1
|
Ringgit G, Cheong BE, Shah MD, Abdul Kadir NAA, Siddiquee S. Syringic Acid in Canarium odontophyllum for Diabetes and Obesity - A Review. Cell Biochem Biophys 2025:10.1007/s12013-025-01773-8. [PMID: 40377865 DOI: 10.1007/s12013-025-01773-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2025] [Indexed: 05/18/2025]
Abstract
Syringic acid (SA) is a phenolic compound with a significant role in the treatment of diabetes and obesity. Syringic acid possesses anti-obesity and anti-diabetic properties; however, the potential of syringic acid derived from the native Bornean fruit Canarium odontophyllum (C. odontophyllum) for managing diabetes and obesity remains undocumented. This brief discussion explores the possible mechanisms associated with syringic acid's structure and its potential therapeutic effects in managing diabetes and obesity. The relevant information is gathered from previous reports on syringic acid, related to molecular docking studies involving syringic acid-associated enzymes and protein residues. The potential mechanism of syringic acid derived from C. odontophyllum with chemical structure characterized by a benzene ring with hydrogen bonds and its high affinity for enzymes and protein residues targeting diabetes and obesity, including hexokinase 2 (HK2), glycogen synthase kinase (GSK), 2BEL, protein kinase D (PKD), insulin receptor substrate-1 (IRS-1), and insulin receptor beta (IR-β). This review paper provides alternative insights into syringic acid derived from the seasonal fruit of native Bornean fruit associated with molecular docking, structural advantages and mechanism of action in diabetes treatment.
Collapse
Affiliation(s)
- Gilbert Ringgit
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia.
| | - Bo Eng Cheong
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Muhammad Dawood Shah
- Higher Institute Centre of Excellence (HICoE), Borneo Marine Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Noor Atiqah Aizan Abdul Kadir
- Nutrition in Community Engagement (NICE) Living Laboratory, Faculty of Food Science and Nutrition, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia
| | - Shafiquzzaman Siddiquee
- Biotechnology Research Institute, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
2
|
Gallant RM, Sanchez KK, Joulia E, Snyder JM, Metallo CM, Ayres JS. Fluoxetine promotes IL-10-dependent metabolic defenses to protect from sepsis-induced lethality. SCIENCE ADVANCES 2025; 11:eadu4034. [PMID: 39951524 PMCID: PMC11827869 DOI: 10.1126/sciadv.adu4034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are some of the most prescribed drugs in the world. While they are used for their ability to increase serotonergic signaling in the brain, SSRIs are also known to have a broad range of effects beyond the brain, including immune and metabolic effects. Recent studies have demonstrated that SSRIs are protective in animal models and humans against several infections, including sepsis and COVID-19; however, the mechanisms underlying this protection are largely unknown. Here, we mechanistically link two previously described effects of the SSRI fluoxetine in mediating protection against sepsis. We show that fluoxetine-mediated protection is independent of peripheral serotonin and instead increases levels of circulating interleukin-10 (IL-10). IL-10 is necessary for protection from sepsis-induced hypertriglyceridemia, preventing cardiac effects including impairment of glucose oxidation, ectopic lipid accumulation, ventricular stretch and possibly cardiac failure. Our work reveals a beneficial "off-target" effect of fluoxetine, and reveals a protective immunometabolic defense mechanism with therapeutic potential.
