1
|
Liao J, Ke W, Wang B, Du M, Lu Q, Zhang Y, Zhang G. Transcriptomics and non-targeted metabolomics provide mechanistic insights into the improvement of the growth performance and meat quality of lambs supplemented with fermented Lycium barbarum residues. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 21:11-24. [PMID: 40135170 PMCID: PMC11931312 DOI: 10.1016/j.aninu.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 03/27/2025]
Abstract
This study investigated the effects of Lycium barbarum residues (LBR) and fermented L. barbarum residues (FLBR) on the growth performance and meat quality of lambs. Eighteen lambs were randomly assigned into three groups and fed either a basal diet (CON) or the same diet supplemented with 5.0% LBR or FLBR for a period of 90 days. The underlying mechanisms responsible for the beneficial effect of LBR and FLBR on the longissimus thoracis (LT) and intramuscular fat (IMF) tissues of lambs were examined using multiomics techniques. Our findings showed that FLBR supplementation significantly enhanced the average daily gain, feed efficiency, and nutrient digestibility (P < 0.05 or P < 0.01). Serum total protein (P = 0.007) and glucose (P = 0.002) levels were higher in the FLBR-fed lambs, while urea nitrogen level was lower (P = 0.001). Additionally, the levels of rumen acetate (P = 0.002) and propionate (P = 0.011) were significantly elevated, while ammonia-nitrogen (NH3-N), isobutyrate and isovalerate decreased (P < 0.05 or P < 0.01) following FLBR supplementation. Post-mortem meat quality was also improved by FLBR, as evidenced by enhanced total antioxidant capacity, superoxide dismutase activity, pH, redness (a∗), tenderness and water holding capacity (P < 0.05 or P < 0.01), alongside a reduction in the malonaldehyde content (P < 0.001). Transcriptomic analysis identified 962 differentially expressed genes (DEGs, FLBR vs CON) and 782 DEGs (FLBR vs LBR) in LT, and 1313 DEGs (FLBR vs CON) and 1221 DEGs (FLBR vs LBR) in IMF. The ribosome signaling pathway related genes in LT tissue were activated by the FLBR diet (P < 0.05), showing a higher anabolism of protein. The genes involved in fatty acid biosynthesis in IMF tissue were upregulated by the FLBR diet (P < 0.05), showing a higher anabolism of lipids. Metabolomics analysis identified the 1732 differential metabolites in LT tissue following FLBR supplementation, with significant alterations in metabolites such as carnosine, L-arginine and L-proline, which may serve as potential biomarkers for meat quality betterment. In conclusion, FLBR supplementation might have modified anabolism of proteins and fatty acid, as well as muscle metabolomic profiles, leading to improvements in both growth performance and meat quality in fattening lambs.
Collapse
Affiliation(s)
- Jiale Liao
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Wencan Ke
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Bing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Min Du
- Nutrigenomics and Growth Biology Laboratory, Department of Animal Sciences, Washington State University, Pullman, WA 99164, United States
| | - Qiang Lu
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Yajun Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
| | - Guijie Zhang
- College of Forestry and Prataculture, Ningxia University, Yinchuan 750021, China
- College of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
2
|
Kilroe SP, Von Ruff ZD, Arentson-Lantz EJ, Romsdahl TB, Linares JJ, Kalenta H, Marchant ED, Volpi E, Paddon-Jones D, Russell WK, Rasmussen BB. Human skeletal muscle disuse atrophy has profound and negative effects on the muscle metabolome and lipidome. Am J Physiol Endocrinol Metab 2025; 328:E962-E978. [PMID: 40298387 DOI: 10.1152/ajpendo.00012.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/06/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
We investigated how short-term muscle disuse altered the skeletal muscle metabolome, lipidome, and transcriptome in middle-aged adults. We report that the energy metabolism pathways: nicotinate and nicotinamide metabolism, glycolysis, and TCA cycle, were reduced after 7 days of muscle disuse. These changes in the metabolome were reflected by changes in the transcriptome where multiple genes involved in glycolysis and TCA pathways were reduced after short-term disuse. Phenylalanine, tyrosine, and tryptophan metabolism pathways showed the same response and were reduced after short-term disuse. The skeletal muscle lipidome showed a decrease in phosphatidylinositols but an increase in phosphatidylglycerols and diacylglycerols after short-term muscle disuse. We conclude that short-term muscle disuse in humans has profound and negative effects on the muscle metabolome and lipidome. These include significant downregulation of muscle glycolytic, amino acid, and TCA cycle intermediates. In contrast, skeletal muscle lipids had a divergent response to disuse (e.g., increased phosphatidylglycerols and diacylglycerols, but reduced phosphatidylinositols).NEW & NOTEWORTHY We present the first study that has applied a multiomic analysis (metabolomics, lipidomics, and transcriptomics) of short-term disuse in middle-aged adults. We identified an altered lipidomic and metabolic signature after disuse that included increases in lipids associated with lipotoxicity (e.g., sphingomyelin and diacylglycerol) and reductions in phosphatidylinositol. Energy pathway metabolites for glycolysis and the TCA cycle were reduced after short-term disuse. The lipidomics and metabolomics data were supported by changes in the associated gene expression.
