1
|
Palliyath GK, Jangam AK, Katneni VK, Kaikkolante N, Panjan Nathamuni S, Jayaraman R, Jagabattula S, Moturi M, Shekhar MS. Meta-analysis to Unravel Core Transcriptomic Responses in Penaeus vannamei Exposed to Biotic and Abiotic Stresses. Biochem Genet 2025; 63:1459-1478. [PMID: 38570440 DOI: 10.1007/s10528-024-10772-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/03/2024] [Indexed: 04/05/2024]
Abstract
Shrimp farming, a dominant economic activity in coastal areas, is affected by different abiotic and biotic stress factors. These stressors, under poor management conditions, could affect growth and health of farmed animals. Understanding the common gene expressions in response to stress, regardless of the specific stress factor, holds significant importance in the field of functional genomics. Scope of this study is to identify the core transcriptomic responses in the shrimp species Penaeus vannamei exposed to various abiotic and biotic stress conditions and to decipher their functional importance. To achieve our objective, we gathered and analyzed multiple RNA-seq datasets related to twelve abiotic and nine biotic stress conditions. Through the in silico meta-analysis, we predicted 961 differentially expressed genes (meta-DEGs) for abiotic stress conditions and 517 meta-DEGs for biotic stress conditions, respectively. These meta-DEGs represent genes that are commonly expressed across different stress factors and are indicative of the organism's general response to stress. The annotation of nineteen core up-regulated meta-DEGs revealed their diverse functions in detoxification, cell adhesion, metal ion binding, and oxidative phosphorylation. These genes play a crucial role in stress response and immune defense. For abiotic stress, significant pathways associated with the stress response include tryptophan metabolism, starch and sucrose metabolism, fatty acid degradation, carbohydrate digestion and absorption, phenylalanine metabolism, drug metabolism-other enzymes, arachidonic acid metabolism, and fatty acid elongation. Similarly, for biotic stress, metabolism of xenobiotics by cytochrome P450, pentose and glucuronate interconversions, steroid hormone biosynthesis, and drug metabolism-cytochrome P450 were found to be significant pathway associations. In addition, the study also predicted 17 stress regulatory motifs present in the identified meta-DEGs. These motifs have significance in identifying the stress responses of the organism. The metabolic pathways and regulatory motifs associated with abiotic and biotic stress factors identified through this study could be a valuable resource for developing stress management approaches in shrimp aquaculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Roja Jayaraman
- ICAR-Central Institute of Brackishwater Aquaculture, Chennai, India
| | | | | | | |
Collapse
|
2
|
Copetti F, Nobre CR, Paço MS, de Camargo TFT, Moreno BB, Fernandes MN, Schveitzer R, Pereira CDS. Biochemical and cytogenetic consequences of settleable atmospheric particulate matter on Pacific white shrimp Litopenaeus vannamei. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 283:107322. [PMID: 40199159 DOI: 10.1016/j.aquatox.2025.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/24/2025] [Accepted: 03/07/2025] [Indexed: 04/10/2025]
Abstract
This study hypothesizes that micro and nanoparticles of metals from metallurgical atmospheric emissions can trigger sublethal effects on the Pacific white shrimp Litopenaeus vannamei. We aimed to analyze cytotoxicity (Lysosomal Membrane Stability - LMS), Lipid peroxidation (LPO), genotoxicity (DNA strand break), and neurotoxicity (Acetylcholinesterase activity AChE) in shrimp exposed to environmentally relevant concentrations (0.001, 0.1, and 1.0 g.L-1) of settleable atmospheric particulate matter (SePM) for different times (T2, T4, T7, T15 and T30 days), and in several tissues (gills, hemolymph, muscle,e and hepatopancreas). LPO within the first 2 day, and LMS showed significant differences. From the seventh to the fifteenth day of exposure, the concentration of 0.1 g.L-1 exhibited significant effects. In the most extended exposure period (30 days), all concentrations triggered cytotoxicity effects on the Pacific white shrimp Litopenaeus vannamei. Thus, exposure to SePM can impair essential cellular functions, denoting a pre-pathological status. These findings underscore the potential hazards of metallurgical SePM to estuarine and farmed shrimp populations, emphasizing the need for ongoing monitoring and effective mitigation strategies to ensure aquaculture sustainability.
Collapse
Affiliation(s)
- F Copetti
- Institute of Biosciences, São Paulo State University "Júlio de Mesquita Filho", Litoral Paulista Campus, Infante Dom Henrique Square, s/n - Parque Bitaru, São Vicente, São Paulo 11330-900, Brazil
| | - C R Nobre
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil.
| | - M S Paço
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil
| | - T F T de Camargo
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil
| | - B B Moreno
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil
| | - M N Fernandes
- Department of Physiological Sciences, Federal University of São Carlos (DCF/UFSCar), Washington Luiz Highway, Km 235, São Carlos, São Paulo 13565-905, Brazil
| | - R Schveitzer
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil
| | - C D S Pereira
- Department of Marine Sciences, Federal University of São Paulo, Baixada Santista Campus, 168 Maria Máximo Street, Santos, São Paulo 11030-100, Brazil
| |
Collapse
|
3
|
Rath S, Das S. Stress response proteins within biofilm matrixome protect the cell membrane against heavy metals-induced oxidative damage in a marine bacterium Bacillus stercoris GST-03. Int J Biol Macromol 2025; 293:139397. [PMID: 39743066 DOI: 10.1016/j.ijbiomac.2024.139397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/26/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Biofilm formation is a key adaptive response of marine bacteria towards stress conditions. The protective mechanisms of biofilm matrixome proteins against heavy metals (Pb and Cd) induced oxidative damage in the marine bacterium Bacillus stercoris GST-03 was investigated. Exposure to heavy metals resulted in significant changes in cell morphology, biofilm formation, and matrixome composition. Biofilm-encased cells showed lower oxidative damage. Biofilm matrixome protein exhibited major conformational changes, with 100 % α-helix turned to 62.33 % and 69.64 % of random coil under Pb and Cd stress, respectively. Fluorescence quenching kinetics revealed slow interactions between biofilm matrixome proteins and heavy metals (Kq values < 2.0 × 1010). Thermodynamic analysis showed negative ∆G (-16.02 kJ/mol for Pb and -17.45 kJ/mol for Cd) and binding dissociation constant (KD) (1530 ± 157 μM for Pb and 875 ± 97.4 μM for Cd), indicating a stronger binding affinity of biofilm matrixome to heavy metals. Pb stress led to overproduction of detoxification proteins (YnaI, KhtS, Bacillopeptidase F), competence and sporulation proteins (RapF, CSSF, XkdP), while Cd exposure leads to overproduction of proteins involved in protein misfolding repair (YlxX, cysteine-tRNA ligase, YacP), DNA repair (YfkN), and redox balance (cysteine synthase, YdiK). The findings highlight the resilience of B. stercoris GST-03 to heavy metal stress in biofilm mode.
Collapse
Affiliation(s)
- Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
4
|
Amouri RE, Ujan JA, Raza A, Mushtaq A, Saeed MQ, Masud S, Habib SS, Milošević M, Al-Rejaie SS, Mohany M. Sublethal Concentrations of Cadmium and Lead: Effects on Hemato-Biochemical Parameters and Tissue Accumulation in Wallagu attu. Biol Trace Elem Res 2025; 203:400-410. [PMID: 38536638 DOI: 10.1007/s12011-024-04158-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/22/2024] [Indexed: 01/07/2025]
Abstract
The exposure of fish to heavy metals can significantly impact physiological processes and potentially lead to adverse health effects. This study assesses the effects of exposure to Cd and Pb sublethal concentrations in water on Wallagu attu. A total of 48 fish with an average body weight of 145.5 ± 26 g were distributed among three groups (control, Cd-treated, and Pb-treated) within 60 L fiberglass tanks. They were exposed to 30% sublethal concentrations of Cd and Pb for durations of 1, 15, and 30 days. Following this exposure, an assessment was conducted on metal bioaccumulation and hemato-biochemical responses. Results revealed a significantly (P < 0.05) higher concentration of heavy metals in the fish tissues of metals exposed groups than in the control. The concentration of Cd and Pb increases in fish tissues (kidney > gills > intestine) with exposure time. In most cases, the Pb-exposed group exhibited significantly (P < 0.05) higher concentrations of Pb in different tissues than the Cd-treated group. With extended exposure time, the activities of CAT and SOD show a significant decrease in both Cd and Pb-treated groups. However, the reduction in activities was more pronounced in the Cd-exposed group. On 15 and 30 days, the levels of red blood cells (RBC), hemoglobin (HB), hematocrit (HCT), and total protein (TP) decrease in groups exposed to Cd and Pb. The cortisol and glucose levels exhibit a more noticeable (P < 0.05) increase with prolonged exposure to Cd and Pb than the control group. On day 30, the survival rate decreased more in the Pb-exposed group. The findings of this study indicate that exposure to sublethal doses of Cd and Pb induces stress in Wallagu attu, resulting in rapid changes in specific hemato-biochemical parameters.
Collapse
Affiliation(s)
- Rim El Amouri
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Javed Ahmed Ujan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
- Department of Zoology, Shah Abdul Latif University, Khairpur, Sindh, 66020, Pakistan
| | - Asif Raza
- Government Degree College Nasirabad, District- Qambar-Shahdadkot, Sindh, 770020, Pakistan
| | - Alia Mushtaq
- Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, 45500, Pakistan
| | - Muhammad Qamar Saeed
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan
| | - Samrah Masud
- Institute of Zoology, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan
| | - Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
| | - Marija Milošević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Kragujevac, 34000, Serbia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Cui L, Xie Y, Luo K, Wang M, Liu L, Li C, Tian X. Physiological and intestinal microbiota responses of sea cucumber Apostichopus japonicus to various stress and signatures of intestinal microbiota dysbiosis. Front Microbiol 2024; 15:1528275. [PMID: 39780943 PMCID: PMC11708840 DOI: 10.3389/fmicb.2024.1528275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Identifying the signatures of intestinal dysbiosis caused by common stresses is fundamental to establishing efficient health monitoring strategies for sea cucumber. This study investigated the impact of six common stress experienced frequently in aquaculture on the growth performance, intestinal homeostasis and microbiota of sea cucumber, including thermal (23°C), hypoosmotic (22‰ salinity), ammonium (0.5 mg/L NH4 +-N), and nitrite (0.25 mg/L NO2 --N) stress exposure for 30 days, as well as starvation and crowding (6 kg/m3 density) stress exposure for 60 days. Results demonstrated that all stress led to reduced growth performance and digestive capacity of sea cucumber, along with varying degrees of oxidative stress and immune responses. Various stresses significantly altered the diversity, community structure (except for crowding stress), and composition of intestinal microbiota. The ratios of Bacteroidota: Proteobacteria (B: P) and Firmicutes: Proteobacteria (F: P) declined markedly compared to the control. Potentially pathogenic bacteria of Shewanellaceae, Vibrionaceae, and Moraxellaceae significantly increased under crowding, ammonium, and nitrite stress, respectively, whereas beneficial microbes of Achromobacter and Rhodobacteraceae were, respectively, enriched under hypoosmotic and starvation stresses. The complexity and stability of microbial ecological networks were further altered by these stresses. KEGG predictions revealed the reduced functional pathways of intestinal microbiota involved in host immunity under different stresses. Correlation analysis further confirmed a strong link between microbiota response and host immunity under different stresses. The increased abundance of Verrucomicrobia species could also be identified as the sensitive indicator for diagnosing whether the host was under stressful pressure by random forest analysis.
Collapse
Affiliation(s)
- Liang Cui
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yumeng Xie
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Kai Luo
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Mingyang Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Longzhen Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- The Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Changlin Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiangli Tian
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
6
|
Gu S, Zheng X, Gao X, Liu Y, Chen Y, Zhu J. Cadmium-Induced Oxidative Damage and the Expression and Function of Mitochondrial Thioredoxin in Phascolosoma esculenta. Int J Mol Sci 2024; 25:13283. [PMID: 39769049 PMCID: PMC11676412 DOI: 10.3390/ijms252413283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/03/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Phascolosoma esculenta is a unique aquatic invertebrate native to China, whose habitat is highly susceptible to environmental pollution, making it an ideal model for studying aquatic toxicology. Mitochondrial thioredoxin (Trx2), a key component of the Trx system, plays an essential role in scavenging reactive oxygen species (ROS), regulating mitochondrial membrane potential, and preventing ROS-induced oxidative stress and apoptosis. This study investigated the toxicity of cadmium (Cd) on P. esculenta and the role of P. esculenta Trx2 (PeTrx2) in Cd detoxification. The results showed that Cd stress altered the activities of T-SOD and CAT, as well as the contents of GSH and MDA in the intestine. After 96 h of exposure, histological damages such as vacuolization, cell necrosis, and mitophagy were observed. Suggesting that Cd stress caused oxidative damage in P. esculenta. Furthermore, with the prolongation of stress time, the expression level of intestinal PeTrx2 mRNA initially increased and then decreased. The recombinant PeTrx2 (rPeTrx2) protein displayed dose-dependent redox activity and antioxidant capacity and enhanced Cd tolerance of Escherichia coli. After RNA interference (RNAi) with PeTrx2, significant changes in the expression of apoptosis-related genes (Caspase-3, Bax, Bcl-2, and Bcl-XL) were observed. Proving that PeTrx2 rapidly responded to Cd stress and played a vital role in mitigating Cd-induced oxidative stress and apoptosis. Our study demonstrated that PeTrx2 is a key factor for P. esculenta to endure the toxicity of Cd, providing foundational data for further exploration of the molecular mechanisms underlying heavy metal resistance in P. esculenta.
