1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Torrado C, Ashton NW, D'Andrea AD, Yap TA. USP1 inhibition: A journey from target discovery to clinical translation. Pharmacol Ther 2025; 271:108865. [PMID: 40274197 DOI: 10.1016/j.pharmthera.2025.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is a deubiquitinating enzyme involved in the DNA damage response. Upon DNA damage, USP1 stabilizes replication forks by removing monoubiquitin from PCNA and FANCD2-FANCI, thereby catalyzing critical final steps in translesion synthesis and interstrand crosslink (ICL) repair. This function is particularly crucial in BRCA1 mutant cancers, where the homologous recombination pathway is compromised, leading tumors to rely on USP1 for effective repair. USP1 is also overexpressed in BRCA1 mutant cancers, as well as other tumor types. Preclinical studies have demonstrated that knockout of USP1 is synthetically lethal in tumors with biallelic BRCA1 mutations, and this relationship is enhanced by combination with PARP inhibitors. Newly developed USP1 inhibitors have confirmed this synthetic lethality in BRCA1-deficient tumor cells. Moreover, these drugs have the potential for resensitizing platinum-resistant tumors. Currently, potent and specific USP1 inhibitors are undergoing evaluation in phase I clinical trials. RO7623066 (KSQ-4279) reported an acceptable safety profile during a phase I dose escalation study, with anemia being the most common side effect, and demonstrated robust pharmacokinetic, pharmacodynamic, and clinical activity. Other USP1 inhibitors, including SIM0501, XL309-101, and HSK39775, are currently in early clinical development. In this review, we provide an overview of the molecular function of USP1 and its importance as a therapeutic target in oncology, before focusing on the current state of preclinical and clinical development of USP1 inhibitors.
Collapse
Affiliation(s)
- Carlos Torrado
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas W Ashton
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timothy A Yap
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Wang F, Yu N, Xia R. Analysis of Ubiquitin-Conjugating Enzyme E2T (UBE2T) Protein Levels in the Bone Marrow Biopsy Specimens of Patients With Multiple Myeloma. Cureus 2025; 17:e82571. [PMID: 40259951 PMCID: PMC12010019 DOI: 10.7759/cureus.82571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2025] [Indexed: 04/23/2025] Open
Abstract
Introduction Several studies have reported that the ubiquitin-conjugating enzyme E2 T (UBE2T) is overexpressed in multiple myeloma (MM). This has been assessed via bioinformatic analysis, which represents mRNA expression. However, biological experimental evidence is lacking. Moreover, the protein levels of UBE2T in tissue obtained via bone marrow biopsy are not clear. To identify newer potential therapeutic targets for MM, this study aimed to assess the expression of the UBE2T protein by immunohistochemical (IHC) staining of bone marrow biopsy specimens and also collected clinical data for a correlation analysis. Methods Bone marrow biopsy specimens were obtained from the pathology department between December 2022 and December 2024. The expression of UBE2T protein in them was evaluated by IHC staining. Clinical data of the patients were also collected. These included gender, age, Revised International Staging System (R-ISS) staging category, overall survival and progression-free survival time, and concentrations of hemoglobin (Hb), creatinine (Cr), calcium (Ca), serum beta-2-microglobulin (β2-MG), serum albumin (ALB), and serum lactate dehydrogenase (LDH). Furthermore, we investigated the expression of UBE2T in patients with MM belonging to different R-ISS staging categories and its relationship with Hb, Cr, Ca, ALB, β2-MG, and LDH concentrations. Finally, a survival analysis was performed. Results Bone marrow biopsy specimens were obtained from 77 patients with MM and 16 patients with non-hematological conditions (control group). The UBE2T protein was weakly expressed in the control group (IHC results were negative or weakly positive), while it was significantly greater in specimens obtained from patients with MM (P< 0.001 vs. control). The patients with MM were further divided into three groups according to their clinical Revised International Staging System (R-ISS) staging. Compared to patients in R-ISS stage I, the UBE2T protein expression was significantly increased in those in stage II (P<0.05) and III (P<0.0001), whereas patients in stage III showed significantly higher levels than patients in stage II (P<0.01). Additionally, the level of UBE2T protein expression was positively correlated with the serum concentrations of β2-MG (P < 0.001, R2=0.211) and LDH (P < 0.001, R2=0.192). Further, the one-year progression-free survival rate was significantly higher in the low-expression (87.18%, 34/39) vs. the high-expression group (71.05%, 27/38; P<0.05). Conclusions The UBE2T protein is highly expressed in bone marrow biopsy specimens from patients with MM and positively correlates with R-ISS staging categories and serum concentrations of β2-MG and LDH. The comparative one-year progression-free survival rate was also significantly higher in the low-expression vs. the high-expression group. Although larger scale and longer follow-up studies are needed, UBE2T may become a potential indicator for MM detected via bone marrow biopsy and a novel target for its therapy.
Collapse
Affiliation(s)
- Fei Wang
- Internal Medicine, Huashan Hospital, Fudan University, Shanghai, CHN
| | - Na Yu
- Pathology, Huadong Hospital, Fudan University, Shanghai, CHN
| | - Rong Xia
- Internal Medicine, Huashan Hospital, Fudan University, Shanghai, CHN
| |
Collapse
|
4
|
Shi LL, Chen Y, Xie MX, Chen QZ, Qiao XW, Cheng QH, Li L, Fu R, Liang T, Jiang X, Wang MJ, Yao J, Li JJ. UBE2T/CDC42/CD276 signaling axis mediates brain metastasis of triple-negative breast cancer via lysosomal autophagy. J Immunother Cancer 2025; 13:e010782. [PMID: 39915000 PMCID: PMC11804199 DOI: 10.1136/jitc-2024-010782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/26/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Advanced triple-negative breast cancer (TNBC) is prone to brain metastasis (BrM). The precise molecular mechanism responsible for this phenomenon has not yet been completely established, so it is vital to comprehend the molecular mechanism behind it. METHODS The protein chip analysis was conducted to identify any abnormal UBE2T protein expression in TNBC, especially BrM. Here, we used public databases and bioinformatics analysis as well as clinical samples from different cohorts to investigate the interrelationship between UBE2T/CDC42/CD276. This predicted relationship was then repeatedly validated using different in vivo and in vitro experimental methods. Additionally, multiple experimental approaches were implemented, encompassing western blotting, Co-IP, GST pull-down, flow cytometry, mass spectrometry, immunofluorescence, immunohistochemistry, and qRT-PCR to reveal the molecular mechanism of UBE2T-mediated immune escape and BrM. RESULTS Our results indicate that expressed at elevated levels in breast cancer, UBE2T is negatively linked to patient prognosis, especially in BrM of TNBC. Data from clinical samples from our different cohorts and TCGA indicate a significant correlation between UBE2T and immunosuppression. Mechanistically, UBE2T directly interacts with CDC42, promoting its K48-linked polyubiquitination and proteasomal degradation, thereby inhibiting CDC42 from degrading CD276 via the autophagy-lysosomal pathway, indirectly upregulating CD276 and thereby impairing the CD8+ T cells function, ultimately mediating tumor immune escape and BrM. Finally, animal experimental results also showed that inhibition of UBE2T elevated the TNBC sensitivity to immune checkpoint CD276 blockade and inhibited BrM of TNBC. CONCLUSIONS In conclusion, our results indicate a new mechanism whereby UBE2T-mediated ubiquitination positively controls the UBE2T/CDC42/CD276 axis to upregulate tumor cell expression of CD276 and thereby impair CD8+ T cells function, ultimately leading to tumor cell immune escape and BrM.
Collapse
Affiliation(s)
| | - Yan Chen
- Department of Ultrasound Medicine, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Ming Xing Xie
- Department of Ultrasound Medicine, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Qian Zhi Chen
- Department of Breast and Thyroid Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Xin Wei Qiao
- Department of Thoracic Surgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Qi Hong Cheng
- Department of Neurosurgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Lin Li
- Department of Neurosurgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Rong Fu
- Department of Neurosurgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Tao Liang
- Department of Clinical Laboratory, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Min Jie Wang
- Department of Neurosurgery, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Jin Yao
- Cancer Center, Wuhan Union Hospital, Wuhan, Hubei, China
| | - Jun Jun Li
- Department of Neurosurgery, Wuhan Union Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Mazloumi Aboukheili AM, Walden H. USP1 in regulation of DNA repair pathways. DNA Repair (Amst) 2025; 146:103807. [PMID: 39848025 DOI: 10.1016/j.dnarep.2025.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves. This review covers recent findings on the mechanisms and functions of USP1 in DNA repair, its regulation, and its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Helen Walden
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland.
| |
Collapse
|
6
|
Awan AB, Osman MJA, Khan OM. Ubiquitination Enzymes in Cancer, Cancer Immune Evasion, and Potential Therapeutic Opportunities. Cells 2025; 14:69. [PMID: 39851497 PMCID: PMC11763706 DOI: 10.3390/cells14020069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025] Open
Abstract
Ubiquitination is cells' second most abundant posttranslational protein modification after phosphorylation. The ubiquitin-proteasome system (UPS) is critical in maintaining essential life processes such as cell cycle control, DNA damage repair, and apoptosis. Mutations in ubiquitination pathway genes are strongly linked to the development and spread of multiple cancers since several of the UPS family members possess oncogenic or tumor suppressor activities. This comprehensive review delves into understanding the ubiquitin code, shedding light on its role in cancer cell biology and immune evasion. Furthermore, we highlighted recent advances in the field for targeting the UPS pathway members for effective therapeutic intervention against human cancers. We also discussed the recent update on small-molecule inhibitors and PROTACs and their progress in preclinical and clinical trials.
Collapse
Affiliation(s)
- Aiman B. Awan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| | - Maryiam Jama Ali Osman
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
- Research Branch, Sidra Medicine, Doha P.O. Box 34110, Qatar
| | - Omar M. Khan
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (A.B.A.); (M.J.A.O.)
| |
Collapse
|
7
|
Gao C, Liu YJ, Yu J, Wang R, Shi JJ, Chen RY, Yang GJ, Chen J. Unraveling the Role of Ubiquitin-Conjugating Enzyme UBE2T in Tumorigenesis: A Comprehensive Review. Cells 2024; 14:15. [PMID: 39791716 PMCID: PMC11719737 DOI: 10.3390/cells14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways. High levels of UBE2T expression are associated with poor survival outcomes, highlighting its potential as a molecular biomarker for cancer prognosis. Increasing evidence suggests that UBE2T acts as an oncogene and could serve as a promising therapeutic target in cancer treatment. This review aims to provide a detailed overview of UBE2T's structure, functions, and molecular mechanisms involved in cancer progression as well as recent developments in UBE2T-targeted inhibitors. Such insights may pave the way for novel strategies in cancer diagnosis and treatment, enhancing our understanding of UBE2T's role in cancer biology and supporting the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
8
|
Wang K, He Q, Jiang X, Wang T, Li Z, Qing H, Dong Y, Ma Y, Zhao B, Zhang J, Sun H, Xing Z, Wu Y, Liu W, Guan J, Song A, Wang Y, Zhao P, Qin L, Shi W, Yu Z, Zhou H, Jiao Z. Targeting UBE2T suppresses breast cancer stemness through CBX6-mediated transcriptional repression of SOX2 and NANOG. Cancer Lett 2024; 611:217409. [PMID: 39716485 DOI: 10.1016/j.canlet.2024.217409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Breast cancer stem cells (BCSCs) are the main cause of breast cancer recurrence and metastasis. While the ubiquitin-proteasome system contributes to the regulation of BCSC stemness, the underlying mechanisms remain unclear. Here, we identified ubiquitin-conjugating enzyme E2T (UBE2T) as a pivotal ubiquitin enzyme regulating BCSC stemness through systemic screening assays, including single-cell RNA sequencing (scRNA-seq) and stemness-index analysis. We found that patients with high UBE2T expression exhibited worse prognosis than those with low expression (10-year PFS: 55.95 % vs. 85.08 %), which are consistent across various subtypes of breast cancers. Genetic ablation of UBE2T suppresses BCSC stemness and tumor progression in organoids and spontaneous MMTV-PyMT mice, dependent on the transcriptional inactivation of pluripotency genes SOX2 and NANOG. Mechanically, UBE2T collaborates with the E3 ligase TRIM25 to perform K48-linked polyubiquitination and degradation of CBX6 at K214, which deficiency helps to promote the transcription of SOX2 and NANOG and enhances BCSC stemness. The pharmacological inhibitor of UBE2T significantly reduced the expression of NANOG and SOX2, suppressed tumor progression, and demonstrated synergistic effects when combined with chemotherapeutics, but not with other treatments. Collectively, our study revealed that the UBE2T-TRIM25-CBX6 axis can regulate BCSC stemness and offers a potentially therapeutic strategy to combat breast cancer in a clinical translation setting.
