1
|
Newton LS, Gathmann C, Ridewood S, Smith RJ, Wijaya AJ, Hornsby TW, Morling KL, Annett D, Chiozzi RZ, Reuschl AK, Govasli ML, Tan YY, Thorne LG, Jolly C, Thalassinos K, Ciulli A, Towers GJ, Selwood DL. Macrocycle-based PROTACs selectively degrade cyclophilin A and inhibit HIV-1 and HCV. Nat Commun 2025; 16:1484. [PMID: 39929804 PMCID: PMC11811207 DOI: 10.1038/s41467-025-56317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Targeting host proteins that are crucial for viral replication offers a promising antiviral strategy. We have designed and characterised antiviral PROteolysis TArgeting Chimeras (PROTACs) targeting the human protein cyclophilin A (CypA), a host cofactor for unrelated viruses including human immunodeficiency virus (HIV) and hepatitis C virus (HCV). The PROTAC warheads are based on fully synthetic macrocycles derived from sanglifehrin A, which are structurally different from the classical Cyp inhibitor, cyclosporine A. Our Cyp-PROTACs decrease CypA levels in cell lines and primary human cells and have high specificity for CypA confirmed by proteomics experiments. Critically, CypA degradation facilitates improved antiviral activity against HIV-1 in primary human CD4+ T cells compared to the non-PROTAC parental inhibitor, at limiting inhibitor concentrations. Similarly, we observe antiviral activity against HCV replicon in a hepatoma cell line. We propose that CypA-targeting PROTACs inhibit viral replication potently and anticipate reduced evolution of viral resistance and broad efficacy against unrelated viruses. Furthermore, they provide powerful tools for probing cyclophilin biology.
Collapse
Affiliation(s)
- Lydia S Newton
- Division of Infection and Immunity, University College London, London, UK
| | - Clara Gathmann
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Sophie Ridewood
- Division of Infection and Immunity, University College London, London, UK
| | - Robert J Smith
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Andre J Wijaya
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas W Hornsby
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Kate L Morling
- Division of Infection and Immunity, University College London, London, UK
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Dara Annett
- Division of Infection and Immunity, University College London, London, UK
| | - Riccardo Zenezini Chiozzi
- University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
| | | | - Morten L Govasli
- Division of Infection and Immunity, University College London, London, UK
- Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Ying Ying Tan
- Division of Infection and Immunity, University College London, London, UK
| | - Lucy G Thorne
- Division of Infection and Immunity, University College London, London, UK
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, UK
| | - Konstantinos Thalassinos
- University College London Mass Spectrometry Science Technology Platform, Division of Biosciences, University College London, London, UK
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, School of Life Sciences, University of Dundee, Dundee, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK.
| | - David L Selwood
- Wolfson Institute for Biomedical Research, University College London, London, UK.
| |
Collapse
|
2
|
Tan X, Xiang Y, Shi J, Chen L, Yu D. Targeting NTCP for liver disease treatment: A promising strategy. J Pharm Anal 2024; 14:100979. [PMID: 39310850 PMCID: PMC11415714 DOI: 10.1016/j.jpha.2024.100979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
The sodium taurocholate co-transporting polypeptide (NTCP), a bile acids transporter, has been identified as a new therapeutic target for the treatment of liver disease. This paper thoroughly investigates the function of NTCP for regulating bile acid regulation, its correlation with hepatitis B and D infections, and its association with various liver diseases. Additionally, in this review we examine recent breakthroughs in creating NTCP inhibitors and their prospective applications in liver disease treatment. While this review emphasizes the promising potential of targeting NTCP, it concurrently underscores the need for broader and more detailed research to fully understand the long-term implications and potential side effects associated with NTCP inhibition.
Collapse
Affiliation(s)
- Xin Tan
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yu Xiang
- College of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lu Chen
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Guanghan People's Hospital, Guanghan, Sichuan, 618300, China
| | - Dongke Yu
- Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| |
Collapse
|
3
|
Buchanan FJT, Chen S, Harris M, Herod MR. The hepatitis E virus ORF1 hypervariable region confers partial cyclophilin dependency. J Gen Virol 2023; 104:001919. [PMID: 37942835 PMCID: PMC10768694 DOI: 10.1099/jgv.0.001919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/27/2023] [Indexed: 11/10/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging pathogen responsible for more than 20 million cases of acute hepatitis globally per annum. Healthy individuals typically have a self-limiting infection, but mortality rates in some populations such as pregnant women can reach 30 %. A detailed understanding of the virus lifecycle is lacking, mainly due to limitations in experimental systems. In this regard, the cyclophilins are an important family of proteins that have peptidyl-prolyl isomerase activity and play roles in the replication of a number of positive-sense RNA viruses, including hepatotropic viruses such as hepatitis C virus (HCV). Cyclophilins A and B (CypA/B) are the two most abundant Cyps in hepatocytes and are therefore potential targets for pan-viral therapeutics. Here, we investigated the importance of CypA and CypB for HEV genome replication using sub-genomic replicons. Using a combination of pharmacological inhibition by cyclosporine A (CsA), and silencing by small hairpin RNA we find that CypA and CypB are not essential for HEV replication. However, we find that silencing of CypB reduces replication of some HEV isolates in some cells. Furthermore, sensitivity to Cyp silencing appears to be partly conferred by the sequence within the hypervariable region of the viral polyprotein. These data suggest HEV is atypical in its requirements for cyclophilin for viral genome replication and that this phenomenon could be genotype- and sequence-specific.
Collapse
Affiliation(s)
- Frazer J. T. Buchanan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Shucheng Chen
- Department of Paediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Morgan R. Herod
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
4
|
Chen S, Harris M. Mutational analysis reveals a novel role for hepatitis C virus NS5A domain I in cyclophilin-dependent genome replication. J Gen Virol 2023; 104:10.1099/jgv.0.001886. [PMID: 37672027 PMCID: PMC7615712 DOI: 10.1099/jgv.0.001886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023] Open
Abstract
The hepatitis C virus (HCV) NS5A protein is comprised of three domains (D1-3). Previously, we observed that two alanine substitutions in D1 (V67A, P145A) abrogated replication of a genotype 2a isolate (JFH-1) sub-genomic replicon (SGR) in Huh7 cells, but this phenotype was partially restored in Huh7.5 cells. Here we demonstrate that five additional residues, surface-exposed and proximal to V67 or P145, exhibited the same phenotype. In contrast, the analogous mutants in a genotype 3a isolate (DBN3a) SGR exhibited different phenotypes in each cell line, consistent with fundamental differences in the functions of genotypes 2 and 3 NS5A. The difference between Huh7 and Huh7.5 cells was reminiscent of the observation that cyclophilin inhibitors are more potent against HCV replication in the former and suggested a role for D1 in cyclophilin dependence. Consistent with this, all JFH-1 and DBN3a mutants exhibited increased sensitivity to cyclosporin A treatment compared to wild-type. Silencing of cyclophilin A (CypA) in Huh7 cells inhibited replication of both JFH-1 and DBN3a. However, in Huh7.5 cells CypA silencing did not inhibit JFH-1 wild-type, but abrogated replication of all the JFH-1 mutants, and both DBN3a wild-type and all mutants. CypB silencing in Huh7 cells had no effect on DBN3a, but abrogated replication of JFH-1. CypB silencing in Huh7.5 cells had no effect on either SGR. Lastly, we confirmed that JFH-1 NS5A D1 interacted with CypA in vitro. These data demonstrate both a direct involvement of NS5A D1 in cyclophilin-dependent genome replication and functional differences between genotype 2 and 3 NS5A.
Collapse
Affiliation(s)
| | - Mark Harris
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
5
|
Gurung D, Danielson JA, Tasnim A, Zhang JT, Zou Y, Liu JY. Proline Isomerization: From the Chemistry and Biology to Therapeutic Opportunities. BIOLOGY 2023; 12:1008. [PMID: 37508437 PMCID: PMC10376262 DOI: 10.3390/biology12071008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Proline isomerization, the process of interconversion between the cis- and trans-forms of proline, is an important and unique post-translational modification that can affect protein folding and conformations, and ultimately regulate protein functions and biological pathways. Although impactful, the importance and prevalence of proline isomerization as a regulation mechanism in biological systems have not been fully understood or recognized. Aiming to fill gaps and bring new awareness, we attempt to provide a wholistic review on proline isomerization that firstly covers what proline isomerization is and the basic chemistry behind it. In this section, we vividly show that the cause of the unique ability of proline to adopt both cis- and trans-conformations in significant abundance is rooted from the steric hindrance of these two forms being similar, which is different from that in linear residues. We then discuss how proline isomerization was discovered historically followed by an introduction to all three types of proline isomerases and how proline isomerization plays a role in various cellular responses, such as cell cycle regulation, DNA damage repair, T-cell activation, and ion channel gating. We then explore various human diseases that have been linked to the dysregulation of proline isomerization. Finally, we wrap up with the current stage of various inhibitors developed to target proline isomerases as a strategy for therapeutic development.