Collapse
Affiliation(s)
- Shenwei Gu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xuebin Zheng
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yang Liu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yiner Chen
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Qian W, Li R, Li C, Gu L, Huang L, Qin D, Gao L. Integration of transcriptomics, gut microbiota, and physiology reveals the toxic response of bensulfuron-methyl in Procambarus clarkii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177091. [PMID: 39442711 DOI: 10.1016/j.scitotenv.2024.177091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/07/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Bensulfuron-methyl (BSM) enters the environment through agricultural practices, posing a threat to the health of aquatic organisms. Currently, the toxic mechanisms of BSM on crayfish (Procambarus clarkii) have not been thoroughly investigated. In this study, crayfish were exposed to BSM solutions at concentrations of 0, 5, and 10 mg/L for 48 h. The study integrated physiological, gut microbiota, and transcriptomic analyses to investigate the mechanisms of action. BSM exposure induced oxidative stress responses in crayfish, resulting in changes in superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GSH) activity, and malondialdehyde (MDA) levels. Exposure to BSM caused damage to the intestinal tissues, reduced gut microbiota diversity, increased the abundance of harmful bacteria, and led to intestinal dysfunction. Analysis of the hepatopancreas revealed significant tissue damage. Transcriptomic data indicated that BSM affects the growth of crayfish through genes related to immune response (SLC17A5, CTSD, CTSB, NFKBIA, Mincle). The lysosomal pathway and NF-κB pathway were notably affected. This study analyzed the negative impacts of BSM on crayfish from various levels and provided detailed data to enhance our understanding of the toxic mechanisms of BSM in aquatic organisms.
Collapse
Affiliation(s)
- Wenqi Qian
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Ruichun Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Chenhui Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin) Ministry of Agriculture and Rural Affairs, Harbin 150070, China
| | - Long Gu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Li Huang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin) Ministry of Agriculture and Rural Affairs, Harbin 150070, China
| | - Dongli Qin
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin) Ministry of Agriculture and Rural Affairs, Harbin 150070, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, China.
| | - Lei Gao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China; Supervision, Inspection and Testing Center for Fishery Environment and Aquatic Products (Harbin) Ministry of Agriculture and Rural Affairs, Harbin 150070, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, Beijing 100141, China.
| |
Collapse
|
8
|
Qu K, Shi M, Chen L, Liu Y, Yao X, Li X, Tan B, Xie S. Residual levels of dietary deltamethrin interfere with growth and intestinal health in Litopenaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117376. [PMID: 39612679 DOI: 10.1016/j.ecoenv.2024.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024]
Abstract
To date, few study explored the damage of chronic dietary exposure to the lipophilic pesticide deltamethrin (DM) in aquatic animals, and it remains unclear whether its toxicity and residue levels would be affected by dietary lipid levels. Therefore, the present study aimed to elucidate the interactions between dietary lipid levels and DM levels in the Pacific white shrimp, focusing on growth performance, antioxidant capacity, and intestinal microbiota. DM has excellent insecticidal activity and has been used worldwide. Previous research has shown that environmental DM poses toxicity risks to aquatic animals. Six different diets were formulated to feed shrimp for 6 weeks with two lipid levels (6.96 %, 10.88 %) and three DM levels (0.2 mg·kg-1, 1 mg·kg-1, 5 mg·kg-1), namely LF0.2, LF1, LF5, HF0.2, HF1, HF5, respectively. Each diet was assigned to three net cages with a total of 18 cages (40 shrimp per tank, average weight (0.382±0.001 g), of which 0.2 mg·kg-1, are grouped in environmental DM control groups. The growth of shrimp was reduced as the dietary DM levels increased. When shrimp were fed a diet containing a high dose of DM, a reduction in their antioxidant capacity was also observed. Enzyme activity and gene expression related to lipid metabolism in hepatopancreas and hemolymph indicated a significant interaction between dietary lipid levels and DM in the lipid metabolism of shrimp. The terms of detoxification-related genes (gst, sult, cyp1a1) were upregulated in shrimp fed the high-dose DM. Additionally, the presence of DM in the diet severely harmed the hepatopancreas and intestinal histological morphology. DM in the diet increased the susceptibility of shrimp to pathogens and induced intestine microbiota dysbiosis, disrupting the balance of inter-species interactions. DM was not detected in the muscle and hepatopancreas of the shrimp after six weeks of exposure. In conclusion, the presence of DM in feed reduced the growth performance and antioxidant capacity of shrimp, damaging intestinal health. DM was rapidly metabolized by shrimp.
Collapse
Affiliation(s)
- Kangyuan Qu
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Menglin Shi
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Liutong Chen
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yucheng Liu
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xinzhou Yao
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoyue Li
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Beiping Tan
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Research Center for Accurate Nutrition and High-Efficiency Feeding of Aquatic Animals, Zhanjiang 524088, China; Key Laboratory of Aquatic Feed Science and Technology for Livestock and Poultry in Southern China, under the Ministry of Agriculture, Zhanjiang 524088, China
| | - Shiwei Xie
- College of Aquatic Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Province Research Center for Accurate Nutrition and High-Efficiency Feeding of Aquatic Animals, Zhanjiang 524088, China; Key Laboratory of Aquatic Feed Science and Technology for Livestock and Poultry in Southern China, under the Ministry of Agriculture, Zhanjiang 524088, China.
| |
Collapse
|
9
|
Banaee M, Zeidi A, Mikušková N, Faggio C. Assessing Metal Toxicity on Crustaceans in Aquatic Ecosystems: A Comprehensive Review. Biol Trace Elem Res 2024; 202:5743-5761. [PMID: 38472509 DOI: 10.1007/s12011-024-04122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Residual concentrations of some trace elements and lightweight metals, including cadmium, copper, lead, mercury, silver, zinc, nickel, chromium, arsenic, gallium, indium, gold, cobalt, polonium, and thallium, are widely detected in aquatic ecosystems globally. Although their origin may be natural, human activities significantly elevate their environmental concentrations. Metals, renowned pollutants, threaten various organisms, particularly crustaceans. Due to their feeding habits and habitat, crustaceans are highly exposed to contaminants and are considered a crucial link in xenobiotic transfer through the food chain. Moreover, crustaceans absorb metals via their gills, crucial pathways for metal uptake in water. This review summarises the adverse effects of well-studied metals (Cd, Cu, Pb, Hg, Zn, Ni, Cr, As, Co) and synthesizes knowledge on the toxicity of less-studied metals (Ag, Ga, In, Au, Pl, Tl), their presence in waters, and impact on crustaceans. Bibliometric analysis underscores the significance of this topic. In general, the toxic effects of the examined metals can decrease survival rates by inducing oxidative stress, disrupting biochemical balance, causing histological damage, interfering with endocrine gland function, and inducing cytotoxicity. Metal exposure can also result in genotoxicity, reduced reproduction, and mortality. Despite current toxicity knowledge, there remains a research gap in this field, particularly concerning the toxicity of rare earth metals, presenting a potential future challenge.
Collapse
Affiliation(s)
- Mahdi Banaee
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran.
| | - Amir Zeidi
- Aquaculture Department, Faculty of Natural Resources and the Environment, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran
| | - Nikola Mikušková
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno, d'Alcontres 31, 98166, Messina, Italy
- Department of Eco-sustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
10
|
Liu S, Xi C, Wu Y, Wang S, Li B, Zhu L, Xu X. Hexavalent chromium damages intestinal cells and coelomocytes and impairs immune function in the echiuran worm Urechis unicinctus by causing oxidative stress and apoptosis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:110002. [PMID: 39151816 DOI: 10.1016/j.cbpc.2024.110002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/10/2024] [Indexed: 08/19/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a common pollutant in the marine environment, which impairs immunity and causes reproductive and heredity disorders in organisms. To clarify the immunotoxic effects of Cr (VI) on the marine worm Urechis unicinctus, we analyzed tissue damage and immune dysfunction caused by Cr (VI) in this organism at histopathologic, zymologic, apoptotic and molecular levels. The results indicated that the bioaccumulation of Cr (VI) bioaccumulation levels in coelomocytes was significantly higher than in the intestines and muscles. Pathological observation showed that Cr (VI) caused damage to the respiratory intestine, stomach and midgut. Cr (VI) also increased the replication of goblet cells and a reduction in the replication of epithelial cells. Meanwhile, Cr (VI) induced apoptosis of intestinal cells and coelomocytes, accompanied by an increase in the expression of Caspase-3, COX-2, and MyD88 in the intestine and coelomocytes. At the same time, Cr (VI) significantly affected the activities of antioxidant enzymes such as SOD, ACP, CAT, CAT, and GST, and increased H2O2 and MDA contents in U. unicinctus. Moreover, Cr (VI) exposure also up-regulated the transcription of hsc70, mt and jnk genes but decreased that of sod in the intestines. In contrast, Cr (VI) down-regulated the expression of sod, hsc70, mt, and jnk genes in coelomocytes. Collectively, Cr (VI) bioaccumulated in U. unicinctus cells and tissues, causing several histopathological changes, oxidative stress, and apoptosis of several cells in the organism, resulting in intestinal and coelomocyte damage and immune dysfunctioning.
Collapse
Affiliation(s)
- Shun Liu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Chenxiao Xi
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yuxin Wu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Sijie Wang
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Baiyu Li
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Long Zhu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xinghong Xu
- College of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
11
|
Da YM, Li SS, Li YQ, Deng LY, Li MJ, Huang T, Sun QY, Shirin J, Zhou GW. Effects of cadmium on the intestinal health of the snail Bradybaena ravida Benson. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:849-858. [PMID: 39001972 DOI: 10.1007/s10646-024-02783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The heavy metal cadmium (Cd) is a toxic and bioaccumulative metal that can be enriched in the tissues and organs of living organisms through the digestive tract. However, more research is needed to determine whether food-sourced Cd affects the homeostasis of host gut microflora. In this study, the snail Bradybaena ravida (Benson) was used as a model organism fed with mulberry leaves spiked with different concentrations of Cd (0, 0.052, 0.71, and 1.94 mg kg-1). By combining 16S rRNA high-throughput sequencing with biochemical characterization, it was found that there were increases in the overall microbial diversity and abundances of pathogenic bacteria such as Corynebacterium, Enterococcus, Aeromonas, and Rickettsia in the gut of B. ravida after exposure to Cd. However, the abundances of potential Cd-resistant microbes in the host's gut, including Sphingobacterium, Lactococcus, and Chryseobacterium, decreased with increasing Cd concentrations in the mulberry leaves. In addition, there was a significant reduction in activities of energy, nutrient metabolism, and antioxidant enzymes for gut microbiota of snails treated with high concentrations of Cd compared to those with low ones. These findings highlight the interaction of snail gut microbiota with Cd exposure, indicating the potential role of terrestrial animal gut microbiota in environmental monitoring through rapid recognition and response to environmental pollution.
Collapse
Affiliation(s)
- Yan-Mei Da
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Shun-Shun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Yan-Qi Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Le-Yu Deng
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Ming-Jun Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Tao Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Qing-Ye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Jazbia Shirin
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China
| | - Guo-Wei Zhou
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui Province, China.
| |
Collapse
|
12
|
Maraschi AC, Rubio-Lopez C, Snitman SM, Souza IC, Pichardo-Casales B, Alcaraz G, Monferrán MV, Wunderlin DA, Caamal-Monsreal C, Rosas C, Fernandes MN, Capparelli MV. The impact of settleable atmospheric particulate on the energy metabolism, biochemical processes, and behavior of a sentinel mangrove crab. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135316. [PMID: 39098202 DOI: 10.1016/j.jhazmat.2024.135316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
We use the sentinel mangrove crab, Minuca rapax, as a model to investigate the effects of metallic settleable particulate matter (SePM) on wetland. Multiple levels of energetic responses, including (i) metabolic rate and energy budget, (ii) oxidative stress, and (iii) behavioral response by righting time, were assessed as well as the metal and metalloid content in crabs exposed to 0, 0.1 and 1 g.L-1 of SePM, under emerged and submerged conditions over five days, simulating the rigors of the intertidal habitat. Al, Fe, Mn, Cr, and Y exhibited a concentration-dependent increase. Metal concentrations were higher in submerged crabs due to the continuous ingestion of SePM and direct exposure through gills. Exposure concentration up to 1 g.L-1 decreased metabolic rate and enzymatic activities, reduced assimilation efficiency and energy for maintenance, and induces a slower response to righting time, probably by metal effects on nervous system and energy deficits. In conclusion, SePM exposure affects the redox status and physiology of M. rapax depending on he submersion regime and SePM concentration. The disruption to the energy budget and the lethargic behavior in M. rapax exposed to SePM implies potential ecological alterations in the mangrove ecosystem with unknown consequences for the local population.