Collapse
Affiliation(s)
- Sean P Kilroe
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Zachary D Von Ruff
- Graduate School of Biomedical Sciences, University of Texas Medical Branch, Galveston, Texas, United States
| | - Emily J Arentson-Lantz
- Department of Nutrition & Metabolism, University of Texas Medical Branch, Galveston, Texas, United States
| | - Trevor B Romsdahl
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, Texas, United States
| | - Jennifer J Linares
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, Texas, United States
| | - Hanna Kalenta
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Erik D Marchant
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Elena Volpi
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| | - Douglas Paddon-Jones
- Department of Nutrition & Metabolism, University of Texas Medical Branch, Galveston, Texas, United States
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States
- Mass Spectrometry Facility, University of Texas Medical Branch, Galveston, Texas, United States
| | - Blake B Rasmussen
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
- Barshop Institute for Longevity and Aging Studies, Center for Metabolic Health, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States
| |
Collapse
|
3
|
Yang M, Liu Y, Zhong Z, Ou Y, Wang M, Zhong Y, Liu C. Direct regulation of Per2 by Roraa: insights into circadian and metabolic interplay in zebrafish. Cell Mol Life Sci 2025; 82:195. [PMID: 40327116 PMCID: PMC12055712 DOI: 10.1007/s00018-025-05696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/02/2025] [Accepted: 04/03/2025] [Indexed: 05/07/2025]
Abstract
Circadian rhythms are fundamental for regulating physiological processes in organisms, with disruptions often linked to metabolic disorders. This study investigated the role of the roraa gene in zebrafish, particularly its influence on circadian rhythms and metabolic regulation. Using quantitative PCR and in situ hybridization, we confirmed the rhythmic expression of roraa and explored its oscillatory mechanisms. The construction of roraa knockout mutants revealed that the absence of roraa disrupts circadian clock function, as evidenced by the reduced expression of core clock genes and altered behavioral rhythms, while the transgenic zebrafish lines which overexpress roraa just have opposite results. Additionally, we demonstrated that Roraa directly regulates per2 expression through the RORE element in its promoter. Furthermore, the transcriptome analysis and quantitative PCR indicated that the metabolism related genes, especially lipid metabolism related genes were obviously changed in roraa-/- mutants compare with WT. Our findings underscore the critical role of Roraa in coordinating circadian and metabolic processes, providing insights into potential therapeutic targets for addressing metabolic disorders related to circadian disruption.
Collapse
Affiliation(s)
- Miao Yang
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yan Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zhilin Zhong
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yue Ou
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Mingyong Wang
- Murui Biological Technology Co., Ltd., Suzhou Industrial Park, Suzhou, China.
| | - Yingbin Zhong
- Taicang Affiliated Hospital, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Chao Liu
- School of Life Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
4
|
Rodríguez-Rodríguez R, Baena M, Zagmutt S, Paraiso WK, Reguera AC, Fadó R, Casals N. International Union of Basic and Clinical Pharmacology. CXIX. Fundamental insights and clinical relevance regarding the carnitine palmitoyltransferase family of enzymes. Pharmacol Rev 2025; 77:100051. [PMID: 40106976 DOI: 10.1016/j.pharmr.2025.100051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025] Open
Abstract
The carnitine palmitoyltransferases (CPTs) play a key role in controlling the oxidation of long-chain fatty acids and are potential therapeutic targets for diseases with a strong metabolic component, such as obesity, diabetes, and cancer. Four distinct proteins are CPT1A, CPT1B, CPT1C, and CPT2, differing in tissue expression and catalytic activity. CPT1s are finely regulated by malonyl-CoA, a metabolite whose intracellular levels reflect the cell's nutritional state. Although CPT1C does not exhibit significant catalytic activity, it is capable of modulating the functioning of other neuronal proteins. Structurally, all CPTs share a Y-shaped catalytic tunnel that allows the entry of 2 substrates and accommodation of the acyl group in a hydrophobic pocket. Several molecules targeting these enzymes have been described, some showing potential in normalizing blood glucose levels in diabetic patients, and others that, through a central mechanism, are anorexigenic and enhance energy expenditure. However, given the critical roles that CPTs play in certain tissues, such as the heart, liver, and brain, it is essential to fully understand the differences between the various isoforms. We analyze in detail the structure of these proteins, their cellular and physiological functions, and their potential as therapeutic targets in diseases such as obesity, diabetes, and cancer. We also describe drugs identified to date as having inhibitory or activating capabilities for these proteins. This knowledge will support the design of new drugs specific to each isoform, and the development of nanomedicines that can selectively target particular tissues or cells. SIGNIFICANCE STATEMENT: Carnitine palmitoyltransferase (CPT) proteins, as gatekeepers of fatty acid oxidation, have great potential as pharmacological targets to treat metabolic diseases like obesity, diabetes, and cancer. In recent years, significant progress has been made in understanding the 3-dimensional structure of CPTs and their pathophysiological functions. A deeper understanding of the differences between the various CPT family members will enable the design of selective drugs and therapeutic approaches with fewer side effects.
Collapse
Affiliation(s)
- Rosalía Rodríguez-Rodríguez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| | - Miguel Baena
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Sebastián Zagmutt
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - West Kristian Paraiso
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Ana Cristina Reguera
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Rut Fadó
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain
| | - Núria Casals
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Crisafulli O, Quintiero V, Grattarola L, Bottoni G, Giovanetti G, Negro M, Lavaselli E, D'Antona G. The first case of a competitive basketball player affected by carnitine palmitoyl transferase II deficiency presenting an undescribed compound heterozygous genetic mutation. Eur J Appl Physiol 2025; 125:1311-1322. [PMID: 39653856 DOI: 10.1007/s00421-024-05684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/27/2024] [Indexed: 05/07/2025]
Abstract
PURPOSE The risk of exercise-induced rhabdomyolysis, followed by abrupt creatine kinase (CK) augmentation, associated with carnitine palmitoyl transferase II (CPTII) deficiency causes patients to abstain from physical training. However, the exercise adjustment to the disease-induced metabolic impairment, accompanied by a tailored nutritional and supplementation strategy, could make sporting activity feasible, even at a competitive level. Here, we report the case of an 18-year-old male basketball player at a competitive level diagnosed for CPTII deficiency after a rhabdomyolytic event. Subsequent genetic analysis revealed the previously unreported c.1741C > T genetic mutation. METHODS The patient underwent a battery of tests to evaluate nutrition (indirect calorimetry; 8-day food records), hydration (bioimpedance analysis), and the use of energy substrates during exercise (cardiopulmonary exercise test, CPET). RESULT Inadequate macronutrients distribution with respect to the reference values for CPTII deficiency, an optimal hydration status, and a non-physiological prevalence of carbohydrates consumption all along the CPET, accentuated with workload augmentation, were found. Based on the results, the patient was provided with a personalized nutritional (carbohydrate = 50-55%, fat = 20%, and protein = 25-30% of total energy) and supplementation (medium-chain triglycerides, β-alanine, and creatine citrate) plan, and indications on the exercise intensity to be adopted to avoid the contribution of fat to energy production. Monitoring of CK for the five months following the resumption of sporting activity shows that the patient no longer had rhabdomyolysis. CONCLUSION These findings suggest that tailoring exercise, nutrition and supplementation upon the disease-induced metabolic limitation makes sport activity at a competitive level feasible in a CPTII-deficient patient, prompting further analysis on larger cohorts.