Collapse
Affiliation(s)
- Deepti Gurung
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jacob A Danielson
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Afsara Tasnim
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| | - Jian-Ting Zhang
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Yue Zou
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Jing-Yuan Liu
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Cell and Cancer Biology, University of Toledo College of Medicine, Toledo, OH 43614, USA
- Department of Bioengineering, University of Toledo College of Engineering, Toledo, OH 43606, USA
| |
Collapse
|
6
|
Zheng X, Wan Y, Tao M, Yuan J, Zhang K, Wang J, Zhang Y, Liang P, Wu Q. Obstructor, a Frankliniella occidentalis protein, promotes transmission of tomato spotted wilt orthotospovirus. INSECT SCIENCE 2023; 30:741-757. [PMID: 36342042 DOI: 10.1111/1744-7917.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/15/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic losses to vegetables and other crops. TSWV is mainly transmitted by thrips in a persistent and proliferative manner, and its most efficient vector is the western flower thrips, Frankliniella occidentalis (Pergande). In moving from the thrips midgut to the salivary glands in preparation for transmission, the virions must overcome multiple barriers. Although several proteins that interact with TSWV in thrips have been characterized, we hypothesized that additional thrips proteins interact with TSWV and facilitate its transmission. In the current study, 67 F. occidentalis proteins that interact with GN (a structural glycoprotein) were identified using a split-ubiquitin membrane-based yeast 2-hybrid (MbY2H) system. Three proteins, apolipoprotein-D (ApoD), orai-2-like (Orai), and obstructor-E-like isoform X2 (Obst), were selected for further study based on their high abundance and interaction strength; their interactions with GN were confirmed by MbY2H, yeast β-galactosidase and luciferase complementation assays. The relative expressions of ApoD and Orai were significantly down-regulated but that of Obst was significantly up-regulated in viruliferous thrips. When interfering with Obst in larval stage, the TSWV acquisition rate in 3 independent experiments was significantly decreased by 26%, 40%, and 35%, respectively. In addition, when Obst was silenced in adults, the virus titer was significantly decreased, and the TSWV transmission rate decreased from 66.7% to 31.9% using the leaf disk method and from 86.67% to 43.33% using the living plant method. However, the TSWV acquisition and transmission rates were not affected by interference with the ApoD or Orai gene. The results indicate that Obst may play an important role in TSWV acquisition and transmission in Frankliniella occidentalis.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangjiang Yuan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Kun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jing Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Saeed U, Piracha ZZ. PIN1 and PIN4 inhibition via parvulin impeders Juglone, PiB, ATRA, 6,7,4'-THIF, KPT6566, and EGCG thwarted hepatitis B virus replication. Front Microbiol 2023; 14:921653. [PMID: 36760500 PMCID: PMC9905731 DOI: 10.3389/fmicb.2023.921653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Human parvulin peptidyl prolyl cis/trans isomerases PIN1 and PIN4 play important roles in cell cycle progression, DNA binding, protein folding and chromatin remodeling, ribosome biogenesis, and tubulin polymerization. In this article, we found that endogenous PIN1 and PIN4 were upregulated in selected hepatocellular carcinoma (HCC) cell lines. Methods In this study, we inhibited PIN1 and PIN4 via parvulin inhibitors (Juglone, PiB, ATRA, 6,7,4'-THIF, KPT6566, and EGCG). The native agarose gel electrophoresis (NAGE) immunoblotting analysis revealed that upon PIN1 and/ or PIN4 inhibition, the HBc protein expression and core particle or capsid synthesis reduced remarkably. The effects of PIN4 inhibition on hepatitis B virus (HBV) replication were more pronounced as compared to that of PIN1. The Northern and Southern blotting revealed reduced HBV RNA and DNA levels. Results During the HBV course of infection, Juglone, PiB, ATRA, 6,7,4'-THIF, KPT6566, and EGCG-mediated inhibition of PIN1 and PIN4 significantly lowered HBV transcriptional activities without affecting total levels of covalently closed circular DNA (cccDNA). Similar to the inhibitory effects of PIN1 and PIN4 on HBV replication, the knockdown of PIN1 and PIN4 in HBV infection cells revealed significantly reduced amounts of intracellular HBc, HBs, HBV pgRNA, SmRNAs, core particles, and HBV DNA synthesis. Similarly, PIN1 and PIN4 KD abrogated extracellular virion release, naked capsid levels, and HBV DNA levels. In comparison with PIN1 KD, the PIN4 KD showed reduced HBc and/or core particle stabilities, indicating that PIN4 is more critically involved in HBV replication. Chromatin immunoprecipitation (ChIP) assays revealed that in contrast to DNA binding PIN4 proteins, the PIN1 did not show binding to cccDNA. Similarly, upon PIN1 KD, the HBc recruitment to cccDNA remained unaffected. However, PIN4 KD significantly abrogated PIN4 binding to cccDNA, followed by HBc recruitment to cccDNA and restricted HBV transcriptional activities. These effects were more pronounced in PIN4 KD cells upon drug treatment in HBV-infected cells. Conclusion The comparative analysis revealed that in contrast to PIN1, PIN4 is more critically involved in enhancing HBV replication. Thus, PIN1 and PIN4 inhibition or knockdown might be novel therapeutic targets to suppress HBV infection. targets to suppress HBV infection.
Collapse
|
8
|
Roy A, Roy M, Gacem A, Datta S, Zeyaullah M, Muzammil K, Farghaly TA, Abdellattif MH, Yadav KK, Simal-Gandara J. Role of bioactive compounds in the treatment of hepatitis: A review. Front Pharmacol 2022; 13:1051751. [PMID: 36618936 PMCID: PMC9810990 DOI: 10.3389/fphar.2022.1051751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatitis causes liver infection leading to inflammation that is swelling of the liver. They are of various types and detrimental to human beings. Natural products have recently been used to develop antiviral drugs against severe viral infections like viral hepatitis. They are usually extracted from herbs or plants and animals. The naturally derived compounds have demonstrated significant antiviral effects against the hepatitis virus and they interfere with different stages of the life cycle of the virus, viral release, replication, and its host-specific interactions. Antiviral activities have been demonstrated by natural products such as phenylpropanoids, flavonoids, xanthones, anthraquinones, terpenoids, alkaloids, aromatics, etc., against hepatitis B and hepatitis C viruses. The recent studies conducted to understand the viral hepatitis life cycle, more effective naturally derived drugs are being produced with a promising future for the treatment of the infection. This review emphasizes the current strategies for treating hepatitis, their shortcomings, the properties of natural products and their numerous types, clinical trials, and future prospects as potential drugs.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India,*Correspondence: Arpita Roy, ; Jesus Simal-Gandara,
| | - Madhura Roy
- Centre for Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Shreeja Datta
- Biotechnology Department, Delhi Technological University, Rohini, India
| | - Md. Zeyaullah
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al‐Qura University, Makkah, Saudi Arabia
| | - Magda H. Abdellattif
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department, Faculty of Science, Universidade de Vigo, Ourense, Spain,*Correspondence: Arpita Roy, ; Jesus Simal-Gandara,
| |
Collapse
|
9
|
Clark V, Waters K, Orsburn B, Bumpus NN, Kundu N, Sczepanski JT, Ray P, Arroyo‐Currás N. Human Cyclophilin B Nuclease Activity Revealed via Nucleic Acid-Based Electrochemical Sensors. Angew Chem Int Ed Engl 2022; 61:e202211292. [PMID: 35999181 PMCID: PMC9633453 DOI: 10.1002/anie.202211292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Indexed: 01/12/2023]
Abstract
Human cyclophilin B (CypB) is oversecreted by pancreatic cancer cells, making it a potential biomarker for early-stage disease diagnosis. Our group is motivated to develop aptamer-based assays to measure CypB levels in biofluids. However, human cyclophilins have been postulated to have collateral nuclease activity, which could impede the use of aptamers for CypB detection. To establish if CypB can hydrolyze electrode-bound nucleic acids, we used ultrasensitive electrochemical sensors to measure CypB's hydrolytic activity. Our sensors use ssDNA and dsDNA in the biologically predominant d-DNA form, and in the nuclease resistant l-DNA form. Challenging such sensors with CypB and control proteins, we unequivocally demonstrate that CypB can cleave nucleic acids. To our knowledge, this is the first study to use electrochemical biosensors to reveal the hydrolytic activity of a protein that is not known to be a nuclease. Future development of CypB bioassays will require the use of nuclease-resistant aptamer sequences.
Collapse
Affiliation(s)
- Vincent Clark
- Chemistry-Biology Interface ProgramZanvyl Krieger School of Arts & SciencesJohns Hopkins UniversityBaltimoreMD 21218USA
| | - Kelly Waters
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Ben Orsburn
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Namandjé N. Bumpus
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| | - Nandini Kundu
- Department of ChemistryTexas A&M University College StationTexasTX 77842USA
| | | | - Partha Ray
- Department of SurgeryDivision of Surgical OncologyMoores Cancer CenterDepartment of MedicineDivision of Infectious Diseases and Global Public HealthUniversity of California San Diego HealthSan DiegoCA 92093USA
| | - Netzahualcóyotl Arroyo‐Currás
- Chemistry-Biology Interface ProgramZanvyl Krieger School of Arts & SciencesJohns Hopkins UniversityBaltimoreMD 21218USA
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD 21205USA
| |
Collapse
|
10
|
Xie G, Xu H, Li J, Gu G, Sun Y, Lin Z, Zhu Y, Wang W, Wang Y, Shao J. DRPADC: A novel drug repositioning algorithm predicting adaptive drugs for COVID-19. Comput Chem Eng 2022; 166:107947. [PMID: 35942213 PMCID: PMC9349049 DOI: 10.1016/j.compchemeng.2022.107947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/13/2022] [Accepted: 07/27/2022] [Indexed: 12/25/2022]
Abstract
Given that the usual process of developing a new vaccine or drug for COVID-19 demands significant time and funds, drug repositioning has emerged as a promising therapeutic strategy. We propose a method named DRPADC to predict novel drug-disease associations effectively from the original sparse drug-disease association adjacency matrix. Specifically, DRPADC processes the original association matrix with the WKNKN algorithm to reduce its sparsity. Furthermore, multiple types of similarity information are fused by a CKA-MKL algorithm. Finally, a compressed sensing algorithm is used to predict the potential drug-disease (virus) association scores. Experimental results show that DRPADC has superior performance than several competitive methods in terms of AUC values and case studies. DRPADC achieved the AUC value of 0.941, 0.955 and 0.876 in Fdataset, Cdataset and HDVD dataset, respectively. In addition, the conducted case studies of COVID-19 show that DRPADC can predict drug candidates accurately.
Collapse
Affiliation(s)
- Guobo Xie
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Haojie Xu
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianming Li
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Guosheng Gu
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China,Corresponding author
| | - Yuping Sun
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiyi Lin
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Yinting Zhu
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Weiming Wang
- School of Computer Science, Guangdong University of Technology, Guangzhou 510006, China
| | - Youfu Wang
- Huaneng Qinghai Power Generation Co., Ltd. New Energy Branch, Xining 810000, China
| | - Jiang Shao
- School of Architecture & Design, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
11
|
Schiene‐Fischer C, Fischer G, Braun M. Non-Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022; 61:e202201597. [PMID: 35290695 PMCID: PMC9804594 DOI: 10.1002/anie.202201597] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 01/05/2023]
Abstract
Cyclophilins, enzymes with peptidyl-prolyl cis/trans isomerase activity, are relevant to a large variety of biological processes. The most abundant member of this enzyme family, cyclophilin A, is the cellular receptor of the immunosuppressive drug cyclosporine A (CsA). As a consequence of the pathophysiological role of cyclophilins, particularly in viral infections, there is a broad interest in cyclophilin inhibition devoid of immunosuppressive activity. This Review first gives an introduction into the physiological and pathophysiological roles of cyclophilins. The presentation of non-immunosuppressive cyclophilin inhibitors will commence with drugs based on chemical modifications of CsA. The naturally occurring macrocyclic sanglifehrins have become other lead structures for cyclophilin-inhibiting drugs. Finally, de novo designed compounds, whose structures are not derived from or inspired by natural products, will be presented. Relevant synthetic concepts will be discussed, but the focus will also be on biochemical studies, structure-activity relationships, and clinical studies.