Collapse
Affiliation(s)
- Keshen Wang
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Qichen He
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Xiangyan Jiang
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Wang
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Zhigang Li
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Huiguo Qing
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Yuman Dong
- Cuiying Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Ma
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Bin Zhao
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Junchang Zhang
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Haonan Sun
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Zongrui Xing
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Yuxia Wu
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Wenbo Liu
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu, China
| | - Junhong Guan
- Cuiying Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ailin Song
- Department of Breast Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Wang
- Department of Breast Surgery, Gansu Provincial Third People 's Hospital, Lanzhou, Gansu, China
| | - Peng Zhao
- Department of Breast Surgery, Gansu Provincial Third People 's Hospital, Lanzhou, Gansu, China
| | - Long Qin
- Cuiying Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wengui Shi
- Cuiying Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zeyuan Yu
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Huinian Zhou
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zuoyi Jiao
- Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; Cuiying Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China; Gansu Province High-Altitude High-Incidence Cancer Biobank, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China.
| |
Collapse
|
9
|
Deng Y, Chen X, Chen X, Huang C, Zhang Z, Xu Z, Wang X, Wu J, Li L, Song J, Zhou R. UBE2T promotes stage I lung adenocarcinoma progression through PBX1 ubiquitination and PBX1/RORA regulation. BMC Cancer 2024; 24:1158. [PMID: 39289660 PMCID: PMC11409575 DOI: 10.1186/s12885-024-12887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Post-translational modification pathway of protein ubiquitination is intricately associated with tumorigenesis. We previously reported elevated ubiquitin-conjugating enzyme 2T (UBE2T) as an independent risk factor in stage I lung adenocarcinoma and promoting cellular proliferation. However, its underlying mechanisms needed further investigation. METHODS Immunohistochemistry was used to assess the expression of UBE2T and retinoic acid receptor-related orphan receptor α (RORA) in stage I LUAD. Cell proliferation, migration, and invasion of LUAD cell lines were measured by Cell Counting Kit-8 assay (CCK-8), Colony-forming assay and Transwell assay, respectively. Western blot analysis was performed to determine the expression of epithelial-mesenchymal transition (EMT) markers. A xenograft model was established to evaluate the proliferative capacity of UBE2T and its interaction with RORA in promoting LUAD. Mechanistic insights into the promotion of early-stage LUAD by UBE2T were obtained through luciferase reporter assay, chromatin immunoprecipitation and co-immunoprecipitation. RESULTS UBE2T and RORA expression was significantly up- and down-regulated in early-stage LUAD patients which's proved to be associated with unfavorable outcomes, strengthened cell proliferation, migration, EMT and invasion through its interaction with RORA both in vivo and in vitro. The growth NSCLC xenografts was reduced by down-expression of UBE2T but was suppressed by RORA knockout. Mechanistically, UBE2T mediated the ubiquitination of the intermediate transcription factor PBX1, which played a transcriptional role in downstream regulation of RORA. CONCLUSION The oncogenic role of UBE2T and the UBE2T-PBX1-RORA axis in driving malignant progression in Stage I LUAD had been established. UBE2T might be a novel and promising therapeutic target for LUAD treatment.
Collapse
Affiliation(s)
- Yujie Deng
- Department of Medical Oncology, The First Affiliated Hospital of Fujian Medical University, , Fuzhou, Fujian Province, 350005, China
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Xiaohui Chen
- Department of Thoracic Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian Province, 350014, China
| | - Xuzheng Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Chuanzhong Huang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, 420 Fuma Rd. Jin'an District, Fuzhou, Fujian Province, 350014, China
| | - Zhiguang Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Zhenguo Xu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Xiurong Wang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Jiamin Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Li Li
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Jun Song
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China
| | - Ruixiang Zhou
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, Fuzhou, Fujian Province, 350108, China.
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xueyuan Road, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
10
|
Pu J, Wang B, Zhang D, Wang K, Yang Z, Zhu P, Song Q. UBE2T mediates SORBS3 ubiquitination to enhance IL-6/STAT3 signaling and promote lung adenocarcinoma progression. J Biochem Mol Toxicol 2024; 38:e23743. [PMID: 38816989 DOI: 10.1002/jbt.23743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
UBE2T is an oncogene in varying tumors, including lung adenocarcinoma (LUAD). SORBS3 is an important signaling regulatory protein that plays a crucial role in many cancers. This study aimed to investigate whether UBE2T promoted LUAD development by mediating the ubiquitination of SORBS3 and further explore its mechanism. Bioinformatics analysis was conducted to examine the expression of SORBS3 in LUAD tissues. Cell Counting Kit-8, Transwell, and flow cytometry were employed to analyze the cellular functions of SORBS3. Co-immunoprecipitation and ubiquitination analysis were employed to observe the correlation between UBE2T and SORBS3. In vitro and in vivo experiments verified the role of UBE2T in mediating SORBS3 ubiquitination to enhance interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling and promote LUAD development. We observed significant downregulation of SORBS3 in LUAD tissues and cells. Furthermore, SORBS3 inhibited the proliferation, migration, and invasion of LUAD cells, while facilitating apoptosis in vitro. UBE2T enhanced IL-6/STAT3 signaling by mediating ubiquitination and degradation of SORBS3, thereby promoting LUAD progression. Additionally, this mechanism was further validated in the xenograft animal model in vivo. This study confirmed that UBE2T-mediated SORBS3 ubiquitination enhanced IL-6/STAT3 signaling and promoted LUAD progression, providing a novel therapeutic target for LUAD.
Collapse
Affiliation(s)
- Jiangtao Pu
- Department of thoracic surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Biao Wang
- Department of thoracic surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dengguo Zhang
- Department of thoracic surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kaiqiang Wang
- Department of thoracic surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ze Yang
- Department of thoracic surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Peiquan Zhu
- Department of thoracic surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Song
- Department of thoracic surgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Prus G, Satpathy S, Weinert BT, Narita T, Choudhary C. Global, site-resolved analysis of ubiquitylation occupancy and turnover rate reveals systems properties. Cell 2024; 187:2875-2892.e21. [PMID: 38626770 PMCID: PMC11136510 DOI: 10.1016/j.cell.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/19/2023] [Accepted: 03/19/2024] [Indexed: 04/18/2024]
Abstract
Ubiquitylation regulates most proteins and biological processes in a eukaryotic cell. However, the site-specific occupancy (stoichiometry) and turnover rate of ubiquitylation have not been quantified. Here we present an integrated picture of the global ubiquitylation site occupancy and half-life. Ubiquitylation site occupancy spans over four orders of magnitude, but the median ubiquitylation site occupancy is three orders of magnitude lower than that of phosphorylation. The occupancy, turnover rate, and regulation of sites by proteasome inhibitors are strongly interrelated, and these attributes distinguish sites involved in proteasomal degradation and cellular signaling. Sites in structured protein regions exhibit longer half-lives and stronger upregulation by proteasome inhibitors than sites in unstructured regions. Importantly, we discovered a surveillance mechanism that rapidly and site-indiscriminately deubiquitylates all ubiquitin-specific E1 and E2 enzymes, protecting them against accumulation of bystander ubiquitylation. The work provides a systems-scale, quantitative view of ubiquitylation properties and reveals general principles of ubiquitylation-dependent governance.
Collapse
Affiliation(s)
- Gabriela Prus
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Shankha Satpathy
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Brian T Weinert
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Takeo Narita
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
12
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
13
|
Loh YY, Anantharajan J, Huang Q, Xu W, Fulwood J, Ng HQ, Ng EY, Gea CY, Choong ML, Tan QW, Koh X, Lim WH, Nacro K, Cherian J, Baburajendran N, Ke Z, Kang C. Identification of small-molecule binding sites of a ubiquitin-conjugating enzyme-UBE2T through fragment-based screening. Protein Sci 2024; 33:e4904. [PMID: 38358126 PMCID: PMC10868430 DOI: 10.1002/pro.4904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
UBE2T is an attractive target for drug development due to its linkage with several types of cancers. However, the druggability of ubiquitin-conjugating E2 (UBE2T) is low because of the lack of a deep and hydrophobic pocket capable of forming strong binding interactions with drug-like small molecules. Here, we performed fragment screening using 19 F-nuclear magnetic resonance (NMR) and validated the hits with 1 H-15 N-heteronuclear single quantum coherence (HSQC) experiment and X-ray crystallographic studies. The cocrystal structures obtained revealed the binding modes of the hit fragments and allowed for the characterization of the fragment-binding sites. Further screening of structural analogues resulted in the identification of a compound series with inhibitory effect on UBE2T activity. Our current study has identified two new binding pockets in UBE2T, which will be useful for the development of small molecules to regulate the function of this protein. In addition, the compounds identified in this study can serve as chemical starting points for the development of UBE2T modulators.
Collapse
Affiliation(s)
- Yong Yao Loh
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jothi Anantharajan
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Qiwei Huang
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Weijun Xu
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Justina Fulwood
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Hui Qi Ng
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Chong Yu Gea
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Meng Ling Choong
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Qian Wen Tan
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Xiaoying Koh
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Wan Hsin Lim
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Kassoum Nacro
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Joseph Cherian
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Zhiyuan Ke
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| |
Collapse
|
14
|
Düring J, Wolter M, Toplak JJ, Torres C, Dybkov O, Fokkens TJ, Bohnsack KE, Urlaub H, Steinchen W, Dienemann C, Lorenz S. Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1. Nat Struct Mol Biol 2024; 31:364-377. [PMID: 38332367 PMCID: PMC10873202 DOI: 10.1038/s41594-023-01203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/07/2023] [Indexed: 02/10/2024]
Abstract
Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1-RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.