Collapse
Affiliation(s)
- Oscar Crisafulli
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058, Voghera, Italy
| | - Venere Quintiero
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058, Voghera, Italy
| | - Luca Grattarola
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058, Voghera, Italy
| | - Giorgio Bottoni
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058, Voghera, Italy
| | - Giuseppe Giovanetti
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058, Voghera, Italy
| | - Massimo Negro
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058, Voghera, Italy
| | - Emanuela Lavaselli
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058, Voghera, Italy
| | - Giuseppe D'Antona
- CRIAMS-Sport Medicine Centre Voghera, University of Pavia, 27058, Voghera, Italy.
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
6
|
Joshi N, Joshi S. Fatty acid metabolism in the placentae of gestational diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 2025; 205:102682. [PMID: 40209642 DOI: 10.1016/j.plefa.2025.102682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/12/2025]
Abstract
The prevalence of gestational diabetes mellitus (GDM), a metabolic complication during pregnancy is increasing rapidly. It exerts various short and long term effects on the mother and the child. Nonetheless, the mechanisms underlying the pathophysiology of GDM are still not clear. Placenta is a key 'programming' agent and any impairment in placental structure and function may hamper the fetal growth and development. Omega-3 and omega-6 fatty acids are key nutrients involved in placental and fetal development. The fatty acids transport from maternal circulation towards the fetus depends on the fatty acid status of the mother, fatty acid metabolism of the placenta and placental transport of fatty acids. Alteration in any of these could influence the fatty acids transport towards the fetus thereby affecting the fetal brain development and leading to impairment in cognitive function in the off-spring. We propose a role for placental fatty acid metabolism in influencing fetal growth and development which in turn can have an impact on cognitive development of the offspring born to GDM women.
Collapse
Affiliation(s)
- Nikita Joshi
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana Joshi
- Mother and Child Health, ICMR-Collaborating Centre of Excellence (ICMR-CCoE), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
7
|
Zhao S, Song Y, Nakashima Y, Zou X, Koga T, Ishida T, Li R, Hirota Y, Tanaka Y, Ishii Y. Ablation of Mouse Selenium-Binding Protein 1 and 2 Elevates LDL by Disruption of Cholesterol Efflux and Lipid Metabolism. Int J Mol Sci 2025; 26:3363. [PMID: 40244197 PMCID: PMC11989624 DOI: 10.3390/ijms26073363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025] Open
Abstract
Selenium-binding protein 1 (SeBP1) is an anticancer factor that affects lipid metabolism in mouse kidneys via the peroxisome proliferator-activated receptor-alpha (PPARA) pathway. However, its physiological role in the liver is difficult to explain because of the presence of the highly homologous selenium-binding protein 2 (SeBP2). To investigate the role of these proteins in the liver, we generated SeBP1 and SeBP2 double-knockout mice (SeBP1/2-DK). SeBP1/2 deletion did not significantly alter the mice phenotypic compared to that of the wild-type strain. Then, we identified the genes involved in hepatic lipid metabolism. The double knockout did not affect fatty acid and cholesterol synthesis, but inhibited fatty acid oxidation and cholesterol efflux. Furthermore, transfection of HepG2 cells with human selenium-binding protein 1 (hSeBP1) positively regulated PPARA and the genes controlled by it. Overexpression of hSeBP1 reduced the levels of non-esterified fatty acids in the culture medium. The serum levels of low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and triglycerides were significantly different among the three groups. In summary, we elucidated the potential signaling pathways of SeBP1 and SeBP2 in fatty acid oxidation and hepatic cholesterol efflux. Our findings provide insights relevant for developing new strategies to prevent and treat lipid metabolism disorders.
Collapse
Grants
- Scientific Research (A) JSPS KAKENHI JP17H00788, Recipient YI Japan Society for the Promotion of Science
- Scientific Research (A) JSPS KAKENHI JP21H04928, Recipient YI Japan Society for the Promotion of Science
- JSPS Fellows JSPS KAKENHI 24KJ1773, Recipient SZ Japan Society for the Promotion of Science
- Research on Food Safety (H30-Designated Research-005, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
- the Ministry of Health, Labor and Welfare, Japan [Research on Food Safety (R3-Designated Research JP21KA2003, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
- Research on Food Safety ( R6-Designated Research JP24KA2001, Recipient YI) the Ministry of Health, Labor and Welfare, Japan
Collapse
Affiliation(s)
- Shuangli Zhao
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yingxia Song
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yuko Nakashima
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Xing Zou
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Takayuki Koga
- Laboratory of Hygienic Chemistry, Daiichi University of Pharmacy, Fukuoka 815-8511, Japan;
| | - Takumi Ishida
- School of Pharmacy, International University of Health and Welfare Fukuoka, Ohkawa 831-8501, Japan;
| | - Renshi Li
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China;
| | - Yuko Hirota
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yoshitaka Tanaka
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| | - Yuji Ishii
- Division of Pharmaceutical Cell Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (S.Z.); (Y.S.); (X.Z.); (Y.H.); (Y.T.)
