1
|
Purbayanto MAK, Chandel M, Makowski M, Birowosuto MD, Montes-García V, Prenger K, Ciesielski A, Naguib M, Jastrzębska AM. Unraveling the Role of Interfacial Charge Transfer on Photoactivity and Anomalous Luminescence Quenching of V 4C 3T x/Protonated g-C 3N 4 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2025; 17:17454-17464. [PMID: 40062911 PMCID: PMC11931479 DOI: 10.1021/acsami.4c19729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 03/21/2025]
Abstract
Two-dimensional van der Waals heterostructures with exotic quantum phenomena have garnered a huge surge in the field of optoelectronic devices. Herein, we report spectroscopic evidence of efficient interfacial charge transfers at the interface of a novel 2D/2D V4C3Tx MXene/protonated g-C3N4 (PCN) heterostructured thin film, demonstrating robust photosensitivity and a large exciton activation energy of 139.5 meV. Through temperature-dependent photoluminescence (PL) and time-resolved PL spectroscopy, we unravel the photophysical mechanism driving efficient charge transfer and photosensitivity in V4C3Tx/PCN heterostructures. These heterostructures exhibit superior photosensitivity to white and UV light compared with either PCN or V4C3Tx pristine materials. Additionally, we observed significant PL quenching with unusual negative thermal quenching and extended charge carrier lifetime in the V4C3Tx/PCN heterostructures across a broad temperature range of 70-370 K. Notably, at the elevated temperature of 370 K, the carrier lifetime was enhanced by more than 2-fold, making the heterostructures promising for optoelectronic applications. This work provides critical insight into the charge transfer mechanism between V4C3Tx MXene and PCN, opening a new avenue for rationally designing g-C3N4-based heterostructures for highly photosensitive optoelectronic devices.
Collapse
Affiliation(s)
| | - Madhurya Chandel
- Warsaw
University of Technology, Faculty of Mechatronics, św. Andrzeja Boboli 8, 02-525 Warsaw, Poland
| | - Michał Makowski
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | - Muhammad Danang Birowosuto
- Łukasiewicz
Research Network—PORT Polish Center for Technology Development, Stabłowicka 147, 54-066 Wrocław, Poland
| | | | - Kaitlyn Prenger
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | - Artur Ciesielski
- Université
de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
- Center
for Advanced Technologies, Adam Mickiewicz
University, Uniwersytetu
Poznańskiego 10, 61-614 Poznań, Poland
| | - Michael Naguib
- Department
of Physics and Engineering Physics, Tulane
University, New Orleans, Louisiana 70118, United States
| | | |
Collapse
|
2
|
Cheng YH, Kuo CT, Lian BY. Chameleon-Inspired Colorimetric Sensors for Real-Time Detections with Humidity. MICROMACHINES 2023; 14:2254. [PMID: 38138423 PMCID: PMC10745728 DOI: 10.3390/mi14122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
In recent decades, vapor sensors have gained substantial attention for their crucial roles in environmental monitoring and pharmaceutical applications. Herein, we introduce a chameleon-inspired colorimetric (CIC) sensor, detailing its design, fabrication, and versatile applications. The sensor seamlessly combines a PEDOT:PSS vapor sensor with a colorimetric display, using thermochromic liquid crystal (TLC). We further explore the electrical characteristics of the CIC sensor when doped with ethylene glycol (EG) and polyvinyl alcohol (PVA). Comparative analyses of resistance change rates for different weight ratios of EG and PVA provide insights into fine-tuning the sensor's responsiveness to varying humidity levels. The CIC sensor's proficiency in measuring ambient humidity is investigated under a voltage input as small as 2.6 V, capturing resistance change rates and colorimetric shifts at relative humidity (RH) levels ranging from 20% to 90%. Notably, the sensor exhibits distinct resistance sensitivities of 9.7 mΩ (0.02% ∆R/R0)/%RH, 0.5 Ω (0.86% ∆R/R0)/%RH, and 5.7 Ω (9.68% ∆R/R0)/%RH at RH 20% to 30%, RH 30% to 80%, and RH 80% to 90%, respectively. Additionally, a linear temperature change is observed with a sensitivity of -0.04 °C/%RH. The sensor also demonstrates a colorimetric temperature sensitivity of -82,036 K/%RH at RH 20% to 30% and -514 K/%RH at RH 30% to 90%, per captured image. Furthermore, real-time measurements of ethanol vapor with varying concentrations showcase the sensor's applicability in gas sensing applications. Overall, we present a comprehensive exploration of the CIC sensor, emphasizing its design flexibility, electrical characteristics, and diverse sensing capabilities. The sensor's potential applications extend to real-time environmental monitoring, highlighting its promising role in various gas sensing fields.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Ching-Te Kuo
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Bo-Yao Lian
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| |
Collapse
|
3
|
Li Y, Du H. Engineering graphitic carbon nitride for next-generation photodetectors: a mini review. RSC Adv 2023; 13:25968-25977. [PMID: 37664204 PMCID: PMC10472343 DOI: 10.1039/d3ra04051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Semiconductor photodetectors, as photoelectric devices using optical-electrical signal conversion for detection, are widely used in various fields such as optical communication, medical imaging, environmental monitoring, military tracking, remote sensing, etc. Compared to the conventional photodetector materials including silicon, III-V semiconductors and metal sulfides, graphitic carbon nitride (g-C3N4) as a metal-free polymeric semiconductor, has many advantages such as low-price, easy preparation, efficient visible light response, and relatively good thermal stability. In the meantime, the polymer characteristics also endow the g-C3N4 with good mechanical properties. Apart from being used for photo(electro)catalysts during the past decades, the potential use of g-C3N4 in photodetectors has attracted great research interests very recently. In this review, we first briefly introduce the structure and properties of g-C3N4 and the key performance parameters of photodetectors. Then, combining the very recent progress, the review focuses on the active materials, fabrication methods and performance enhancement strategies for g-C3N4 based photodetectors. The existing challenges are discussed and the future development of g-C3N4 based photodetectors is also forecasted.
