1
|
Musa AA, Bello A, Adams SM, Onwualu AP, Anye VC, Bello KA, Obianyo II. Nano-Enhanced Polymer Composite Materials: A Review of Current Advancements and Challenges. Polymers (Basel) 2025; 17:893. [PMID: 40219283 PMCID: PMC11991163 DOI: 10.3390/polym17070893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 04/14/2025] Open
Abstract
Nanomaterials have demonstrated significant potential in enhancing the performance and functionality of composite materials across various industrial applications. This review delves into the unique properties of nanomaterials, with a particular focus on carbon-based nanomaterials, and presents key findings on their effectiveness in improving composite performance. The study emphasizes specific nano-based composite materials, highlighting their substantial promise in advancing the field of nanocomposites. Additionally, it addresses the challenges associated with the production and utilization of nanocomposite materials and discusses potential solutions to overcome these obstacles. The review concludes with recommendations for further research and innovation in nanocomposites to fully harness the advantages of these advanced materials for broader future applications.
Collapse
Affiliation(s)
- Abdulrahman Adeiza Musa
- Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria 810107, Nigeria
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Abdulhakeem Bello
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Sani Mohammed Adams
- Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka 410105, Nigeria
| | - Azikiwe Peter Onwualu
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Vitalis Chioh Anye
- Department of Materials Science and Engineering, African University of Science and Technology, Abuja 900107, Nigeria; (A.B.); (A.P.O.); (V.C.A.)
| | - Kamilu Adeyemi Bello
- Department of Metallurgical and Materials Engineering, Ahmadu Bello University, Zaria 810107, Nigeria
| | | |
Collapse
|
2
|
Fernández-Martínez R, Ortiz I, Gómez-Mancebo MB, Alcaraz L, Fernández M, López FA, Rucandio I, Sánchez-Hervás JM. Transformation of Graphite Recovered from Batteries into Functionalized Graphene-Based Sorbents and Application to Gas Desulfurization. Molecules 2024; 29:3577. [PMID: 39124981 PMCID: PMC11313908 DOI: 10.3390/molecules29153577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The recycling and recovery of value-added secondary raw materials such as spent Zn/C batteries is crucial to reduce the environmental impact of wastes and to achieve cost-effective and sustainable processing technologies. The aim of this work is to fabricate reduced graphene oxide (rGO)-based sorbents with a desulfurization capability using recycled graphite from spent Zn/C batteries as raw material. Recycled graphite was obtained from a black mass recovered from the dismantling of spent batteries by a hydrometallurgical process. Graphene oxide (GO) obtained by the Tour's method was comparable to that obtained from pure graphite. rGO-based sorbents were prepared by doping obtained GO with NiO and ZnO precursors by a hydrothermal route with a final annealing step. Recycled graphite along with the obtained GO, intermediate (rGO-NiO-ZnO) and final composites (rGO-NiO-ZnO-400) were characterized by Wavelength Dispersive X-ray Fluorescence (WDXRF) and X-ray diffraction (XRD) that corroborated the removal of metal impurities from the starting material as well as the presence of NiO- and ZnO-doped reduced graphene oxide. The performance of the prepared composites was evaluated by sulfidation tests under different conditions. The results revealed that the proposed rGO-NiO-ZnO composite present a desulfurization capability similar to that of commercial sorbents which constitutes a competitive alternative to syngas cleaning.
Collapse
Affiliation(s)
- Rodolfo Fernández-Martínez
- Chemistry Division, Technology Department, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (M.B.G.-M.); (M.F.); (I.R.)
| | - Isabel Ortiz
- Sustainable Thermochemical Valorization Unit, Energy Department, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (I.O.); (J.M.S.-H.)
| | - M. Belén Gómez-Mancebo
- Chemistry Division, Technology Department, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (M.B.G.-M.); (M.F.); (I.R.)
| | - Lorena Alcaraz
- National Centre for Metallurgical Research (CENIM), Spanish National Research Council (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid, Spain; (L.A.); (F.A.L.)
| | - Manuel Fernández
- Chemistry Division, Technology Department, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (M.B.G.-M.); (M.F.); (I.R.)
| | - Félix A. López
- National Centre for Metallurgical Research (CENIM), Spanish National Research Council (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid, Spain; (L.A.); (F.A.L.)
| | - Isabel Rucandio
- Chemistry Division, Technology Department, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (M.B.G.-M.); (M.F.); (I.R.)
| | - José María Sánchez-Hervás
- Sustainable Thermochemical Valorization Unit, Energy Department, Research Centre for Energy, Environment and Technology (CIEMAT), 28040 Madrid, Spain; (I.O.); (J.M.S.-H.)