| |
Collapse
|
8
|
Li Y, Chen L, Sottas C, Patel ND, Raul MC, Papadopoulos V. Tspo Depletion Exacerbates Steatosis Through Fatty Acid Uptake. J Cell Mol Med 2025; 29:e70500. [PMID: 40195072 PMCID: PMC11975627 DOI: 10.1111/jcmm.70500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/03/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Previous studies demonstrated that Tspo loss causes simple steatosis (SS) in hepatocytes in vitro. However, its effect on SS in vivo remains unclear. In this study, we hypothesise that Tspo loss promotes early-stage MASLD. WT and Tspo KO rats were fed a Gubra Amylin NASH (GAN) diet for 8 weeks to induce SS. Tspo KO rats fed the GAN diet (KO GAN) exhibited increased insulin resistance, higher plasma cholesterol, and elevated hepatic triacylglycerol (TAG) levels, along with higher de novo lipogenesis (DNL) and free fatty acid (FFA) uptake, evidenced by increased fatty acid synthase (FASN) and CD36 expression. The Acyl-coenzyme A binding protein/diazepam-binding inhibitor-TSPO complex facilitated FA transport to the mitochondria, where carnitine palmitoyltransferase 1A (CPT1A) directed them for β-oxidation. TSPO interacted with CPT1A in the outer mitochondrial membrane, while its depletion increased CPT1A expression, boosting FA oxidation. Primary Tspo KO rat hepatocytes and stably overexpressed CD36 (CD36_OE) in Huh7 cells displayed impaired mitochondrial function and compromised mitochondrial membrane potential. KO GAN livers had significantly elevated AcCoA, which acetylated RAPTOR, activating mTORC1 to suppress autophagy. Overall, Tspo deficiency exacerbates the advancement of SS by enhancing CD36-mediated FFA uptake, elevating AcCoA levels, compromising mitochondrial function and impairing autophagy during the early stages of MASLD.
Collapse
Affiliation(s)
- Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Nrupa Dinesh Patel
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Mahima Chandrakant Raul
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical SciencesUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
9
|
Smith HA, Templeman I, Davis M, Slater T, Clayton DJ, Varley I, James LJ, Middleton B, Johnston JD, Karagounis LG, Tsintzas K, Thompson D, Gonzalez JT, Walhin JP, Betts JA. Characterizing 24-Hour Skeletal Muscle Gene Expression Alongside Metabolic and Endocrine Responses Under Diurnal Conditions. J Clin Endocrinol Metab 2025; 110:e1017-e1030. [PMID: 38779872 PMCID: PMC11913097 DOI: 10.1210/clinem/dgae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
CONTEXT Skeletal muscle plays a central role in the storage, synthesis, and breakdown of nutrients, yet little research has explored temporal responses of this human tissue, especially with concurrent measures of systemic biomarkers of metabolism. OBJECTIVE To characterize temporal profiles in skeletal muscle expression of genes involved in carbohydrate metabolism, lipid metabolism, circadian clocks, and autophagy and descriptively relate them to systemic metabolites and hormones during a controlled laboratory protocol. METHODS Ten healthy adults (9M/1F, [mean ± SD] age 30 ± 10 years; BMI 24.1 ± 2.7 kg·m-2) rested in the laboratory for 37 hours with all data collected during the final 24 hours (08:00-08:00 hours). Participants ingested hourly isocaloric liquid meal replacements alongside appetite assessments during waking before a sleep opportunity from 22:00 to 07:00 hours. Blood samples were collected hourly for endocrine and metabolite analyses, with muscle biopsies occurring every 4 hours from 12:00 to 08:00 hours the following day to quantify gene expression. RESULTS Plasma insulin displayed diurnal rhythmicity peaking at 18:04 hours. Expression of skeletal muscle genes involved in carbohydrate metabolism (Name, Acrophase [hours]: GLUT4, 14:40; PPARGC1A, 16:13; HK2, 18:24) and lipid metabolism (FABP3, 12:37; PDK4, 05:30; CPT1B, 12:58) displayed 24-hour rhythmicity that reflected the temporal rhythm of insulin. Equally, circulating glucose (00:19 hours), nonesterified fatty acids (04:56), glycerol (04:32), triglyceride (23:14), urea (00:46), C-terminal telopeptide (05:07), and cortisol (22:50) concentrations also all displayed diurnal rhythmicity. CONCLUSION Diurnal rhythms were present in human skeletal muscle gene expression as well systemic metabolites and hormones under controlled diurnal conditions. The temporal patterns of genes relating to carbohydrate and lipid metabolism alongside circulating insulin are consistent with diurnal rhythms being driven in part by the diurnal influence of cyclic feeding and fasting.
Collapse
Affiliation(s)
- Harry A Smith
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Iain Templeman
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Max Davis
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Tommy Slater
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - David J Clayton
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - Ian Varley
- Musculoskeletal Physiology Research Group, Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK, NG1 4FQ
| | - Lewis J James
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK, LE11 3TU
| | - Benita Middleton
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK, GU2 7XH
| | - Jonathan D Johnston
- Section of Chronobiology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK, GU2 7XH
| | - Leonidas G Karagounis
- Institute of Social and Preventive Medicine, University of Bern, 3012 Bern, Switzerland
- Mary MacKillop Institute for Health Research (MMIHR), Australian Catholic University (ACU), Melbourne, VIC 3000, Australia
| | - Kostas Tsintzas
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK, NG7 2UH
| | - Dylan Thompson
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - Jean-Philippe Walhin
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| | - James A Betts
- Centre for Nutrition, Exercise and Metabolism, Department for Health, University of Bath, Bath, UK, BA2 7AY
| |
Collapse
|
10
|
Lara-Hernández F, Melero R, Quiroz-Rodríguez ME, Moya-Valera C, de Jesús Gallardo-Espinoza M, Álvarez L, Valarezo-Torres IL, Briongos-Figuero L, Abadía-Otero J, Mena-Martin FJ, Saez G, Redon J, Martín-Escudero JC, García-García AB, Ayala G, Chaves FJ. Genetic interaction between oxidative stress and body mass index in a Spanish population. Redox Biol 2025; 80:103531. [PMID: 39923398 PMCID: PMC11849672 DOI: 10.1016/j.redox.2025.103531] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Oxidative stress may act as a contributing factor in the development of an elevated body mass index (BMI). Oxidative stress has the potential to modulate genetic activity at various levels, including gene transcription and protein function regulation. Nevertheless, the interplay between genetic variants and oxidative stress in relation to BMI remains to be elucidated. Based on this premise, we studied the potential association between 723 single-nucleotide polymorphisms (SNPs) located within a set of 212 genes and both BMI and oxidative stress parameters in 1502 adults from the general Spanish population (Hortega Study). Oxidative stress parameters measured included malondialdehyde (MDA) levels, 8-oxo-2'-deoxyguanosine (8-oxo-dG) levels and oxidised/reduced glutathione ratio (GSSG/GSH). We also examined the potential impact of the interaction between these SNPs and oxidative stress levels on BMI. The genes selected regulate several key biological processes, including obesity, blood pressure, inflammation, lipid metabolism and redox homeostasis. Our findings indicate a robust association between specific genes and both BMI and oxidative stress parameters. Significant BMI-related interactions between genes and oxidative stress parameters were identified, which have a multifactorial impact on oxidative stress modulation and on BMI. SNPs identified in genes such as NPPA, CPT1A, DDIT3, NOX and IL6ST were significantly associated with all oxidative stress parameters analysed, indicating a substantial influence on BMI modulation. The results provide compelling evidence of a significant relationship between oxidative stress levels and genetic background. Our data provide new insights into BMI modulation by oxidative stress levels, highlighting a role for TNF as a key player in the interrelation of oxidative stress and BMI.