Collapse
Affiliation(s)
- Jonas Düring
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Madita Wolter
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Julia J Toplak
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Camilo Torres
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Olexandr Dybkov
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Thornton J Fokkens
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katherine E Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Research Group 'Bioanalytical Mass Spectrometry', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- 'Bioanalytics', Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells', University of Göttingen, Göttingen, Germany
| | - Wieland Steinchen
- Department of Chemistry, Philipps University Marburg, Marburg, Germany
- Center for Synthetic Microbiology, Philipps University Marburg, Marburg, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sonja Lorenz
- Research Group 'Ubiquitin Signaling Specificity', Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
15
|
Cai F, Xu H, Song S, Wang G, Zhang Y, Qian J, Xu L. Knockdown of Ubiquitin-Conjugating Enzyme E2 T Abolishes the Progression of Head and Neck Squamous Cell Carcinoma by Inhibiting NF-Κb Signaling and inducing Ferroptosis. Curr Protein Pept Sci 2024; 25:577-585. [PMID: 38584528 DOI: 10.2174/0113892037287640240322084946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/17/2024] [Accepted: 02/23/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND Ubiquitin-conjugating enzyme 2T (UBE2T) has been reported to be associated with uncontrolled cell growth and tumorigenesis in multiple cancer types. However, the understanding of its regulatory role in the carcinogenesis of Head And Neck Squamous Cell Carcinoma (HNSC) is limited. METHODS UBE2T expression in HNSC patient samples and the correlation between its expression and patients' survival rates were evaluated using The Cancer Genome Atlas (TCGA) database. Cell survival and proliferation were investigated in UM-SCC1 and UM-SCC15 cells infected with control and shUBE2T lentivirus. The xenograft mouse model was established using UM-SCC15 cells to examine HNSC tumorigenesis with or without UBE2T. Western blot, qRT-PCR, and ferroptosis assays were carried out to disclose the interaction between UBE2T and NF-κB signaling and ferroptosis. RESULTS The increased expression of UBE2T was noted in tumor tissues of patients with HNSC, correlating with a significantly reduced overall survival time in this patient cohort. Knockdown of UBE2T inhibited HNSC tumorigenesis and tumor growth. Mechanistically, inhibition of UBE2T suppressed NF-κB signaling and induced ferroptosis in HNSC. CONCLUSION Our study underscores the multifaceted role of UBE2T in HNSC, illuminating its potential as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Feng Cai
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Hongbo Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Shilong Song
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Gengming Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Yajun Zhang
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Jing Qian
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| | - Lu Xu
- Department of Radiation Oncology, the First Affiliated Hospital of Bengbu Medical College, Zhihuai Road, Bengbu, 233000, Anhui, China
| |
Collapse
|
16
|
Tayanloo-Beik A, Hamidpour SK, Nikkhah A, Arjmand R, Mafi AR, Rezaei-Tavirani M, Larijani B, Gilany K, Arjmand B. DNA Damage Responses, the Trump Card of Stem Cells in the Survival Game. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:165-188. [PMID: 37923882 DOI: 10.1007/5584_2023_791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Stem cells, as a group of undifferentiated cells, are enriched with self-renewal and high proliferative capacity, which have attracted the attention of many researchers as a promising approach in the treatment of many diseases over the past years. However, from the cellular and molecular point of view, the DNA repair system is one of the biggest challenges in achieving therapeutic goals through stem cell technology. DNA repair mechanisms are an advantage for stem cells that are constantly multiplying to deal with various types of DNA damage. However, this mechanism can be considered a trump card in the game of cell survival and treatment resistance in cancer stem cells, which can hinder the curability of various types of cancer. Therefore, getting a deep insight into the DNA repair system can bring researchers one step closer to achieving major therapeutic goals. The remarkable thing about the DNA repair system is that this system is not only under the control of genetic factors, but also under the control of epigenetic factors. Therefore, it is necessary to investigate the role of the DNA repair system in maintaining the survival of cancer stem cells from both aspects.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Anantharajan J, Tan QW, Fulwood J, Sifang W, Huang Q, Ng HQ, Koh X, Xu W, Cherian J, Baburajendran N, Kang C, Ke Z. Identification and characterization of inhibitors covalently modifying catalytic cysteine of UBE2T and blocking ubiquitin transfer. Biochem Biophys Res Commun 2023; 689:149238. [PMID: 37979329 DOI: 10.1016/j.bbrc.2023.149238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
UBE2T is an E2 ubiquitin ligase critical for ubiquitination of substrate and plays important roles in many diseases. Despite the important function, UBE2T is considered as an undruggable target due to lack of a pocket for binding to small molecules with satisfied properties for clinical applications. To develop potent and specific UBE2T inhibitors, we adopted a high-throughput screening assay and two compounds-ETC-6152 and ETC-9004 containing a sulfone tetrazole scaffold were identified. Solution NMR study demonstrated the direct interactions between UBE2T and compounds in solution. Further co-crystal structures reveal the binding modes of these compounds. Both compound hydrolysation and formation of a hydrogen bond with the thiol group of the catalytic cysteine were observed. The formation of covalent complex was confirmed with mass spectrometry. As these two compounds inhibit ubiquitin transfer, our study provides a strategy to develop potent inhibitors of UBE2T.
Collapse
Affiliation(s)
- Jothi Anantharajan
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Qian Wen Tan
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Justina Fulwood
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Wang Sifang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Qiwei Huang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Hui Qi Ng
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Xiaoying Koh
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Weijun Xu
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Joseph Cherian
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore
| | - Nithya Baburajendran
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore.
| | - CongBao Kang
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore.
| | - Zhiyuan Ke
- Experimental Drug Development Centre (EDDC), Agency for Science, Technology and Research (A*STAR), 10 Biopolis Road, #5-01, 138670, Singapore.
| |
Collapse
|
18
|
Ujike-Hikichi M, Gon Y, Ooki T, Morisawa T, Mizumura K, Kozu Y, Hiranuma H, Nakagawa Y, Shimizu T, Maruoka S. Anti-UBE2T antibody: A novel biomarker of progressive-fibrosing interstitial lung disease. Respir Investig 2023; 61:579-587. [PMID: 37429071 DOI: 10.1016/j.resinv.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 07/12/2023]
Abstract
BACKGROUND Anti-fibrotic therapy has demonstrated efficacy against progressive-fibrosing interstitial lung disease (PF-ILD); therefore, identifying disease behavior before progression has become a priority. As autoimmunity is implicated in the pathogenesis of various ILDs, this study explored circulating biomarkers that could predict the chronic progressive behavior of ILDs. METHODS A single-center retrospective cohort study was conducted. Circulating autoantibodies in patients with ILD were screened using microarray analysis to identify candidate biomarkers. An enzyme-linked immunosorbent assay was performed with a larger sample set for the quantification of antibodies. After 2 years of follow-up, ILDs were reclassified as PF or non-PF. The relationship between the participants' autoantibody levels measured at enrolment and final diagnosis of PF-ILD was determined. RESULTS In total, 61 healthy participants and 66 patients with ILDs were enrolled. Anti-ubiquitin-conjugating enzyme E2T (UBE2T) antibody was detected as a candidate biomarker. Anti-UBE2T antibody levels were elevated in patients with idiopathic pulmonary fibrosis (IPF). After following up on the study participants for 2 years, anti-UBE2T levels measured at enrolment significantly correlated with the new PF-ILD diagnosis. Immunohistochemical staining of normal lung tissues revealed sparsely located UBE2T in the bronchiole epithelium and macrophages, whereas IPF lung tissues showed robust expression in the epithelial lining of honeycomb structures. CONCLUSION To our knowledge, this is the first report to describe an anti-UBE2T antibody, a new biomarker that is significantly elevated in patients with ILD who present future disease progression.
Collapse
Affiliation(s)
- Mari Ujike-Hikichi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Takashi Ooki
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tomoko Morisawa
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Mizumura
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yutaka Kozu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Hisato Hiranuma
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshiko Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tetsuo Shimizu
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan.
| |
Collapse
|
19
|
Maharati A, Moghbeli M. Role of microRNAs in regulation of doxorubicin and paclitaxel responses in lung tumor cells. Cell Div 2023; 18:11. [PMID: 37480054 PMCID: PMC10362644 DOI: 10.1186/s13008-023-00093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
Lung cancer as the leading cause of cancer related mortality is always one of the main global health challenges. Despite the recent progresses in therapeutic methods, the mortality rate is still significantly high among lung cancer patients. A wide range of therapeutic methods including chemotherapy, radiotherapy, and surgery are used to treat lung cancer. Doxorubicin (DOX) and Paclitaxel (TXL) are widely used as the first-line chemotherapeutic drugs in lung cancer. However, there is a significant high percentage of DOX/TXL resistance in lung cancer patients, which leads to tumor recurrence and metastasis. Considering, the side effects of these drugs in normal tissues, it is required to clarify the molecular mechanisms of DOX/TXL resistance to introduce the efficient prognostic and therapeutic markers in lung cancer. MicroRNAs (miRNAs) have key roles in regulation of different pathophysiological processes including cell division, apoptosis, migration, and drug resistance. MiRNA deregulations are widely associated with chemo resistance in various cancers. Therefore, considering the importance of miRNAs in chemotherapy response, in the present review, we discussed the role of miRNAs in regulation of DOX/TXL response in lung cancer patients. It has been reported that miRNAs mainly induced DOX/TXL sensitivity in lung tumor cells by the regulation of signaling pathways, autophagy, transcription factors, and apoptosis. This review can be an effective step in introducing miRNAs as the non-invasive prognostic markers to predict DOX/TXL response in lung cancer patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
20
|
Vriend J. Role of Ubiquitin Ligases and Conjugases in Targeted Cancer Therapy. Cancers (Basel) 2023; 15:3460. [PMID: 37444570 DOI: 10.3390/cancers15133460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
The ubiquitin proteasome system regulates the activity of many short-lived proteins in cells [...].
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
21
|
de Carvalho LGA, Komoto TT, Moreno DA, Goes JVC, de Oliveira RTG, de Lima Melo MM, Roa MEGV, Gonçalves PG, Montefusco-Pereira CV, Pinheiro RF, Ribeiro Junior HL. USP15-USP7 Axis and UBE2T Differential Expression May Predict Pathogenesis and Poor Prognosis in De Novo Myelodysplastic Neoplasm. Int J Mol Sci 2023; 24:10058. [PMID: 37373211 PMCID: PMC10298103 DOI: 10.3390/ijms241210058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study was to evaluate the expression of USP7, USP15, UBE2O, and UBE2T genes in Myelodysplastic neoplasm (MDS) to identify possible targets of ubiquitination and deubiquitination in MDS pathobiology. To achieve this, eight datasets from the Gene Expression Omnibus (GEO) database were integrated, and the expression relationship of these genes was analyzed in 1092 MDS patients and healthy controls. Our results showed that UBE2O, UBE2T, and USP7 were upregulated in MDS patients compared with healthy individuals, but only in mononucleated cells collected from bone marrow samples (p < 0.001). In contrast, only the USP15 gene showed a downregulated expression compared with healthy individuals (p = 0.03). Additionally, the upregulation of UBE2T expression was identified in MDS patients with chromosomal abnormalities compared with patients with normal karyotypes (p = 0.0321), and the downregulation of UBE2T expression was associated with MDS hypoplastic patients (p = 0.033). Finally, the USP7 and USP15 genes were strongly correlated with MDS (r = 0.82; r2 = 0.67; p < 0.0001). These findings suggest that the differential expression of the USP15-USP7 axis and UBE2T may play an important role in controlling genomic instability and the chromosomal abnormalities that are a striking characteristic of MDS.
Collapse
Affiliation(s)
- Luiz Gustavo Almeida de Carvalho
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program in Translational Medicine, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Tatiana Takahasi Komoto
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-390, SP, Brazil; (T.T.K.); (D.A.M.); (P.G.G.)
| | - Daniel Antunes Moreno
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-390, SP, Brazil; (T.T.K.); (D.A.M.); (P.G.G.)
| | - João Vitor Caetano Goes
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Roberta Taiane Germano de Oliveira
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Mayara Magna de Lima Melo
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | | | - Paola Gyuliane Gonçalves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-390, SP, Brazil; (T.T.K.); (D.A.M.); (P.G.G.)