Collapse
Affiliation(s)
- Anieli C Maraschi
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Cesar Rubio-Lopez
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, Ciudad de México, Mexico
| | - Solana M Snitman
- IIMyC: Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, 7600 Mar del Plata, Argentina
| | - Iara C Souza
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Brian Pichardo-Casales
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico
| | - Guillermina Alcaraz
- Laboratorio de Ecofisiología Animal, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, C.P. 04510 Coyoacán, Ciudad de México, Mexico
| | - Magdalena V Monferrán
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Daniel A Wunderlin
- ICYTAC: Instituto de Ciencia y Tecnología de Alimentos Córdoba, CONICET, Departamento de Química Orgánica, Universidad Nacional de Córdoba, Bv. Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Claudia Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, Mexico
| | - Marisa N Fernandes
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Carretera Carmen-Puerto Real km 9.5, 24157 Ciudad del Carmen, Mexico.
| |
Collapse
|
13
|
Yuan Z, Lei Y, Wan B, Yang M, Jiang Y, Tian C, Wang Z, Wang W. Cadmium exposure elicited dynamic RNA m 6A modification and epi-transcriptomic regulation in the Pacific whiteleg shrimp Litopenaeus vannamei. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101307. [PMID: 39126882 DOI: 10.1016/j.cbd.2024.101307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
N6-methyladenosine (m6A) methylation is the most prevalent post-transcriptional RNA modification in eukaryotic organisms, but its roles in the regulation of physiological resistance of marine crustaceans to heavy metal pollutants are poorly understood. In this study, the transcriptome-wide m6A RNA methylation profiles and dynamic m6A changes induced by acute Cd2+ exposure in the the pacific whiteleg shrimp Litopenaeus vannamei were comprehensively analyzed. Cd2+ toxicity caused a significant reduction in global RNA m6A methylation level, with major m6A regulators including the m6A methyltransferase METTL3 and the m6A binding protein YTHDF2 showing declined expression. Totally, 11,467 m6A methylation peaks from 6415 genes and 17,291 peaks within 7855 genes were identified from the Cd2+ exposure group and the control group, respectively. These m6A peaks were predominantly enriched in the 3' untranslated region (UTR) and around the start codon region of the transcripts. 7132 differentially expressed genes (DEGs) and 7382 differentially m6A-methylated genes (DMGs) were identified. 3186 genes showed significant changes in both gene expression and m6A methylation levels upon cadmium exposure, and they were related to a variety of biological processes and gene pathways. Notably, an array of genes associated with antioxidation homeostasis, transmembrane transporter activity and intracellular detoxification processes were significantly enriched, demonstrating that m6A modification may mediate the physiological responses of shrimp to cadmium toxicity via regulating ROS balance, Cd2+ transport and toxicity mitigation. The study would contribute to a deeper understanding of the evolutionary and functional significance of m6A methylation to the physiological resilience of decapod crustaceans to heavy metal toxicants.
Collapse
Affiliation(s)
- Zhixiang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yiguo Lei
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Boquan Wan
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Miao Yang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yue Jiang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongduo Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China.
| |
Collapse
|
14
|
Chen YT, Xu RQ, Cheng JW, Singhania RR, Chen CW, Dong CD, Hsieh SL. Immunotoxicity and oxidative damage in Litopenaeus vannamei induced by polyethylene microplastics and copper co-exposure. MARINE POLLUTION BULLETIN 2024; 205:116683. [PMID: 38972218 DOI: 10.1016/j.marpolbul.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
This study examines the combined effects of polyethylene microplastics (PE-MP) and copper (Cu2+) on the immune and oxidative response of Litopenaeus vannamei. PE-MP adsorbed with Cu2+ at 2.3, 6.8, and 16.8 ng (g shrimp)-1) were injected into L. vannamei. Over 14 days, survival rates were monitored, and immune and oxidative stress parameters were assessed. The results showed that combined exposure to PE-MP and Cu2+ significantly reduced the survival rate and decreased total haemocyte count. Immune-related parameters (phagocytic rate, phenoloxidase and superoxide dismutase (SOD)) and antioxidant-related parameters (SOD, catalase and glutathione peroxidase mRNA and enzyme) also decreased, while respiratory burst activity significantly increased, indicating immune and antioxidant system disruption. Additionally, there was a significant increase in oxidative stress, as measured by malondialdehyde levels. Histopathological analysis revealed severe muscle, hepatopancreas, and gill damage. These results suggest that simultaneous exposure to PE-MP and Cu2+ poses greater health risks to white shrimp.
Collapse
Affiliation(s)
- Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Ruo-Qi Xu
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Jia-Wei Cheng
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| |
Collapse
|
15
|
Ge C, Luo X, Lv Y, Wu L, Hu Z, Huang W, Zhan S, Shen X, Hui C, Yu D, Liu B. Essential oils ameliorate the intestinal damages induced by nonylphenol exposure by modulating tryptophan metabolism and activating aryl hydrocarbon receptor via gut microbiota regulation. CHEMOSPHERE 2024; 362:142571. [PMID: 38876325 DOI: 10.1016/j.chemosphere.2024.142571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Nonylphenol (NP) is a ubiquitous endocrine disruptor that persists in the environment and can significantly contribute to serious health hazards, particularly intestinal barrier injury. Plant essential oils (EOs) have recently gained widespread interest due to their potential for improving intestinal health. However, the precise mechanism and protective effects of EOs ameliorating the intestinal damages induced by NP exposure remain unclear. To clarify the potential mechanism and protective impact of EOs against intestinal injury induced by NP, a total of 144 one-day-old male ducks were randomly allocated to four groups: CON (basal diet), EO (basal diet + 200 mg/kg EOs), NP (basal diet + 40 mg/kg NP), and NPEO (basal diet + 200 mg/kg EOs + 40 mg/kg NP). The data revealed that NP exposure significantly damaged intestinal barrier, as evidenced by a reduction in the levels of tight junction gene expression and an increase in intestinal permeability. Additionally, it disturbed gut microbiota, as well as interfered with tryptophan (Trp) metabolism. The NP-induced disorder of Trp metabolism restrained the activation of aryl hydrocarbon receptor (AhR) and resulted in decreased the expression levels of CYP1A1, IL-22, and STAT3 genes, which were alleviated after treatment with EOs. Taken together, NP exposure resulted in impairment of the intestinal barrier function, disruption of gut microbiota, and disturbances in Trp metabolism. Dietary EOs supplementation alleviated the intestinal barrier injury induced by NP through the Trp/AhR/IL-22 signaling pathway.
Collapse
Affiliation(s)
- Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China
| | - Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cai Hui
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China; Hainan Institute, Zhejiang University, Sanya, 572000, China.
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
16
|
Wang N, Zhang R, Wang Y, Zhang L, Sun A, Zhang Z, Shi X. Accumulation and growth toxicity mechanisms of fluxapyroxad revealed by physiological, hepatopancreas transcriptome, and gut microbiome analysis in Pacific white shrimp (Litopenaeus vannamei). JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135206. [PMID: 39029191 DOI: 10.1016/j.jhazmat.2024.135206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Fluxapyroxad (FX), a typical succinate dehydrogenase inhibitor fungicide, is causing increased global concerns due to its fungicide effects. However, the accumulation and grow toxicity of FX to Litopenaeus vannamei (L. vannamei) is poorly understand. Therefore, the accumulation pattern of FX in L. vannamei was investigated for the first time in environmental concentrations. FX accumulated rapidly in shrimp muscle. Meanwhile, growth inhibition was observed and the mechanism derived by primarily accelerated glycolipid metabolism and reduced glycolipid content. Moreover, exposure to environmental concentrations of FX induced significant growth inhibition and oxidative stress and inhibited oxidative phosphorylation and TCA cycle in L. vannamei. The endocytosis signaling pathway genes were activated, thereby driving growth toxicity. Oxidative phosphorylation and cytosolic gene expression were further rescued in elimination experiments, demonstrating the mechanism of growth toxicity by FX exposure. The results revealed that FX persistently altered the gut microbiome of L. vannamei using gut microbiome sequencing, particularly with increased Garcinia Purple Pseudoalteromonas luteoviolacea for organic pollutant degradation. This study provided new insights into the potential toxicity of FX to marine organisms, emphasizing the need for further investigation and potential regulatory considerations.
Collapse
Affiliation(s)
- Ningbo Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yinan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Liuquan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo 315211, PR China.
| |
Collapse
|
17
|
da Costa JR, Capparelli MV, Padilha PM, Borges E, Ramaglia AC, Dos Santos MR, Augusto A. Chronic Cadmium Exposure can Alter Energy Allocation to Physiological Functions in the Shrimp Penaeus vannamei. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 87:58-68. [PMID: 38922419 DOI: 10.1007/s00244-024-01074-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 06/07/2024] [Indexed: 06/27/2024]
Abstract
Environmental stressors in aquatic organisms can be assessed using a bioenergetic approach based on the evaluation of changes in their physiological parameters. We evaluated the chronic effects of cadmium (Cd2+) on the energy balance as well as the survival, growth, metabolism, nitrogen excretion, hepatosomatic index, oxidized energy substrate, and osmoregulation of the shrimp Penaeus vannamei with the hypothesis that the high energy demand related to the homeostatic regulation of Cd2+could disrupt the energy balance and as a consequence, their physiological functions. The shrimp exposed to Cd2+ had higher mortality (30%), directed more energy into growth (33% of energy intake), ingested 10% more energy, and defecated less than control animals. Cd2+ exposure caused a tendency to decrease metabolism and ammonia excretion but did not alter the hepatosomatic index, type of energy substrate oxidized, and the hyperosmorregulatory pattern of the species. The Cd+2 exposure may have induced a trade-off response because there was a growth rate increase accompanied by increased mortality.
Collapse
Affiliation(s)
- Juliana Rodrigues da Costa
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Mariana V Capparelli
- Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Carretera Carmen-Puerto Real Km 9.5, 24157, Ciudad del Carmen, Campeche, Mexico
| | - Pedro Magalhães Padilha
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 14884-900, Brazil
| | - Emanuelle Borges
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Andressa C Ramaglia
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Michelle Roberta Dos Santos
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Alessandra Augusto
- Aquaculture Center of UNESP (CAUNESP), São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 14884-900, Brazil.
- Department of Zoology, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
- Laboratory of Sustainable Aquaculture, São Paulo State University (UNESP), São Vicente, SP, 11380-972, Brazil.
| |
Collapse
|
18
|
Liao G, Wang W, Yu J, Li J, Yan Y, Liu H, Chen B, Fan L. Integrated analysis of intestinal microbiota and transcriptome reveals that a coordinated interaction of the endocrine, immune system and gut microbiota response to heat stress in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105176. [PMID: 38582249 DOI: 10.1016/j.dci.2024.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Due to the ongoing global warming, the risk of heatwaves in the oceans is continuously increasing while our understanding of the physiological response of Litopenaeus vannamei under extreme temperature conditions remains limited. Therefore, this study aimed to evaluate the physiological responses of L. vannamei under heat stress. Our results indicated that as temperature rose, the structure of intestinal and hepatopancreatic tissues was damaged sequentially. Activity of immune-related enzymes (acid phosphatase/alkaline phosphatase) initially increased before decreased, while antioxidant enzymes (superoxide dismutase and glutathione-S transferase) activity and malondialdehyde content increased with rising temperature. In addition, the total antioxidant capacity decreased with rising temperature. With the rising temperature, there was a significant increase in the expression of caspase-3, heat shock protein 70, lipopolysaccharide-induced tumor necrosis factor-α, transcriptional enhanced associate domain and yorkie in intestinal and hepatopancreatic tissues. Following heat stress, the number of potentially beneficial bacteria (Rhodobacteraceae and Gemmonbacter) increased which maintain balance and promote vitamin synthesis. Intestinal transcriptome analysis revealed 852 differentially expressed genes in the heat stress group compared with the control group. KEGG functional annotation results showed that the endocrine system was the most abundant in Organismal systems followed by the immune system. These results indicated that heat stress leads to tissue damage in shrimp, however the shrimp may respond to stress through a coordinated interaction strategy of the endocrine system, immune system and gut microbiota. This study revealed the response mechanism of L. vannamei to acute heat stress and potentially provided a theoretical foundation for future research on shrimp environmental adaptations.