Collapse
Affiliation(s)
| | - Rebeca Melero
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Celeste Moya-Valera
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Luis Álvarez
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | | | - Jessica Abadía-Otero
- Internal Medicine Service. Rio Hortega University Hospital, 47012, Valladolid, Spain
| | | | - Guillermo Saez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology. University of Valencia, 46010, Valencia, Spain; Service of Clinical Analysis. University Hospital Dr. Peset-FISABIO, Spain
| | - Josep Redon
- Cardiometabolic Renal Risk Research Group, INCLIVA Biomedical Research Institute, University of Valencia, 46010, Valencia, Spain; CIBEROBN, ISCIII, 28029, Madrid, Spain
| | - Juan-Carlos Martín-Escudero
- Internal Medicine Service. Rio Hortega University Hospital, 47012, Valladolid, Spain; Department of Medicine, Faculty of Medicine, University of Valladolid, 47002, Valladolid, Spain
| | - Ana-Bárbara García-García
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain; CIBERDEM, ISCIII, 28029, Madrid, Spain.
| | - Guillermo Ayala
- Department of Statistics and Operation Research, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Felipe Javier Chaves
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain; CIBERDEM, ISCIII, 28029, Madrid, Spain
| |
Collapse
|
11
|
Stoyanova S, Bogdanov MG. Rational Design, Synthesis, and In Vitro Activity of Heterocyclic Gamma-Butyrobetaines as Potential Carnitine Acetyltransferase Inhibitors. Molecules 2025; 30:735. [PMID: 39942839 PMCID: PMC11820905 DOI: 10.3390/molecules30030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates heterocyclic gamma-butyrobetaine (GBB) analogs as metabolic modulators through an integrated approach involving rational design, molecular docking, synthesis, and in vitro evaluation. The compounds synthesized demonstrated promising inhibitory potential toward carnitine acetyltransferase (CAT) and presumably other enzymes within the carnitine transferase family, with IC50 values ranging from 2.24 to 43.6 mM. Notably, some compounds demonstrated superior activity to the reference drug Meldonium (IC50 = 11.39 mM). A substantial outcome of the study that might serve as a foundation for future optimization and synthesis of more potent compounds was that a bulky, hydrophobic substituent at the gamma position enhances inhibitory activity, whereas esterification and increased polarity diminish it. The most effective compound was determined to be a reversible competitive inhibitor of CAT, with a Ki value of 3.5 mM comparable to Meldonium's Ki of 1.63 mM. These results suggest that heterocyclic GBB analogs present potential candidates for regulating metabolic processes and treating conditions including ischemic diseases, diabetes, and specific cancers.
Collapse
Affiliation(s)
| | - Milen G. Bogdanov
- Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1, Jammes Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
12
|
Ducatez F, Berger MG, Pilon C, Plichet T, Lesueur C, Berger J, Belmatoug N, Marret S, Bekri S, Tebani A. Deciphering metabolic shifts in Gaucher disease type 1: a multi-omics study. J Mol Med (Berl) 2025; 103:187-203. [PMID: 39738845 DOI: 10.1007/s00109-024-02512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/13/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Gaucher disease (GD), an autosomal recessive lysosomal disorder, primarily affects the lysosomal enzyme β-glucocerebrosidase (GCase), leading to glucosylceramide accumulation in lysosomes. GD presents a wide spectrum of clinical manifestations. This study deploys immune-based proteomics and mass spectrometry-based metabolomics technologies to comprehensively investigate the biochemical landscape in 43 deeply phenotyped type 1 GD patients compared to 59 controls. Conventional and systems biology approaches have been used to analyze the data. The results show promising biological imprints. Elevated phosphatidylcholines in GD patients suggest altered lipid metabolism, potentially due to their increased synthesis. This points to endoplasmic reticulum stress and impaired lipid trafficking, commonly seen in lysosomal diseases. GD patients exhibit an inflammatory profile with elevated cytokines and autoimmune-like inflammation, even in treated patients, highlighting the complexity of GD-related immune imbalances. Mitochondrial dysfunction clues are found through increased oxidative stress markers and altered acylcarnitine profiles in GD patients, suggesting mitochondrial membrane dysfunction affecting carnitine-carrying capacity. Furthermore, platelet count, splenectomy, treatment, and clinical traits were associated with specific omics features, providing insights into GD's clinical heterogeneity and potential diagnostic markers. Autophagy inhibition appears pivotal in GD, driving lipid synthesis, impaired mitochondrial function, and inflammation through chronic activation of mTORC1. Despite limitations like focusing on type 1 GD and using targeted omics approaches, this study provides valuable insights into GD metabolic and immune dysregulation. It lays the basis for future comprehensive investigations into GD manifestations with broader scope and molecular coverage. KEY MESSAGES: The study sheds light on metabolic and immune dysregulation in Gaucher disease. Gaucher disease patients showed elevated phosphatidylcholines, disrupted lipid metabolism, and inflammation profiles. Signs of mitochondrial dysfunction are evident in Gaucher disease patients, with autophagy inhibition significantly affecting lipid synthesis, mitochondrial function, and inflammation via chronic activation of mTORC1.