- Department of Pathology, School of Medicine, Universidade Estadual Paulista, Botucatu 18618-970, SP, Brazil
| | - Carlos Victor Montefusco-Pereira
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
| | - Ronald Feitosa Pinheiro
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program in Translational Medicine, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
- Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| | - Howard Lopes Ribeiro Junior
- Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza 60020-181, CE, Brazil; (L.G.A.d.C.); (J.V.C.G.); (M.M.d.L.M.); (C.V.M.-P.); (R.F.P.)
- Post-Graduate Program in Translational Medicine, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-390, SP, Brazil; (T.T.K.); (D.A.M.); (P.G.G.)
- Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza 60020-181, CE, Brazil
| |
Collapse
|
22
|
Wang Y, Gao G, Wei X, Zhang Y, Yu J. UBE2T Promotes Temozolomide Resistance of Glioblastoma Through Regulating the Wnt/β-Catenin Signaling Pathway. Drug Des Devel Ther 2023; 17:1357-1369. [PMID: 37181827 PMCID: PMC10168001 DOI: 10.2147/dddt.s405450] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023] Open
Abstract
Purpose Patients with glioblastoma (GBM) have poor prognosis and limited therapeutic options, largely because of chemoresistance to temozolomide (TMZ) treatment. Ubiquitin conjugating enzyme E2 T (UBE2T) plays a key role in regulating the malignancy of various tumors, including GBM; however, its role in TMZ resistance of GBM has not been elucidated. The purpose of this study was to clarify the role of UBE2T in mediating TMZ resistance and investigate the specific underlying mechanism. Methods Western blotting was used to detect the protein levels of UBE2T and Wnt/β-catenin-related factors. CCK-8, flow cytometry, and colony formation assays were used to examine the effect of UBE2T on TMZ resistance. Wnt/β-catenin signaling pathway activation was inhibited using XAV-939, and a xenograft mouse model was generated to clarify the function of TMZ in vivo. Results UBE2T knockdown sensitized GBM cells to TMZ treatment, whereas UBE2T overexpression promoted TMZ resistance. The specific UBE2T inhibitor, M435-1279, increased the sensitivity of GBM cells to TMZ. Mechanistically, our results demonstrated that UBE2T induces β-catenin nuclear translocation and increases the protein levels of downstream molecules, including survivin and c-Myc. Inhibition of Wnt/β-catenin signaling using XAV-939 blocked TMZ resistance due to UBE2T overexpression in GBM cells. In addition, UBE2T was shown to facilitate TMZ resistance by inducing Wnt/β-catenin signaling pathway activation in a mouse xenograft model. Combined treatment with TMZ and UBE2T inhibitor achieved superior tumor growth suppression relative to TMZ treatment alone. Conclusion Our data reveal a novel role of UBE2T in mediating TMZ resistance of GBM cells via regulating Wnt/β-catenin signaling. These findings indicate that targeting UBE2T has promising potential to overcome TMZ resistance of GBM.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Xiangpin Wei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Yang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Jian Yu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
23
|
A nomogram for predicting prognosis of multiple myeloma patients based on a ubiquitin-proteasome gene signature. Aging (Albany NY) 2022; 14:9951-9968. [PMID: 36534449 PMCID: PMC9831738 DOI: 10.18632/aging.204432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is a malignant hematopoietic disease that is usually incurable. However, the ubiquitin-proteasome system (UPS) genes have not yet been established as a prognostic predictor for MM, despite their potential applications in other cancers. METHODS RNA sequencing data and corresponding clinical information were acquired from Multiple Myeloma Research Foundation (MMRF)-COMMPASS and served as a training set (n=787). Validation of the prediction signature were conducted by the Gene Expression Omnibus (GEO) databases (n=1040). To develop a prognostic signature for overall survival (OS), least absolute shrinkage and selection operator regressions, along with Cox regressions, were used. RESULTS A six-gene signature, including KCTD12, SIAH1, TRIM58, TRIM47, UBE2S, and UBE2T, was established. Kaplan-Meier survival analysis of the training and validation cohorts revealed that patients with high-risk conditions had a significantly worse prognosis than those with low-risk conditions. Furthermore, UPS-related signature is associated with a positive immune response. For predicting survival, a simple to use nomogram and the corresponding web-based calculator (https://jiangyanxiamm.shinyapps.io/MMprognosis/) were built based on the UPS signature and its clinical features. Analyses of calibration plots and decision curves showed clinical utility for both training and validation datasets. CONCLUSIONS As a result of these results, we established a genetic signature for MM based on UPS. This genetic signature could contribute to improving individualized survival prediction, thereby facilitating clinical decisions in patients with MM.
Collapse
|
24
|
Dutta R, Guruvaiah P, Reddi KK, Bugide S, Reddy Bandi D, Edwards YJK, Singh K, Gupta R. UBE2T promotes breast cancer tumor growth by suppressing DNA replication stress. NAR Cancer 2022; 4:zcac035. [PMID: 36338541 PMCID: PMC9629447 DOI: 10.1093/narcan/zcac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
Abstract
Breast cancer is a leading cause of cancer-related deaths among women, and current therapies benefit only a subset of these patients. Here, we show that ubiquitin-conjugating enzyme E2T (UBE2T) is overexpressed in patient-derived breast cancer samples, and UBE2T overexpression predicts poor prognosis. We demonstrate that the transcription factor AP-2 alpha (TFAP2A) is necessary for the overexpression of UBE2T in breast cancer cells, and UBE2T inhibition suppresses breast cancer tumor growth in cell culture and in mice. RNA sequencing analysis identified interferon alpha-inducible protein 6 (IFI6) as a key downstream mediator of UBE2T function in breast cancer cells. Consistently, UBE2T inhibition downregulated IFI6 expression, promoting DNA replication stress, cell cycle arrest, and apoptosis and suppressing breast cancer cell growth. Breast cancer cells with IFI6 inhibition displayed similar phenotypes as those with UBE2T inhibition, and ectopic IFI6 expression in UBE2T-knockdown breast cancer cells prevented DNA replication stress and apoptosis and partly restored breast cancer cell growth. Furthermore, UBE2T inhibition enhanced the growth-suppressive effects of DNA replication stress inducers. Taken together, our study identifies UBE2T as a facilitator of breast cancer tumor growth and provide a rationale for targeting UBE2T for breast cancer therapies.
Collapse
Affiliation(s)
- Roshan Dutta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Praveen Guruvaiah
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kiran Kumar Reddi
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Suresh Bugide
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Dhana Sekhar Reddy Bandi
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Yvonne J K Edwards
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Kamaljeet Singh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
25
|
Cao K, Ling X, Jiang X, Ma J, Zhu J. Pan-cancer analysis of UBE2T with a focus on prognostic and immunological roles in lung adenocarcinoma. Respir Res 2022; 23:306. [DOI: 10.1186/s12931-022-02226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Ubiquitin-conjugating enzyme E2 T (UBE2T) is a potential oncogene. However, Pan-cancer analyses of the functional, prognostic and predictive implications of this gene are lacking.
Methods
We first analyzed UBE2T across 33 tumor types in The Cancer Genome Atlas (TCGA) project. We investigated the expression level of UBE2T and its effect on prognosis using the TCGA database. The correlation between UBE2T and cell cycle in pan-cancer was investigated using the single-cell sequencing data in Cancer Single-cell State Atlas (CancerSEA) database. The Weighted Gene Co-expression Network analysis (WGCNA), Univariate Cox and Least absolute shrinkage and selection operator (LASSO) Cox regression models, and receiver operating characteristic (ROC) were applied to assess the prognostic impact of UBE2T-related cell cycle genes (UrCCGs). Furthermore, the consensus clustering (CC) method was adopted to divide TCGA-lung adenocarcinoma (LUAD) patients into subgroups based on UrCCGs. Prognosis, molecular characteristics, and the immune panorama of subgroups were analyzed using Single-sample Gene Set Enrichment Analysis (ssGSEA). Results derived from TCGA-LUAD patients were validated in International Cancer Genome Consortium (ICGC)-LUAD data.
Results
UBE2T is highly expressed and is a prognostic risk factor in most tumors. CancerSEA database analysis revealed that UBE2T was positively associated with the cell cycle in various cancers(r > 0.60, p < 0.001). The risk signature of UrCCGs can reliably predict the prognosis of LUAD (AUC1 year = 0.720, AUC3 year = 0.700, AUC5 year = 0.630). The CC method classified the TCGA-LUAD cohort into 4 UrCCG subtypes (G1–G4). Kaplan–Meier survival analysis demonstrated that G2 and G4 subtypes had worse survival than G3 (Log-rank test PTCGA training set < 0.001, PICGC validation set < 0.001). A comprehensive analysis of immune infiltrates, immune checkpoints, and immunogenic cell death modulators unveiled different immune landscapes for the four subtypes. High immunophenoscore in G3 and G4 tumors suggested that these two subtypes were immunologically “hot,” tending to respond to immunotherapy compared to G2 subtypes (p < 0.001).
Conclusions
UBE2T is a critical oncogene in many cancers. Moreover, UrCCG classified the LUAD cohort into four subgroups with significantly different survival, molecular features, immune infiltrates, and immunotherapy responses. UBE2T may be a therapeutic target and predictor of prognosis and immunotherapy sensitivity.
Collapse
|
26
|
Vriend J, Thanasupawat T, Sinha N, Klonisch T. Ubiquitin Proteasome Gene Signatures in Ependymoma Molecular Subtypes. Int J Mol Sci 2022; 23:ijms232012330. [PMID: 36293188 PMCID: PMC9604155 DOI: 10.3390/ijms232012330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The ubiquitin proteasome system (UPS) is critically important for cellular homeostasis and affects virtually all key functions in normal and neoplastic cells. Currently, a comprehensive review of the role of the UPS in ependymoma (EPN) brain tumors is lacking but may provide valuable new information on cellular networks specific to different EPN subtypes and reveal future therapeutic targets. We have reviewed publicly available EPN gene transcription datasets encoding components of the UPS pathway. Reactome analysis of these data revealed genes and pathways that were able to distinguish different EPN subtypes with high significance. We identified differential transcription of several genes encoding ubiquitin E2 conjugases associated with EPN subtypes. The expression of the E2 conjugase genes UBE2C, UBE2S, and UBE2I was elevated in the ST_EPN_RELA subtype. The UBE2C and UBE2S enzymes are associated with the ubiquitin ligase anaphase promoting complex (APC/c), which regulates the degradation of substrates associated with cell cycle progression, whereas UBE2I is a Sumo-conjugating enzyme. Additionally, elevated in ST_EPN_RELA were genes for the E3 ligase and histone deacetylase HDAC4 and the F-box cullin ring ligase adaptor FBX031. Cluster analysis demonstrated several genes encoding E3 ligases and their substrate adaptors as EPN subtype specific genetic markers. The most significant Reactome Pathways associated with differentially expressed genes for E3 ligases and their adaptors included antigen presentation, neddylation, sumoylation, and the APC/c complex. Our analysis provides several UPS associated factors that may be attractive markers and future therapeutic targets for the subtype-specific treatment of EPN patients.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-789-3732
| | - Thatchawan Thanasupawat
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Namita Sinha
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| | - Thomas Klonisch
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Department of Pathology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB R3E 3P4, Canada
- CancerCare Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
27
|
Sijacki T, Alcón P, Chen ZA, McLaughlin SH, Shakeel S, Rappsilber J, Passmore LA. The DNA-damage kinase ATR activates the FANCD2-FANCI clamp by priming it for ubiquitination. Nat Struct Mol Biol 2022; 29:881-890. [PMID: 36050501 PMCID: PMC7613635 DOI: 10.1038/s41594-022-00820-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/18/2022] [Indexed: 01/10/2023]
Abstract
DNA interstrand cross-links are tumor-inducing lesions that block DNA replication and transcription. When cross-links are detected at stalled replication forks, ATR kinase phosphorylates FANCI, which stimulates monoubiquitination of the FANCD2-FANCI clamp by the Fanconi anemia core complex. Monoubiquitinated FANCD2-FANCI is locked onto DNA and recruits nucleases that mediate DNA repair. However, it remains unclear how phosphorylation activates this pathway. Here, we report structures of FANCD2-FANCI complexes containing phosphomimetic FANCI. We observe that, unlike wild-type FANCD2-FANCI, the phosphomimetic complex closes around DNA, independent of the Fanconi anemia core complex. The phosphomimetic mutations do not substantially alter DNA binding but instead destabilize the open state of FANCD2-FANCI and alter its conformational dynamics. Overall, our results demonstrate that phosphorylation primes the FANCD2-FANCI clamp for ubiquitination, showing how multiple posttranslational modifications are coordinated to control DNA repair.
