS) decreased from 83.83 ± 4.76 ng mL-1 to 8.66 ± 1.79 ng mL-1 after two months of treatment. Our findings suggest a potential strategy to selectively eliminate senescent cells using chiral nanomaterials and offer a promising strategy for alleviating PD.
Collapse
Affiliation(s)
- Zhuojia Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Weiwei Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Meiru Lu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Baimei Shi
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
20
|
Trapani A, Cometa S, De Giglio E, Corbo F, Cassano R, Di Gioia ML, Trombino S, Hossain MN, Di Gioia S, Trapani G, Conese M. Novel Nanoparticles Based on N, O-Carboxymethyl Chitosan-Dopamine Amide Conjugate for Nose-to-Brain Delivery. Pharmaceutics 2022; 14:pharmaceutics14010147. [PMID: 35057043 PMCID: PMC8780454 DOI: 10.3390/pharmaceutics14010147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
A widely investigated approach to bypass the blood brain barrier is represented by the intranasal delivery of therapeutic agents exploiting the olfactory or trigeminal connections nose-brain. As for Parkinson’s disease (PD), characterized by dopaminergic midbrain neurons degeneration, currently there is no disease modifying therapy. Although several bio-nanomaterials have been evaluated for encapsulation of neurotransmitter dopamine (DA) or dopaminergic drugs in order to restore the DA content in parkinsonian patients, the premature leakage of the therapeutic agent limits this approach. To tackle this drawback, we undertook a study where the active was linked to the polymeric backbone by a covalent bond. Thus, novel nanoparticles (NPs) based on N,O-Carboxymethylchitosan-DA amide conjugate (N,O-CMCS-DA) were prepared by the nanoprecipitation method and characterized from a technological view point, cytotoxicity and uptake by Olfactory Ensheating Cells (OECs). Thermogravimetric analysis showed high chemical stability of N,O-CMCS-DA NPs and X-ray photoelectron spectroscopy evidenced the presence of amide linkages on the NPs surface. MTT test indicated their cytocompatibility with OECs, while cytofluorimetry and fluorescent microscopy revealed the internalization of labelled N,O-CMCS-DA NPs by OECs, that was increased by the presence of mucin. Altogether, these findings seem promising for further development of N,O-CMCS-DA NPs for nose-to-brain delivery application in PD.
Collapse
Affiliation(s)
- Adriana Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (G.T.)
- Correspondence: ; Tel.: +39-080-5442114
| | | | - Elvira De Giglio
- Chemistry Department, University of Bari “Aldo Moro”, Via Orabona, 4, 70125 Bari, Italy;
| | - Filomena Corbo
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (G.T.)
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.L.D.G.); (S.T.)
| | - Maria Luisa Di Gioia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.L.D.G.); (S.T.)
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy; (R.C.); (M.L.D.G.); (S.T.)
| | - Md Niamat Hossain
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.N.H.); (S.D.G.); (M.C.)
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.N.H.); (S.D.G.); (M.C.)
| | - Giuseppe Trapani
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy; (F.C.); (G.T.)
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (M.N.H.); (S.D.G.); (M.C.)
| |
Collapse
|