Collapse
Affiliation(s)
- Yuan Li
- School of Telecommunications Engineering, Hubei Science and Technology College Wuhan 430074 China
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology Wuhan 430074 China
| | - Haiwei Du
- School of Materials Science and Engineering, Anhui University Hefei 230601 China
| |
Collapse
|
4
|
Zhang J, Zhang J, Dong C, Xia Y, Jiang L, Wang G, Wang R, Chen J. Direct Growth of Polymeric Carbon Nitride Nanosheet Photoanode for Greatly Efficient Photoelectrochemical Water-Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208049. [PMID: 37127867 DOI: 10.1002/smll.202208049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
A general method for the direct synthesis of highly homogeneous and dense polymerized carbon nitride (PCN) nanosheet films on F: SnO2 (FTO) is developed. Detailed photoelectrochemical (PEC) water-splitting studies reveal that the as-synthesized PCN films exhibit outstanding performance as photoanode for PEC water-splitting. The optimal PCN photoanode exhibits excellent photocurrent density of 650 µA cm-2 , and monochromatic incident photon-to-electron conversion efficiency (IPCE) value up to 30.55% (λ = 400 nm) and 25.97% (λ = 420 nm) at 1.23 VRHE in 0.1 m KOH electrolyte. More importantly, the PCN photoanode has an excellent hole extraction efficiency of up to 70 ± 3% due to the abundance of active sites provided by the PCN photoanode nanosheet, which promotes the transport rates of OER-relevant species. These PCN films provide a new benchmark for PCN photoanode materials.
Collapse
Affiliation(s)
- Jin Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan Province, 610065, China
| | - Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan Province, 610065, China
| | - Changxue Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan Province, 610065, China
| | - Yu Xia
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan Province, 610065, China
| | - Lan Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan Province, 610065, China
| | - Gang Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan Province, 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan Province, 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan Province, 610065, China
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, Sichuan Province, 610065, China
| |
Collapse
|
5
|
Lei L, Fan H, Jia Y, Wu X, Hu N, Zhong Q, Wang W. Surface-assisted synthesis of biomass carbon-decorated polymer carbon nitride for efficient visible light photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 634:1014-1023. [PMID: 36577254 DOI: 10.1016/j.jcis.2022.12.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Template is frequently studied as a structure-directing agent to tune the nanomorphology of photocatalysts. However, the influences of template on the polymerization of precursors and compositions of the resulting samples are rarely considered. Herein, a biomass carbon-modified graphitic carbon nitride (CCNx) with a thin-layer morphology is synthesized via one-pot surface-assisted polymerization of melamine precursor on organic yeast. The formation of the hydrogen bond between melamine and yeast induces a strong interfacial confinement, giving rise to small-sized CCNx. In addition, the carbon materials derived from yeast dramatically broaden n → π* visible light harvesting, improve electron delocalization, and greatly enhance charge carrier separation. The optimized CCNx presents a much higher photocatalytic hydrogen production rate of 2704 μmol g-1h-1 under visible light irradiation (λ ≥ 420 nm), which is nearly 11-fold that of its pristine counterpart. This work realizes the synergistic effect between morphology tunning and composition tailoring by using biomass template, which shows a great potential in developing efficient metal-free photocatalysts.