Collapse
Affiliation(s)
- Guowei Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wanqi Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaoping Yu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jingping Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yumeng Yan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haolin Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bing Chen
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Lanfen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
19
|
Liu ZH, Ai S, Xia Y, Wang HL. Intestinal toxicity of Pb: Structural and functional damages, effects on distal organs and preventive strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172781. [PMID: 38685433 DOI: 10.1016/j.scitotenv.2024.172781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Lead (Pb) is one of the most common heavy metal pollutants that possesses multi-organ toxicity. For decades, great efforts have been devoted to investigate the damage of Pb to kidney, liver, bone, blood cells and the central nervous system (CNS). For the common, dietary exposure is the main avenue of Pb, but our knowledge of Pb toxicity in gastrointestinal tract (GIT) remains quite insufficient. Importantly, emerging evidence has documented that gastrointestinal disorders affect other distal organs like brain and liver though gut-brain axis or gut-liver axis, respectively. This review focuses on the recent understanding of intestinal toxicity of Pb exposure, including structural and functional damages. We also review the influence and mechanism of intestinal toxicity on other distal organs, mainly concentrated on brain and liver. At last, we summarize the bioactive substances that reported to alleviate Pb toxicity, providing potential dietary intervention strategies to prevent or attenuate Pb toxicity.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, PR China.
| |
Collapse
|
20
|
Dos Santos JGG, Lopes JM, Hadlich GM, da Silva AX, de Jesus Silva M, Moreira ÍTA. Utilization of metal and radionuclide concentrations to assess the influence of shrimp farming on the geochemical characteristics of sediments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:245. [PMID: 38858271 DOI: 10.1007/s10653-024-02063-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
This article assesses the environmental impacts of aquatic biota cultivation, focusing on shrimp farming in Brazil's Northeast, as this practice has proven to be one of the main sources of economic growth in the region. For this purpose, sediment samples were collected from areas impacted and not directly impacted by shrimp farming, and concentrations of key geochemical parameters such as salinity, various elements (K, P, Cu, Mn, Pb, Zn, Al, Ca, Fe, Mg, and Na), and natural radionuclides (K-40, Ra-226 and Ra-228) were compared using statistical tools. Element concentrations were determined using ICP-OES, and naturally occurring radionuclide concentrations were obtained through gamma spectrometry. Statistical tests, such as ANOVA and/or Mann-Whitney, cluster analysis, and principal component analysis, were applied to the results. Additionally, the ERICA Tool software was employed to estimate deleterious effects on both human and non-human biota. Descriptive statistics reveal variability in sediment parameters around shrimp farming. ANOVA and Mann-Whitney tests compare concentrations of shrimp farm sediment and not directly impacted sediment, showing non-significant differences for most elements. pH and salinity, crucial for shrimp health, exhibit higher values in shrimp farm sediment. Alkali and alkaline earth metals, including K and Na, show no significant differences. Factor and cluster analyses suggest that certain elements, mainly radionuclides, are influenced by sediment variability. Hazard indices for naturally occurring radionuclides indicate negligible risk to both human and non-human biota, reinforcing the absence of adverse effects from shrimp farming activities. This study provides a comprehensive analysis of the environmental impacts of shrimp farming, emphasizing the importance of monitoring geochemical parameters for coastal environmental management.
Collapse
Affiliation(s)
| | - José Marques Lopes
- Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, Salvador, 40170-110, Brazil.
- Departamento de Física da Terra e do Meio Ambiente, Instituto de Física, Universidade Federal da Bahia - UFBA, Salvador, 40170-115, Brazil.
| | - Gisele Mara Hadlich
- Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, Salvador, 40170-110, Brazil
| | - Ademir Xavier da Silva
- Programa de Engenharia Nuclear, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, 21941-972, Brazil
| | - Márcio de Jesus Silva
- Mestrado em Meio Ambiente, Águas e Saneamento, Universidade Federal da Bahia - UFBA, Salvador, 40170-110, Brazil
| | - Ícaro Thiago Andrade Moreira
- Programa de Pós-Graduação em Geoquímica (POSPETRO), Universidade Federal da Bahia - UFBA, Salvador, 40170-110, Brazil
| |
Collapse
|
21
|
Zeng S, He J, Huang Z. The intestine microbiota of shrimp and its impact on cultivation. Appl Microbiol Biotechnol 2024; 108:362. [PMID: 38842702 PMCID: PMC11156720 DOI: 10.1007/s00253-024-13213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Intestinal microbiome contains several times of functional genes compared to the host and mediates the generation of multiple metabolic products, and therefore it is called "second genome" for host. Crustaceans rank second among the largest subphylum of aquaculture animals that are considered potentially satisfy global substantial food and nutrition security, among which the Pacific white shrimp (Litopenaeus vannamei) ranks the first in the production. Currently, increasing evidences show that outbreaks of some most devastating diseases in shrimp, including white feces syndrome (WFS) and acute hepatopancreatic necrosis disease (AHPND), are related to intestinal microbiota dysbiosis. Importantly, the intestine microbial composition can be altered by environmental stress, diet, and age. In this review, we overview the progress of intestinal microbiota dysbiosis and WFS or ANPHD in shrimp, and how the microbial composition is altered by external factors. Hence, developing suitable microbial micro-ecological prevention and control strategy to maintain intestinal balance may be a feasible solution to reduce the risk of disease outbreaks. Moreover, we highlight that defining the "healthy intestine microbiota" and evaluating the causality of intestinal microbiota dysbiosis and diseases following the logic of "Microecological Koch's postulates" should be the key goal in future shrimp intestinal field, which help to guide disease diagnosis and prevent disease outbreaks in shrimp farming. KEY POINTS: • Intestinal microbiota dysbiosis is relevant to multiple shrimp diseases. • Microecological Koch's postulates help to evaluate the causality of shrimp diseases.
Collapse
Affiliation(s)
- Shenzheng Zeng
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China
| | - Zhijian Huang
- State Key Laboratory of Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, People's Republic of China.
| |
Collapse
|
22
|
Li Q, Zhang M, Qin S, Wen J, Shen X, Du Z. Dual oxidase 2 (duox 2) participates in the intestinal antibacterial innate immune responses of Procambarus clarkii by regulating ROS levels. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105116. [PMID: 38101716 DOI: 10.1016/j.dci.2023.105116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/09/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Dual oxidase (Duox) a member of the nicotinamide adenine dinucleotide phosphate oxidase (NOX) family can induce the production of reactive oxygen species (ROS). In vertebrates, the duox gene was indicated to be associated with the mucosal immunity. The roles of the duox gene in invertebrates were mainly studied in insects for the function of maintaining intestinal flora balance. In recent years, some studies have reported that Duox is involved in regulating the production of ROS and plays an important role in defending against the intestinal pathogen infection. However, the molecular mechanism has not been fully illuminated. In this study, a duox 2 involved in the production of H2O2 was identified for the first time in P. clarkii. Mature Pc-Duox 2 is a 7-transmembrane protein molecule that includes PHD, FAD, and NAD domains. Pc-duox 2 was mainly expressed in hemocytes and intestinal tissue. Its expression levels were obviously upregulated after intramuscular or oral infection with V. harveyi. In the RNAi assay, the upregulated trends of H2O2 and total ROS levels in crayfish intestine were significantly suppressed when Pc-duox 2 was knocked down. Compared with the slightly affected SOD activity, the upregulated CAT activity was suppressed more obviously in the crayfish intestine. Furthermore, Pc-duox 2 had an important effect on the maintenance of the structural stability of crayfish the intestine. Further research revealed that the knockdown of Pc-duox 2 could cause an obvious suppression in the upregulated levels of Toll signalling pathway-related genes, including Pc-toll 1, Pc-toll 3, Pc-dorsal, Pc-ALF 5, Pc-crustin 1, and Pc-lysozyme. Ultimately, these changes triggered the accelerated death of crayfish. Overall, we speculated that Pc-duox 2 played an important role in antibacterial innate immunity in the crayfish intestine by regulating the total ROS level.
Collapse
Affiliation(s)
- Qianqian Li
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Mingda Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Shiyu Qin
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Jing Wen
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Xiuli Shen
- Library, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China
| | - Zhiqiang Du
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia autonomous region, 014010, China.
| |
Collapse
|
23
|
Su X, Zhu X, Liang Z, Bao Z, Zhang J, Guo J, Guo H. Biochemical, histological and transcriptional response of intestines in Litopenaeus vannamei under chronic zinc exposure. CHEMOSPHERE 2024; 354:141646. [PMID: 38452979 DOI: 10.1016/j.chemosphere.2024.141646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/01/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
Zinc (Zn) is an essential trace element for the normal physiological function of aquatic organisms, but it could become toxic to organisms when the concentration increased in water. As the first line of defense, the shrimp intestines are the most susceptible organ to environmental stress. In this study, the chronic toxicity of 0 (control, IC), 0.01(IL), 0.1(IM) and 1 mg/L (IH) Zn in intestines of Litopenaeus vannamei was investigated from the perspectives of biochemical, histological and transcriptional changes after exposure for 30 days. The results showed that the intestinal tissue basement membrane is swollen in the IM and IH groups and detached in the IH group. The total antioxidant capacities (T-AOC) were reduced while the content of malondialdehyde (MDA) were increased significantly in IM and IH groups. The production of reactive oxygen species (ROS) was increased significantly in IH group. Many differentially expressed genes (DEGs) were identified in IL, IM and IH groups, respectively. GO and KEGG enrichment analyses were conducted on the DEGs to obtain the underlying biological processes and pathways. The gene modules related to the sample were identified by weighted gene co-expression network analysis (WGCNA), and genes in modules highly corelated with IH group were mainly enriched in immune related pathways. Nine DEGs were selected for validation by quantitative real time PCR (qRT-PCR) and the expression profiles of these DEGs kept a well consistent with the high-throughput data, which confirmed reliability of transcriptome results. Additionally, 10 DEGs were screened to detect the changes of expression level in different groups. All these results indicated that Zn exposure could damage the intestinal barrier, provoke oxidative stress, reduce the immune function, increase the susceptibility to bacterial infections of L. vannamei and cause inflammation, ultimately result in cell apoptosis. Our study provides more perspective on the stress response of crustacean under Zn exposure.
Collapse
Affiliation(s)
- Xianbin Su
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Xiaowen Zhu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, China
| | - Zhi Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Zhiming Bao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Jiayuan Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Jieyu Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China
| | - Hui Guo
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524025, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, 524088, China.
| |
Collapse
|
24
|
Wang Y, Dai L, Liang Z, Hu N, Hou D, Zhou Y, Sun C. Elimination of Decapod iridovirus 1 (DIV1) infection at high water temperature: a new environmental control strategy. ADVANCED BIOTECHNOLOGY 2024; 2:12. [PMID: 39883330 PMCID: PMC11740838 DOI: 10.1007/s44307-024-00012-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2025]
Abstract
Decapod iridovirus 1 (DIV1) poses a major challenge to sustainable shrimp farming and poses a serious hazard to aquaculture industry. This study investigated the complex interaction between DIV1 infection and water temperature, focusing on the effect of high temperature on DIV1 infection due to Penaeus monodon. Using models of latent and acute infection, the study revealed the response of P. monodon to DIV1 under different conditions. In the experimental set-up, the effect of high water temperature (34 ± 1 °C) compared with room temperature (26 ± 1 °C) was investigated. DIV1 replication was significantly inhibited in the high-temperature group (H), resulting in complete viral elimination within 15 days. DIV1 did not resurface even after return to room temperature (26 ± 1 °C), indicating sustained antiviral effects. Compared with the room temperature (26 ± 1 °C) group (N), the H group showed a 100% reduction in the incidence of latent and acute infection. Exposure to high water temperature directly impaired the viability of DIV1, enhancing the immune system of P. monodon, and expediting metabolic processes for efficient DIV1 clearance. The study highlights the significant inhibitory effects of high water temperature (34 ± 1 °C) on DIV1 infection in P. monodon, resulting in viral eradication. This discovery offers a potential strategy for mitigating DIV1 infections in shrimp aquaculture, prompting further investigation into underlying mechanisms. Optimising parameters and protocols for high-temperature treatment is crucial for viral control. Exploring the broader implications of the findings on other viral infections in crustacean aquaculture could provide valuable insights for comprehensive disease prevention and control.
Collapse
Affiliation(s)
- Yue Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Linxin Dai
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zuluan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Naijie Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Danqing Hou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yinhuan Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China.
| | - Chengbo Sun
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China.
- Guangdong Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang, Guangdong, China.
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, China.
| |
Collapse
|
25
|
de Paiva EL, Ali S, Vasco ER, Alvito PC, de Oliveira CAF. Bioaccessibility data of potentially toxic elements in complementary foods for infants: A review. Food Res Int 2023; 174:113485. [PMID: 37986492 DOI: 10.1016/j.foodres.2023.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 11/22/2023]
Abstract
The introduction of complementary foods (CFs) is a critical step in an infant's transition to solid foods, providing essential nutrients beyond breast milk. However, CFs may contain potentially toxic elements (PTEs), such as arsenic and cadmium that pose health risks to infants. In this context, understanding the bioaccessibility of PTEs is vital as it determines the fraction of a contaminant released from the food matrix and available for absorption in the gastrointestinal tract. Efforts have been made to standardize the assessment methodology for bioaccessibility, ensuring consistent and reliable data. Moreover, regulatory agencies have established guidelines for PTEs levels in food. However, important gaps still exist, which motivates many research opportunities on this topic.