Collapse
Affiliation(s)
| | - Pablo Alcón
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Zhuo A Chen
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | | | - Shabih Shakeel
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Juri Rappsilber
- Technische Universität Berlin, Chair of Bioanalytics, Berlin, Germany
| | | |
Collapse
|
28
|
Fiesco-Roa MÓ, García-de Teresa B, Leal-Anaya P, van ‘t Hek R, Wegman-Ostrosky T, Frías S, Rodríguez A. Fanconi anemia and dyskeratosis congenita/telomere biology disorders: Two inherited bone marrow failure syndromes with genomic instability. Front Oncol 2022; 12:949435. [PMID: 36091172 PMCID: PMC9453478 DOI: 10.3389/fonc.2022.949435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Inherited bone marrow failure syndromes (IBMFS) are a complex and heterogeneous group of genetic diseases. To date, at least 13 IBMFS have been characterized. Their pathophysiology is associated with germline pathogenic variants in genes that affect hematopoiesis. A couple of these diseases also have genomic instability, Fanconi anemia due to DNA damage repair deficiency and dyskeratosis congenita/telomere biology disorders as a result of an alteration in telomere maintenance. Patients can have extramedullary manifestations, including cancer and functional or structural physical abnormalities. Furthermore, the phenotypic spectrum varies from cryptic features to patients with significantly evident manifestations. These diseases require a high index of suspicion and should be considered in any patient with abnormal hematopoiesis, even if extramedullary manifestations are not evident. This review describes the disrupted cellular processes that lead to the affected maintenance of the genome structure, contrasting the dysmorphological and oncological phenotypes of Fanconi anemia and dyskeratosis congenita/telomere biology disorders. Through a dysmorphological analysis, we describe the phenotypic features that allow to make the differential diagnosis and the early identification of patients, even before the onset of hematological or oncological manifestations. From the oncological perspective, we analyzed the spectrum and risks of cancers in patients and carriers.
Collapse
Affiliation(s)
- Moisés Ó. Fiesco-Roa
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Maestría y Doctorado en Ciencias Médicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | | | - Paula Leal-Anaya
- Departamento de Genética Humana, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Renée van ‘t Hek
- Facultad de Medicina, Universidad Nacional Autoínoma de Meíxico (UNAM), Ciudad Universitaria, Ciudad de México, Mexico
| | - Talia Wegman-Ostrosky
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| | - Alfredo Rodríguez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Unidad de Genética de la Nutrición, Instituto Nacional de Pediatría, Ciudad de México, Mexico
- *Correspondence: Alfredo Rodríguez, ; Sara Frías,
| |
Collapse
|
29
|
Millrine D, Cummings T, Matthews SP, Peter JJ, Magnussen HM, Lange SM, Macartney T, Lamoliatte F, Knebel A, Kulathu Y. Human UFSP1 is an active protease that regulates UFM1 maturation and UFMylation. Cell Rep 2022; 40:111168. [PMID: 35926457 PMCID: PMC9638016 DOI: 10.1016/j.celrep.2022.111168] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/21/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023] Open
Abstract
An essential first step in the post-translational modification of proteins with UFM1, UFMylation, is the proteolytic cleavage of pro-UFM1 to expose a C-terminal glycine. Of the two UFM1-specific proteases (UFSPs) identified in humans, only UFSP2 is reported to be active, since the annotated sequence of UFSP1 lacks critical catalytic residues. Nonetheless, efficient UFM1 maturation occurs in cells lacking UFSP2, suggesting the presence of another active protease. We herein identify UFSP1 translated from a non-canonical start site to be this protease. Cells lacking both UFSPs show complete loss of UFMylation resulting from an absence of mature UFM1. While UFSP2, but not UFSP1, removes UFM1 from the ribosomal subunit RPL26, UFSP1 acts earlier in the pathway to mature UFM1 and cleave a potential autoinhibitory modification on UFC1, thereby controlling activation of UFMylation. In summary, our studies reveal important distinctions in substrate specificity and localization-dependent functions for the two proteases in regulating UFMylation.
Collapse
Affiliation(s)
- David Millrine
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Thomas Cummings
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Stephen P Matthews
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Joshua J Peter
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Helge M Magnussen
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sven M Lange
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Thomas Macartney
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Frederic Lamoliatte
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Axel Knebel
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation & Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
30
|
Zhang J, Wang J, Wu J, Huang J, Lin Z, Lin X. UBE2T regulates FANCI monoubiquitination to promote NSCLC progression by activating EMT. Oncol Rep 2022; 48:139. [PMID: 35703356 PMCID: PMC9245069 DOI: 10.3892/or.2022.8350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Fanconi anemia complementation group I (FANCI) is a critical protein for maintaining DNA stability. However, the exact role of FANCI in tumors remains to be elucidated. The present study aimed to explore the role and potential mechanism of action of FANCI in non-small cell lung cancer (NSCLC). To quantify the expression levels of FANCI and ubiquitin-conjugating enzyme E2T (UBE2T) in NSCLC tissues, reverse-transcription quantitative PCR and western blotting were employed. Cell Counting Kit-8, wound healing and Transwell assays along with flow cytometry analysis and tumor xenograft were used to investigate the biological effects of FANCI in NSCLC in vitro and in vivo. The binding of FANCI with UBE2T was confirmed using a co-immunoprecipitation assay. Epithelial-to-mesenchymal transition (EMT) protein markers were quantified via western blotting. The results showed that FANCI expression level was higher in NSCLC tumor tissues, compared with adjacent tissues. In A549 and H1299 cells, knockdown of FANCI inhibited cell proliferation, migration, invasion, cell cycle and EMT in vitro. Tumor growth was repressed in vitro, upon downregulation of FANCI expression. UBE2T was observed to directly bind to FANCI and regulate its monoubiquitination. Overexpression of UBE2T reversed the effects induced by FANCI knockdown in NSCLC cells. Furthermore, it was noted that FANCI interacted with WD repeat domain 48 (WDR48). Overexpression of WDR48 reversed the effects of FANCI on cell proliferation, migration and EMT. In conclusion, FANCI was identified to be a putative oncogene in NSCLC, wherein FANCI was monouniubiquitinated by UBE2T to regulate cell growth, migration and EMT through WDR48. The findings suggested that FANCI could be used as a prognostic biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Jiguang Zhang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jingdong Wang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jincheng Wu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Jianyuan Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Zhaoxian Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Xing Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
31
|
Yin X, Liu Q, Liu F, Tian X, Yan T, Han J, Jiang S. Emerging Roles of Non-proteolytic Ubiquitination in Tumorigenesis. Front Cell Dev Biol 2022; 10:944460. [PMID: 35874839 PMCID: PMC9298949 DOI: 10.3389/fcell.2022.944460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/15/2022] [Indexed: 12/13/2022] Open
Abstract
Ubiquitination is a critical type of protein post-translational modification playing an essential role in many cellular processes. To date, more than eight types of ubiquitination exist, all of which are involved in distinct cellular processes based on their structural differences. Studies have indicated that activation of the ubiquitination pathway is tightly connected with inflammation-related diseases as well as cancer, especially in the non-proteolytic canonical pathway, highlighting the vital roles of ubiquitination in metabolic programming. Studies relating degradable ubiquitination through lys48 or lys11-linked pathways to cellular signaling have been well-characterized. However, emerging evidence shows that non-degradable ubiquitination (linked to lys6, lys27, lys29, lys33, lys63, and Met1) remains to be defined. In this review, we summarize the non-proteolytic ubiquitination involved in tumorigenesis and related signaling pathways, with the aim of providing a reference for future exploration of ubiquitination and the potential targets for cancer therapies.
Collapse
Affiliation(s)
- Xiu Yin
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Qingbin Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Fen Liu
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Xinchen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tinghao Yan
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China.,Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Han
- Department of Thyroid and Breast Surgery, Jining First People's Hospital, Jining Medical University, Jining, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining Medical University, Jining, China
| |
Collapse
|
32
|
Villalona-Calero MA, Diaz JP, Duan W, Diaz Z, Schroeder ED, Aparo S, Gatcliffe T, Albrecht F, Venkatappa S, Guardiola V, Garrido S, Rubens M, DeZarraga F, Vuong H. Pembrolizumab activity in patients with Fanconi anemia repair pathway competent and deficient tumors. Biomark Res 2022; 10:39. [PMID: 35658948 PMCID: PMC9164357 DOI: 10.1186/s40364-022-00386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/10/2022] Open
Abstract
Background Given the observed antitumor activity of immune-checkpoint-inhibitors in patients with mismatch-repair deficient (MSI-H) tumors, we hypothesized that deficiency in homologous-recombination-repair (HRR) can also influence susceptibility. Methods Patients with disease progression on standard of care and for whom pembrolizumab had no FDA approved indication received pembrolizumab. Patients with MSI-H tumors were excluded. Objectives included immune-related objective response rate (iORR), progression-free survival (PFS) and 20-weeks-PFS. Pembrolizumab was given every 3 weeks and scans performed every six. We evaluated a triple-stain (FANCD2foci/DAPI/Ki67) functional assay of the Fanconi Anemia (FA) pathway: FATSI, in treated patients’ archived tumors. The two-stage sample size of 20/39 patients evaluated an expected iORR≥20% in the whole population vs. the null hypothesis of an iORR≤5%, based on an assumed iORR≥40% in patients with functional FA deficiency, and < 10% in patients with intact HRR. An expansion cohort of MSI stable endometrial cancer (MS-EC) followed. Exploratory stool microbiome analyses in selected patients were performed. Results Fifty-two patients (45F,7M;50-evaluable) were enrolled. For the 39 in the two-stage cohort, response evaluation showed 2CR,5PR,11SD,21PD (iORR-18%). FATSI tumor analyses showed 29 competent (+) and 10 deficient (−). 2PR,9SD,17PD,1NE occurred among the FATSI+ (iORR-7%) and 2CR,3PR,2SD,3PD among the FATSI(−) patients (iORR-50%). mPFS and 20w-PFS were 43 days and 21% in FATSI+, versus 202 days and 70% in FATSI(−) patients. One PR occurred in the MS-EC expansion cohort. Conclusions Pembrolizumab has meaningful antitumor activity in malignancies with no current FDA approved indications and FA functional deficiency. The results support further evaluation of FATSI as a discriminatory biomarker for population-selected studies. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00386-0.