Collapse
Affiliation(s)
- Lin Lei
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Yuxin Jia
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaobo Wu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Neng Hu
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 310018 Hangzhou, China
| | - Weijia Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
6
|
Lei Y, Si W, Wang Y, Tan H, Di L, Wang L, Liang J, Hou F. Robust Carbon Nitride Homojunction Photoelectrode for Solar-Driven Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6726-6734. [PMID: 36692988 DOI: 10.1021/acsami.2c18694] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Achieving intimate particle-to-particle and particle-to-substrate contacts is the first priority for fabricating high-quality photoelectrodes to ensure sufficient visible light absorption and efficient charge separation/transport. To achieve this goal, a seeding strategy is designed to construct a robust carbon nitride (CN) homojunction photoelectrode, in which vaporized precursors are condensed into a compact seeding layer at low temperatures, inducing the further deposition of the top layer. This optimized photoelectrode displays an excellent photocurrent density of 320 μA cm-2 in 0.1 M NaOH electrolyte at 1.23 VRHE (V vs reversible hydrogen electrode) under AM 1.5G illumination, with H2 and O2 evolution rates of 2.98 and 1.47 μmol h-1 cm-2, respectively. Characterizations show that both the robust contact and the homojunction of the double-layered CN film contribute to enhanced photoelectrochemical performance. This work may provide a new strategy for the design of high-performing CN photoelectrodes.
Collapse
Affiliation(s)
- Yanyan Lei
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, China
| | - Wenping Si
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, China
| | - Yuqing Wang
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, China
| | - Haotian Tan
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, China
| | - Lu Di
- School of Materials Science and Engineering, Nankai University, Tianjin300350, China
| | - Liqun Wang
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin300387, China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin300350, China
| |
Collapse
|
7
|
Garg H, Patial S, Raizada P, Nguyen VH, Kim SY, Le QV, Ahamad T, Alshehri SM, Hussain CM, Nguyen TTH, Singh P. Hexagonal-borocarbonitride (h-BCN) based heterostructure photocatalyst for energy and environmental applications: A review. CHEMOSPHERE 2023; 313:137610. [PMID: 36563726 DOI: 10.1016/j.chemosphere.2022.137610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Formulation of heterojunction with remarkable high efficiency by utilizing solar light is promising to synchronously overcome energy and environmental crises. In this concern, hexagonal-borocarbonitride (h-BCN) based Z-schemes have proved potential candidates due to their spatially separated oxidation and reduction sites, robust light-harvesting ability, high charge pair migration and separation, and strong redox ability. H-BCN has emerged as a hotspot in the research field as a metal-free photocatalyst with a tunable bandgap range of 0-5.5 eV. The BCN photocatalyst displayed synergistic benefits of both graphene and boron nitride. Herein, the review demonstrates the current state-of-the-art in the Z-scheme photocatalytic application with a special emphasis on the predominant features of their photoactivity. Initially, fundamental aspects and various synthesis techniques are discussed, including thermal polymerization, template-assisted, and template-free methods. Afterward, the reaction mechanism of direct Z-scheme photocatalysts and indirect Z-scheme (all-solid-state) are highlighted. Moreover, the emerging Step-scheme (S-scheme) systems are briefly deliberated to understand the charge transfer pathway mechanism with an induced internal electric field. This review critically aims to comprehensively summarize the photo-redox applications of various h-BCN-based heterojunction photocatalysts including CO2 photoreduction, H2 evolution, and pollutants degradation. Finally, some challenges and future direction of h-BCN-based Z-scheme photocatalyst in environmental remediation are also proposed.
Collapse
Affiliation(s)
- Heena Garg
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Van-Huy Nguyen
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, N J, 07102, USA
| | - Thi Thanh Huyen Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environmental Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
8
|
Tian Y, Guo Z, Liu G, Liu M, Yang C, Zou H. Visible-light-driven photocatalytic activation of peroxymonosulfate by K+-reformed polymeric carbon nitride for effective sulfamethoxazole decomposition. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Padervand M, Nasiri F, Hajiahmadi S, Bargahi A, Esmaeili S, Amini M, Karimi Nami R, Shahsavari Z, Karima S. Ag@Ag2MoO4 decorated polyoxomolybdate/C3N4 nanostructures as highly efficient photocatalysts for the wastewater treatment and cancer cells killing under visible light. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Zheng G, Wang T, Lou Q, Shen C, Wu M, Sun J, Ji W, Zang J, Liu K, Dong L, Shan C. Localized Excitonic Electroluminescence from Carbon Nanodots. J Phys Chem Lett 2022; 13:1587-1595. [PMID: 35139310 DOI: 10.1021/acs.jpclett.1c04028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Localized excitons are expected to achieve high-performance electroluminescence and have been widely investigated in GaN-based light-emitting diodes (LEDs). Although carbon nanodot (CD) based LEDs have been achieved with the radiative recombination of electrons and holes, localized excitonic electroluminescence has been not reported before. In this Letter, localized excitonic electroluminescent devices have been fabricated using fluorescent CDs as an active layer. The CDs show strong localized excitonic yellow emission with a fluorescence quantum yield of 76% and Stokes shift of 2.1 eV. The CD-based LEDs present a sub-bandgap turn-on voltage of 2.4 V and a maximum luminance of 60.2 cd m-2, which is the lowest driving voltage among the CD-based electroluminescent devices. Localized centers trap carriers effectively, resulting in sub-bandgap light emission. The current results manifest that localized excitons may furnish a promising approach to boost the development of CD-based LEDs.