Collapse
Affiliation(s)
- Esther Lima de Paiva
- Faculty of Animal Science and Food Engineering - University of São Paulo (FZEA/USP), Rua Duque de Caxias, 13635-900 Pirassununga, SP, Brazil.
| | - Sher Ali
- Faculty of Animal Science and Food Engineering - University of São Paulo (FZEA/USP), Rua Duque de Caxias, 13635-900 Pirassununga, SP, Brazil
| | - Elsa Reis Vasco
- National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | - Paula Cristina Alvito
- National Institute of Health Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal
| | | |
Collapse
|
26
|
Ra WJ, Yoo HJ, Kim YH, Yun T, Soh B, Cho SY, Joo Y, Lee KW. Heavy metal concentration according to shrimp species and organ specificity: Monitoring and human risk assessment. MARINE POLLUTION BULLETIN 2023; 197:115761. [PMID: 37952375 DOI: 10.1016/j.marpolbul.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
This study assessed heavy metal levels (lead (Pb), cadmium (Cd), total arsenic (tAs), arsenite (As (III)), arsenate (As (V)), monomethyl arsenic acid (MMA), dimethylarsinic acid (DMA), total mercury (tHg), and methylmercury (MeHg)) in six organs (total portion, head, body, shell, muscle, and intestine) of 11 shrimp species distributed in Korea. Shrimp exhibited significant variability in heavy metal accumulation, with Alaskan pink and dried shrimp (Lesser glass, Southern rough, and Chinese ditch prawn) showing the highest metal concentrations. Notably, the intestine having the highest overall metal content, while Cd was most prominent in the head, tHg was highest in the muscle. The Hazard Quotient values of 11 shrimp species in South Korea were below the European Food Safety Authority's allowable limits for heavy metals. This study illuminates the heavy metal profiles of distributed shrimp in Korea and emphasizes the ongoing need for monitoring heavy metals on seafood to ensure consumer safety.
Collapse
Affiliation(s)
- Wook-Jin Ra
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hee Joon Yoo
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yeon-Hee Kim
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taehyun Yun
- Department of Statistics, College of Natural Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Bokyung Soh
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Su Yeob Cho
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Yongsung Joo
- Department of Statistics, College of Natural Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences & Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
27
|
Li Y, Zhou X, Guo W, Fu Y, Ruan G, Fang L, Wang Q. Effects of lead contamination on histology, antioxidant and intestinal microbiota responses in freshwater crayfish, Procambarus clarkii. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106768. [PMID: 38041968 DOI: 10.1016/j.aquatox.2023.106768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/21/2023] [Accepted: 11/12/2023] [Indexed: 12/04/2023]
Abstract
The red swamp crayfish (Procambarus clarkii) is an important farming species in China and there is a high degree of overlap between the main crayfish production areas and areas contaminated with the heavy metal lead (Pb), thus putting crayfish farming at potential risk of Pb contamination. To assess the toxic effects of Pb on crayfish, in this study they were exposed to different concentrations of Pb (0, 0.1, 1, 10, 50 mg/L) for 72 h, and 0.1 mg/L represents the level of Pb in the contaminated water. Histomorphology and activities of antioxidant or immune-related enzymes suggest that the damage of Pb to the hepatopancreas and intestine was dose- and time-dependent, with the intestine being more sensitive to Pb than the hepatopancreas. Notably, after a short period (24 h) of stress at low concentrations (0.1 mg/L) of Pb, the malondialdehyde (MDA) content and antioxidant enzymes such as catalase (CAT) and glutathione peroxidase (GSH-Px) in the intestine of crayfish showed significant changes, indicating that low concentrations of Pb were also highly detrimental to crayfish. High-throughput sequencing of the intestinal microbial community indicated that Pb exposure led to a disturbance in the relative abundance of intestinal bacteria, increasing the abundance of pathogenic bacteria (Bosea, Cloacibacterium, Legionella spp.) and decreasing the abundance of potentially beneficial bacteria (Chitinibacter, Chitinilyticum, Paracoccus, Microbacterium, Demequina, and Acinetobacter spp.). In conclusion, Pb damages the hepatopancreas and intestinal barrier of crayfish, leading to the destruction of their anti-stress ability and immune response, and at the same time disrupts the homeostasis of intestinal microbes, resulting in adverse effects on the gut. This study contributed to the assessment of the ecotoxicity of the heavy metal Pb to the crustacean aquatic animals.
Collapse
Affiliation(s)
- Yulong Li
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Xingwang Zhou
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650504, China
| | - Yunyin Fu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Guoliang Ruan
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China
| | - Liu Fang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China.
| | - Qian Wang
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou 434024, China; The Innovative Center of Animal Nutrition and Feed Application Technology, Yangtze University, Jingzhou 434024, China; The Innovative Technology Research Center of Crayfish Breeding and Healthy Farming, Yangtze University, Jingzhou 434024, China.
| |
Collapse
|
28
|
Liu P, Wan Y, Zhang Z, Ji Q, Lian J, Yang C, Wang X, Qin B, Zhu L, Yu J. Toxic effects of combined exposure to cadmium and nitrate on intestinal morphology, immune response, and microbiota in juvenile Japanese flounder (Paralichthys olivaceus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106704. [PMID: 37813047 DOI: 10.1016/j.aquatox.2023.106704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/11/2023]
Abstract
Cadmium (Cd2+) and nitrate (NO3-) are important environmental pollutants in the offshore marine ecological environment. However, limited research has explored their combined effects, particularly regarding their impact on the microbiota and intestinal health of marine fish. In this study, juvenile Japanese flounders (P. olivaceus) were immersed in seawater samples with different combinations of Cd2+ (0, 0.2, and 2 mg/L) and NO3- (0 and 80 mg/L NO3N) for 30 days to explore their toxic impacts on intestinal morphology, tight junction (TJ) barrier, immune response, and microbiota. Our results showed that Cd2+ or NO3- exposure alone led to histopathological damage of the gut, while their co-exposure aggravated intestinal damage. Moreover, co-exposure substantially decreased TJ-related gene expression, including occludin, claudin-10, and ZO-2, suggesting increased TJ permeability in the gut. Regarding the immune response, we observed upregulated expression of immune-related markers such as HSP40, IL-1β, TNF-α, and MT, suggesting the onset of intestinal inflammation. Furthermore, Cd2+ and NO3- exposure led to changes in intestinal microflora, characterized by decreased the abundance of Sediminibacterium and NS3a_marine_group while increasing the prevalence of pathogens or opportunistic pathogens such as Ralstonia, Proteus, and Staphylococcus. This alteration in microbiota composition increased network complexity and α-diversity, ultimately causing dysbiosis in the fish gut. Additionally, combined exposure resulted in metabolic disorders that affected the predicted functions of the intestinal microbiota. Overall, our study demonstrates that Cd2+-NO3- co-exposure amplifies the deleterious effects compared to single exposure. These findings enhance our understanding of the ecological risks posed by Cd2+-NO3- co-exposure in marine ecosystems.
Collapse
Affiliation(s)
- Pengfei Liu
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yingying Wan
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ziyi Zhang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Qing Ji
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jie Lian
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chuanzheng Yang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xingqiang Wang
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China
| | - Bo Qin
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China
| | - Long Zhu
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China
| | - Jiachen Yu
- Laboratory of Pathology and Immunology of Aquatic Animals/Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Lianyungang 222005, China.
| |
Collapse
|
29
|
Liu H, Zhang H, Yu Q, Zhang S, Tu X, Zhuang F, Fu S. Lead induced structural and functional damage and microbiota dysbiosis in the intestine of crucian carp ( Carassius auratus). Front Microbiol 2023; 14:1239323. [PMID: 37731918 PMCID: PMC10507410 DOI: 10.3389/fmicb.2023.1239323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/16/2023] [Indexed: 09/22/2023] Open
Abstract
Lead (Pb) is a hazardous pollutant in water environments that can cause significant damage to aquatic animals and humans. In this study, crucian carp (Carassius auratus) were exposed to waterborne Pb for 96 h; then, histopathological analysis, quantitative qPCR analysis, and 16S high-throughput sequencing were performed to explore the effects of Pb on intestinal bioaccumulation, structural damage, oxidative stress, immune response, and microbiota imbalance of C. auratus. After Pb exposure, the intestinal morphology was obviously damaged, including significantly increasing the thickness of the intestinal wall and the number of goblet cells and reducing the depth of intestinal crypts. Pb exposure reduced the mRNA expressions of Claudin-7 and villin-1 while significantly elevated the level of GST, GSH, CAT, IL-8, IL-10, IL-1, and TNF-α. Furthermore, 16S rRNA analysis showed that the Shannon and Simpson indices decreased at 48 h after Pb exposure, and the abundance of pathogenic bacteria (Erysipelotrichaceae, Weeksellaceae, and Vibrionaceae) increased after Pb exposure. In addition, the correlation network analysis found that Proteobacteria were negatively correlated with Firmicutes and positively correlated with Bacteroidetes. Functional prediction analysis of bacteria speculated that the change in intestinal microbiota led to the PPAR signaling pathway and peroxisome function of the intestine of crucian carp was increased, while the immune system and membrane transport function were decreased. Finally, canonical correlation analysis (CCA) found that there were correlations between the intestinal microbiota, morphology, antioxidant factors, and immune factors of crucian carp after Pb exposure. Taken together, our results demonstrated that intestinal flora dysbiosis, morphological disruption, oxidative stress, and immune injury are involved in the toxic damage of Pb exposure to the intestinal structure and function of crucian carp. Meanwhile, Pb exposure rapidly increased the abundance of pathogenic bacteria, leading to intestinal disorders, further aggravating the damage of Pb to intestinal structure and function. These findings provide us a basis for the link between gut microbiome changes and heavy metal toxicity, and gut microbiota can be used as biomarkers for the evaluation of heavy metal pollution in future.
Collapse
Affiliation(s)
- Haisu Liu
- Research Center of Harmful Algae and Marine Biology, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou, China
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hang Zhang
- Hubei Water Resources Research Institute, Hubei Water Resources and Hydropower Science and Technology Information Center, Wuhan, China
| | - Qianxun Yu
- Hubei Institute of Product Quality Supervision and Inspection, Wuhan, China
| | - Sanshan Zhang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiao Tu
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fenghong Zhuang
- School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shengli Fu
- School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
30
|
Cheng CH, Ma HL, Liu GX, Fan SG, Deng YQ, Jiang JJ, Feng J, Guo ZX. Toxic effects of cadmium exposure on intestinal histology, oxidative stress, microbial community, and transcriptome change in the mud crab (Scylla paramamosain). CHEMOSPHERE 2023; 326:138464. [PMID: 36965531 DOI: 10.1016/j.chemosphere.2023.138464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Cadmium is one of hazardous pollutants that has a great threat to aquatic organisms and ecosystems. The intestine plays important roles in barrier function and immunity to defend against environmental stress. However, whether cadmium exposure caused the intestine injury is not well studied. Thus, the aim of this study was to explore the potential mechanisms of cadmium toxicity in the intestine of mud crab (Scylla paramamosain) via physiological, histological, microbial community, and transcriptional analyses. Mud crabs were exposed to 0, 0.01, and 0.125 mg/L cadmium. After a 21-day of cadmium exposure, 0.125 mg/L cadmium caused intestine damaged by decreasing superoxide dismutase and catalase activities, and increasing hydrogen peroxide and malondialdehyde levels. Integrated biological index analysis confirmed that the toxicity of cadmium exhibited a concentration-dependent manner. Comparative transcriptional analyses showed that the up-regulations of several genes associated with heat shock proteins, detoxification and anti-oxidant defense, and two key signaling pathways (PI3k-Akt and apoptosis) revealed an adaptive response mechanism against cadmium exposure. Transcriptomic analysis also suggested that cadmium exposure disturbed the expression of ion transport and immune-related genes, indicating that it has negative effects on the immune functions of the mud crab. Furthermore, the intestinal microbial diversity and composition were significantly influenced by cadmium exposure. The abundance of the dominant phyla Fusobacteria and Bacteroidetes significantly changed after cadmium exposure. KEGG pathway analysis demonstrated that cadmium exposure could change energy metabolism and environmental information processing. Overall, we concluded that excessive cadmium exposure could be potentially exerted adverse effects to the mud crab health by inducing oxidative damage, decreasing immune system, disrupting metabolic function, and altering intestinal microbial composition. These results provided a novel insight into the mechanism of cadmium toxicity on crustaceans.