Collapse
Affiliation(s)
- Cordelia Schiene‐Fischer
- Institute of Biochemistry and BiotechnologyMartin-Luther-University Halle-Wittenberg06099Halle (Saale)Germany
| | - Gunter Fischer
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Manfred Braun
- Institute of Organic and Macromolecular ChemistryHeinrich-Heine-University Düsseldorf40225DüsseldorfGermany
| |
Collapse
|
12
|
Zhang Y, Pignolo RJ, Bram RJ. Accelerated aging in cyclophilin B deficient mice downstream of
p21‐Cip1
/Waf1. JBMR Plus 2022; 6:e10674. [PMID: 36248275 PMCID: PMC9549704 DOI: 10.1002/jbm4.10674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022] Open
Abstract
Loss of bone mass and strength is a common problem of advanced age in humans. Defective bone is also a primary finding in osteogenesis imperfecta (OI), a genetic condition most commonly caused by autosomal dominant mutations in the type I collagen genes. Although altered collagen has been proposed to correlate with cellular processes that underlie aging, the causal relationships between them in vivo have not yet been completely explored. Whether aging plays a promoting role in OI development or whether OI contributes to aging, also remains unknown. The PpiB gene encodes cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum required for normal assembly of collagen. Germline deletion or mutations of CypB in mice or humans cause autosomal recessive OI (type IX). Here, we show that mice lacking CypB develop early onset of aging‐associated phenotypes, including kyphosis, fat reduction and weight loss, as well as abnormal teeth, skin, and muscle. Elevated senescence‐associated beta‐galactosidase (SA‐β‐Gal) activity was observed in fat tissues and in bone marrow–derived multipotent stromal cells. Protein levels of the cyclin‐dependent kinase (cdk)‐inhibitor p21‐Cip1/Waf1, a well known senescence marker, were significantly elevated in CypB‐deficient primary cells and mouse tissues. Importantly, loss of p21 in CypB knockout mice attenuated SA‐β‐Gal activity and delayed the development of kyphosis. In addition, less adipose tissue depot and higher SA‐β‐Gal activity were observed in a second OI model, Cola2oim mutant mice. A potential upregulation of p21 was also revealed in a limited number of these mice. These findings suggest that some of the features in OI patients may be mediated in part through activation of the p21‐dependent pathway, one of which is closely associated with senescence and aging. This study provides new mechanistic insight into relationships between OI and aging and raises the possibility of using senolytics drugs to treat OI in the future. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pediatric and Adolescent Medicine Mayo Clinic College of Medicine Rochester MN USA
| | - Robert J Pignolo
- Department of Medicine, Division of Geriatric Medicine and Gerontology Mayo Clinic College of Medicine Rochester MN USA
- Robert and Arlene Kogod Center on Aging Mayo Clinic College of Medicine Rochester MN USA
| | - Richard J Bram
- Department of Pediatric and Adolescent Medicine Mayo Clinic College of Medicine Rochester MN USA
- Department of Immunology Mayo Clinic College of Medicine Rochester MN USA
| |
Collapse
|
13
|
The role of cyclophilins in viral infec and the immune response. J Infect 2022; 85:365-373. [PMID: 35934139 DOI: 10.1016/j.jinf.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022]
|
14
|
Abstract
The last few years have seen a resurgence of activity in the hepatitis B drug pipeline, with many compounds in various stages of development. This review aims to provide a comprehensive overview of the latest advances in therapeutics for chronic hepatitis B (CHB). We will discuss the broad spectrum of direct-acting antivirals in clinical development, including capsids inhibitors, siRNA, HBsAg and polymerase inhibitors. In addition, host-targeted therapies (HTT) will be extensively reviewed, focusing on the latest progress in immunotherapeutics such as toll-like receptors and RIG-1 agonists, therapeutic vaccines and immune checkpoints modulators. A growing number of HTT in pre-clinical development directly target the key to HBV persistence, namely the covalently closed circular DNA (cccDNA) and hold great promise for HBV cure. This exciting area of HBV research will be highlighted, and molecules such as cyclophilins inhibitors, APOBEC3 deaminases and epigenetic modifiers will be discussed.
Collapse
Affiliation(s)
- Sandra Phillips
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Ravi Jagatia
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| | - Shilpa Chokshi
- Institute of Hepatology Foundation for Liver Research London UK, School of Immunology and Microbial Sciences King's College London, UK
| |
Collapse
|
15
|
Chang H, Lee C, Chang C, Jan F. FKBP-type peptidyl-prolyl cis-trans isomerase interacts with the movement protein of tomato leaf curl New Delhi virus and impacts viral replication in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2022; 23:561-575. [PMID: 34984809 PMCID: PMC8916215 DOI: 10.1111/mpp.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Begomoviruses belonging to the family Geminiviridae are plant-infecting DNA viruses. Begomoviral movement protein (MP) has been reported to be required for virus movement, host range determination, and symptom development. In the present study, the FK506-binding protein (FKBP)-type peptidyl-prolyl cis-trans isomerase (NbFKPPIase) of Nicotiana benthamiana was identified by a yeast two-hybrid screening system using the MP of tomato leaf curl New Delhi virus (ToLCNDV) oriental melon (OM) isolate (MPOM ) as bait. Transient silencing of the gene encoding NbFKPPIase increased replication of three test begomoviruses, and transient overexpression decreased viral replication, indicating that NbFKPPIase plays a role in defence against begomoviruses. However, infection of N. benthamiana by ToLCNDV-OM or overexpression of the gene encoding MPOM drastically reduced the expression of the gene encoding NbFKPPIase. Fluorescence resonance energy transfer analysis revealed that MPOM interacted with NbFKPPIase in the periphery of cells. Expression of the gene encoding NbFKPPIase was induced by salicylic acid but not by methyl jasmonate or ethylene. Moreover, the expression of the gene encoding NbFKPPIase was down-regulated in response to 6-benzylaminopurine and up-regulated in response to gibberellin or indole-3-acetic acid, suggesting a role of NbFKPPIase in plant development. Transcriptome analysis and comparison of N. benthamiana transient silencing and overexpression of the gene encoding MPOM led to the identification of several differentially expressed genes whose functions are probably associated with cell cycle regulation. Our results indicate that begomoviruses could suppress NbFKPPIase-mediated defence and biological functions by transcriptional inhibition and physical interaction between MP and NbFKPPIase to facilitate infection.
Collapse
Affiliation(s)
- Ho‐Hsiung Chang
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Chia‐Hwa Lee
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Ph.D. Program in Microbial GenomicsNational Chung Hsing University and Academia SinicaTaichung and TaipeiTaiwan
| | - Chung‐Jan Chang
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Department of Plant PathologyUniversity of GeorgiaGriffinGeorgiaUSA
| | - Fuh‐Jyh Jan
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Ph.D. Program in Microbial GenomicsNational Chung Hsing University and Academia SinicaTaichung and TaipeiTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
16
|
Braun M, Schiene-Fischer C, Fischer G. Non‐Immunosuppressive Cyclophilin Inhibitors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Manfred Braun
- Heinrich-Heine-Universität Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Organic CHemistry Universitätsstr. 1 40225 Düsseldorf GERMANY
| | - Cordelia Schiene-Fischer
- Martin-Luther-Universität Halle-Wittenberg: Martin-Luther-Universitat Halle-Wittenberg Institute of Biochemistry and Biotechnology, GERMANY
| | - Gunter Fischer
- Max-Planck-Institut für Biophysikalische Chemie Abteilung Meiosis: Max-Planck-Institut fur Multidisziplinare Naturwissenschaften Abteilung Meiosis Max Planck Institute for Biophysical Chemistry GERMANY
| |
Collapse
|
17
|
Cyclosporine A Inhibits Viral Infection and Release as Well as Cytokine Production in Lung Cells by Three SARS-CoV-2 Variants. Microbiol Spectr 2022; 10:e0150421. [PMID: 34985303 PMCID: PMC8729790 DOI: 10.1128/spectrum.01504-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In December 2019, a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) started spreading worldwide causing the coronavirus disease 2019 (COVID-19) pandemic. The hyperactivation of the immune system has been proposed to account for disease severity and death in COVID-19 patients. Despite several approaches having been tested, no therapeutic protocol has been approved. Given that Cyclosporine A (CsA) is well-known to exert a strong antiviral activity on several viral strains and an anti-inflammatory role in different organs with relevant benefits in diverse pathological contexts, we tested its effects on SARS-CoV-2 infection of lung cells. We found that treatment with CsA either before or after infection of CaLu3 cells by three SARS-CoV-2 variants: (i) reduces the expression of both viral RNA and proteins in infected cells; (ii) decreases the number of progeny virions released by infected cells; (iii) dampens the virus-triggered synthesis of cytokines (including IL-6, IL-8, IL1α and TNF-α) that are involved in cytokine storm in patients. Altogether, these data provide a rationale for CsA repositioning for the treatment of severe COVID-19 patients. IMPORTANCE SARS-CoV-2 is the most recently identified member of the betacoronavirus genus responsible for the COVID-19 pandemic. Repurposing of available drugs has been a “quick and dirty” approach to try to reduce mortality and severe symptoms in affected patients initially, and can still represent an undeniable and valuable approach to face COVID-19 as the continuous appearance and rapid diffusion of more “aggressive”/transmissible variants, capable of eluding antibody neutralization, challenges the effectiveness of some anti-SARS-CoV-2 vaccines. Here, we tested a known antiviral and anti-inflammatory drug, Cyclosporine A (CsA), and found that it dampens viral infection and cytokine release from lung cells upon exposure to three different SARS-CoV-2 variants. Knock down of the main intracellular target of CsA, Cyclophilin A, does not phenocopy the drug inhibition of viral infection. Altogether, these findings shed new light on the cellular mechanisms of SARS-CoV-2 infection and provide the rationale for CsA repositioning to treat severe COVID-19 patients.
Collapse
|
18
|
Sabariegos R, Albentosa-González L, Palmero B, Clemente-Casares P, Ramírez E, García-Crespo C, Gallego I, de Ávila AI, Perales C, Domingo E, Mas A. Akt Phosphorylation of Hepatitis C Virus NS5B Regulates Polymerase Activity and Hepatitis C Virus Infection. Front Microbiol 2021; 12:754664. [PMID: 34745059 PMCID: PMC8570118 DOI: 10.3389/fmicb.2021.754664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatitis C virus (HCV) is a single-stranded RNA virus of positive polarity [ssRNA(+)] that replicates its genome through the activity of one of its proteins, called NS5B. This viral protein is responsible for copying the positive-polarity RNA genome into a negative-polarity RNA strand, which will be the template for new positive-polarity RNA genomes. The NS5B protein is phosphorylated by cellular kinases, including Akt. In this work, we have identified several amino acids of NS5B that are phosphorylated by Akt, with positions S27, T53, T267, and S282 giving the most robust results. Site-directed mutagenesis of these residues to mimic (Glu mutants) or prevent (Ala mutants) their phosphorylation resulted in a reduced NS5B in vitro RNA polymerase activity, except for the T267E mutant, the only non-conserved position of all those that are phosphorylated. In addition, in vitro transcribed RNAs derived from HCV complete infectious clones carrying mutations T53E/A and S282E/A were transfected in Huh-7.5 permissive cells, and supernatant viral titers were measured at 6 and 15 days post-transfection. No virus was rescued from the mutants except for T53A at 15 days post-transfection whose viral titer was statistically lower as compared to the wild type. Therefore, phosphorylation of NS5B by cellular kinases is a mechanism of viral polymerase inactivation. Whether this inactivation is a consequence of interaction with cellular kinases or a way to generate inactive NS5B that may have other functions are questions that need further experimental work.