Collapse
|
33
|
Zhang CY, Yang M. Functions of three ubiquitin-conjugating enzyme 2 genes in hepatocellular carcinoma diagnosis and prognosis. World J Hepatol 2022; 14:956-971. [PMID: 35721293 PMCID: PMC9157709 DOI: 10.4254/wjh.v14.i5.956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/01/2022] [Accepted: 05/07/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Liver cancer ranks the third cause of cancer-related death worldwide. The most common type of liver cancer is hepatocellular carcinoma (HCC). The survival time for HCC patients is very limited by years due to the lack of efficient treatment, failure of early diagnosis, and poor prognosis. Ubiquitination plays an essential role in the biochemical processes of a variety of cellular functions. AIM To investigate three ubiquitination-associated genes in HCC. METHODS Herein, the expression levels of ubiquitin-conjugating enzymes 2 (UBE2) including UBE2C, UBE2T, and UBE2S in tumor samples of HCC patients and non-tumor controls at the Cancer Genome Atlas (TCGA) database, was comprehensively analyzed. The relationship of UBE2 gene expression level with cancer stage, prognostic outcome, and TP53 mutant status was studied. RESULTS Our results showed that UBE2C, UBE2T, and UBE2S genes were overexpressed in HCC samples compared to non-tumor tissues. Dependent on the cancer progression stage, three UBE2 genes showed higher expression in tumor tissues at all four stages compared to non-tumor control samples. Furthermore, a significantly higher expression of these genes was found in stage 2 and stage 3 cancers compared to stage 1 cancer. Additionally, overexpression of those genes was negatively associated with prognostic outcome and overall survival time. Patients with TP53 mutation showed a higher expression level of three UBE2 genes, indicating an association between UBE2 expression with p53 function. CONCLUSION In summary, this study shed light on the potential roles of UBE2C, UBE2T, UBE2S on diagnostic and prognostic biomarkers for HCC. Moreover, based on our findings, it is appealing to further explore the correlation of those genes with TP53 mutation in HCC and the related mechanisms.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, United States
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States.
| |
Collapse
|
34
|
Functions of three ubiquitin-conjugating enzyme 2 genes in hepatocellular carcinoma diagnosis and prognosis. World J Hepatol 2022. [DOI: 10.4254/wjh.v14.i5.957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
35
|
Li Y, Yang X, Lu D. Knockdown of ubiquitin-conjugating enzyme E2T (UBE2T) suppresses lung adenocarcinoma progression via targeting fibulin-5 (FBLN5). Bioengineered 2022; 13:11867-11880. [PMID: 35543375 PMCID: PMC9275889 DOI: 10.1080/21655979.2022.2060162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the main histological type of lung cancer, which is the leading cause of cancer-related deaths. Accumulating evidence has displayed that UBE2T is related to tumor progression. However, its role in LUAD has not been fully elucidated. The expression of UBE2T was detected in LUAD tissues by qRT-PCR, western blotting, and immunohistochemistry. UBE2T shRNAs were transfected into LUAD cells to analyze the consequent alteration in function through CCK-8 assay, Edu assay, transwell assay, and TUNEL staining. The potential mechanism of UBE2T was analyzed through GEPIA and verified using ChIP, EMSA, and GST pull-down assays. Furthermore, a xenograft mouse model was used to assess UBE2T function in vivo. Results showed that UBE2T level was significantly elevated in LUAD tissues and high UBE2T expression was associated with poor overall survival and disease-free survival. Results from the loss-of-function experiments in vitro showed that UBE2T modulated LUAD cell proliferation, migration, invasion, and apoptosis. The mechanism analysis demonstrated that silence of UBE2T increased FBLN5 expression and inhibited the activation of p-ERK, p-GSK3β, and β-catenin. Moreover, following knockdown of UBE2T, the cell proliferation, migration, and invasion were decreased, and sh-FBLN5 partially reverse the decrease. In in vivo experiments, it was found that UBE2T knockdown inhibits the tumor growth in LUAD. Immunohistochemically, there was a reduction in Ki67 and an increase in FBLN5 in UBE2T shRNA-treated tumor tissues. In conclusion, UBE2T might be a potential biomarker of LUAD, and targeting the UBE2T/FBLN5 axis might be a novel treatment strategy for LUAD.
Collapse
Affiliation(s)
- Yi Li
- Department of Respiration Medicine, People's Hospital of Shanxi Province, Taiyuan City, PR China
| | - Xiaojuan Yang
- Department of Respiration Medicine, People's Hospital of Shanxi Province, Taiyuan City, PR China
| | - Dan Lu
- Department of Respiratory Medicine, Shanxi Medical University, Taiyuan City, PR China
| |
Collapse
|
36
|
Screening and Validation of Significant Genes with Poor Prognosis in Pathologic Stage-I Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3794021. [PMID: 35444699 PMCID: PMC9015852 DOI: 10.1155/2022/3794021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
Background Although more pathologic stage-I lung adenocarcinoma (LUAD) was diagnosed recently, some relapsed or distantly metastasized shortly after radical resection. The study aimed to identify biomarkers predicting prognosis in the pathologic stage-I LUAD and improve the understanding of the mechanisms involved in tumorigenesis. Methods We obtained the expression profiling data for non-small cell lung cancer (NSCLC) patients from the NCBI-GEO database. Differentially expressed genes (DEGs) between early-stage NSCLC and normal lung tissue were determined. After function enrichment analyses on DEGs, the protein-protein interaction (PPI) network was built and analyzed with the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. Overall survival (OS) and mRNA levels of genes were performed with Kaplan–Meier analysis and Gene Expression Profiling Interactive Analysis (GEPIA). qPCR and western blot analysis of hub genes in stage-I LUAD patients validated the significant genes with poor prognosis. Results A total of 172 DEGs were identified, which were mainly enriched in terms related to management of extracellular matrix (ECM), receptor signaling pathway, cell adhesion, activity of endopeptidase, and receptor. The PPI network identified 11 upregulated hub genes that were significantly associated with OS in NSCLC and highly expressed in NSCLC tissues compared with normal tissues by GEPIA. Elevated expression of ANLN, EXO1, KIAA0101, RRM2, TOP2A, and UBE2T were identified as potential risk factors in pathologic stage-I LUAD. Except for ANLN and KIAA0101, the hub genes mRNA levels were higher in tumors compared with adjacent non-cancerous samples in the qPCR analysis. The hub genes protein levels were also overexpressed in tumors. In vitro experiments showed that knockdown of UBE2T in LUAD cell lines could inhibit cell proliferation and cycle progression. Conclusions The DEGs can probably be used as potential predictors for stage-I LUAD worse prognosis and UBE2T may be a potential tumor promoter and target for treatment.
Collapse
|
37
|
MiR-182-5p inhibits the tumorigenesis of clear cell renal cell carcinoma by repressing UBE2T. Hum Cell 2022; 35:542-556. [PMID: 35129808 DOI: 10.1007/s13577-021-00661-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022]
Abstract
Ubiquitin-conjugating enzyme E2T (UBE2T), a member of the E2 family, has been reported to be overexpressed in certain tumor types and to have an important role in the Fanconi anemia pathway. However, the role of UBE2T in clear cell renal cell carcinoma (ccRCC) has not been clarified. MicroRNAs (miRNAs) participate in tumorigenesis by binding to genes and proteins that regulate cell proliferation or cell apoptosis. The aim of this study was to determine the role of UBE2T and the relationship between miR-182-5p and UBE2T in ccRCC. In the present study, UBE2T expression levels in ccRCC tissues and cells were assessed using real-time quantitative PCR (RT-qPCR) and western blotting. UBE2T protein expression was assessed in a total of 93 ccRCC patients from Peking University First Hospital (PKU) via immunohistochemistry (IHC). The effects of UBE2T knockdown on ccRCC cells were assessed with MTS assays, wound healing assays, Transwell invasion assays and flow cytometry. The effects of in vivo treatment were evaluated through xenograft experiments. The relationship between miR-182-5p and UBE2T was verified with a dual-luciferase reporter gene assay. We found that UBE2T was highly expressed in ccRCC cells and tissues. High UBE2T expression was positively correlated with advanced pathological stage, histological grade, maximum tumor diameter and distant metastasis. Multivariate analysis revealed that UBE2T expression was an independent risk factor for overall survival (OS) and recurrence-free survival (RFS) in patients with ccRCC. Knockdown of UBE2T significantly suppressed RCC cell proliferation, migration and invasion. Flow cytometry analysis showed that UBE2T knockdown promoted RCC cell cycle arrest at G2/M phase and increased cell apoptosis. The xenograft model confirmed that suppression of UBE2T significantly delayed tumor formation and growth in vivo. In addition, miR-182-5p inhibited UBE2T protein expression by targeting UBE2T mRNA and then inhibited the proliferation, migration and invasion of ccRCC cell. Our research reveals that UBE2T likely plays a critical role in ccRCC progression and may be a potential therapeutic target for ccRCC.
Collapse
|
38
|
Chen Z, Jin P, Chen Z, Ye F, Ren Z, Ji T, Li R, Yu L. The expression of circ_0090049 in hepatocellular carcinoma and the molecular regulation mechanism of other biological functions. Anticancer Drugs 2022; 33:48-60. [PMID: 34620742 DOI: 10.1097/cad.0000000000001100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in liver cancer. Circular RNA_0090049 (circ_0090049) has been shown to be involved in the advance of HCC. However, the interaction between circ_0090049 and microRNA (miRNA) in HCC has not been studied. Quantitative real-time PCR was used to detect the expression of related genes. Through detection of cell proliferation, migration, invasion, and rate of tumor sphere formation, the capping experiment was carried out to verify the regulatory relationship between miRNA and circ_0090049 or circ_0090049 and ubiquitin-conjugating enzyme E2 T (UBE2T). The expression of related proteins was detected by Western blotting. The interaction of miRNA with circ_0090049 or UBE2T was notarized by Dual-luciferase reporter assay. Xenotransplantation experiments confirmed the function of circ_0090049 in vivo. Circ_0090049 and UBE2T were upregulated in liver cancer. Silencing circ_0090049 reduced the proliferation, migration, invasion, and tumor spheroid formation rate of Huh7 and HCCLM3 cells. MiR-605-5p and miR-548c-3p were identified as targets of circ_0090049, and UBE2T was the target of miR-605-5p and miR-548c-3p. Anti-miR-605-5p, anti-miR-548c-3p or UBE2T overexpression restored the inhibitory effect of circ_0090049 knockdown on HCC cells. Animal experiments confirmed the antitumor effect of silence circ_0090049. Circ_0090049 regulates the expression of UBE2T by regulating miR-605-5p or miR-548c-3p, thereby promoting the development of HCC cells.
Collapse
Affiliation(s)
| | | | - Zhen Chen
- General Surgery, Ruian People's Hospital, Ruian City, Zhejiang Province, China
| | | | | | | | | | | |
Collapse
|
39
|
Di Genova A, Nardocci G, Maldonado-Agurto R, Hodar C, Valdivieso C, Morales P, Gajardo F, Marina R, Gutiérrez RA, Orellana A, Cambiazo V, González M, Glavic A, Mendez MA, Maass A, Allende ML, Montecino MA. Genome sequencing and transcriptomic analysis of the Andean killifish Orestias ascotanensis reveals adaptation to high-altitude aquatic life. Genomics 2021; 114:305-315. [PMID: 34954349 DOI: 10.1016/j.ygeno.2021.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/26/2021] [Accepted: 12/17/2021] [Indexed: 12/21/2022]
Abstract
Orestias ascotanensis (Cyprinodontidae) is a teleost pupfish endemic to springs feeding into the Ascotan saltpan in the Chilean Altiplano (3,700 m.a.s.l.) and represents an opportunity to study adaptations to high-altitude aquatic environments. We have de novo assembled the genome of O. ascotanensis at high coverage. Comparative analysis of the O. ascotanensis genome showed an overall process of contraction, including loss of genes related to G-protein signaling, chemotaxis and signal transduction, while there was expansion of gene families associated with microtubule-based movement and protein ubiquitination. We identified 818 genes under positive selection, many of which are involved in DNA repair. Additionally, we identified novel and conserved microRNAs expressed in O. ascotanensis and its closely-related species, Orestias gloriae. Our analysis suggests that positive selection and expansion of genes that preserve genome stability are a potential adaptive mechanism to cope with the increased solar UV radiation to which high-altitude animals are exposed to.