| |
Collapse
|
3
|
Maity S, Biradar BR, Srivastava S, Chandewar PR, Shee D, Pratim Das P, Mal SS. Waste dry cell derived photo-reduced graphene oxide and polyoxometalate composite for solid-state supercapacitor applications. Phys Chem Chem Phys 2023; 25:24613-24624. [PMID: 37665020 DOI: 10.1039/d3cp01872e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
In the modern era, realizing highly efficient supercapacitors (SCs) derived through green routes is paramount to reducing environmental impact. This study demonstrates ways to recycle and reuse used waste dry cell anodes to synthesize nanohybrid electrodes for SCs. Instead of contributing to landfill and the emission of toxic gas to the environment, dry cells are collected and converted into a resource for improved SC cells. The high performance of the electrode was achieved by exploiting battery-type polyoxometalate (POM) clusters infused on a reduced graphene oxide (rGO) surface. Polyoxometalate (K5[α-SiMo2VW9O40]) assisted in the precise bottom-up reduction of graphene oxide (GO) under UV irradiation at room temperature to produce vanadosilicate embedded photo-reduced graphene oxide (prGO-Mo2VW9O40). Additionally, a chemical reduction route for GO (crGO) was trialed to relate to the prGO, followed by the integration of a faradaic monolayer (crGO-Mo2VW9O40). Both composite frameworks exhibit unique hierarchical heterostructures that offer synergic effects between the dual components. As a result, the hybrid material's ion transport kinetics and electrical conductivity enhance the critical electrochemical process at the electrode's interface. The simple co-participation method delivers a remarkable specific capacity (capacitance) of 405 mA h g-1 (1622 F g-1) and 117 mA h g-1 (470 F g-1) for prGO-Mo2VW9O40 and crGO-Mo2VW9O40 nanocomposites alongside high capacitance retentions of 94.5% and 82%, respectively, at a current density of 0.3 A g-1. Furthermore, the asymmetric electrochromic supercapacitor crGO//crGO-Mo2VW9O40 was designed, manifesting a broad operating potential (1.2 V). Finally, the asymmetric electrode material resulted in an enhanced specific capacity, energy, and power of 276.8 C g-1, 46.16 W h kg-1, and 1195 W kg-1, respectively, at a current density of 0.5 A g-1. The electrode materials were tested in the operating of a DC motor.
Collapse
Affiliation(s)
- Sukanya Maity
- Low Dimensional Physics Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 5750525, India.
| | - Bhimaraya R Biradar
- Low Dimensional Physics Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 5750525, India.
| | - Saurabh Srivastava
- Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 5750525, India.
| | - Pranay R Chandewar
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Debaprasad Shee
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Partha Pratim Das
- Low Dimensional Physics Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 5750525, India.
| | - Sib Sankar Mal
- Materials and Catalysis Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal 5750525, India.
| |
Collapse
|
4
|
Bishwakarma H, Tyagi R, Kumar N, Das AK. Green synthesis of flower shape ZnO-GO nanocomposite through optimized discharge parameter and its efficiency in energy storage device. ENVIRONMENTAL RESEARCH 2023; 218:115021. [PMID: 36495961 DOI: 10.1016/j.envres.2022.115021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Numerous solution-based methods are used to prepare zinc oxide (ZnO) and graphene oxide (GO) nanocomposite (ZnO-GO NCs) such as sol-gel, hydrothermal, and precipitation. These methods require lots of reagents and involve many stages. In this study, a novel one-step solution-based discharge method is used to prepare ZnO-GO NCs through an electrochemical discharge process (ECDP) without the use of any catalyst or toxic chemical reagent. This study focused on analyzing the effects of input parameters on the production rate of ZnO-GO NCs. The experiment was performed by using Taguchi L9 orthogonal array. Materials removal rate (MRR) is considered as output response. The results reveal that voltage is the most significant factor, followed by temperature and duty cycle for obtaining higher MRR. The optimum parameters obtained from the Minitab software for higher MRR are 40 V, 30%, and 45 °C. Further, the morphology of the nanoparticles (NCs) produced at optimum parameters is analyzed which shows flower shape NCs with multilayer graphene oxide, confirmed by the FESEM and TEM images. The XRD peak at 11.27° and Raman spectroscopy peak of G and D bands reveal GO formation. The prepared ZnO-GO NCs tested as supercapacitor activity in the KOH solution. At the optimum parameter, the specific capacitance is observed to be 523.4 F/g at 2A/g current density. The NCs electrode shows good cyclic stability, with 86% retention of specific capacitance after 5000 cycles. This study shows a promising future of converting the e-waste product into valuable nanomaterials such as GO and ZnO from used dry cell batteries.