Collapse
Affiliation(s)
- Rosario Sabariegos
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Facultad de Medicina, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain
| | - Laura Albentosa-González
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Blanca Palmero
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Pilar Clemente-Casares
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Eugenio Ramírez
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel Gallego
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Esteban Domingo
- Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) del Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Mas
- Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad de Biomedicina UCLM-CSIC, Madrid, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
19
|
Abstract
Significance: Since protein disulfide isomerase (PDI) was first described in 1963, researchers have shown conclusively that PDI and sibling proteins are quintessential for thrombus formation. PDI, endoplasmic reticulum protein (ERp)5, ERp57, and ERp72 are released from platelets and vascular cells and interact with integrin αIIbβ3 on the outer surface of platelets. Recent Advances: At the cell surface they influence protein folding and function, propagating thrombosis and maintaining hemostasis. TMX1, which is a transmembrane thiol isomerase, is the first family member shown to negatively regulate platelets. Targets of thiol isomerases have been identified, including integrin α2β1, Von Willebrand Factor, GpIbα, nicotinamide adenine dinucleotide phosphate oxidase (Nox)-1, Nox-2, and tissue factor, all of which are pro-thrombotic, and several of which are on the cell surface. In spite of this, PDI can paradoxically catalyze the delivery of nitric oxide to platelets, which decrease thrombus formation. Critical Issues: Although the overall effect of PDI is to positively regulate platelet activation, it is still unclear how thiol isomerases function in pro-thrombotic states, such as obesity, diabetes, and cancer. In parallel, there has been a surge in the development of novel thiol isomerase inhibitors, which display selectivity, potency and modulate thrombosis and hemostasis. The availability of selective thiol isomerase inhibitors has culminated in clinical trials, with promising outcomes for the prevention of cancer-associated thrombosis. Future Directions: Altogether, thiol isomerases are perceived as an orchestrating force that regulates thrombus development. In the current review, we will explore the history of PDI in cardiovascular biology, detail known mechanisms of action, and summarize known thiol isomerase inhibitors.
Collapse
Affiliation(s)
- Renato Simões Gaspar
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Jonathan M Gibbins
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
20
|
Devaux CA, Melenotte C, Piercecchi-Marti MD, Delteil C, Raoult D. Cyclosporin A: A Repurposable Drug in the Treatment of COVID-19? Front Med (Lausanne) 2021; 8:663708. [PMID: 34552938 PMCID: PMC8450353 DOI: 10.3389/fmed.2021.663708] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is now at the forefront of major health challenge faced globally, creating an urgent need for safe and efficient therapeutic strategies. Given the high attrition rates, high costs, and quite slow development of drug discovery, repurposing of known FDA-approved molecules is increasingly becoming an attractive issue in order to quickly find molecules capable of preventing and/or curing COVID-19 patients. Cyclosporin A (CsA), a common anti-rejection drug widely used in transplantation, has recently been shown to exhibit substantial anti-SARS-CoV-2 antiviral activity and anti-COVID-19 effect. Here, we review the molecular mechanisms of action of CsA in order to highlight why this molecule seems to be an interesting candidate for the therapeutic management of COVID-19 patients. We conclude that CsA could have at least three major targets in COVID-19 patients: (i) an anti-inflammatory effect reducing the production of proinflammatory cytokines, (ii) an antiviral effect preventing the formation of the viral RNA synthesis complex, and (iii) an effect on tissue damage and thrombosis by acting against the deleterious action of angiotensin II. Several preliminary CsA clinical trials performed on COVID-19 patients report lower incidence of death and suggest that this strategy should be investigated further in order to assess in which context the benefit/risk ratio of repurposing CsA as first-line therapy in COVID-19 is the most favorable.
Collapse
Affiliation(s)
- Christian A. Devaux
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
- CNRS, Marseille, France
| | - Cléa Melenotte
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Marie-Dominique Piercecchi-Marti
- Department of Legal Medicine, Hôpital de la Timone, Marseille University Hospital Center, Marseille, France
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Clémence Delteil
- Department of Legal Medicine, Hôpital de la Timone, Marseille University Hospital Center, Marseille, France
- Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
| | - Didier Raoult
- Aix-Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| |
Collapse
|
21
|
Bergsneider B, Bailey E, Ahmed Y, Gogineni N, Huntley D, Montano X. Analysis of SARS-CoV-2 infection associated cell entry proteins ACE2, CD147, PPIA, and PPIB in datasets from non SARS-CoV-2 infected neuroblastoma patients, as potential prognostic and infection biomarkers in neuroblastoma. Biochem Biophys Rep 2021; 27:101081. [PMID: 34307909 PMCID: PMC8286873 DOI: 10.1016/j.bbrep.2021.101081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 10/25/2022] Open
Abstract
SARS-CoV-2 viral contagion has given rise to a worldwide pandemic. Although most children experience minor symptoms from SARS-CoV-2 infection, some have severe complications including Multisystem Inflammatory Syndrome in Children. Neuroblastoma patients may be at higher risk of severe infection as treatment requires immunocompromising chemotherapy and SARS-CoV-2 has demonstrated tropism for nervous cells. To date, there is no sufficient epidemiological data on neuroblastoma patients with SARS-CoV-2. Therefore, we evaluated datasets of non-SARS-CoV-2 infected neuroblastoma patients to assess for key genes involved with SARS-CoV-2 infection as possible neuroblastoma prognostic and infection biomarkers. We hypothesized that ACE2, CD147, PPIA and PPIB, which are associated with viral-cell entry, are potential biomarkers for poor prognosis neuroblastoma and SARS-CoV-2 infection. We have analysed three publicly available neuroblastoma gene expression datasets to understand the specific molecular susceptibilities that high-risk neuroblastoma patients have to the virus. Gene Expression Omnibus (GEO) GSE49711 and GEO GSE62564 are the microarray and RNA-Seq data, respectively, from 498 neuroblastoma samples published as part of the Sequencing Quality Control initiative. TARGET, contains microarray data from 249 samples and is part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. ACE2, CD147, PPIA and PPIB were identified through their involvement in both SARS-CoV-2 infection and cancer pathogenesis. In-depth statistical analysis using Kaplan-Meier, differential gene expression, and Cox multivariate regression analysis, demonstrated that overexpression of ACE2, CD147, PPIA and PPIB is significantly associated with poor-prognosis neuroblastoma samples. These results were seen in the presence of amplified MYCN, unfavourable tumour histology and in patients older than 18 months of age. Previously, we have shown that high levels of the nerve growth factor receptor NTRK1 together with low levels of the phosphatase PTPN6 and TP53 are associated with increased relapse-free survival of neuroblastoma patients. Interestingly, low levels of expression of ACE2, CD147, PPIA and PPIB are associated with this NTRK1-PTPN6-TP53 module, suggesting that low expression levels of these genes are associated with good prognosis. These findings have implications for clinical care and therapeutic treatment. The upregulation of ACE2, CD147, PPIA and PPIB in poor-prognosis neuroblastoma samples suggests that these patients may be at higher risk of severe SARS-CoV-2 infection. Importantly, our findings reveal ACE2, CD147, PPIA and PPIB as potential biomarkers and therapeutic targets for neuroblastoma.
Collapse
Affiliation(s)
- Brandon Bergsneider
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Elise Bailey
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Yusuf Ahmed
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Namrata Gogineni
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Derek Huntley
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Ximena Montano
- Innovation Hub, Comprehensive Cancer Centre, King's College London, Great Maze Pond, London, SE1 9RT, UK
- Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London, W1W 6UW, UK
| |
Collapse
|
22
|
Gallardo-Flores CE, Colpitts CC. Cyclophilins and Their Roles in Hepatitis C Virus and Flavivirus Infections: Perspectives for Novel Antiviral Approaches. Pathogens 2021; 10:902. [PMID: 34358052 PMCID: PMC8308494 DOI: 10.3390/pathogens10070902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclophilins are cellular peptidyl-prolyl isomerases that play an important role in viral infections, with demonstrated roles in the replication of hepatitis C virus (HCV) and other viruses in the Flaviviridae family, such as dengue virus (DENV) and yellow fever virus (YFV). Here, we discuss the roles of cyclophilins in HCV infection and provide a comprehensive overview of the mechanisms underlying the requirement for cyclophilins during HCV replication. Notably, cyclophilin inhibitor therapy has been demonstrated to be effective in reducing HCV replication in chronically infected patients. While the roles of cyclophilins are relatively well-understood for HCV infection, cyclophilins are more recently emerging as host factors for flavivirus infection as well, providing potential new therapeutic avenues for these viral infections which currently lack antiviral therapies. However, further studies are required to elucidate the roles of cyclophilins in flavivirus replication. Here, we review the current knowledge of the role of cyclophilins in HCV infection to provide a conceptual framework to understand how cyclophilins may contribute to other viral infections, such as DENV and YFV. Improved understanding of the roles of cyclophilins in viral infection may open perspectives for the development of cyclophilin inhibitors as effective antiviral therapeutics for HCV and related viruses.
Collapse
Affiliation(s)
| | - Che C. Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada;
| |
Collapse
|
23
|
Liang L, Lin R, Xie Y, Lin H, Shao F, Rui W, Chen H. The Role of Cyclophilins in Inflammatory Bowel Disease and Colorectal Cancer. Int J Biol Sci 2021; 17:2548-2560. [PMID: 34326693 PMCID: PMC8315013 DOI: 10.7150/ijbs.58671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclophilins (Cyps) is a kind of ubiquitous protein family in organisms, which has biological functions such as promoting intracellular protein folding and participating in the pathological processes of inflammation and tumor. Inflammatory bowel disease (IBD) and colorectal cancer (CRC) are two common intestinal diseases, but the etiology and pathogenesis of these two diseases are still unclear. IBD and CRC are closely associated, IBD has always been considered as one of the main risks of CRC. However, the role of Cyps in these two related intestinal diseases is rarely studied and reported. In this review, the expression of CypA, CypB and CypD in IBD, especially ulcerative colitis (UC), and CRC, their relationship with the development of these two intestinal diseases, as well as the possible pathogenesis, were briefly summarized, so as to provide modest reference for clinical researches and treatments in future.