Collapse
Affiliation(s)
- Franklin Ducatez
- Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France
| | - Marc G Berger
- CHU Clermont-Ferrand, Hopital Estaing, CRB-Auvergne, 63003, Clermont-Ferrand, France
- Université Clermont Auvergne, EA, 7453 CHELTER, 63000, Clermont-Ferrand, France
| | - Carine Pilon
- Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France
| | - Thomas Plichet
- Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France
| | - Céline Lesueur
- Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France
| | - Juliette Berger
- CHU Clermont-Ferrand, Hopital Estaing, CRB-Auvergne, 63003, Clermont-Ferrand, France
- Université Clermont Auvergne, EA, 7453 CHELTER, 63000, Clermont-Ferrand, France
| | - Nadia Belmatoug
- Referral Center for Lysosomal Diseases, Filière G2M, Paris Cité University, APHP-Nord, Paris, France
| | - Stéphane Marret
- Department of Neonatal Pediatrics, Intensive Care and Neuropediatrics, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France
| | - Soumeya Bekri
- Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France
| | - Abdellah Tebani
- Department of Metabolic Biochemistry, Referral Center for Lysosomal Diseases, Normandie Univ, UNIROUEN, CHU Rouen, INSERM U1245, Filière G2M, 76000, Rouen, France.
| |
Collapse
|
13
|
Mitra A, Mandal S, Banerjee K, Ganguly N, Sasmal P, Banerjee D, Gupta S. Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination. Curr Cardiol Rep 2025; 27:15. [PMID: 39792206 DOI: 10.1007/s11886-024-02162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
PURPOSE OF REVIEW This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration. RECENT FINDINGS Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals. Unlike adult mammalian hearts, zebrafish can regenerate cardiomyocytes by re-entering the cell cycle, characterized by a metabolic switch from oxidative metabolism to increased glycolysis. Zebrafish provide a valuable model for studying metabolic regulation during cell cycle re-entry and cardiac regeneration. Proliferative cardiomyocytes have upregulated Notch, hippo, and Wnt signaling and decreased ROS generation, DNA damage in different zebrafish cardiac regeneration models. Understanding the correlation between metabolic switches during cell cycle re-entry of already differentiated zebrafish cardiomyocytes is being increasingly recognized as a critical factor in heart regeneration. Zebrafish studies provide insights into metabolic adaptations during heart regeneration, emphasizing the importance of a metabolic switch. However, there are mechanistic gaps, and extensive studies are required to aid in formulating therapeutic strategies for cardiac regenerative medicine.
Collapse
Affiliation(s)
- Arkadeep Mitra
- Department of Zoology, City College, 102/1, Raja Rammohan Sarani, Kolkata, 700009, West Bengal, India
| | - Subhadeep Mandal
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Kalyan Banerjee
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Nilanjan Ganguly
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Pramit Sasmal
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India
| | - Durba Banerjee
- Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican St, Seattle, WA, 98109, USA.
| | - Shreyasi Gupta
- Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.
| |
Collapse
|
14
|
Chen Z, Qu H, Sun J, Wang T, Yuan Y, Gu J, Bian J, Liu Z, Zou H. CPT1 deficiency blocks autophagic flux to promote lipid accumulation induced by co-exposure to polystyrene microplastic and cadmium. Front Pharmacol 2025; 15:1533188. [PMID: 39834803 PMCID: PMC11743451 DOI: 10.3389/fphar.2024.1533188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Cadmium (Cd) and polystyrene microplastics (PS-MPs), two ubiquitous environmental contaminants, produce unique synergistic toxicity when co-existing. Key unanswered questions include specific effects on liver function and potential mechanisms. Methods In this study, C57BL/6 mice and AML12 cells were used to establish in vivo and in vitro models to elucidate the effects of combined exposure to PS-MPs and Cd on the liver and their mechanisms. Results The results showed that the combined effects of PS-MPs and Cd caused significantly more liver damage than exposure alone. As observed by transmission electron microscopy (TEM), the number of autophagosomes was significantly increased in the PS-MPs and Cd co-treated group. In addition, autophagic flux was assayed by RFP-GFP-LC3, a reporter system expressing dual fluorescent proteins, which showed an overwhelming enhancement of autophagic flux damage by co-exposure to PS-MPs and Cd compared to exposure alone. To further investigate the involvement of carnitine palmitoyltransferase1(CPT1) in liver injury induced by co-exposure to Cd and PS-MPs, we co-exposed Baicalin, an activator of CPT1, with PS-MPs and Cd, and showed that activation of CPT1 alleviated the impairment of autophagic fluxes induced by co-exposure of Cd and PS-MPs and further alleviated the changes in lipid accumulation and associated protein levels. Discussion In conclusion, the concurrent exposure of PS-MPs and Cd resulted in the blockage of hepatic lipid accumulation and autophagic pathway and further aggravated the toxic damage to the liver. Activation of CPT1 could alleviate the PS-MPs and Cd-induced lipid accumulation and autophagy pathway blockage thus reducing liver injury.
Collapse
Affiliation(s)
- Zhixuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Huayi Qu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
15
|
Fan L, Tang Y, Liu J, Liu Y, Xu Y, Liu J, Liu H, Pang W, Guo Y, Yao W, Zhang T, Peng Q, Zhou J. Mechanical Activation of cPLA2 Impedes Fatty Acid β-Oxidation in Vein Grafts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411559. [PMID: 39587975 PMCID: PMC11744522 DOI: 10.1002/advs.202411559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/03/2024] [Indexed: 11/27/2024]
Abstract
High-magnitude cyclic stretch from arterial blood pressure significantly contributes to the excessive proliferation and migration of vascular smooth muscle cells (VSMCs), leading to neointima formation in vein grafts. However, the molecular mechanisms remain unclear. This study highlights the critical role of cytosolic Phospholipase A2 (cPLA2)/ Yin Yang 1 (YY1)/ carnitine palmitoyltransferase 1b (CPT1B) signaling in coordinating VSMC mechanical activation by inhibiting fatty acid β-oxidation. Metabolomic analysis showed that a 15%-1 Hz arterial cyclic stretch, compared to a 5%-1 Hz venous stretch, increased long-chain fatty acids in VSMCs. cPLA2, identified as a mechanoresponsive molecule, produces excessive arachidonic acid (ArAc) under the 15%-1 Hz stretch, inhibiting CPT1B expression, a key enzyme in fatty acid β-oxidation. ArAc promotes transcription factor YY1 degradation, downregulating CPT1B. Inadequate fatty acid oxidation caused by knockdown of CPT1B or YY1, or etomoxir treatment, increased nuclear membrane tension, orchestrating the activation of cPLA2. Overexpressing CPT1B or inhibiting cPLA2 reduced VSMC proliferation and migration in vein grafts, decreasing neointimal hyperplasia. This study uncovers a novel mechanism in lipid metabolic reprogramming in vein grafts, suggesting a new therapeutic target for vein graft hyperplasia.