Collapse
Affiliation(s)
- Guangsong Zheng
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Ting Wang
- Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130023, China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Chenglong Shen
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Mengyuan Wu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Junlu Sun
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Wenyu Ji
- Key Lab of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130023, China
| | - Jinhao Zang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Kaikai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Cao Y, Ahmai S, Ghaffar Ebadi A, Xu NY, Issakhov A, Derakhshandeh M. Boron carbide hexagonal monolayer as promising anode material for magnesium-ion batteries. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
DFT exploration of sensor performances of pristine and metal-doped graphdiyne monolayer to acetaminophen drug in terms of charge transfer and bandgap changes. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Liu S, Zhu P, Zou S, Ebrahimiasl S. Theoretical evaluation of central ring doped Hexa-peri-hexabenzocoronene as Gamma-butyrolactone drug sensors. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Yu H, Ji Y, Hanas M. Based on C–O bond activation: Palladium catalysts in cross-coupling reactions. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1955931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hao Yu
- Zhejiang College of Construction, Hangzhou, China
| | - Yanchen Ji
- Zhejiang College of Construction, Hangzhou, China
| | - Martyan Hanas
- Faculty of Chemical Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Asghari M, Saadatmandi S, Afsari M. Graphene Oxide and its Derivatives for Gas Separation Membranes. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202000038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Morteza Asghari
- University of Science and Technology of Mazandaran Separation Processes Research Group (SPRG) Behshahr Mazandaran Iran
| | | | - Morteza Afsari
- University of Technology Sydney (UTS) Center for Technology in Water and Wastewater (CTWW) School of Civil and Environmental Engineering 2007 Sydney NSW Australia
| |
Collapse
|
16
|
Wu H, Chen X, Sun N, Sanchez-Mendoza A. Recent developments in the synthesis of N-aryl sulfonamides. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1936060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Huizhen Wu
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Xuesong Chen
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | - Nabo Sun
- College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou, P. R. China
| | | |
Collapse
|
17
|
|
18
|
Nong H, Fatah AM, Shehzad S, Ambreen T, Selim MM, Albadarin AB. Numerical modeling for steady-state nanofluid free convection involving radiation through a wavy cavity with Lorentz forces. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Moarefdoust MM, Jahani S, Moradalizadeh M, Motaghi MM, Foroughi MM. An electrochemical sensor based on hierarchical nickel oxide nanostructures doped with indium ions for voltammetric simultaneous determination of sunset yellow and tartrazine colorants in soft drink powders. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2396-2404. [PMID: 33982698 DOI: 10.1039/d1ay00306b] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The current study was designed to develop a single-step and simple approach to effectively fabricate three-dimensional raspberry-like In3+/NiO hierarchical nanostructures (In3+/NiO RLHNSs) as a modifier, which was subsequently characterized by the techniques of X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and field emission scanning electron microscopy (FE-SEM). The new prepared nano-modifier was practically used to co-detect electrochemically sunset yellow and tartrazine dyes. Potent sensitivity and acceptable selectivity were obtained for the produced In3+/NiO RLHNSs to co-detect both the food colorants, thus providing oxidation peaks in differential pulse voltammetry (DPV) with a peak potential separation of ca. 190 mV. The results showed a 5.14-fold and 8.07-fold increase in the electrochemical response of our modified electrode to sunset yellow and tartrazine, respectively, compared to the control (the unmodified electrode). Limits of detection of 2.7 and 3.1 nM were calculated for sunset yellow and tartrazine, respectively. The results from the interaction of common food additives showed satisfactory outcomes for the application of this method in determining sunset yellow and tartrazine in several beverage specimens. Other useful documentation was obtained for the production of portable food additive sensors.
Collapse
|
20
|
Nanofluid convective flow between rotating plates with involving Lorentz effect. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01884-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Mathematical simulation of Coulomb forces effect on nanofluid convective flow within a permeable media. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01845-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|