Collapse
Affiliation(s)
- Robert M. Gallant
- Molecular and Systems Physiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Karina K. Sanchez
- Molecular and Systems Physiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emeline Joulia
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jessica M. Snyder
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Christian M. Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92037, USA
| | - Janelle S. Ayres
- Molecular and Systems Physiology Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
3
|
Renton MC, McGee SL, Howlett KF. The role of protein kinase D (PKD) in obesity: Lessons from the heart and other tissues. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119814. [PMID: 39128598 DOI: 10.1016/j.bbamcr.2024.119814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/15/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Obesity causes a range of tissue dysfunctions that increases the risk for morbidity and mortality. Protein kinase D (PKD) represents a family of stress-activated intracellular signalling proteins that regulate essential processes such as cell proliferation and differentiation, cell survival, and exocytosis. Evidence suggests that PKD regulates the cellular adaptations to the obese environment in metabolically important tissues and drives the development of a variety of diseases. This review explores the role that PKD plays in tissue dysfunction in obesity, with special consideration of the development of obesity-mediated cardiomyopathy, a distinct cardiovascular disease that occurs in the absence of common comorbidities and leads to eventual heart failure and death. The downstream mechanisms mediated by PKD that could contribute to dysfunctions observed in the heart and other metabolically important tissues in obesity, and the predicted cell types involved are discussed to suggest potential targets for the development of therapeutics against obesity-related disease.
Collapse
Affiliation(s)
- Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia; The Fralin Biomedical Research Institute at Virginia Tech Carilion, Centre for Vascular and Heart Research, Roanoke, VA, USA.
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Australia.
| |
Collapse
|
4
|
Raghavan S, Brishti MA, Bernardelli A, Mata-Daboin A, Jaggar JH, Leo MD. Extracellular glucose and dysfunctional insulin receptor signaling independently upregulate arterial smooth muscle TMEM16A expression. Am J Physiol Cell Physiol 2024; 326:C1237-C1247. [PMID: 38581667 PMCID: PMC11193522 DOI: 10.1152/ajpcell.00555.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/08/2024]
Abstract
Diabetes alters the function of ion channels responsible for regulating arterial smooth muscle membrane potential, resulting in vasoconstriction. Our prior research demonstrated an elevation of TMEM16A in diabetic arteries. Here, we explored the mechanisms involved in Transmembrane protein 16A (TMEM16A) gene expression. Our data indicate that a Snail-mediated repressor complex regulates arterial TMEM16A gene transcription. Snail expression was reduced in diabetic arteries while TMEM16A expression was upregulated. The TMEM16A promoter contained three canonical E-box sites. Electrophoretic mobility and super shift assays revealed that the -154 nt E-box was the binding site of the Snail repressor complex and binding of the repressor complex decreased in diabetic arteries. High glucose induced a biphasic contractile response in pressurized nondiabetic mouse hindlimb arteries incubated ex vivo. Hindlimb arteries incubated in high glucose also showed decreased phospho-protein kinase D1 and TMEM16A expression. In hindlimb arteries from nondiabetic mice, administration of a bolus dose of glucose activated protein kinase D1 signaling to induce Snail degradation. In both in vivo and ex vivo conditions, Snail expression exhibited an inverse relationship with the expression of protein kinase D1 and TMEM16A. In diabetic mouse arteries, phospho-protein kinase D1 increased while Akt2 and pGSK3β levels declined. These results indicate that in nondiabetic mice, high glucose triggers a transient deactivation of the Snail repressor complex to increase arterial TMEM16A expression independently of insulin signaling. Conversely, insulin resistance activates GSK3β signaling and enhances arterial TMEM16A channel expression. These data have uncovered the Snail-mediated regulation of arterial TMEM16A expression and its dysfunction during diabetes.NEW & NOTEWORTHY The calcium-activated chloride channel, TMEM16A, is upregulated in the diabetic vasculature to cause increased vasoconstriction. In this paper, we have uncovered that the TMEM16A gene expression is controlled by a Snail-mediated repressor complex that uncouples with both insulin-dependent and -independent pathways to allow for upregulated arterial protein expression thereby causing vasoconstriction. The paper highlights the effect of short- and long-term glucose-induced dysfunction of an ion channel expression as a causative factor in diabetic vascular disease.