Collapse
Affiliation(s)
- Lifang Liang
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Rongxiao Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Ying Xie
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Huaqing Lin
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
| | - Fangyuan Shao
- Cancer Center, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Wen Rui
- Centrefor Novel Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| | - Hongyuan Chen
- Department of Pathogenic Biology and Immunology, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- GDPU-HKU Zhongshan Biomedical Innovation Plaform, Zhongshan 528437, Guangdong Province, PR China
- Guangdong Engineering & Technology Research Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, Guangdong Province, PR China
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangzhou 510006, Guangdong Province, PR China
- Guangdong Cosmetics Engineering & Technology Research Center,Guangzhou 510006, Guangdong Province, PR China
| |
Collapse
|
24
|
Comprehensive interactome analysis of the spike protein of swine acute diarrhea syndrome coronavirus. BIOSAFETY AND HEALTH 2021; 3:156-163. [PMID: 34027383 PMCID: PMC8127515 DOI: 10.1016/j.bsheal.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/01/2022] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a recently discovered coronavirus that causes severe and acute diarrhea and rapid weight loss in piglets. SADS-CoV was reported to be capable of infecting cell lines derived from diverse species, including bats, mice, hamsters, rats, chickens, pigs, nonhuman primates, and humans, implying its high risk of cross-species infection. However, its receptor is still unknown. In this study, the receptor-binding domain of the SADS-CoV spike (S) protein was purified and then subjected to affinity purification (AP)-coupled mass spectrometry (MS)-based proteomic analysis to identify the interactors of the SADS-CoV S protein. Forty-three host proteins were identified, and a Gene Ontology analysis indicated that these interactors can be grouped into categories such as “cell-cell adhesion”, “translation” “viral transcription”, suggesting that these processes may participate in the SADS-CoV life cycles. RNA interference-based screening of these interactors indicated that PPIB and vimentin can affect SADS-CoV replication. Our study provides an overarching view into the host interactome of the SADS-CoV S protein and highlights potential targets for the development of therapeutics against SADS-CoV.
Collapse
|
25
|
Zhou Y, Gao F, Lv L, Wang S, He W, Lan Y, Li Z, Lu H, Song D, Guan J, Zhao K. Host factor cyclophilin B affects Orf virus replication by interacting with viral ORF058 protein. Vet Microbiol 2021; 258:109099. [PMID: 33984791 DOI: 10.1016/j.vetmic.2021.109099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/01/2021] [Indexed: 11/30/2022]
Abstract
Poxviruses have evolved multiple strategies to modulate host-derived factors to create an optimal environment for viral efficient replication. Our previous study indicated that cyclophilin B (CypB) is a critical factor for ORFV replication in MDBK cells. However, the precise molecular mechanism by which CypB facilitates ORFV replication remains less understood. In the present study, the function of CypB in ORFV replication is further evaluated. The overexpression of CypB was observed to facilitate ORFV replication in OFTu cells and HeLa cells, however, RNA interference (RNAi)-mediated reduction of endogenous CypB decreased the levels of ORFV replication. Coimmunoprecipitation experiments revealed that the CypB interacted with ORFV ORF058 protein, a late protein involved in virus entry. The interaction of host factor CypB and ORF058 protein was further confirmed by confocal microscopy analysis and GST-pull down. In addition, the 52-55 aa was identified as the critical binding sites for CypB on ORF058 protein by GST-pull down with OFTu cells overexpressing CypB and purified GST-tagged truncated ORF058. In conclusion, we demonstrate that CypB is a critical host factor for ORFV replication in vitro by interacting with ORF058 protein, providing new insights into ORFV pathogenesis.
Collapse
Affiliation(s)
- Yanlong Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China; Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Lijun Lv
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuai Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huijun Lu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| | - Deguang Song
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| | - Kui Zhao
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
26
|
Lee YS, Jeong S, Kim KY, Yoon JS, Kim S, Yoon KS, Ha J, Kang I, Choe W. Honokiol inhibits hepatoma carcinoma cell migration through downregulated Cyclophilin B expression. Biochem Biophys Res Commun 2021; 552:44-51. [PMID: 33743348 DOI: 10.1016/j.bbrc.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the fifth common types of cancer with poor prognosis in the world. Honokiol (HNK), a natural biphenyl compound derived from the magnolia plant, has been reported to exert anticancer effects, but its mechanism has not been elucidated exactly. In the present study, HNK treatment significantly suppressed the migration ability of HepG2 and Hep3B human hepatocellular carcinoma. The treatment reduced the expression levels of the genes associated with cell migration, such as S100A4, MMP-2, MMP-9 and Vimentin. Interestingly, treatment with HNK significantly reduced the expression level of Cyclophilin B (CypB) which stimulates cancer cell migration. However, overexpressed CypB abolished HNK-mediated suppression of cell migration, and reversed the apoptotic effects of HNK. Altogether, we concluded that the suppression of migration activities by HNK was through down-regulated CypB in HCC. These finding suggest that HNK may be a promising candidate for HCC treatment via regulation of CypB.
Collapse
Affiliation(s)
- Young-Seok Lee
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Suyun Jeong
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ki-Yoon Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ji-Su Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joohun Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Insug Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
27
|
Almasi F, Mohammadipanah F. Hypothetical targets and plausible drugs of coronavirus infection caused by SARS-CoV-2. Transbound Emerg Dis 2021; 68:318-332. [PMID: 32662203 PMCID: PMC7405402 DOI: 10.1111/tbed.13734] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022]
Abstract
The world is confronting a dire situation due to the recent pandemic of the novel coronavirus disease (SARS-CoV-2) with the mortality rate passed over 470,000. Attaining efficient drugs evolve in parallel to the understanding of the SARS-CoV-2 pathogenesis. The current drugs in the pipeline and some plausible drugs are overviewed in this paper. Although different types of anti-viral targets are applicable for SARS-CoV-2 drug screenings, the more promising targets can be considered as 3C-like main protease (3Cl protease) and RNA polymerase. The remdesivir could be considered the closest bifunctional drug to the provisional clinical administration for SARS-CoV-2. The known molecular targets of the SARS-CoV-2 include fourteen targets, while four molecules of angiotensin-converting enzyme 2 (ACE2), cathepsin L, 3Cl protease and RNA-dependent RNA polymerase (RdRp) are suggested as more promising potential targets. Accordingly, dual-acting drugs as an encouraging solution in drug discovery are suggested. Emphasizing the potential route of SARS-CoV-2 infection and virus entry-related factors like integrins, cathepsin and ACE2 seems valuable. The potential molecular targets of each phase of the SARS-CoV-2 life cycle are discussed and highlighted in this paper. Much progress in understanding the SARS-CoV-2 and molecular details of its life cycle followed by the identification of new therapeutic targets are needed to lead us to an efficient approach in anti-SARS-CoV-2 drug discovery.
Collapse
Affiliation(s)
- Faezeh Almasi
- Pharmaceutical Biotechnology LabDepartment of Microbial BiotechnologySchool of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of ScienceUniversity of TehranTehranIran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology LabDepartment of Microbial BiotechnologySchool of Biology and Center of Excellence in Phylogeny of Living OrganismsCollege of ScienceUniversity of TehranTehranIran
| |
Collapse
|
28
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
29
|
Singh H, Kaur K, Singh M, Kaur G, Singh P. Plant Cyclophilins: Multifaceted Proteins With Versatile Roles. FRONTIERS IN PLANT SCIENCE 2020; 11:585212. [PMID: 33193535 PMCID: PMC7641896 DOI: 10.3389/fpls.2020.585212] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Cyclophilins constitute a family of ubiquitous proteins that bind cyclosporin A (CsA), an immunosuppressant drug. Several of these proteins possess peptidyl-prolyl cis-trans isomerase (PPIase) activity that catalyzes the cis-trans isomerization of the peptide bond preceding a proline residue, essential for correct folding of the proteins. Compared to prokaryotes and other eukaryotes studied until now, the cyclophilin gene families in plants exhibit considerable expansion. With few exceptions, the role of the majority of these proteins in plants is still a matter of conjecture. However, recent studies suggest that cyclophilins are highly versatile proteins with multiple functionalities, and regulate a plethora of growth and development processes in plants, ranging from hormone signaling to the stress response. The present review discusses the implications of cyclophilins in different facets of cellular processes, particularly in the context of plants, and provides a glimpse into the molecular mechanisms by which these proteins fine-tune the diverse physiological pathways.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Jalandhar, India
| | - Kirandeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Mangaljeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Gundeep Kaur
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
- William Harvey Heart Centre, Queen Mary University of London, London, United Kingdom
| | - Prabhjeet Singh
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
30
|
Tsai YC, Tsai TF. Oral disease-modifying antirheumatic drugs and immunosuppressants with antiviral potential, including SARS-CoV-2 infection: a review. Ther Adv Musculoskelet Dis 2020; 12:1759720X20947296. [PMID: 32952617 PMCID: PMC7476354 DOI: 10.1177/1759720x20947296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/02/2020] [Indexed: 12/23/2022] Open
Abstract
There have been several episodes of viral infection evolving into epidemics in recent decades, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the latest example. Its high infectivity and moderate mortality have resulted in an urgent need to find an effective treatment modality. Although the category of immunosuppressive drugs usually poses a risk of infection due to interference of the immune system, some of them have been found to exert antiviral properties and are already used in daily practice. Recently, hydroxychloroquine and baricitinib have been proposed as potential drugs for SARS-CoV-2. In fact, there are other immunosuppressants known with antiviral activities, including cyclosporine A, hydroxyurea, minocycline, mycophenolic acid, mycophenolate mofetil, leflunomide, tofacitinib, and thalidomide. The inherent antiviral activity could be a treatment choice for patients with coexisting rheumatological disorders and infections. Clinical evidence, their possible mode of actions and spectrum of antiviral activities are included in this review article. LAY SUMMARY Immunosuppressants often raise the concern of infection risks, especially for patients with underlying immune disorders. However, some disease-modifying antirheumatic drugs (DMARDs) with inherent antiviral activity would be a reasonable choice in the situation of concomitant viral infections and flare up of autoimmune diseases. This review covers DMARDs of treatment potential for SARS-CoV-2 in part I, and antiviral mechanisms plus trial evidence for viruses other than SARS-CoV-2 in part II.