Collapse
Affiliation(s)
- Chang-Hong Cheng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Hong-Ling Ma
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Guang-Xin Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Si-Gang Fan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Yi-Qin Deng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Jian-Jun Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Juan Feng
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China
| | - Zhi-Xun Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, 510300, China, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China.
| |
Collapse
|
31
|
Bagheri D, Moradi R, Zare M, Sotoudeh E, Hoseinifar SH, Oujifard A, Esmaeili N. Does Dietary Sodium Alginate with Low Molecular Weight Affect Growth, Antioxidant System, and Haemolymph Parameters and Alleviate Cadmium Stress in Whiteleg Shrimp ( Litopenaeus vannamei)? Animals (Basel) 2023; 13:1805. [PMID: 37889709 PMCID: PMC10252018 DOI: 10.3390/ani13111805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 10/29/2023] Open
Abstract
Decreasing low molecular weight can improve the digestibility and availability of ingredients such as sodium alginate. This study aimed to test the four dosages of low molecular weight sodium alginate (LMWSA) (0%: Control, 0.05%: 0.5 LMWSA, 0.10%: 1.0 LMWSA, and 0.2%: 2.0 LMWSA) in whiteleg shrimp (Litopenaeus vannamei) (3.88 ± 0.25 g) for eight weeks. After finishing the trial, shrimp were exposed to cadmium (1 mg/L) for 48 h. While feed conversion ratio (FCR) improved in shrimp fed dietary 2.0 LMWSA (p < 0.05), there was no significant difference in growth among treatments. The results showed a linear relation between LMWSA level and FCR, and glutathione S-transferase (GST) before; and malondialdehyde (MDA), glutathione (GSH), GST, and alanine transaminase (ALT) after cadmium stress (p < 0.05). The GST, MDA, ALT, and aspartate transaminase (AST) contents were changed after stress but not the 2.0 LMWSA group. The survival rate after stress in 1.0 LMWSA (85.23%) and 2.0 LMWSA (80.20%) treatments was significantly higher than the Control (62.05%). The survival rate after stress negatively correlated with GST and ALT, introducing them as potential biomarkers for cadmium exposure in whiteleg shrimp. Accordingly, the 2.0 LMWSA treatment had the best performance in the abovementioned parameters. As the linear relation was observed, supplementing more levels of LMWSA to reach a plateau is recommended.
Collapse
Affiliation(s)
- Dara Bagheri
- Faculty of Nano and Bio Science and Technology, Department of Fisheries, Persian Gulf University, Bushehr 75169, Iran
| | - Rohullah Moradi
- Faculty of Nano and Bio Science and Technology, Department of Fisheries, Persian Gulf University, Bushehr 75169, Iran
| | - Mahyar Zare
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Institute of Aquaculture and Protection of Waters, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic
| | - Ebrahim Sotoudeh
- Faculty of Nano and Bio Science and Technology, Department of Fisheries, Persian Gulf University, Bushehr 75169, Iran
| | - Seyed Hossein Hoseinifar
- Faculty of Fisheries and Environmental Sciences, Department of Fisheries, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
| | - Amin Oujifard
- Faculty of Nano and Bio Science and Technology, Department of Fisheries, Persian Gulf University, Bushehr 75169, Iran
| | - Noah Esmaeili
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7005, Australia;
| |
Collapse
|
32
|
Callac N, Giraud C, Boulo V, Wabete N, Pham D. Microbial biomarker detection in shrimp larvae rearing water as putative bio-surveillance proxies in shrimp aquaculture. PeerJ 2023; 11:e15201. [PMID: 37214103 PMCID: PMC10198154 DOI: 10.7717/peerj.15201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/17/2023] [Indexed: 05/24/2023] Open
Abstract
Background Aquacultured animals are reared in water hosting various microorganisms with which they are in close relationships during their whole lifecycle as some of these microorganisms can be involved in their host's health or physiology. In aquaculture hatcheries, understanding the interactions existing between the natural seawater microbiota, the rearing water microbiota, the larval stage and the larval health status, may allow the establishment of microbial proxies to monitor the rearing ecosystems. Indeed, these proxies could help to define the optimal microbiota for shrimp larval development and could ultimately help microbial management. Methods In this context, we monitored the daily composition of the active microbiota of the rearing water in a hatchery of the Pacific blue shrimp Penaeus stylirostris. Two distinct rearing conditions were analyzed; one with antibiotics added to the rearing water and one without antibiotics. During this rearing, healthy larvae with a high survival rate and unhealthy larvae with a high mortality rate were observed. Using HiSeq sequencing of the V4 region of the 16S rRNA gene of the water microbiota, coupled with zootechnical and statistical analysis, we aimed to distinguish the microbial taxa related to high mortality rates at a given larval stage. Results We highlight that the active microbiota of the rearing water is highly dynamic whatever the larval survival rate. A clear distinction of the microbial composition is shown between the water harboring heathy larvae reared with antibiotics versus the unhealthy larvae reared without antibiotics. However, it is hard to untangle the effects of the antibiotic addition and of the larval death on the active microbiota of the rearing water. Various active taxa of the rearing water are specific to a given larval stage and survival rate except for the zoea with a good survival rate. Comparing these communities to those of the lagoon, it appears that many taxa were originally detected in the natural seawater. This highlights the great importance of the microbial composition of the lagoon on the rearing water microbiota. Considering the larval stage and larval survival we highlight that several genera: Nautella, Leisingera, Ruegerira, Alconivorax, Marinobacter and Tenacibaculum, could be beneficial for the larval survival and may, in the rearing water, overcome the r-strategist microorganisms and/or putative pathogens. Members of these genera might also act as probiotics for the larvae. Marivita, Aestuariicocccus, HIMB11 and Nioella, appeared to be unfavorable for the larval survival and could be associated with upcoming and occurring larval mortalities. All these specific biomarkers of healthy or unhealthy larvae, could be used as early routine detection proxies in the natural seawater and then during the first days of larval rearing, and might help to manage the rearing water microbiota and to select beneficial microorganisms for the larvae.
Collapse
Affiliation(s)
- Nolwenn Callac
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Ifremer, Nouméa, New-Caledonia
| | - Carolane Giraud
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Ifremer, Nouméa, New-Caledonia
- Institut des Sciences Exactes et Appliquées, University of New Caledonia, Nouméa, New-Calédonia
| | - Viviane Boulo
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Ifremer, Nouméa, New-Caledonia
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan via Domitia, Ifremer, Montpellier, France
| | - Nelly Wabete
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Ifremer, Nouméa, New-Caledonia
| | - Dominique Pham
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Ifremer, Nouméa, New-Caledonia
| |
Collapse
|
33
|
Lin W, He Y, Li R, Mu C, Wang C, Shi C, Ye Y. Adaptive changes of swimming crab (Portunus trituberculatus) associated bacteria helping host against dibutyl phthalate toxification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121328. [PMID: 36828355 DOI: 10.1016/j.envpol.2023.121328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The pollution of dibutyl phthalate (DBP) in aquatic environments is becoming an extensive environmental problem and detrimental to aquatic animals. Here, we quantified the response pattern of the bacterial community and metabolites of swimming crab (Portunus trituberculatus) juveniles exposed to 0.2, 2, and 10 mg/L DBP using 16 S rRNA gene amplicon sequencing coupled with metabolomic technique. The results showed that DBP changed the bacterial community compositions in a concentration-dependent pattern and decreased the Shannon index at the second developmental stage of the swimming crabs. The Rhodobacteraceae taxa were specifically enriched by crabs when challenged by 2 and 10 mg/L DBP, with an increased in Shannon index and enhanced drift in its assembly. Moreover, DBP changed the metabolic profiling of the swimming crab, highlighted by increased levels of lactate, valine, methionine, lysine, and phenylalanine in the 10 mg/L DBP-exposed crabs. Rhodobacteraceae presented the most considerable contribution to the metabolic potentials in phthalate and benzoate degradation, lactate production, and amino acid biosynthesis. Overall, our results indicated an adaptive change of crab-associated bacteria helped the host resist DBP stress. The findings extend our insights into the relationship between the microbiota and its host metabolism under DBP stress and reveal the potential microbiota modalities for DBP detoxification.
Collapse
Affiliation(s)
- Weichuan Lin
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yimin He
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Ronghua Li
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Changkao Mu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Chunlin Wang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, China
| | - Ce Shi
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315832, China; Key Laboratory of Green Mariculture (Co-construction By Ministry and Province), Ministry of Agriculture and Rural, China
| | - Yangfang Ye
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
34
|
Li D, Yang C, Xu X, Li S, Luo G, Zhang C, Wang Z, Sun D, Cheng J, Zhang Q. Low dosage fluorine ameliorates the bioaccumulation, hepatorenal dysfunction and oxidative stress, and gut microbiota perturbation of cadmium in rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121375. [PMID: 36863438 DOI: 10.1016/j.envpol.2023.121375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Many "hot spot" geographic areas around the world with soils and crops co-polluted with cadmium (Cd) and fluorine (F), two of the most representative pollutants in the environment. However, it still exists argumentative on the dose-effect relationship between F and Cd so far. To explore this, a rat model was established to evaluate the effects of F on Cd-mediated bioaccumulation, hepatorenal dysfunction and oxidative stress, and the disorder of intestinal microbiota as well. 30 healthy rats were randomly assigned to Control group (C group), Cd 1 mg/kg (Cd group), Cd 1 mg/kg and F 15 mg/kg (L group), Cd 1 mg/kg and F 45 mg/kg (M group), and Cd 1 mg/kg and F 75 mg/kg (H group) for 12 weeks by gavage. Our results showed that Cd exposure could accumulate in organs, cause hepatorenal function damage and oxidative stress, and disorder of gut microflora. However, different dosages of F showed various effects on Cd-induced damages in liver, kidney, and intestine, and only the low supplement of F showed a consistent trend. After low supplement of F, Cd levels were declined by 31.29% for liver, 18.31% for kidney, and 2.89% for colon, respectively. The serum aspartate aminotransferase (AST), blood urea nitrogen (BUN), creatinine (Cr), and N-acetyl-β-glucosaminidase (NAG) were significantly reduced (p < 0.01); The activity of superoxide dismutase (SOD) was elevated and mRNA expression level of NAD(P)H quinone oxidoreductase 1 (NQO1) was decreased in the liver and kidney (p < 0.05). Moreover, low F dosage up-regulated the abundance of Lactobacillus from 15.56% to 28.73% and the 6.23% of F/B ratio was declined to 3.70%. Collectively, this highlights that low dosage of F might be a potential strategy to ameliorate the hazardous effects by Cd-exposed in the environment.
Collapse
Affiliation(s)
- Dashuan Li
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Chaolian Yang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Xiaomei Xu
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Shanghang Li
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Guofei Luo
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Cheng Zhang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Zelan Wang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Dali Sun
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| | - Jianzhong Cheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Qinghai Zhang
- School of Public Health /the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
35
|
Kakade A, Sharma M, Salama ES, Zhang P, Zhang L, Xing X, Yue J, Song Z, Nan L, Yujun S, Li X. Heavy metals (HMs) pollution in the aquatic environment: Role of probiotics and gut microbiota in HMs remediation. ENVIRONMENTAL RESEARCH 2023; 223:115186. [PMID: 36586709 DOI: 10.1016/j.envres.2022.115186] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
The presence of heavy metals (HMs) in aquatic ecosystems is a universal concern due to their tendency to accumulate in aquatic organisms. HMs accumulation has been found to cause toxic effects in aquatic organisms. The common HMs-induced toxicities are growth inhibition, reduced survival, oxidative stress, tissue damage, respiratory problems, and gut microbial dysbiosis. The application of dietary probiotics has been evolving as a potential approach to bind and remove HMs from the gut, which is called "Gut remediation". The toxic effects of HMs in fish, mice, and humans with the potential of probiotics in removing HMs have been discussed previously. However, the toxic effects of HMs and protective strategies of probiotics on the organisms of each trophic level have not been comprehensively reviewed yet. Thus, this review summarizes the toxic effects caused by HMs in the organisms (at each trophic level) of the aquatic food chain, with a special reference to gut microbiota. The potential of bacterial probiotics in toxicity alleviation and their protective strategies to prevent toxicities caused by HMs in them are also explained. The dietary probiotics are capable of removing HMs (50-90%) primarily from the gut of the organisms. Specifically, probiotics have been reported to reduce the absorption of HMs in the intestinal tract via the enhancement of intestinal HM sequestration, detoxification of HMs, changing the expression of metal transporter proteins, and maintaining the gut barrier function. The probiotic is recommended as a novel strategy to minimize aquaculture HMs toxicity and safe human health.
Collapse
Affiliation(s)
- Apurva Kakade
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Monika Sharma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu, China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Peng Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Lihong Zhang
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Xiaohong Xing
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Jianwei Yue
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Zhongzhong Song
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Lan Nan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Su Yujun
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou, Gansu, 730020, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
36
|
Zhang S, Chen A, Deng H, Jiang L, Liu X, Chai L. Intestinal response of Rana chensinensis larvae exposed to Cr and Pb, alone and in combination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114774. [PMID: 36931087 DOI: 10.1016/j.ecoenv.2023.114774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/06/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Although numerous investigations on the adverse impact of Cr and Pb have been performed, studies on intestinal homeostasis in amphibians are limited. Here, single and combined effects of Cr (104 μg/L) and Pb (50 μg/L) on morphological and histological features, bacterial community, digestive enzymes activities, as well as transcriptomic profile of intestines in Rana chensinensis tadpoles were assessed. Significant decrease in the relative intestine length (intestine length/snout-to-vent length, IL/SVL) was observed after exposure to Pb and Cr/Pb mixture. Intestinal histology and digestive enzymes activities were altered in metal treatment groups. In addition, treatment groups showed significantly increased bacterial richness and diversity. Tadpoles in treatment groups were observed to have differential gut bacterial composition from controls, especially for the abundance of phylum Proteobacteria, Firmicutes, Verrucomicrobia, Actinobacteria, and Fusobacteria as well as genus Citrobacter, Anaerotruncus, Akkermansia, and Alpinimonas. Moreover, transcriptomic analysis showed that the transcript expression profiles of GPx and SOD isoforms responded differently to Cr and/or Pb exposure. Besides, transcriptional activation of pro-apoptotic and glycolysis-related genes, such as Bax, Apaf 1, Caspase 3, PK, PGK, TPI, and GPI were detected in all treatment groups but downregulation of Bcl2 in Pb and Cr/Pb mixture groups. Collectively, these results suggested that Cr and Pb exposure at environmental relevant concentration, alone and in combination, could disrupt intestinal homeostasis of R. chensinensis tadpoles.
