1
|
Zhang Z, Gong L, Luan R, Feng Y, Cao J, Zhang C. Tribovoltaic Effect: Origin, Interface, Characteristic, Mechanism & Application. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305460. [PMID: 38355310 PMCID: PMC11022743 DOI: 10.1002/advs.202305460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/28/2023] [Indexed: 02/16/2024]
Abstract
Tribovoltaic effect is a phenomenon of the generation of direct voltage and current by the mechanical friction on semiconductor interface, which exhibits a brand-new energy conversion mechanism by the coupling of semiconductor and triboelectrification. Here, the origin, interfaces, characteristics, mechanism, coupling effect and application of the tribovoltaic effect is summarized and reviewed. The tribovoltaic effect is first proposed in 2019, which has developed in various forms tribovoltaic nanogenerator (TVNG) including metal-semiconductor, metal-insulator-semiconductor, semiconductor-semiconductor, liquid-solid and flexible interfaces. Compared with triboelectric nanogenerator, the TVNG has the characteristics of direct-current, high current density (mA-A cm-2) and low impedance (Ω-kΩ). The two mainstream views on the tribovoltaic generation mechanism, one dominated by built-in electric fields and the other dominated by interface electric fields, have been elaborated and summarized in detail. The tribo-photovoltaic effect and tribo-thermoelectric effect are also discovered and introduced because they can easily interact with other multi-physical field effects. The TVNGs are suitable for making energy harvesting and self-powered sensing devices for micro-nano energy applications. This paper not only revisit the development of the tribovoltaic effect, but also makes prospects for mechanism research, device fabrication and integrated application, which can accelerate the evolution of smart wearable electronics and intelligent industrial components.
Collapse
Affiliation(s)
- Zhi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor, Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Likun Gong
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor, Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Ruifei Luan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor, Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yuan Feng
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor, Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Jie Cao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor, Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
- Institute of Intelligent Flexible MechatronicsJiangsu UniversityZhenjiang212013P. R. China
| | - Chi Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro‐nano Energy and Sensor, Beijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400P. R. China
- School of Nanoscience and EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
2
|
Qiao W, Zhou L, Zhao Z, Yang P, Liu D, Liu X, Liu J, Liu D, Wang ZL, Wang J. MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime. NANO-MICRO LETTERS 2023; 15:218. [PMID: 37804464 PMCID: PMC10560292 DOI: 10.1007/s40820-023-01198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/27/2023] [Indexed: 10/09/2023]
Abstract
Tribovoltaic nanogenerators (TVNGs) have the characteristics of high current density, low matched impedance and continuous output, which is expected to solve the problem of power supply for small electronic devices. However, wear occurrence in friction interface will seriously reduce the performance of TVNGs as well as lifetime. Here, we employ MXene solution as lubricate to improve output current density and lifetime of TVNG simultaneously, where a high value of 754 mA m-2 accompanied with a record durability of 90,000 cycles were achieved. By comparing multiple liquid lubricates with different polarity, we show that conductive polar liquid with MXene as additive plays a crucial role in enhancing the electrical output performance and durability of TVNG. Moreover, the universality of MXene solution is well demonstrated in various TVNGs with Cu and P-type Si, and Cu and N-GaAs as material pairs. This work may guide and accelerates the practical application of TVNG in future.
Collapse
Affiliation(s)
- Wenyan Qiao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Linglin Zhou
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhihao Zhao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Peiyuan Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Di Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoru Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiaqi Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Dongyang Liu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jie Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
3
|
Yang R, He Z, Lin S, Dou W, Wang ZL, Wang H, Liu J. Tunable Tribovoltaic Effect via Metal-Insulator Transition. NANO LETTERS 2022; 22:9084-9091. [PMID: 36342419 DOI: 10.1021/acs.nanolett.2c03481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tribovoltaic direct-current (DC) nanogenerator made of dynamic semiconductor heterojunction is emerging as a promising mechanical energy harvesting technology. However, fundamental understanding of the mechano-electronic carrier excitation and transport at dynamic semiconductor interfaces remains to be investigated. Here, we demonstrated for the first time, that tribovoltaic DC effect can be tuned with metal-insulator transition (MIT). In a representative MIT material (vanadium dioxide, VO2), we found that the short-circuit current (ISC) can be enhanced by >20 times when the material is transformed from insulating to metallic state upon static or dynamic heating, while the open-circuit voltage (VOC) turns out to be unaffected. Such phenomenon may be understood by the Hubbard model for Mott insulator: orders' magnitude increase in conductivity is induced when the nearest hopping changes dramatically and overcomes the Coulomb repulsion, while the Coulomb repulsion giving rise to the quasi-particle excitation energy remains relatively stable.
Collapse
Affiliation(s)
- Ruizhe Yang
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| | - Zihao He
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana47907-2045, United States
| | - Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Wenjie Dou
- School of Science, Westlake University, Hangzhou, Zhejiang310024, People's Republic of China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang310024, People's Republic of China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing100083, People's Republic of China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia30332-0245, United States
| | - Haiyan Wang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana47907-2045, United States
- School of Materials Engineering, Purdue University, West Lafayette, Indiana47907-2045, United States
| | - Jun Liu
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
- RENEW (Research and Education in Energy, Environment and Water) Institute, University at Buffalo, The State University of New York, Buffalo, New York14260, United States
| |
Collapse
|