Collapse
Affiliation(s)
- Alex Di Genova
- FONDAP Center for Genome Regulation, Santiago, Chile; Center for Mathematical Modeling, Department of Mathematical Engineering, Faculty of Physical and Mathematical Sciences, Universidad de Chile and IRL CNRS, 2807 Santiago, Chile
| | - Gino Nardocci
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo Maldonado-Agurto
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Christian Hodar
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Camilo Valdivieso
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Pamela Morales
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Gajardo
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Raquel Marina
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Rodrigo A Gutiérrez
- FONDAP Center for Genome Regulation, Santiago, Chile; Department of Molecular Genetics and Microbiology, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ariel Orellana
- FONDAP Center for Genome Regulation, Santiago, Chile; Center of Plant Biotechnology, Universidad Andres Bello, Santiago, Chile
| | - Veronica Cambiazo
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Alvaro Glavic
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Marco A Mendez
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile; Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Chile; Institute of Ecology and Biodiversity, Chile
| | - Alejandro Maass
- FONDAP Center for Genome Regulation, Santiago, Chile; Center for Mathematical Modeling, Department of Mathematical Engineering, Faculty of Physical and Mathematical Sciences, Universidad de Chile and IRL CNRS, 2807 Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Santiago, Chile; Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | - Martin A Montecino
- FONDAP Center for Genome Regulation, Santiago, Chile; Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
40
|
Li L, Li Q. miR-543 impairs breast cancer cell phenotypes by targeting and suppressing ubiquitin-conjugating enzyme E2T (UBE2T). Bioengineered 2021; 12:12394-12406. [PMID: 34787051 PMCID: PMC8810138 DOI: 10.1080/21655979.2021.2005217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Breast cancer, with high morbidity worldwide, is a threat to the life of women. MiR-543 was identified as playing an active part in the development of breast cancer involving multiple molecules. The goal of this study was to explore the molecular mechanisms of the involvement of miR-543 in the development of breast cancer. Quantitative real-time PCR (qRT-PCR) or Western blotting was used to detect mRNA or protein expression. Cell counting kit-8 (CCK-8), and the 5-bromo-2ʹ-deoxyuridine (BrdU), wound healing, and Transwell assays were the main experimental procedures. Furthermore, subcutaneous tumor formation experiments were conducted to detect the function of miR-543 in breast cancer development in vivo. The match of miR-543 and ubiquitin-conjugating enzyme E2T (UBE2T) was detected through a dual-luciferase reporter experiment and RNA pull-down assay. Based on these results, miR-543 exhibited reduced expression in breast cancer tissues and cell lines, whereas UBE2T exhibited high levels. Furthermore, miR-543 directly targeted UBE2T, and a negative correlation between miR-543 and UBE2T was also observed in breast cancer tissues. Moreover, miR-543 overexpression led to inhibition of viability, proliferation, migration, and invasion of breast cancer. Furthermore, miR-543 overexpression undermined the UBE2T promotional effect by inhibiting ERK/MAPK pathway activity in breast cancer cells. Our study revealed that miR-543 impaired breast cancer progression by targeting UBE2T and downregulating UBE2T expression through the ERK/MAPK pathway, which suggested that miR-543 and UBE2T might serve as promising therapeutic gene targets for breast cancer in clinical application.
Collapse
Affiliation(s)
- Li Li
- Department of Thyroid and Breast Surgery, The Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| | - Qing Li
- Department of Oncology, The Affiliated Hospital of Jianghan University, Wuhan 430015, Hubei, China
| |
Collapse
|
41
|
Lioulia E, Mokos P, Panteris E, Dafou D. UBE2T promotes β-catenin nuclear translocation in hepatocellular carcinoma through MAPK/ERK-dependent activation. Mol Oncol 2021; 16:1694-1713. [PMID: 34614271 PMCID: PMC9019890 DOI: 10.1002/1878-0261.13111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/25/2021] [Accepted: 10/05/2021] [Indexed: 11/11/2022] Open
Abstract
Ubiquitin‐conjugating enzyme E2T (UBE2T) has been implicated in many types of cancer including hepatocellular carcinoma (HCC). Epithelial–mesenchymal transition (EMT) process plays a fundamental role during tumor metastasis and progression. However, the molecular mechanisms underlying EMT in HCC in accordance with UBE2T still remain unknown. In this study, we showed that UBE2T overexpression augmented the oncogenic properties and specifically EMT in HCC cell lines, while its silencing attenuated them. UBE2T affected the activation of EMT‐associated signaling pathways: MAPK/ERK, AKT/mTOR, and Wnt/β‐catenin. In addition, we revealed that the epithelial protein complex of E‐cadherin/β‐catenin, a vital regulator of signal transduction in tumor initiation and progression, was totally disrupted at the cell membrane. In particular, we observed that UBE2T overexpression led to E‐cadherin loss accompanied by a simultaneous elevation of both cytoplasmic and nuclear β‐catenin, while its silencing resulted in a strong E‐cadherin turnover at the cell membrane. Interestingly, chemical inhibition of the MAPK/ERK, AKT/mTOR, and Wnt/β‐catenin signaling pathways demonstrated that the nuclear translocation of β‐catenin and subsequent EMT was enhanced mainly by MAPK/ERK. Collectively, our findings demonstrate the UBE2T/MAPK‐ERK/β‐catenin axis as a critical regulator of cell state transition and EMT in HCC.
Collapse
Affiliation(s)
- Elisavet Lioulia
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Panagiotis Mokos
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Dimitra Dafou
- Department of Genetics, Development and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
42
|
Russi M, Marson D, Fermeglia A, Aulic S, Fermeglia M, Laurini E, Pricl S. The fellowship of the RING: BRCA1, its partner BARD1 and their liaison in DNA repair and cancer. Pharmacol Ther 2021; 232:108009. [PMID: 34619284 DOI: 10.1016/j.pharmthera.2021.108009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/22/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
The breast cancer type 1 susceptibility protein (BRCA1) and its partner - the BRCA1-associated RING domain protein 1 (BARD1) - are key players in a plethora of fundamental biological functions including, among others, DNA repair, replication fork protection, cell cycle progression, telomere maintenance, chromatin remodeling, apoptosis and tumor suppression. However, mutations in their encoding genes transform them into dangerous threats, and substantially increase the risk of developing cancer and other malignancies during the lifetime of the affected individuals. Understanding how BRCA1 and BARD1 perform their biological activities therefore not only provides a powerful mean to prevent such fatal occurrences but can also pave the way to the development of new targeted therapeutics. Thus, through this review work we aim at presenting the major efforts focused on the functional characterization and structural insights of BRCA1 and BARD1, per se and in combination with all their principal mediators and regulators, and on the multifaceted roles these proteins play in the maintenance of human genome integrity.
Collapse
Affiliation(s)
- Maria Russi
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Domenico Marson
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Alice Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Suzana Aulic
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Maurizio Fermeglia
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Erik Laurini
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTs), DEA, University of Trieste, Trieste, Italy; Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
| |
Collapse
|
43
|
Zhu J, Ao H, Liu M, Cao K, Ma J. UBE2T promotes autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma. J Transl Med 2021; 19:374. [PMID: 34461934 PMCID: PMC8407090 DOI: 10.1186/s12967-021-03056-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Background Ubiquitin-conjugating enzyme E2T (UBE2T) acts as an oncogene in various types of cancer. However, the mechanisms behind its oncogenic role remain unclear in lung cancer. This study aims to explore the function and clinical relevance of UBE2T in lung cancer. Methods Lentiviral vectors were used to mediate UBE2T depletion or overexpress UBE2T in lung cancer cells. CCK8 analysis and western blotting were performed to investigate the effects of UBE2T on proliferation, autophagy, and relevant signaling pathways. To exploit the clinical significance of UBE2T, we performed immunohistochemistry staining with an anti-UBE2T antibody on 131 NSCLC samples. Moreover, we downloaded the human lung adenocarcinoma (LUAD) dataset from The Cancer Atlas Project (TCGA). Lasso Cox regression model was adopted to establish a prognostic model with UBE2T-correlated autophagy genes. Results We found that UBE2T stimulated proliferation and autophagy, and silencing this gene abolished autophagy in lung cancer cells. As suggested by Gene set enrichment analysis, we observed that UBE2T downregulated p53 levels in A549 cells and vice versa. Blockade of p53 counteracted the inhibitory effects of UBE2T depletion on autophagy. Meanwhile, the AMPK/mTOR signaling pathway was activated during UBE2T-mediated autophagy, suggesting that UBE2T promotes autophagy via the p53/AMPK/mTOR pathway. Interestingly, UBE2T overexpression increased cisplatin-trigged autophagy and led to cisplatin resistance of A549 cells, whereas inhibiting autophagy reversed drug resistance. However, no association was observed between UEB2T and overall survival in a population of 131 resectable NSCLC patients. Therefore, we developed and validated a multiple gene signature by considering UBE2T and its relevance in autophagy in lung cancer. The risk score derived from the prognostic signature significantly stratified LUAD patients into low- and high-risk groups with different overall survival. The risk score might independently predict prognosis. Interestingly, nomogram and decision curve analysis demonstrated that the signature’s prognostic accuracy culminated while combined with clinical features. Finally, the risk score showed great potential in predicting clinical chemosensitivity. Conclusions We found that UBE2T upregulates autophagy in NSCLC cells by activating the p53/AMPK/mTOR signaling pathway. The clinical predicting ability of UBE2T in LUAD can be improved by considering the autophagy-regulatory role of UBE2T. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03056-1.
Collapse
Affiliation(s)
- Jinhong Zhu
- Department of Clinical Laboratory, Biobank, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Haijiao Ao
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Mingdong Liu
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Kui Cao
- Department of Clinical Oncology, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China
| | - Jianqun Ma
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
44
|
Grill M, Lazzeri I, Kirsch A, Steurer N, Grossmann T, Karbiener M, Heitzer E, Gugatschka M. Vocal Fold Fibroblasts in Reinke's Edema Show Alterations Involved in Extracellular Matrix Production, Cytokine Response and Cell Cycle Control. Biomedicines 2021; 9:biomedicines9070735. [PMID: 34206882 PMCID: PMC8301432 DOI: 10.3390/biomedicines9070735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
The voice disorder Reinke’s edema (RE) is a smoking- and voice-abuse associated benign lesion of the vocal folds, defined by an edema of the Reinke’s space, accompanied by pathological microvasculature changes and immune cell infiltration. Vocal fold fibroblasts (VFF) are the main cell type of the lamina propria and play a key role in the disease progression. Current therapy is restricted to symptomatic treatment. Hence, there is an urgent need for a better understanding of the molecular causes of the disease. In the present study, we investigated differential expression profiles of RE and control VFF by means of RNA sequencing. In addition, fast gene set enrichment analysis (FGSEA) was performed in order to obtain involved biological processes, mRNA and protein levels of targets of interest were further evaluated. We identified 74 differentially regulated genes in total, 19 of which were upregulated and 55 downregulated. Differential expression analysis and FGSEA revealed upregulated genes and pathways involved in extracellular matrix (ECM) remodeling, inflammation and fibrosis. Downregulated genes and pathways were involved in ECM degradation, cell cycle control and proliferation. The current study addressed for the first time a direct comparison of VFF from RE to control and evaluated immediate functional consequences.