Collapse
Affiliation(s)
- Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Ling Jiang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Xiaoli Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
37
|
Effects of Florfenicol on Intestinal Histology, Apoptosis and Gut Microbiota of Chinese Mitten Crab ( Eriocheir sinensis). Int J Mol Sci 2023; 24:ijms24054412. [PMID: 36901841 PMCID: PMC10002397 DOI: 10.3390/ijms24054412] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Excessive use of antibiotics in aquaculture causes residues in aquatic animal products and harms human health. However, knowledge of florfenicol (FF) toxicology on gut health and microbiota and their resulting relationships in economic freshwater crustaceans is scarce. Here, we first investigated the influence of FF on the intestinal health of Chinese mitten crabs, and then explored the role of bacterial community in FF-induced intestinal antioxidation system and intestinal homeostasis dysbiosis. A total of 120 male crabs (48.5 ± 4.5 g) were experimentally treated in four different concentrations of FF (0, 0.5, 5 and 50 μg/L) for 14 days. Responses of antioxidant defenses and changes of gut microbiota were assessed in the intestine. Results revealed that FF exposure induced significant histological morphology variation. FF exposure also enhanced immune and apoptosis characteristics in the intestine after 7 days. Moreover, antioxidant enzyme catalase activities showed a similar pattern. The intestinal microbiota community was analyzed based on full-length 16S rRNA sequencing. Only the high concentration group showed a marked decrease in microbial diversity and change in its composition after 14 days of exposure. Relative abundance of beneficial genera increased on day 14. These findings illustrate that exposure to FF could cause intestinal dysfunction and gut microbiota dysbiosis in Chinese mitten crabs, which provides new insights into the relationship between gut health and gut microbiota in invertebrates following exposure to persistent antibiotics pollutants.
Collapse
|
38
|
Abdulaziz A, Pramodh AV, Sukumaran V, Raj D, John AMVB. The Influence of Photodynamic Antimicrobial Chemotherapy on the Microbiome, Neuroendocrine and Immune System of Crustacean Post Larvae. TOXICS 2022; 11:36. [PMID: 36668762 PMCID: PMC9866830 DOI: 10.3390/toxics11010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Photodynamic antimicrobial chemotherapy (PACT), employing a combination of light and natural photosensitizer molecules such as curcumin, has been accepted as a safe modality for removing aquatic pathogens which cause diseases such as cholera in humans and vibriosis in aquatic animals. Curcumin and its photodegradation products are generally considered as safe to animals, but the impact of reactive oxygen species (ROS) generated by these products on the growth and survival of organisms at a cellular level has not been studied in detail. The ROS generated by curcumin on photoexcitation using blue light (λmax 405 nm, 10 mW cm-2) disinfects more than 80% of free-living Vibrio spp. in the rearing water of Penaeus monodon. However, it is less effective against Vibrio spp. colonized inside P. monodon because the carapace of the animal prevents the transmission of more than 70% of light at the 400-450 nm range and thus reduces the formation of ROS. The influence of curcumin and photoexcited curcumin on the microbiome of P. monodon were revealed by nanopore sequencing. The photoexcited curcumin induced irregular expression of genes coding the moult-inhibiting hormone (MIH), Crustacean hyperglycaemic hormone (CHH)), prophenoloxidase (ProPO), and crustin, which indicates toxic effects of ROS generated by photoexcited curcumin on the neuroendocrine and immune systems of crustaceans, which could alter their growth and survival in aquaculture settings. The study proposed the cautious use of photodynamic therapy in aquaculture systems, and care must be taken to avoid photoexcitation when animals are experiencing moulting or environmental stress.
Collapse
|
39
|
Dietary Use of Methionine Sources and Bacillus amyloliquefaciens CECT 5940 Influences Growth Performance, Hepatopancreatic Histology, Digestion, Immunity, and Digestive Microbiota of Litopenaeus vannamei Fed Reduced Fishmeal Diets. Animals (Basel) 2022; 13:ani13010043. [PMID: 36611655 PMCID: PMC9817784 DOI: 10.3390/ani13010043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
An 8-week feeding trial investigated the effect of Fishmeal (FM) replacement by soybean meal (SBM) and poultry by-product meal (PBM) in diets supplemented with DL-Met, MET-MET (AQUAVI®), Bacillus amyloliquefaciens CECT 5940 (ECOBIOL®) and their combinations on growth performance and health of juvenile Litopenaeus vannamei. A total of six experimental diets were formulated according to L. vannamei nutritional requirements. A total of 480 shrimp (0.30 ± 0.04 g) were randomly distributed into 24 tanks (4 repetitions/each diet, 20 shrimp/tank). Shrimp were fed with control diet (CD; 200 g/Kg fishmeal) and five diets with 50% FM replacement supplemented with different methionine sources, probiotic (B. amyloliquefaciens CECT 5940) and their combinations: D1 (0.13% DL-MET), D2 (0.06% MET-MET), D3 (0.19% MET-MET), D4 (0.13% DL-MET plus 0.10% B. amyloliquefaciens CECT 5940 and D5 (0.06% MET-MET plus 0.10% B. amyloliquefaciens CECT 5940). Shrimp fed D3 and D5 had significantly higher final, weekly weight gain, and final biomass compared to shrimp fed CD (p < 0.05). Shrimp fed D2 to D5 increased the hepatopancreas epithelial cell height (p < 0.05). Digestive enzymatic activities were significantly increased in shrimp hepatopancreas’ fed D3 (p < 0.05). Meanwhile, shrimp fed D1 had significant downregulation of immune-related genes (p < 0.05). Moreover, shrimp fed D3 and D5 increased the abundance of beneficial prokaryotic microorganisms such as Pseudoalteromonas and Demequina related to carbohydrate metabolism and immune stimulation. Also, shrimp fed D3 and D5 increased the abundance of beneficial eukaryotic microorganism as Aurantiochytrium and Aplanochytrium were related to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production which plays a role in growth promoting or boosting the immunity of aquatic organisms. Therefore, fishmeal could be partially substituted up to 50% by SBM and PBM in diets supplemented with 0.19% MET-MET (AQUAVI®) or 0.06% MET-MET (AQUAVI®) plus 0.10% B. amyloliquefaciens CECT 5940 (ECOBIOL®) and improve the productive performance, health, and immunity of white shrimp. Further research is necessary to investigate synergistic effects of amino acids and probiotics in farmed shrimp diets, as well as to evaluate how SBM and PBM influence the fatty acid composition of reduced fishmeal diets and shrimp muscle quality. Nevertheless, this information could be interesting to develop low fishmeal feeds for aquaculture without affecting the growth and welfare of aquatic organisms.
Collapse
|
40
|
Liu H, Qian K, Zhang S, Yu Q, Du Y, Fu S. Lead exposure induces structural damage, digestive stress, immune response and microbiota dysbiosis in the intestine of silver carp (Hypophthalmichthys molitrix). Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109464. [PMID: 36108998 DOI: 10.1016/j.cbpc.2022.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/28/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022]
Abstract
Lead (Pb) is one of the most common trace metals in water, and its high concentration in the environment can cause harm to aquatic animals and humans. In the present study, the effects of Pb exposure (3.84 mg/kg) on the morphology, digestive enzyme activity, immune function and microbiota structure of silver carp (Hypophthalmichthys molitrix) intestines within 96 h were detected. Moreover, the correlation between them was analyzed. The results showed that Pb exposure on the one hand severely impaired the intestinal morphology, including significantly shortening the intestinal villi's length, increasing the goblet cells' number, causing the intestinal leukocyte infiltration, and thickening the intestinal wall abnormally, on the other hand, increasing the activity of intestinal digestive enzyme (trypsin and lipase). In addition, the mRNA expressions of structure-related genes (Claudin-7 and villin-1) were down-regulated, and the immune factors genes (IL-8, IL-10 and TNF-α) were up-regulated after Pb exposure. Furthermore, data of the MiSeq sequencing showed that the abundance of membrane transport, immune system function and digestive system of silver carp intestinal microbiota all decreased, while cellular antigens increased. Finally, the canonical correlation analysis (CCA) showed that there were correlations between silver carp's intestinal microbiota and intestinal morphology and immune factors. In conclusion, it is speculated that the entry of Pb into the intestine leads the microbiota dysbiosis, affects the intestinal immunity and digestive function, and further damages the intestinal barrier of silver carp.
Collapse
Affiliation(s)
- Haisu Liu
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China; Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, PR China
| | - Kun Qian
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Sanshan Zhang
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Qianxun Yu
- Hubei Institute of Product Quality Supervision and Inspection, Wuhan 430061, PR China
| | - Yudong Du
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Shengli Fu
- Guangdong Provincial Key Laboratory for Healthy and Saft Aquaculture, School of Life Sciences, South China Normal University, Guangzhou 510631, PR China.
| |
Collapse
|
41
|
Miao Z, Miao Z, Teng X, Xu S. Melatonin alleviates lead-induced intestinal epithelial cell pyroptosis in the common carps (Cyprinus carpio) via miR-17-5p/TXNIP axis. FISH & SHELLFISH IMMUNOLOGY 2022; 131:127-136. [PMID: 36202203 DOI: 10.1016/j.fsi.2022.09.071] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Lead (Pb) has been concerned as one of the most severe hazardous contaminants, because it can cause pyroptosis in multiple tissues of mammals and birds. Melatonin (Mel) has attracted much interest for its role in governing intestinal injury via microRNAs (miRNAs). To explore the effect of Mel on Pb exposure-induced intestinal epithelial cell pyroptosis in common carps by regulating miR-17-5p/TXNIP axis, the Pb exposure and Pb-Mel treated models were constructed in vivo. The results elucidated that the suppressed expression of miR-17-5p and intensified level of TXNIP were primarily detected in Pb-exposed gut tissues, and both abolished with Mel addition, along with downregulated Pb-mediated elevated expression of NLRP3, CASP1, IL1β and GSDMD. Additionally, the targeting relationship between miR-17-5p and TXNIP were demonstrated by dual-luciferase reporter assay, and on this basis, miR-17-5p NC, mimic and inhibitor cell models were established. Thereby, Thereby, the expression of TXNIP in the miR-17-5p mimic groups was significant lower in the Pb-exposure but still elevated than the Control group, and the expression of NLRP3 and NLRP3-dependent pyrotposis-related genes performed consistent alterations. Noticeably, the expression of TXNIP suppressed with Mel addition even in the miR-17-5p inhibitor cell model, resulting in the inactivation of NLRP3 inflammasome-dependent pyroptosis. Overall, we draw the conclusion as Mel attenuates Pb-induced intestinal epithelial cell pyroptosis via miR-17-5p/TXNIP axis. The present study provides a novel perspective for toxicological mechanism of Pb, and new insights for the detoxification mechanism of Mel.
Collapse
Affiliation(s)
- Zhiying Miao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Zhiruo Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
42
|
Zhan W, Weng H, Liu F, Han M, Lou B, Wang Y. Joint toxic effects of phoxim and lambda-cyhalothrin on the small yellow croaker (Larimichthys polyactis). CHEMOSPHERE 2022; 307:136203. [PMID: 36037960 DOI: 10.1016/j.chemosphere.2022.136203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Although pesticides commonly exist as combinations in real-life situations of the aquatic ecosystem, the impact of the toxicity of their mixtures has remained largely unclear. In this study, we investigated the combined effects of two neurotoxic pesticides, including one organophosphate insecticide phoxim (PHO) and one pyrethroid insecticide lambda-cyhalothrin (LCY), on the embryos of the small yellow croaker (Larimichthys polyactis), and their potential pathways. LCY exhibited higher toxicity relative to PHO, with a 72-h LC50 value of 0.0074 mg a.i. L-1, while the corresponding value for PHO was 0.12 mg a.i. L-1. The mixture of PHO and LCY exerted a synergistic effect on the embryos of L. polyactis. The activities of antioxidant enzyme CAT and apoptotic enzyme caspase 3 were substantially changed in most single and combined exposure groups relative to the baseline value. Under both single and combined exposures, more significant changes were found in the mRNA expression of five genes, including the immunosuppression gene ngln2, the apoptosis gene P53, the endocrine system gene cyp19a1b, as well as neurodevelopment genes of ap and acp2, relative to the baseline value. Furthermore, the non-target metabolomic analysis demonstrated that hundreds of differential metabolites, including two bile acids (taurodeoxycholic acid and tauroursodeoxycholic acid), were significantly increased in the exposure groups. The bile acids were closely associated with the gut microbiota, and 16S rRNA sequencing results demonstrated dysfunction of the gut microbiota after exposure, especially in the combined exposure group. Our findings indicated that there might be a potential risk connected to the co-occurrence of these two pesticides in aquatic vertebrates. Consequently, future ecological risk assessments should incorporate synergistic mixtures because the current risk assessments do not consider them.