Collapse
Affiliation(s)
- Y. C. Tsai
- Department of Dermatology, Far Eastern Memorial Hospital, New Taipei city, Taiwan
| | - T. F. Tsai
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 7, Zhongshan S. Rd, Zhongzheng District, Taipei City 100, Taiwan
| |
Collapse
|
31
|
A Small Molecule, 4-Phenylbutyric Acid, Suppresses HCV Replication via Epigenetically Induced Hepatic Hepcidin. Int J Mol Sci 2020; 21:ijms21155516. [PMID: 32752233 PMCID: PMC7432483 DOI: 10.3390/ijms21155516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 01/02/2023] Open
Abstract
Hepatic hepcidin is a well-known major iron regulator and has been reported to be closely related to hepatitis C virus (HCV) replication. However, pharmacological targeting of the hepcidin in HCV replication has not been reported. A short-chain fatty acid, 4-Phenyl butyrate (4-PBA), is an acid chemical chaperone that acts as a histone deacetylase inhibitor (HDACi) to promote chromosomal histone acetylation. Here, we investigated the therapeutic effect of 4-PBA on hepcidin expression and HCV replication. We used HCV genotype 1b Huh 7.5-Con1 replicon cells and engraftment of NOD/SCID mice as in vitro and in vivo models to test the effect of 4-PBA. It was found that 4-PBA inhibited HCV replication in Huh7.5-Con1 replicon cells in a concentration- and time-dependent manner through the induction of hepcidin expression by epigenetic modification and subsequent upregulation of interferon-α signaling. HCV formed a membranous web composed of double-membrane vesicles and was utilized for RNA replication. Moreover, 4-PBA also disrupted the integrity of the membranous web and interfered with the molecular interactions critical for the assembly of the HCV replication complex. These findings suggest that 4-PBA is a key epigenetic inducer of anti-HCV hepatic hepcidin and might at least in part play a role in targeting host factors related to HCV infection as an attractive complement to current HCV therapies.
Collapse
|
32
|
Colpitts CC, Ridewood S, Schneiderman B, Warne J, Tabata K, Ng CF, Bartenschlager R, Selwood DL, Towers GJ. Hepatitis C virus exploits cyclophilin A to evade PKR. eLife 2020; 9:e52237. [PMID: 32539931 PMCID: PMC7297535 DOI: 10.7554/elife.52237] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Counteracting innate immunity is essential for successful viral replication. Host cyclophilins (Cyps) have been implicated in viral evasion of host antiviral responses, although the mechanisms are still unclear. Here, we show that hepatitis C virus (HCV) co-opts the host protein CypA to aid evasion of antiviral responses dependent on the effector protein kinase R (PKR). Pharmacological inhibition of CypA rescues PKR from antagonism by HCV NS5A, leading to activation of an interferon regulatory factor-1 (IRF1)-driven cell intrinsic antiviral program that inhibits viral replication. These findings further the understanding of the complexity of Cyp-virus interactions, provide mechanistic insight into the remarkably broad antiviral spectrum of Cyp inhibitors, and uncover novel aspects of PKR activity and regulation. Collectively, our study identifies a novel antiviral mechanism that harnesses cellular antiviral immunity to suppress viral replication.
Collapse
Affiliation(s)
- Che C Colpitts
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Sophie Ridewood
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Bethany Schneiderman
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Justin Warne
- Wolfson Institute for Biomedical Research, UCLLondonUnited Kingdom
| | - Keisuke Tabata
- Department of Infectious Diseases, Molecular Virology, Heidelberg UniversityHeidelbergGermany
| | - Caitlin F Ng
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg UniversityHeidelbergGermany
- Division Virus-Associated Carcinogenesis, German Cancer Research CenterHeidelbergGermany
- German Center for Infection Research (DZIF), Heidelberg Partner SiteHeidelbergGermany
| | - David L Selwood
- Department of Medicine, Imperial College LondonLondonUnited Kingdom
| | - Greg J Towers
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| |
Collapse
|
33
|
Kumar R, Gupta N, Kodan P, Mittal A, Soneja M, Wig N. Battling COVID-19: using old weapons for a new enemy. Trop Dis Travel Med Vaccines 2020; 6:6. [PMID: 32454984 PMCID: PMC7237624 DOI: 10.1186/s40794-020-00107-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) has reached pandemic proportions. Most of the drugs that are being tried for the treatment have not been evaluated in any randomized controlled trials. The purpose of this review was to summarize the in-vitro and in-vivo efficacy of these drugs on Severe Acute Respiratory Syndrome (SARS-CoV-2) and related viruses (SARS and Middle East Respiratory Syndrome) and evaluate their potential for re-purposing them in the management of COVID-19.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Nitin Gupta
- Department of Infectious Diseases, Kasturba Medical College, Manipal, Karnataka 576104 India
| | - Parul Kodan
- Dr Ram Manohar Lohia hospital & Post-Graduate Institute of Medica education and Research, New Delhi, 110001 India
| | - Ankit Mittal
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Manish Soneja
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| | - Naveet Wig
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, 110029 India
| |
Collapse
|
34
|
Mei F, Tu Y. Cyclophilin B enhances the proliferation and differentiation of MC3T3-E1 cells via JAK2/STAT3 signaling pathway. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1684842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Fan Mei
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, PR China
| | - Yanhong Tu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, PR China
| |
Collapse
|
35
|
Lohmann V. Hepatitis C virus cell culture models: an encomium on basic research paving the road to therapy development. Med Microbiol Immunol 2019; 208:3-24. [PMID: 30298360 DOI: 10.1007/s00430-018-0566-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022]
Abstract
Chronic hepatitis C virus (HCV) infections affect 71 million people worldwide, often resulting in severe liver damage. Since 2014 highly efficient therapies based on directly acting antivirals (DAAs) are available, offering cure rates of almost 100%, if the infection is diagnosed in time. It took more than a decade to discover HCV in 1989 and another decade to establish a cell culture model. This review provides a personal view on the importance of HCV cell culture models, particularly the replicon system, in the process of therapy development, from drug screening to understanding of mode of action and resistance, with a special emphasis on the contributions of Ralf Bartenschlager's group. It summarizes the tremendous efforts of scientists in academia and industry required to achieve efficient DAAs, focusing on the main targets, protease, polymerase and NS5A. It furthermore underpins the importance of strong basic research laying the ground for translational medicine.
Collapse
Affiliation(s)
- Volker Lohmann
- Department of Infectious Diseases, Molecular Virology, Centre for Integrative Infectious Disease Research (CIID), University of Heidelberg, INF 344, 1st Floor, 69120, Heidelberg, Germany.
| |
Collapse
|
36
|
Suzuki R, Matsuda M, Shimoike T, Watashi K, Aizaki H, Kato T, Suzuki T, Muramatsu M, Wakita T. Activation of protein kinase R by hepatitis C virus RNA-dependent RNA polymerase. Virology 2019; 529:226-233. [PMID: 30738360 DOI: 10.1016/j.virol.2019.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) was shown to activate protein kinase R (PKR), which inhibits expression of interferon (IFN) and IFN-stimulated genes by controlling the translation of newly transcribed mRNAs. However, it is unknown exactly how HCV activates PKR. To address the molecular mechanism(s) of PKR activation mediated by HCV infection, we examined the effects of viral proteins on PKR activation. Here, we show that expression of HCV NS5B strongly induced PKR and eIF2α phosphorylation, and attenuated MHC class I expression. In contrast, expression of Japanese encephalitis virus RNA-dependent RNA polymerase did not induce phosphorylation of PKR. Co-immunoprecipitation analyses showed that HCV NS5B interacted with PKR. Furthermore, expression of NS5B with polymerase activity-deficient mutation failed to phosphorylate PKR, suggesting that RNA polymerase activity is required for PKR activation. These results suggest that HCV activates PKR by association with NS5B, resulting in translational suppression of MHC class I to establish chronic infection.
Collapse
Affiliation(s)
- Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan.
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takashi Shimoike
- Department of Virology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashi-murayama-shi, Tokyo 208-0011, Japan.
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hideki Aizaki
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takanobu Kato
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tetsuro Suzuki
- Department of Infectious Diseases, Hamamatsu University School of Medicine, Shizuoka, Japan.
| | - Masamichi Muramatsu
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| |
Collapse
|
37
|
Cyclophilin J limits inflammation through the blockage of ubiquitin chain sensing. Nat Commun 2018; 9:4381. [PMID: 30348973 PMCID: PMC6197184 DOI: 10.1038/s41467-018-06756-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/26/2018] [Indexed: 01/16/2023] Open
Abstract
Maintaining innate immune homeostasis is important for individual health. Npl4 zinc finger (NZF) domain-mediated ubiquitin chain sensing is reported to function in the nuclear factor-kappa B (NF-κB) signal pathway, but the regulatory mechanism remains elusive. Here we show that cyclophilin J (CYPJ), a member of the peptidylprolyl isomerase family, is induced by inflammation. CYPJ interacts with the NZF domain of transform growth factor-β activated kinase 1 binding protein 2 and 3 as well as components of the linear ubiquitin chain assembly complex to block the binding of ubiquitin-chain and negatively regulates NF-κB signaling. Mice with Cypj deficiency are susceptible to lipopolysaccharide and heat-killed Listeria monocytogenes-induced sepsis and dextran sulfate sodium-induced colitis. These findings identify CYPJ as a negative feedback regulator of the NF-κB signaling pathway, and provide insights for understanding the homeostasis of innate immunity.
Collapse
|
38
|
Zhang H, Qiao L, Luo G. Characterization of apolipoprotein C1 in hepatitis C virus infection and morphogenesis. Virology 2018; 524:1-9. [PMID: 30130702 DOI: 10.1016/j.virol.2018.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/05/2018] [Accepted: 08/05/2018] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that apolipoprotein C1 (apoC1)-specific antibodies precipitated hepatitis C virus (HCV) and neutralized HCV infectivity, suggesting that apoC1 is a HCV component. However, the importance of apoC1 in the HCV life cycle has not been experimentally examined. In the present study, we sought to determine the role of apoC1 in the HCV infection and morphogenesis by knocking out the apoC1 gene using the CRISPR/Cas9 system. Strikingly, apoC1 gene knockout markedly enhanced apoE expression. As a result, apoC1 gene knockout per se didn't significantly affect HCV infection or morphogenesis, probably ascribing to its redundant functions with apoE. However, knockout of apoC1 gene potentiated the impairment of HCV infection and/or morphogenesis by apoE-specific small interfering RNAs. Additionally, a recombinant apoC1 protein efficiently blocked HCV infection. Collectively, these findings suggest that apoC1 and apoE have redundant functions in the HCV infection and morphogenesis.