Collapse
Affiliation(s)
- Magdalena Grill
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
| | - Isaac Lazzeri
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria; (I.L.); (E.H.)
| | - Andrijana Kirsch
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
- Correspondence:
| | - Nina Steurer
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
| | - Tanja Grossmann
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
| | - Michael Karbiener
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
- Global Pathogen Safety, Baxter AG, (part of Takeda), 1220 Vienna, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, 8010 Graz, Austria; (I.L.); (E.H.)
| | - Markus Gugatschka
- Division of Phoniatrics, Department of Otorhinolaryngology, Medical University of Graz, 8036 Graz, Austria; (M.G.); (N.S.); (T.G.); (M.K.); (M.G.)
| |
Collapse
|
45
|
Lemonidis K, Arkinson C, Rennie ML, Walden H. Mechanism, specificity, and function of FANCD2-FANCI ubiquitination and deubiquitination. FEBS J 2021; 289:4811-4829. [PMID: 34137174 DOI: 10.1111/febs.16077] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
Fanconi anemia (FA) is a rare genetic disorder caused by mutations in any of the currently 22 known FA genes. The products of these genes, along with other FA-associated proteins, participate in a biochemical pathway, known as the FA pathway. This pathway is responsible for the repair of DNA interstrand cross-links (ICL) and the maintenance of genomic stability in response to replication stress. At the center of the pathway is the monoubiquitination of two FA proteins, FANCD2 and FANCI, on two specific lysine residues. This is achieved by the combined action of the UBE2T ubiquitin-conjugating enzyme and a large multicomponent E3 ligase, known as the FA-core complex. This E2-E3 pair specifically targets the FANCI-FANCD2 heterodimer (ID2 complex) for ubiquitination on DNA. Deubiquitination of both FANCD2 and FANCI, which is also critical for ICL repair, is achieved by the USP1-UAF1 complex. Recent work suggests that FANCD2 ubiquitination transforms the ID2 complex into a sliding DNA clamp. Further, ID2 ubiquitination on FANCI does not alter the closed ID2 conformation observed upon FANCD2 ubiquitination and the associated ID2Ub complex with high DNA affinity. However, the resulting dimonoubiquitinated complex is highly resistant to USP1-UAF1 deubiquitination. This review will provide an update on recent work focusing on how specificity in FANCD2 ubiquitination and deubiquitination is achieved. Recent findings shedding light to the mechanisms, molecular functions, and biological roles of FANCI/FANCD2 ubiquitination and deubiquitination will be also discussed. ENZYMES: UBA1 (6.2.1.45), UBE2T (2.3.2.23), FANCL (2.3.2.27), USP1 (3.4.19.12).
Collapse
Affiliation(s)
- Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Connor Arkinson
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Martin L Rennie
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
46
|
Ubiquitin-conjugating enzyme E2T regulates cell proliferation and migration in cholangiocarcinoma. Anticancer Drugs 2021; 31:836-846. [PMID: 32796405 DOI: 10.1097/cad.0000000000000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ubiquitin-conjugating enzyme E2T (UBE2T) is overexpressed in several human cancer cells, but a role in cholangiocarcinoma (CAA) progression has not been investigated. We analyzed the expression of UBE2T in CAA tissues. Then, we generated UBE2T deregulation models in which it was overexpressed or silenced, and examined the effects on CAA malignant progression by flow cytometry, western blot, MTT assay, wound healing assay and transwell assay. We report the involvement of UBE2T in CAA malignant progression. UBE2T was found to be highly expressed in human CAA cells both in vitro and in vivo. Overexpression of UBE2T significantly enhanced epithelial-to-mesenchymal transition, proliferation, migration and invasion of CAA cells in vitro, while silencing UBE2T had opposing effects. Furthermore, UBE2T appears to exert its effects via the mammalian target of rapamycin (mTOR) pathway as the cellular effects caused by UBE2T overexpression are inhibited by the mTOR inhibitor rapamycin. Our findings suggest that UBE2T may have potential as a new therapeutic target for the prevention or treatment of CAA.
Collapse
|
47
|
Mao JX, Zhao YY, Dong JY, Liu C, Xue Q, Ding GS, Teng F, Guo WY. UBE2T And CYP3A4: hub genes regulating the transformation of cirrhosis into hepatocellular carcinoma. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1933208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Jia-Xi Mao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Yuan-Yu Zhao
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Jia-Yong Dong
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Cong Liu
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Qiang Xue
- Department of Neurosurgery, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Guo-Shan Ding
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| | - Wen-Yuan Guo
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
48
|
Vriend J, Nachtigal MW. Ubiquitin Proteasome Pathway Transcriptome in Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13112659. [PMID: 34071321 PMCID: PMC8198060 DOI: 10.3390/cancers13112659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022] Open
Abstract
In this article, we reviewed the transcription of genes coding for components of the ubiquitin proteasome pathway in publicly available datasets of epithelial ovarian cancer (EOC). KEGG analysis was used to identify the major pathways distinguishing EOC of low malignant potential (LMP) from invasive high-grade serous ovarian carcinomas (HGSOC), and to identify the components of the ubiquitin proteasome system that contributed to these pathways. We identified elevated transcription of several genes encoding ubiquitin conjugases associated with HGSOC. Fifty-eight genes coding for ubiquitin ligases and more than 100 genes encoding ubiquitin ligase adaptors that were differentially expressed between LMP and HGSOC were also identified. Many differentially expressed genes encoding E3 ligase adaptors were Cullin Ring Ligase (CRL) adaptors, and 64 of them belonged to the Cullin 4 DCX/DWD family of CRLs. The data suggest that CRLs play a role in HGSOC and that some of these proteins may be novel therapeutic targets. Differential expression of genes encoding deubiquitinases and proteasome subunits was also noted.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-789-3732
| | - Mark W. Nachtigal
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Department of Obstetrics, Gynecology & Reproductive Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
49
|
Sharp MF, Bythell-Douglas R, Deans AJ, Crismani W. The Fanconi anemia ubiquitin E3 ligase complex as an anti-cancer target. Mol Cell 2021; 81:2278-2289. [PMID: 33984284 DOI: 10.1016/j.molcel.2021.04.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/27/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Agents that induce DNA damage can cure some cancers. However, the side effects of chemotherapy are severe because of the indiscriminate action of DNA-damaging agents on both healthy and cancerous cells. DNA repair pathway inhibition provides a less toxic and targeted alternative to chemotherapy. A compelling DNA repair target is the Fanconi anemia (FA) E3 ligase core complex due to its critical-and likely singular-role in the efficient removal of specific DNA lesions. FA pathway inactivation has been demonstrated to specifically kill some types of cancer cells without the addition of exogenous DNA damage, including cells that lack BRCA1, BRCA2, ATM, or functionally related genes. In this perspective, we discuss the genetic and biochemical evidence in support of the FA core complex as a compelling drug target for cancer therapy. In particular, we discuss the genetic, biochemical, and structural data that could rapidly advance our capacity to identify and implement the use of FA core complex inhibitors in the clinic.
Collapse
Affiliation(s)
- Michael F Sharp
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Wayne Crismani
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St. Vincent's), University of Melbourne, Fitzroy, VIC, Australia.
| |
Collapse
|
50
|
Cabañas Morafraile E, Pérez-Peña J, Fuentes-Antrás J, Manzano A, Pérez-Segura P, Pandiella A, Galán-Moya EM, Ocaña A. Genomic Correlates of DNA Damage in Breast Cancer Subtypes. Cancers (Basel) 2021; 13:cancers13092117. [PMID: 33925616 PMCID: PMC8123819 DOI: 10.3390/cancers13092117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Breast cancer (BC) is the most common invasive tumor in women and the second leading cause of cancer-related death. Therefore, identification of druggable targets to improve current therapies and overcome resistance is a major goal. In this work, we performed an in silico analysis of transcriptomic datasets in breast cancer, and focused on those involved in DNA damage, as were clearly upregulated using gene set enrichment analyses (GSEA), particular the following pathways: ATM/ATR, BARD1 and Fanconi Anemia. BHLHE40, RFWD2, BRIP1, PRKDC, NBN, RNF8, FANCD2, RAD1, BLM, DCLRE1C, UBE2T, CSTF1, MCM7, RFC4, YWHAB, YWHAZ, CDC6, CCNE1, and FANCI genes were amplified/overexpressed in BC, and correlated with detrimental prognosis. Finally, we selected the best transcriptomic signature of genes within this function that associated with clinical outcome to identify functional genomic correlates of outcome. Abstract Among the described druggable vulnerabilities, acting on the DNA repair mechanism has gained momentum, with the approval of PARP inhibitors in several indications, including breast cancer. However, beyond the mere presence of BRCA1/BRCA2 mutations, the identification of additional biomarkers that would help to select tumors with an extreme dependence on DNA repair machinery would help to stratify therapeutic decisions. Gene set enrichment analyses (GSEA) using public datasets evaluating expression values between normal breast tissue and breast cancer identified a set of upregulated genes. Genes included in different pathways, such as ATM/ATR, BARD1, and Fanconi Anemia, which are involved in the DNA damage response, were selected and confirmed using molecular alterations data contained at cBioportal. Nineteen genes from these gene sets were identified to be amplified and upregulated in breast cancer but only five of them NBN, PRKDC, RFWD2, UBE2T, and YWHAZ meet criteria in all breast cancer molecular subtypes. Correlation of the selected genes with prognosis (relapse free survival, RFS, and overall survival, OS) was performed using the KM Plotter Online Tool. In last place, we selected the best signature of genes within this process whose upregulation can be indicative of a more aggressive phenotype and linked with worse outcome. In summary, we identify genomic correlates within DNA damage pathway associated with prognosis in breast cancer.
Collapse
Affiliation(s)
- Esther Cabañas Morafraile
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (J.F.-A.); (A.M.); (P.P.-S.)
| | - Javier Pérez-Peña
- Instituto de Biología Molecular y Celular del Cáncer del CSIC, IBSAL and CIBERONC, 37007 Salamanca, Spain; (J.P.-P.); (A.P.)
| | - Jesús Fuentes-Antrás
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (J.F.-A.); (A.M.); (P.P.-S.)
| | - Aránzazu Manzano
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (J.F.-A.); (A.M.); (P.P.-S.)
| | - Pedro Pérez-Segura
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (J.F.-A.); (A.M.); (P.P.-S.)
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer del CSIC, IBSAL and CIBERONC, 37007 Salamanca, Spain; (J.P.-P.); (A.P.)
| | - Eva M. Galán-Moya
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB) and Nursery School, Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain;
| | - Alberto Ocaña
- Experimental Therapeutics Unit, Hospital Clínico San Carlos (HCSC), Instituto de Investigación Sanitaria San Carlos (IdISSC) and Centro de Investigación Biomédica en Red en Oncología (CIBERONC), 28040 Madrid, Spain; (E.C.M.); (J.F.-A.); (A.M.); (P.P.-S.)
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB) and Nursery School, Campus de Albacete, Universidad de Castilla-La Mancha, 02008 Albacete, Spain;
- Correspondence:
| |
Collapse
|