Collapse
Affiliation(s)
- Wei Zhan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Hongbiao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Feng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Mingming Han
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Bao Lou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Hydrobiology/Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
43
|
Ma S, Shu X, Wang WX. Responses of two marine fish to organically complexed Zn: Insights from microbial community and liver transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155457. [PMID: 35469859 DOI: 10.1016/j.scitotenv.2022.155457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
The diversity and adjustability of metal-organic complex enhance the function of metals and promote the burgeoning fields of chemical biology. In the present study, we chose two marine fish to explore the effects of a dihydromyricetin (DMY)-Zn(II) complex on the intestinal microbiome composition and liver biological function using high-throughput sequencing technology. Two economic fish species commonly found in Southern China (golden pompano Trachinotus ovatus and pearl gentian grouper ♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatus) were exposed to dietary DMY-Zn complex for 4-week. Our study found that DMY-Zn performed a vital function on the improved anti-oxidative ability of both fish species. The Zn complex improved the stability of microbial community structure of the golden pompano by enhancing the α-diversity, but its impacts on the composition and diversity of intestine microorganisms of grouper were insignificant. BugBase results showed that the intestine microbiota following DMY-Zn exposure contained a lower abundance of potentially pathogenic bacteria and higher abundance of aerobic bacteria. Intestine health and utilization of carbohydrates were improved in the golden pompano, and unclassified bacteria were significantly enriched in the grouper. Liver transcriptome indicated that DMY-Zn affected the oxidative phosphorylation process (OXPHOS). Specifically, the OXPHOS process (map00190) was activated by promoting the glucose uptake (map04251, map04010) in golden pompano and lipid metabolism (map00071, map00140, map00062 and map00564) in grouper. Such difference in the responses of intestine microbiome and liver metabolism may be possibly explained by their different Zn basal requirements. Our study demonstrated that different fish species may have different responses to dietary DMY-Zn complex. The results provided a reference for the application of new additives in aquatic animal feed, and new insights into the roles of metal-organic complex in their biological impacts on fish.
Collapse
Affiliation(s)
- Shuoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Xugang Shu
- School of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
44
|
Jin H, Riaz Rajoka MS, Xu X, Liao N, Pang B, Yan L, Liu G, Sun H, Jiang C, Shao D, Barba FJ, Shi J. Potentials of orally supplemented selenium-enriched Lacticaseibacillus rhamnosus to mitigate the lead induced liver and intestinal tract injury. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119062. [PMID: 35231537 DOI: 10.1016/j.envpol.2022.119062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Lead is a metal that exists naturally in the Earth's crust and is a ubiquitous environmental contaminant. The alleviation of lead toxicity is important to keep human health under lead exposure. Biosynthesized selenium nanoparticle (SeNPs) and selenium-enriched Lactobacillus rhamnosus SHA113 (Se-LRS) were developed in this study, and their potentials in alleviating lead-induced injury to the liver and intestinal tract were evaluated in mice by oral administration for 4 weeks. As results, oral intake of lead acetate (150 mg/kg body weight per day) caused more than 50 times and 100 times lead accumulation in blood and the liver, respectively. Liver function was seriously damaged by the lead exposure, which is indicated as the significantly increased lipid accumulation in the liver, enhanced markers of liver function injury in serum, and occurrence of oxidative stress in liver tissues. Serious injury in intestinal tract was also found under lead exposure, as shown by the decrease of intestinal microbiota diversity and occurrence of oxidative stress. Except the lead content in blood and the liver were lowered by 52% and 58%, respectively, oral administration of Se-LRS protected all the other lead-induced injury markers to the normal level. By the comparison with the effects of normal L. rhamnosus SHA113 and the SeNPs isolated from Se-LRS, high protective effects of Se-LRS can be explained as the extremely high efficiency to promote lead excretion via feces by forming insoluble mixture. These findings illustrate the developed selenium-enriched L. rhamnosus can efficiently protect the liver and intestinal tract from injury by lead.
Collapse
Affiliation(s)
- Han Jin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Muhammad Shahid Riaz Rajoka
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
| | - Xiaoguang Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Ning Liao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Bing Pang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Lu Yan
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Guanwen Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Hui Sun
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China; School of Hospitality Management, Guilin Tourism University, 26 Liangfeng Road, Yanshan District, Guilin City, Guangxi Province, 541006, China
| | - Chunmei Jiang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Dongyan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Fo-rensic Medicine Department, Universitat de València, Faculty of Pharmacy, Avda, Vicent Andrés Estellés, s/n, Burjassot, 46100, València, Spain
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi Province, 710072, China.
| |
Collapse
|
45
|
Mechanism of Cadmium Exposure Induced Hepatotoxicity in the Mud Crab (Scylla paramamosain): Activation of Oxidative Stress and Nrf2 Signaling Pathway. Antioxidants (Basel) 2022; 11:antiox11050978. [PMID: 35624842 PMCID: PMC9137997 DOI: 10.3390/antiox11050978] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/04/2022] Open
Abstract
Cadmium, one of the most toxic heavy metals, can cause severe oxidative damage to aquatic animals. However, the mechanism whereby the mud crabs respond to cadmium exposure remains unclear. This study investigated the effects of cadmium exposure on oxidative stress and histopathology changes and evaluated the role of the Nrf2 signaling pathway in regulating responses to cadmium-induced hepatotoxicity were investigated in mud crabs. Mud crabs were exposed to 0, 0.01, 0.05, and 0.125 mg/L cadmium for 21 d. The present results indicated that cadmium exposure increased hydrogen peroxide (H2O2) production, lipid peroxidation and tissue damage, but decreased the activity of superoxide dismutase (SOD) and catalase (CAT), and caused lipid peroxidation and tissue damage. The results of an integrated biomarker index analysis suggested that the toxicity of cadmium was positively related to cadmium concentration. The expression levels of the Nrf2 signaling pathway (Nrf2, metallothionein, and cytochrome P450 enzymes) were up-regulated after cadmium exposure. Silencing of Nrf2 in vivo decreased antioxidant gene (SOD, CAT, and glutathione S-transferase) expression, suggesting that Nrf2 can regulate antioxidant genes. Knocking down Nrf2 in vivo also significantly decreased the activity of SOD and CAT after cadmium exposure. Moreover, silencing of Nrf2 in vivo enhanced H2O2 production and the mortality rates of mud crabs after cadmium exposure. The present study indicated that cadmium exposure induced hepatotoxicity in the mud crab by increasing H2O2 content, which decreased the antioxidant capacity, leading to cell injury. In addition, the Nrf2 is activated to bound with antioxidant response element, initiating the expression of antioxidant enzyme genes during cadmium induced hepatotoxicity in the mud crabs.
Collapse
|
46
|
Liao ZH, Chuang HC, Huang HT, Wang PH, Chen BY, Lee PT, Wu YS, Nan FH. Bioaccumulation of arsenic and immunotoxic effect in white shrimp (Penaeus vannamei) exposed to trivalent arsenic. FISH & SHELLFISH IMMUNOLOGY 2022; 122:376-385. [PMID: 35181445 DOI: 10.1016/j.fsi.2022.02.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Trivalent arsenic (As (III)) contamination in the marine environment can produce adverse effects in crustaceans. The present study investigated the chronic toxicity of As (III) in white shrimp (Penaeus vannamei) by analyzing the tissue bioaccumulation and non-specific immune responses. Shrimps were exposed to 0 (control), 50, 500, and 2500 μg/L of As (III) for 21 days. The results showed that the hepatopancreas was the main tissue of arsenic accumulation in white shrimp. The cumulative concentration of total arsenic and inorganic arsenic but not arsenobetaine was positively correlated with the exposure concentration. In vitro As (III) treatment (0-2500 μg/L) with haemocytes isolated from healthy shrimp did not cause the cytotoxicity, but this arsenic treatments inhibited the phagocytic rate and O2- production. Moreover, the decrease of total haemocyte count and the inhibition of phagocytic rate, phagocytic index, O2- production and phenoloxidase activity were observed in white shrimp under the exposure of As (III) over a period of 21 days. This study revealed that chronic As (III) stress could disturb arsenic metabolism and immune responses in P. vannamei.
Collapse
Affiliation(s)
- Zhen-Hao Liao
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Hsiang-Chieh Chuang
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Technology, No.142, Haijhuan Road., Nanzih District, Kaohsiung City, 81157, Taiwan
| | - Huai-Ting Huang
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Pei-Hsuan Wang
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Bo-Ying Chen
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, No. 1, Xue-Fu Road, Neipu Township, Pingtung, 912301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, No.2 Beining Road, Zhongzheng District, Keelung City, 202301, Taiwan.
| |
Collapse
|
47
|
Osayande O, Zou E. Lead Inhibits Postecdysial Exoskeletal Calcification in the Blue Crab (Callinectes sapidus). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:474-482. [PMID: 34913519 DOI: 10.1002/etc.5273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Postecdysial mineralization in crustaceans involves the deposition of carbonate salts, such as calcium carbonate, to the organic matrix. Because of the resemblance between Pb2+ and Ca2+ , the present study was carried out to investigate whether Pb is incorporated into the new shell during postecdysial mineralization using the blue crab (Callinectes sapidus) as the model crustacean. It was hypothesized that injected Pb would be deposited in the shell via calcium transporters in the epidermis during the mineralization process. Postecdysial blue crabs were injected with two doses of 5 µg Pb/g wet weight each in lead acetate, and then Pb, Ca, and Mg contents were analyzed in the exoskeleton, while only Pb bioaccumulation was quantified for the hepatopancreas, gills, muscles, and hemolymph. The results showed a statistically nonsignificant increase in exoskeletal Pb content in Pb-treated crabs compared to control, suggesting that exoskeletal Pb may not be a sensitive proxy for aquatic Pb pollution. There was a significant decrease in Ca content in Pb-treated crabs, suggesting that Pb hindered the deposition of Ca to crab exoskeleton, thereby obstructing calcification. A trend of a decrease in exoskeletal Mg was also observed in Pb-treated crabs. There was a significant increase in Pb content found in the gills, hepatopancreas, muscle, and hemolymph in Pb-treated crabs. The rank of the Pb level among three soft tissues in a decreasing order is hepatopancreas > gill > muscle. This is the first study to present evidence that Pb disrupts postecdysial exoskeletal calcification in a crustacean. Environ Toxicol Chem 2022;41:474-482. © 2021 SETAC.
Collapse
Affiliation(s)
- Osaze Osayande
- Department of Biological Sciences, Nicholls State University, Thibodaux, Louisiana, USA
| | - Enmin Zou
- Department of Biological Sciences, Nicholls State University, Thibodaux, Louisiana, USA
| |
Collapse
|
48
|
Li D, Miao J, Pan L, Zhou Y, Gao Z, Yang Y, Xu R, Zhang X. Impacts of benzo(a)pyrene exposure on scallop (Chlamys farreri) gut health and gut microbiota composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149471. [PMID: 34371399 DOI: 10.1016/j.scitotenv.2021.149471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
The gut tissue interacts with nutrients and pollutants which can impact gut health. Gut microbiota is essential to the host health, but is also easily affected by external environment. However, little is known about the toxicological assessment of environmental contaminants on gut health and microbiota, especially in marine invertebrates. In this study, we first explored the effect of benzo(a)pyrene (BaP) on the gut health and gut microbiota of scallops (Chlamys farreri). The scallops were exposed to different concentrations (0, 0.4, 2 and 10 μg/L) of BaP for 21 days. The histological morphology, immune- and oxidative enzyme-related gene expression, and lipid peroxidation of the scallops were analyzed at 7, 14 and 21 days. The results revealed that BaP could impair intestinal barrier function, increasing the intestinal permeability of scallops. Moreover, immune and antioxidant responses were induced in the gut tissue. After a 21-day exposure to different concentrations of BaP, the intestinal microbial community was analyzed based on 16S rRNA sequencing. Our results suggested that BaP exposure altered the gut microbial diversity and composition in scallops. Many beneficial genera declined after BaP treatment, while the potential pathogens were increased, such as Mycoplasma and Tenacibaculum. A series of hydrocarbon-degrading bacteria were recognized in BaP-treated groups, such as Pseudomonas, Polaribacter, Amphritea and Kordiimonas. Interestingly, the degrading bacteria present varied after exposure to different concentrations of BaP. Overall, this study provides new insights into gut health and gut microbiota in marine invertebrates following exposure to persistent organic pollutants.
Collapse
Affiliation(s)
- Dongyu Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jingjing Miao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Yueyao Zhou
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Zhongyuan Gao
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yingying Yang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruiyi Xu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|