Collapse
Affiliation(s)
- Linwei Fan
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuanjun Tang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jian Liu
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Yueqi Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yiwei Xu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Jiayu Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Han Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Wei Pang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Yuxuan Guo
- Institute of Cardiovascular SciencesSchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Weijuan Yao
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| | - Tao Zhang
- Department of Vascular SurgeryPeking University People's HospitalBeijing100044China
| | - Qin Peng
- Shenzhen Bay LaboratoryShenzhen518132China
| | - Jing Zhou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesState Key Laboratory of Vascular Homeostasis and RemodelingDepartment of Cardiology and Institute of Vascular MedicinePeking University Third HospitalNational Health Commission Key Laboratory of Cardiovascular Molecular Biology and Regulatory PeptidesBeijing Key Laboratory of Cardiovascular Receptors ResearchPeking UniversityBeijing100191China
| |
Collapse
|
16
|
Liu S, Chen X, Zhang L, Lu B. CPT1A mediates the succinylation of SP5 which activates transcription of PDPK1 to promote the viability and glycolysis of prostate cancer cells. Cancer Biol Ther 2024; 25:2329372. [PMID: 38494680 PMCID: PMC10950282 DOI: 10.1080/15384047.2024.2329372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/07/2024] [Indexed: 03/19/2024] Open
Abstract
Succinylation modification involves in the progression of human cancers. The present study aimed to investigate the role of CPT1A, which is a succinyltransferase in the progression of prostate cancer (PCa). CCK-8 was used to detect the cell viability. Seahorse was performed to evaluate the cell glycolysis. Luciferase assay was used to detect the transcriptional regulation. ChIP was performed to assess the binding between transcriptional factors with the promoters. Co-IP was used to assess the binding between proteins. We found that CPT1A was highly expressed in PCa tissues and cell lines. Silencing of CPT1A inhibited the viability and glycolysis of PCa cells. Mechanistically, CPT1A promoted the succinylation of SP5, which strengthened the binding between SP5 and the promoter of PDPK1. SP5 activated PDPK1 transcription and PDPK1 activated the AKT/mTOR signal pathway. These findings might provide novel targets for the diagnosis or therapy of prostate cancer.
Collapse
Affiliation(s)
- Shufeng Liu
- Medical Department, Xiangyang Integrated Traditional and Western Medicine Hospital, Xiangyang, Hubei, China
| | - Xiaoguang Chen
- Urology Department, Xiangyang Integrated Traditional and Western Medicine Hospital, Xiangyang, Hubei, China
| | - Liqi Zhang
- Laboratory Department, Xiangyang Integrated Traditional and Western Medicine Hospital, Xiangyang, Hubei, China
| | - Bo Lu
- Laboratory Department, Xiangyang Integrated Traditional and Western Medicine Hospital, Xiangyang, Hubei, China
| |
Collapse
|
17
|
Hood WR. Mechanisms that Alter Capacity for Adenosine Triphosphate Production and Oxidative Phosphorylation: Insights from Avian Migration. Integr Comp Biol 2024; 64:1811-1825. [PMID: 38844402 DOI: 10.1093/icb/icae065] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/06/2024] [Accepted: 05/30/2024] [Indexed: 12/21/2024] Open
Abstract
Avian migration is among the most energetically demanding feats observed in animals. Studies evaluating the physiological underpinnings of migration have repeatedly shown that migratory birds display numerous adaptations that ultimately supply the flight muscle mitochondria with abundant fuel and oxygen during long-distance flights. To make use of this high input, the organs and mitochondria of migrants are predicted to display several traits that maximize their capacity to produce adenosine triphosphate (ATP). This review aims to introduce readers to several mechanisms by which organs and mitochondria can alter their capacity for oxidative phosphorylation and ATP production. The role of organ size, mitochondrial volume, substrate, and oxygen delivery to the electron transport system are discussed. A central theme of this review is the role of changes in electron chain complex activity, mitochondrial morphology and dynamics, and supercomplexes in allowing avian migrants and other taxa to alter the performance of the electron transport system with predictable shifts in demand. It is my hope that this review will serve as a springboard for future studies exploring the mechanisms that alter bioenergetic capacity across animal species.