Collapse
Affiliation(s)
- Somasundaram Raghavan
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Masuma Akter Brishti
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Angelica Bernardelli
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Alejandro Mata-Daboin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - M Dennis Leo
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
5
|
Hall LG, Czeczor JK, Connor T, Botella J, De Jong KA, Renton MC, Genders AJ, Venardos K, Martin SD, Bond ST, Aston-Mourney K, Howlett KF, Campbell JA, Collier GR, Walder KR, McKenzie M, Ziemann M, McGee SL. Amyloid beta 42 alters cardiac metabolism and impairs cardiac function in male mice with obesity. Nat Commun 2024; 15:258. [PMID: 38225272 PMCID: PMC10789867 DOI: 10.1038/s41467-023-44520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/17/2024] Open
Abstract
There are epidemiological associations between obesity and type 2 diabetes, cardiovascular disease and Alzheimer's disease. The role of amyloid beta 42 (Aβ42) in these diverse chronic diseases is obscure. Here we show that adipose tissue releases Aβ42, which is increased from adipose tissue of male mice with obesity and is associated with higher plasma Aβ42. Increasing circulating Aβ42 levels in male mice without obesity has no effect on systemic glucose homeostasis but has obesity-like effects on the heart, including reduced cardiac glucose clearance and impaired cardiac function. The closely related Aβ40 isoform does not have these same effects on the heart. Administration of an Aβ-neutralising antibody prevents obesity-induced cardiac dysfunction and hypertrophy. Furthermore, Aβ-neutralising antibody administration in established obesity prevents further deterioration of cardiac function. Multi-contrast transcriptomic analyses reveal that Aβ42 impacts pathways of mitochondrial metabolism and exposure of cardiomyocytes to Aβ42 inhibits mitochondrial complex I. These data reveal a role for systemic Aβ42 in the development of cardiac disease in obesity and suggest that therapeutics designed for Alzheimer's disease could be effective in combating obesity-induced heart failure.
Collapse
Affiliation(s)
- Liam G Hall
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, Canada
| | - Juliane K Czeczor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Becton Dickinson GmbH, Medical Affairs, 69126, Heidelberg, Germany
| | - Timothy Connor
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Javier Botella
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirstie A De Jong
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Institute of Experimental Cardiovascular Research, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Mark C Renton
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Amanda J Genders
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences and Victorian Heart Institute, Monash University, Melbourne, Australia
| | - Kylie Venardos
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Sheree D Martin
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Simon T Bond
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Kathryn Aston-Mourney
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | | | | | - Ken R Walder
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia
| | - Matthew McKenzie
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Mark Ziemann
- School of Life and Environmental Science, Deakin University, Geelong, Australia
| | - Sean L McGee
- Institute for Mental and Physical Health and Clinical Translation, Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Australia.
- Ambetex Pty Ltd, Geelong, Australia.
| |
Collapse
|
6
|
Martin SD, Connor T, Sanigorski A, McEwen KA, Henstridge DC, Nijagal B, De Souza D, Tull DL, Meikle PJ, Kowalski GM, Bruce CR, Gregorevic P, Febbraio MA, Collier FM, Walder KR, McGee SL. Class IIa HDACs inhibit cell death pathways and protect muscle integrity in response to lipotoxicity. Cell Death Dis 2023; 14:787. [PMID: 38040704 PMCID: PMC10692215 DOI: 10.1038/s41419-023-06319-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
Lipotoxicity, the accumulation of lipids in non-adipose tissues, alters the metabolic transcriptome and mitochondrial metabolism in skeletal muscle. The mechanisms involved remain poorly understood. Here we show that lipotoxicity increased histone deacetylase 4 (HDAC4) and histone deacetylase 5 (HDAC5), which reduced the expression of metabolic genes and oxidative metabolism in skeletal muscle, resulting in increased non-oxidative glucose metabolism. This metabolic reprogramming was also associated with impaired apoptosis and ferroptosis responses, and preserved muscle cell viability in response to lipotoxicity. Mechanistically, increased HDAC4 and 5 decreased acetylation of p53 at K120, a modification required for transcriptional activation of apoptosis. Redox drivers of ferroptosis derived from oxidative metabolism were also reduced. The relevance of this pathway was demonstrated by overexpression of loss-of-function HDAC4 and HDAC5 mutants in skeletal muscle of obese db/db mice, which enhanced oxidative metabolic capacity, increased apoptosis and ferroptosis and reduced muscle mass. This study identifies HDAC4 and HDAC5 as repressors of skeletal muscle oxidative metabolism, which is linked to inhibition of cell death pathways and preservation of muscle integrity in response to lipotoxicity.