Collapse
Affiliation(s)
- Han Zhang
- Department of Microbiology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - Luhua Qiao
- Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, United States
| | - Guangxiang Luo
- Department of Microbiology, Peking University School of Basic Medical Sciences, Beijing 100191, China; Department of Microbiology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, United States.
| |
Collapse
|
39
|
Zitzmann C, Kaderali L. Mathematical Analysis of Viral Replication Dynamics and Antiviral Treatment Strategies: From Basic Models to Age-Based Multi-Scale Modeling. Front Microbiol 2018; 9:1546. [PMID: 30050523 PMCID: PMC6050366 DOI: 10.3389/fmicb.2018.01546] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/21/2018] [Indexed: 12/14/2022] Open
Abstract
Viral infectious diseases are a global health concern, as is evident by recent outbreaks of the middle east respiratory syndrome, Ebola virus disease, and re-emerging zika, dengue, and chikungunya fevers. Viral epidemics are a socio-economic burden that causes short- and long-term costs for disease diagnosis and treatment as well as a loss in productivity by absenteeism. These outbreaks and their socio-economic costs underline the necessity for a precise analysis of virus-host interactions, which would help to understand disease mechanisms and to develop therapeutic interventions. The combination of quantitative measurements and dynamic mathematical modeling has increased our understanding of the within-host infection dynamics and has led to important insights into viral pathogenesis, transmission, and disease progression. Furthermore, virus-host models helped to identify drug targets, to predict the treatment duration to achieve cure, and to reduce treatment costs. In this article, we review important achievements made by mathematical modeling of viral kinetics on the extracellular, intracellular, and multi-scale level for Human Immunodeficiency Virus, Hepatitis C Virus, Influenza A Virus, Ebola Virus, Dengue Virus, and Zika Virus. Herein, we focus on basic mathematical models on the population scale (so-called target cell-limited models), detailed models regarding the most important steps in the viral life cycle, and the combination of both. For this purpose, we review how mathematical modeling of viral dynamics helped to understand the virus-host interactions and disease progression or clearance. Additionally, we review different types and effects of therapeutic strategies and how mathematical modeling has been used to predict new treatment regimens.
Collapse
Affiliation(s)
- Carolin Zitzmann
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| | - Lars Kaderali
- Institute of Bioinformatics and Center for Functional Genomics of Microbes, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
40
|
Zhang C, Chen G, Wang Y, Guo C, Zhou J. Physiological and molecular responses of Prorocentrum donghaiense to dissolved inorganic phosphorus limitation. MARINE POLLUTION BULLETIN 2018; 129:562-572. [PMID: 29055559 DOI: 10.1016/j.marpolbul.2017.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Prorocentrum donghaiense is an important dinoflagellate as it frequently forms harmful algal blooms that cause serious damage to marine ecosystems and fisheries in the coast of East China Sea. Previous studies showed that phosphorus acquisition (especially inorganic phosphorus) was the limiting factor for P. donghaiense growth. However, the responsive mechanism of this microalga under dissolved inorganic phosphorus (DIP) limitation is poorly understood. In this work, the physiological parameters and differentially expressed genes in P. donghaiense response to DIP limitation were comparatively analyzed. DIP-depleted P. donghaiense displayed decreased growth rate, enlarged cell size, decreased cellular phosphorus content, and high AP activities. A forward suppression subtractive hybridization (SSH) library representing differentially upregulated genes in P. donghaiense under DIP-depleted conditions was constructed, and 134 ESTs were finally identified, with a significant identity (E values<1×10-4) to the deposited genes (proteins) in the corresponding databases. Five representative genes, namely, NAD-dependent deacetylase, phosphoglycolate phosphatase, heat shock protein (HSP) 90, rhodopsin, and HSP40 were investigated through real-time quantitative PCR to verify the effectiveness of the established SSH library. Results showed that all the selected genes were differentially expressed and thus indicated that the established SSH library generally represented differentially expressed genes. These genes were classified into 11 categories according to their gene ontology annotations of biological processes. The members involved in functional responses such as cell defense/homeostasis, phosphorus metabolism, and cellular cycles were specially discussed. This study is the first to perform a global analysis of differentially expressed functional genes in P. donghaiense under DIP-depleted condition. It provided new insights into the molecular adaptive mechanisms of dinoflagellate in response to phosphorous limitation and elucidating the formation mechanism of algal blooms.
Collapse
Affiliation(s)
- Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Changlu Guo
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jin Zhou
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
41
|
Qu Z, Gao F, Li L, Zhang Y, Jiang Y, Yu L, Zhou Y, Zheng H, Tong W, Li G, Tong G. Label-Free Quantitative Proteomic Analysis of Differentially Expressed Membrane Proteins of Pulmonary Alveolar Macrophages Infected with Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and Its Attenuated Strain. Proteomics 2017; 17. [PMID: 29052333 PMCID: PMC6084361 DOI: 10.1002/pmic.201700101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Significant differences exist between the highly pathogenic (HP) porcine reproductive and respiratory syndrome virus (PRRSV) and its attenuated pathogenic (AP) strain in the ability to infect host cells. The mechanisms by which different virulent strains invade host cells remain relatively unknown. In this study, pulmonary alveolar macrophages (PAMs) are infected with HP‐PRRSV (HuN4) and AP‐PRRSV (HuN4‐F112) for 24 h, then harvested and subjected to label‐free quantitative MS. A total of 2849 proteins are identified, including 95 that are differentially expressed. Among them, 26 proteins are located on the membrane. The most differentially expressed proteins are involved in response to stimulus, metabolic process, and immune system process, which mainly have the function of binding and catalytic activity. Cluster of differentiation CD163, vimentin (VIM), and nmII as well as detected proteins are assessed together by string analysis, which elucidated a potentially different infection mechanism. According to the function annotations, PRRSV with different virulence may mainly differ in immunology, inflammation, immune evasion as well as cell apoptosis. This is the first attempt to explore the differential characteristics between HP‐PRRSV and its attenuated PRRSV infected PAMs focusing on membrane proteins which will be of great help to further understand the different infective mechanisms of HP‐PRRSV and AP‐PRRSV.
Collapse
Affiliation(s)
- Zehui Qu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Fei Gao
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Liwei Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Yujiao Zhang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China
| | - Yifeng Jiang
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Lingxue Yu
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Yanjun Zhou
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Hao Zheng
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Wu Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Guoxin Li
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| | - Guangzhi Tong
- Department of Swine Infectious Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, P. R. China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, P. R. China
| |
Collapse
|
42
|
Watashi K, Shimotohno K. Cyclophilin and Viruses: Cyclophilin as a Cofactor for Viral Infection and Possible Anti-Viral Target. Drug Target Insights 2017. [DOI: 10.1177/117739280700200017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Koichi Watashi
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kunitada Shimotohno
- Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Jin G, Lee J, Lee K. Chemical genetics-based development of small molecules targeting hepatitis C virus. Arch Pharm Res 2017; 40:1021-1036. [PMID: 28856597 DOI: 10.1007/s12272-017-0949-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/20/2017] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus (HCV) infection is a major worldwide problem that has emerged as one of the most significant diseases affecting humans. There are currently no vaccines or efficient therapies without side effects, despite today's advanced medical technology. Currently, the common therapy for most patients (i.e. genotype 1) is combination of HCV-specific direct-acting antivirals (DAAs). Up to 2011, the standard of care (SOC) was a combination of peg-IFNα with ribavirin (RBV). After approval of NS3/4A protease inhibitor, SOC was peg-IFNα and RBV with either the first-generation DAAs boceprevir or telaprevir. In the past several years, various novel small molecules have been discovered and some of them (i.e., HCV polymerase, protease, helicase and entry inhibitors) have undergone clinical trials. Between 2013 and 2016, the second-generation DAA drugs simeprevir, asunaprevir, daclatasvir, dasabuvir, sofosbuvir, and elbasvir were approved, as well as the combinational drugs Harvoni®, Zepatier®, Technivie®, and Epclusa®. A number of reviews have been recently published describing the structure-activity relationship (SAR) in the development of HCV inhibitors and outlining current therapeutic approaches to hepatitis C infection. Target identification involves studying a drug's mechanism of action (MOA), and a variety of target identification methods have been developed in the past few years. Chemical biology has emerged as a powerful tool for studying biological processes using small molecules. The use of chemical genetic methods is a valuable strategy for studying the molecular mechanisms of the viral lifecycle and screening for anti-viral agents. Two general screening approaches have been employed: forward and reverse chemical genetics. This review reveals information on the small molecules in HCV drug discovery by using chemical genetics for targeting the HCV protein and describes successful examples of targets identified with these methods.
Collapse
Affiliation(s)
- Guanghai Jin
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Jisu Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
44
|
Zhao K, Li J, He W, Song D, Zhang X, Zhang D, Zhou Y, Gao F. Cyclophilin B facilitates the replication of Orf virus. Virol J 2017; 14:114. [PMID: 28619100 PMCID: PMC5471767 DOI: 10.1186/s12985-017-0781-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viruses interact with host cellular factors to construct a more favourable environment for their efficient replication. Expression of cyclophilin B (CypB), a cellular peptidyl-prolyl cis-trans isomerase (PPIase), was found to be significantly up-regulated. Recently, a number of studies have shown that CypB is important in the replication of several viruses, including Japanese encephalitis virus (JEV), hepatitis C virus (HCV) and human papillomavirus type 16 (HPV 16). However, the function of cellular CypB in ORFV replication has not yet been explored. METHODS Suppression subtractive hybridization (SSH) technique was applied to identify genes differentially expressed in the ORFV-infected MDBK cells at an early phase of infection. Cellular CypB was confirmed to be significantly up-regulated by quantitative reverse transcription-PCR (qRT-PCR) analysis and Western blotting. The role of CypB in ORFV infection was further determined using Cyclosporin A (CsA) and RNA interference (RNAi). Effect of CypB gene silencing on ORFV replication by 50% tissue culture infectious dose (TCID50) assay and qRT-PCR detection. RESULTS In the present study, CypB was found to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection. Cyclosporin A (CsA) exhibited suppressive effects on ORFV replication through the inhibition of CypB. Silencing of CypB gene inhibited the replication of ORFV in MDBK cells. In conclusion, these data suggest that CypB is critical for the efficient replication of the ORFV genome. CONCLUSIONS Cellular CypB was confirmed to be significantly up-regulated in the ORFV-infected MDBK cells at an early phase of infection, which could effectively facilitate the replication of ORFV.
Collapse
Affiliation(s)
- Kui Zhao
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Jida Li
- College of Public Hygiene, ZunYi Medical University, 201 Dalian Road, Zunyi, 563003, China
| | - Wenqi He
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Deguang Song
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Ximu Zhang
- Laboratory Animal Center, Peking University, 5 Summer palace Road, Beijing, 100871, China
| | - Di Zhang
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Yanlong Zhou
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China
| | - Feng Gao
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China. .,Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun, 130062, China.
| |
Collapse
|
45
|
Wang L, Gundelach JH, Bram RJ. Cycloheximide promotes paraptosis induced by inhibition of cyclophilins in glioblastoma multiforme. Cell Death Dis 2017; 8:e2807. [PMID: 28518150 PMCID: PMC5520731 DOI: 10.1038/cddis.2017.217] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/22/2017] [Accepted: 04/05/2017] [Indexed: 01/09/2023]
Abstract
Cancer is the second leading cause of death worldwide. Current treatment strategies based on multi-agent chemotherapy and/or radiation regimens have improved overall survival in some cases. However, resistance to apoptosis often develops in cancer cells, and its occurrence is thought to contribute to treatment failure. Non-apoptotic cell death mechanisms have become of great interest, therefore, in hopes that they would bypass tumor cell resistance. Glioblastoma multiforme (GBM), a grade IV astrocytic tumor is the most frequent brain tumor in adults, and has a high rate of mortality. We report that NIM811, a small molecule cyclophilin-binding inhibitor, induces catastrophic vacuolization and cell death in GBM cells. These unique features are distinct from many known cell death pathways, and are associated with an incompletely defined cell death mechanism known as paraptosis. We found that NIM811-induced paraptosis is due to unresolved ER stress. The abnormal upregulation of protein translation was responsible for the build-up of misfolded or unfolded proteins in ER, whereas pro-survival autophagy and UPR signals were shutdown during prolonged treatment with NIM811. Although cycloheximide has been claimed to suppress paraptosis, instead we find that it only temporarily delayed vacuole formation, but actually enhanced paraptotic cell death in the long term. On the other hand, mTOR inhibitors rescued cells from NIM811-induced paraptosis by sustaining autophagy and the UPR, while specifically restraining cap-dependent translation. These findings not only provide new insights into the mechanisms underlying paraptosis, but also shed light on a potential approach to enhance GBM treatment.