Collapse
Affiliation(s)
- Harish Bishwakarma
- Department of Mechanical Engineering, Indian Institute of Technology (ISM) Dhanbad, 826004, India
| | - Rashi Tyagi
- University Center for Research and Development, Chandigarh University, Mohali, 140413, India.
| | - Nitesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology (ISM) Dhanbad, 826004, India
| | - Alok Kumar Das
- Department of Mechanical Engineering, Indian Institute of Technology (ISM) Dhanbad, 826004, India.
| |
Collapse
|
5
|
Inclusion of bimetallic Fe 0.75Cu 0.25-BDC MOFs into Alginate-MoO 3/GO as a novel nanohybrid for adsorptive removal of hexavalent chromium from water. Sci Rep 2022; 12:19108. [PMID: 36351958 PMCID: PMC9646911 DOI: 10.1038/s41598-022-23508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Metal-organic frameworks (MOFs) as porous materials have recently attracted research works in removal of toxic pollutants from water. Cr(VI) is well-known as one of the most toxic forms of chromium and the selection of efficient and effective Cr(VI)-remediation technology must be focused on a number of important parameters. Therefore, the objective of this work is to fabricate a novel nanohybrid adsorbent for removal of Cr(VI) by using assembled bimetallic MOFs (Fe0.75Cu0.25-BDC)-bound- Alginate-MoO3/Graphene oxide (Alg-MoO3/GO) via simple solvothermal process. The aimed Fe0.75Cu0.25-BDC@Alg-MoO3/GO nanohybrid was confirmed by FTIR, SEM, TEM, XRD and TGA. Adsorptive extraction of Cr(VI) from aqueous solution was aimed by various optimized experimental parameters providing optimum pH = 3, dosage = 5-10 mg, starting concentration of Cr(VI) = 5-15 mg L-1, shaking time = 5-10 min. The point of zero charge (pHPzc) was 3.8. For Cr(VI) removal by Fe0.75Cu0.25-BDC@Alg-MoO3/GO, four isotherm models were estimated: Langmuir, Freundlich, Temkin and Dubinin-Radushkevich (D-R) with calculated correlation coefficient (R2 = 0.9934) for Langmuir model which was higher than others. The collected results from the kinetic study clarified that pseudo-second order model is the most convenient one for describing the adsorption behavior of Cr(VI) and therefore, the adsorption process was suggested to rely on a chemisorption mechanism. Thermodynamic parameters referred that the adsorption mechanism is based on a spontaneous and exothermic process. Finally, the emerged Fe0.75Cu0.25-BDC@Alg-MoO3/GO nanohybrid was confirmed as an effective adsorbent for extraction of hexavalent chromium from real water specimens (tap, sea water and wastewater) with percentage recovery values > 98%.
Collapse
|
6
|
Saravanan A, Kumar PS, Srinivasan S, Jeevanantham S, Vishnu M, Amith KV, Sruthi R, Saravanan R, Vo DVN. Insights on synthesis and applications of graphene-based materials in wastewater treatment: A review. CHEMOSPHERE 2022; 298:134284. [PMID: 35283157 DOI: 10.1016/j.chemosphere.2022.134284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Graphene has excellent unique thermal, chemical, optical, and mechanical properties such as high thermal conductivity, high chemical stability, optical transmittance, high current density, higher surface area, etc. Due to their outstanding properties, the attention towards graphene-based materials and their derivatives in wastewater treatment has been increased in recent times. Different graphene-based materials such as graphene oxides, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons and other graphene-based nanocomposites are synthesized through chemical vapor deposition, mechanical and electrochemical exfoliation of graphite. In this review, the specifics about the graphenes and their derivatives, the synthesis strategy of graphene-based materials are described. This review critically explained the applications of graphene-based materials in wastewater treatment. Graphene-based materials were utilized as adsorbents, electrodes, and photocatalysts for the efficient removal of toxic pollutants such as heavy metals, dyes, pharmaceutics, antibiotics, phenols, polycyclic aromatic hydrocarbons have been highlighted and discussed. Herein, the potential scope of graphene-based material in the field of wastewater treatment is critically reviewed. In addition, a brief perspective on future research directions and difficulties in the synthesis of graphene-based material are summarized.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - M Vishnu
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - K Vishal Amith
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - R Sruthi
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|