Collapse
Affiliation(s)
- Sheree D Martin
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Timothy Connor
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Andrew Sanigorski
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Kevin A McEwen
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Darren C Henstridge
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Brunda Nijagal
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - David De Souza
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dedreia L Tull
- Metabolomics Australia, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Greg M Kowalski
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
- Institute of Physical Activity and Nutrition (IPAN) and School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Clinton R Bruce
- Institute of Physical Activity and Nutrition (IPAN) and School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Paul Gregorevic
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Ken R Walder
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia
| | - Sean L McGee
- Institute for Mental and Physical Heath and Clinical Translation (IMPACT) and Metabolic Research Unit, School of Medicine, Deakin University, Geelong, VIC, 3216, Australia.
| |
Collapse
|
7
|
Bruce CR, Hamley S, Ang T, Howlett KF, Shaw CS, Kowalski GM. Translating glucose tolerance data from mice to humans: Insights from stable isotope labelled glucose tolerance tests. Mol Metab 2021; 53:101281. [PMID: 34175474 PMCID: PMC8313600 DOI: 10.1016/j.molmet.2021.101281] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 11/29/2022] Open
Abstract
Objective The glucose tolerance test (GTT) is widely used in human and animal biomedical and pharmaceutical research. Despite its prevalent use, particularly in mouse metabolic phenotyping, to the best of our knowledge we are not aware of any studies that have attempted to qualitatively compare the metabolic events during a GTT in mice with those performed in humans. Methods Stable isotope labelled oral glucose tolerance tests (siOGTTs; [6,6-2H2]glucose) were performed in both human and mouse cohorts to provide greater resolution into postprandial glucose kinetics. The siOGTT allows for the partitioning of circulating glucose into that derived from exogenous and endogenous sources. Young adults spanning the spectrum of normal glucose tolerance (n = 221), impaired fasting (n = 14), and impaired glucose tolerance (n = 19) underwent a 75g siOGTT, whereas a 50 mg siOGTT was performed on chow (n = 43) and high-fat high-sucrose fed C57Bl6 male mice (n = 46). Results During the siOGTT in humans, there is a long period (>3hr) of glucose absorption and, accordingly, a large, sustained insulin response and robust suppression of lipolysis and endogenous glucose production (EGP), even in the presence of glucose intolerance. In contrast, mice appear to be highly reliant on glucose effectiveness to clear exogenous glucose and experience only modest, transient insulin responses with little, if any, suppression of EGP. In addition to the impaired stimulation of glucose uptake, mice with the worst glucose tolerance appear to have a paradoxical and persistent rise in EGP during the OGTT, likely related to handling stress. Conclusions The metabolic response to the OGTT in mice and humans is highly divergent. The potential reasons for these differences and their impact on the interpretation of mouse glucose tolerance data and their translation to humans are discussed.
We compared the mechanisms governing glucose handling in humans and mice. Humans and mice underwent stable isotope labelled oral glucose tolerance tests. Metabolic responses between humans and mice were highly divergent. Unlike humans, most mice exhibit little EGP suppression or insulin response.
Collapse
Affiliation(s)
- Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Steven Hamley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Kirsten F Howlett
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Christopher S Shaw
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia; Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Waurn Ponds, Victoria, 3216, Australia.
| |
Collapse
|