Collapse
Affiliation(s)
- Lin Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Justin H Gundelach
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Richard J Bram
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
46
|
Choi EM, Suh KS, Rhee SY, Oh S, Kim SW, Pak YK, Choe W, Ha J, Chon S. Exposure to tetrabromobisphenol A induces cellular dysfunction in osteoblastic MC3T3-E1 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:561-570. [PMID: 28276884 DOI: 10.1080/10934529.2017.1284435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study was undertaken to investigate the possible involvement of oxidative stress in tetrabromobisphenol A (TBBPA)-induced toxicity in osteoblastic MC3T3-E1 cells. To examine the potential effect of TBBPA on cultured osteoblastic cells, we measured cell viability, apoptosis, reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial parameters including adenosine triphosphate (ATP) level, cardiolipin content, cytochrome c release, cyclophilin levels, and differentiation markers in osteoblastic MC3T3-E1 cells. TBBPA exposure for 48 h caused the apoptosis and cytotoxicity of MC3T3-E1 cells. TBBPA also induced ROS and mitochondrial superoxide production in a concentration-dependent manner. These results suggest that TBBPA induces osteoblast apoptosis and ROS production, resulting in bone diseases. Moreover, TBBPA induced cardiolipin peroxidation, cytochrome c release, and decreased ATP levels which induced apoptosis or necrosis. TBBPA decreased the differentiation markers, collagen synthesis, alkaline phosphatase activity, and calcium deposition in cells. Additionally, TBBPA decreased cyclophilin A and B releases. Taken together, these data support the notion that TBBPA inhibits osteoblast function and has detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Eun Mi Choi
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Kwang Sik Suh
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sang Youl Rhee
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Seungjoon Oh
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sung Woon Kim
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Youngmi Kim Pak
- b Department of Physiology , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Wonchae Choe
- c Department of Biochemistry and Molecular Biology (BK21 project) , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Joohun Ha
- c Department of Biochemistry and Molecular Biology (BK21 project) , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Suk Chon
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
47
|
Arora P, Basu A, Schmidt ML, Clark GJ, Donninger H, Nichols DB, Calvisi DF, Kaushik-Basu N. Nonstructural protein 5B promotes degradation of the NORE1A tumor suppressor to facilitate hepatitis C virus replication. Hepatology 2017; 65:1462-1477. [PMID: 28090674 PMCID: PMC5397368 DOI: 10.1002/hep.29049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/16/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) infection is a common risk factor for the development of liver cancer. The molecular mechanisms underlying this effect are only partially understood. Here, we show that the HCV protein, nonstructural protein (NS) 5B, directly binds to the tumor suppressor, NORE1A (RASSF5), and promotes its proteosomal degradation. In addition, we show that NORE1A colocalizes to sites of HCV viral replication and suppresses the replication process. Thus, NORE1A has antiviral activity, which is specifically antagonized by NS5B. Moreover, the suppression of NORE1A protein levels correlated almost perfectly with elevation of Ras activity in primary human samples. Therefore, NORE1A inactivation by NS5B may be essential for maximal HCV replication and may make a major contribution to HCV-induced liver cancer by shifting Ras signaling away from prosenescent/proapoptotic signaling pathways. CONCLUSION HCV uses NS5B to specifically suppress NORE1A, facilitating viral replication and elevated Ras signaling. (Hepatology 2017;65:1462-1477).
Collapse
Affiliation(s)
- Payal Arora
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Amartya Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - M. Lee Schmidt
- Dept. Pharmacology and Toxicology, University of Louisville, Rm 417, CTRB 505, S. Hancock St., Louisville, KY 40202, USA
| | - Geoffrey J. Clark
- Dept. Pharmacology and Toxicology, University of Louisville, Rm 417, CTRB 505, S. Hancock St., Louisville, KY 40202, USA,To whom correspondence should be addressed: ,
| | - Howard Donninger
- Dept. Pharmacology and Toxicology, University of Louisville, Rm 417, CTRB 505, S. Hancock St., Louisville, KY 40202, USA
| | - Daniel B. Nichols
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA,Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| | - Diego F. Calvisi
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA,To whom correspondence should be addressed: ,
| |
Collapse
|
48
|
Liu XX, Wang CY, Luo C, Sheng JQ, Wu D, Hu BJ, Wang JH, Hong YJ. Characterization of cyclophilin D in freshwater pearl mussel ( Hyriopsis schlegelii). Zool Res 2017; 38:103-109. [PMID: 28409506 PMCID: PMC5396027 DOI: 10.24272/j.issn.2095-8137.2017.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/07/2017] [Indexed: 12/12/2022] Open
Abstract
Cyclophilin D (referred to as HsCypD) was obtained from the freshwater pearl mussel (Hyriopsis schlegelii). The full-length cDNA was 2 671 bp, encoding a protein consisting of 367 amino acids. HsCypD was determined to be a hydrophilic intracellular protein with 10 phosphorylation sites and four tetratricopeptide repeat (TPR) domains, but no signal peptide. The core sequence region YKGCIFHRIIKDFMVQGG is highly conserved in vertebrates and invertebrates. Phylogenetic tree analysis indicated that CypD from all species had a common origin, and HsCypD had the closest phylogenetic relationship with CypD from Lottia gigantea. The constitutive mRNA expression levels of HsCypD exhibited tissue-specific patterns, with the highest level detected in the intestines, followed by the gonads, and the lowest expression found in the hemocytes.
Collapse
Affiliation(s)
- Xiu-Xiu Liu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Cheng-Yuan Wang
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Chun Luo
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Jun-Qing Sheng
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Di Wu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Bei-Juan Hu
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Jun-Hua Wang
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China
| | - Yi-Jiang Hong
- School of Life Sciences, Nanchang University, Nanchang Jiangxi 330031, China; Key Laboratory of Aquatic Animals Resources and Utilization of Jiangxi, Nanchang University, Nanchang Jiangxi 330031, China.
| |
Collapse
|
49
|
Hepatitis C virus may have an entero-hepatic cycle which could be blocked with ezetimibe. Med Hypotheses 2017; 102:51-55. [PMID: 28478831 DOI: 10.1016/j.mehy.2017.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/08/2017] [Indexed: 12/11/2022]
Abstract
Hepatitis C virus can lead to chronic infection, cirrhosis and hepatocellular carcinoma. With more than 170 million people infected worldwide, eradication remains a challenge even with the revolutionary current direct antiviral agents (DAAs). The risk of resistance, the safety profile in some populations, the genotype specificity and the high price of current DAAs explain why there is still interest in developing host targeting agents (HTA) that may help overcome some of these difficulties. Specifically, targeting the entry of HCV to the cell seems like a promising strategy. Recently it has been shown that the cholesterol transporter NPC1L1, a protein located in the small bowel epithelium and in the canalicular membrane of the hepatocyte is also an HCV receptor. Just as this protein is key in the entero-hepatic cycle of cholesterol, we hypothesize that there is an entero-hepatic cycle of HCV that could be disrupted by blocking NPC1L1 with ezetimibe, an already approved and readily available safe drug. Ezetimibe, either alone or in combination with DAAs, could decrease relapse rates, reduce resistance and even make treatments cheaper.
Collapse
|
50
|
Wear MA, Nowicki MW, Blackburn EA, McNae IW, Walkinshaw MD. Thermo-kinetic analysis space expansion for cyclophilin-ligand interactions - identification of a new nonpeptide inhibitor using Biacore™ T200. FEBS Open Bio 2017; 7:533-549. [PMID: 28396838 PMCID: PMC5377415 DOI: 10.1002/2211-5463.12201] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022] Open
Abstract
We have established a refined methodology for generating surface plasmon resonance sensor surfaces of recombinant his‐tagged human cyclophilin‐A. Our orientation‐specific stabilisation approach captures his‐tagged protein under ‘physiological conditions’ (150 mm NaCl, pH 7.5) and covalently stabilises it on Ni2+‐nitrilotriacetic acid surfaces, very briefly activated for primary amine‐coupling reactions, producing very stable and active surfaces (≥ 95% specific activity) of cyclophilin‐A. Variation in protein concentration with the same contact time allows straightforward generation of variable density surfaces, with essentially no loss of activity, making the protocol easily adaptable for studying numerous interactions; from very small fragments, ~ 100 Da, to large protein ligands. This new method results in an increased stability and activity of the immobilised protein and allowed us to expand the thermo‐kinetic analysis space, and to determine accurate and robust thermodynamic parameters for the cyclophilin‐A–cyclosporin‐A interaction. Furthermore, the increased sensitivity of the surface allowed identification of a new nonpeptide inhibitor of cyclophilin‐A, from a screen of a fragment library. This fragment, 2,3‐diaminopyridine, bound specifically with a mean affinity of 248 ± 60 μm. The X‐ray structure of this 109‐Da fragment bound in the active site of cyclophilin‐A was solved to a resolution of 1.25 Å (PDB: 5LUD), providing new insight into the molecular details for a potential new series of nonpeptide cyclophilin‐A inhibitors.
Collapse
Affiliation(s)
- Martin A Wear
- The Edinburgh Protein Production Facility (EPPF) Wellcome Trust Centre for Cell Biology (WTCCB) University of Edinburgh UK
| | - Matthew W Nowicki
- The Edinburgh Protein Production Facility (EPPF) Wellcome Trust Centre for Cell Biology (WTCCB) University of Edinburgh UK
| | - Elizabeth A Blackburn
- The Edinburgh Protein Production Facility (EPPF) Wellcome Trust Centre for Cell Biology (WTCCB) University of Edinburgh UK
| | - Iain W McNae
- The Edinburgh Protein Production Facility (EPPF) Wellcome Trust Centre for Cell Biology (WTCCB) University of Edinburgh UK
| | - Malcolm D Walkinshaw
- The Edinburgh Protein Production Facility (EPPF) Wellcome Trust Centre for Cell Biology (WTCCB) University of Edinburgh UK
| |
Collapse
|