Collapse
Affiliation(s)
- Wendy R Hood
- Department of Biological Sciences, Auburn University, 101 Life Sciences Building, Auburn, AL 36849, USA
| |
Collapse
|
18
|
Xiang H, Lyu Q, Chen S, Ouyang J, Xiao D, Liu Q, Long H, Zheng X, Yang X, Lu H. PACS2/CPT1A/DHODH signaling promotes cardiomyocyte ferroptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 2024; 23:432. [PMID: 39633391 PMCID: PMC11619700 DOI: 10.1186/s12933-024-02514-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
OBJECTIVES The pathophysiology of diabetic cardiomyopathy (DCM) is a phenomenon of great interest, but its clinical problems have not yet been effectively addressed. Recently, the mechanism of ferroptosis in the pathophysiology of various diseases, including DCM, has attracted widespread attention. Here, we explored the role of PACS2 in ferroptosis in DCM through its downregulation of PACS2 expression. METHODS AND RESULTS Cardiomyocytes were treated with high glucose and palmitic acid (HGPA), and the detection of cardiomyocyte iron ions, lipid peroxides, and reactive oxygen species (ROS) revealed clear ferroptosis during these treatments. Silencing PACS2 downregulated CPT1A expression and upregulated DHODH expression significantly, reversing HGPA-induced ferroptosis. Further silencing of PACS2 with a CPT1A agonist exacerbated cardiomyocyte ferroptosis while promoting mitochondrial damage in cardiomyocytes. Using a mouse model of type 2 diabetes induced by streptozotocin (STZ) and a high-fat diet (HFD), we found that PACS2 deletion reversed these treatment-induced increases in cellular iron ions, impaired cardiac function, mitochondrial damage and ferroptosis in cardiac muscle tissues. CONCLUSIONS The PACS2/CPT1A/DHODH signalling pathway may be involved in ferroptosis in DCM by regulating cardiomyocyte mitochondrial function.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/metabolism
- Diabetic Cardiomyopathies/enzymology
- Diabetic Cardiomyopathies/physiopathology
- Diabetic Cardiomyopathies/genetics
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Signal Transduction
- Carnitine O-Palmitoyltransferase/metabolism
- Carnitine O-Palmitoyltransferase/genetics
- Mice, Inbred C57BL
- Diabetes Mellitus, Experimental/enzymology
- Male
- Mice, Knockout
- Mitochondria, Heart/pathology
- Mitochondria, Heart/enzymology
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/drug effects
- Reactive Oxygen Species/metabolism
- Palmitic Acid/pharmacology
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Mice
- Diet, High-Fat
Collapse
Affiliation(s)
- Hong Xiang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qi Lyu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, Hunan, China
| | - Jie Ouyang
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Di Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Quanjun Liu
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - HaiJiao Long
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinru Zheng
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.
| | - Hongwei Lu
- Center for Experimental Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.
- Department of Cardiology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
19
|
Lease KA, Wang D. Carnitine Palmitoyltransferase II (CPT2) Deficiency in a Patient With Recurrent Rhabdomyolysis: A Case Report. Cureus 2024; 16:e76332. [PMID: 39850164 PMCID: PMC11756999 DOI: 10.7759/cureus.76332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/25/2025] Open
Abstract
Carnitine palmitoyltransferase II (CPT2) deficiency is a rare genetic disorder that prevents the body from using long-chain fatty acids (LCFAs) for energy. We report a case of a 40-year-old male with a recent episode of rhabdomyolysis triggered by an illness. His liver function tests (LFTs) and creatine kinase (CK) levels were markedly elevated. His rhabdomyolysis improved in the hospital with supportive treatment. At follow-up appointments, it was found that he had labs consistent with CPT2 deficiency. Genetic testing confirmed a homozygous mutation in the CPT2 gene. This report highlights the importance of considering CPT2 deficiency as a cause of recurrent rhabdomyolysis, especially when triggered by non-traumatic causes.
Collapse
Affiliation(s)
- Kevin A Lease
- Internal Medicine, University of Missouri School of Medicine, Columbia, USA
| | - David Wang
- Internal Medicine, University of Missouri School of Medicine, Columbia, USA
| |
Collapse
|
20
|
Xie R, Luo Y, Bao B, Wu X, Guo J, Wang J, Qu X, Che X, Zheng C. The Role of Fatty Acid Metabolism, the Related Potential Biomarkers, and Targeted Therapeutic Strategies in Gastrointestinal Cancers. Drug Dev Res 2024; 85:e70014. [PMID: 39527665 DOI: 10.1002/ddr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 10/12/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Gastrointestinal cancer has emerged as a significant global health concern due to its high incidence and mortality, limited effectiveness of early detection, suboptimal treatment outcomes, and poor prognosis. Metabolic reprogramming is a prominent feature of cancer, and fatty acid metabolism assumes a pivotal role in bridging glucose metabolism and lipid metabolism. Fatty acids play important roles in cellular structural composition, energy supply, signal transduction, and other lipid-related processes. Changes in the levels of fatty acid metabolite may indicate the malignant transformation of gastrointestinal cells, which have an impact on the prognosis of patients and can be used as a marker to monitor the efficacy of anticancer therapy. Therefore, targeting key enzymes involved in fatty acid metabolism, either as monotherapy or in combination with other agents, is a promising strategy for anticancer treatment. This article reviews the potential mechanisms of fatty acid metabolism disorders in the occurrence and development of gastrointestinal tumors, and summarizes the related potential biomarkers and anticancer strategies.
Collapse
Affiliation(s)
- Ruixi Xie
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ying Luo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Bowen Bao
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinshu Wu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jia Guo
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jin Wang
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiujuan Qu
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaofang Che
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chunlei Zheng
- Department of Medical Oncology, Provincial Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, Clinical Cancer Research Center of Shenyang, The First Hospital of China Medical University, Shenyang, Liaoning, China
- Department of Oncology, Shanghai Electric Power Hospital, Shanghai, China
| |
Collapse
|
21
|
Bowman TK, Oweidat A, El Hage Chehade N, Cheriyan M, Ayad S, Hoyt M. Neuraxial labor analgesia in a parturient with carnitine palmitoyl transferase type II deficiency: a case report. Int J Obstet Anesth 2024; 60:104246. [PMID: 39209572 DOI: 10.1016/j.ijoa.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Carnitine Palmitoyl Transferase Type II (CPT II) deficiency is a disorder of fatty acid beta oxidation that causes decreased adenosine triphosphate (ATP) and ketone production during periods of fasting or high energy requirements. Labor and delivery can precipitate attacks for parturients with this disorder, causing hypoglycemia, muscle weakness, rhabdomyolysis, and kidney failure. Anesthetic management considers the delivery mode and anesthetic medications available to reduce these risks. We present the case of a pregnant patient with CPT II deficiency with labor epidural analgesia and a vaginal delivery, with alternative plans had a different delivery mode been required.
Collapse
Affiliation(s)
- T K Bowman
- Dept. of Anesthesiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - A Oweidat
- Dept. of Anesthesiology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - M Cheriyan
- Dept. of Anesthesiology, Cleveland Clinic, Cleveland, Ohio, USA
| | - S Ayad
- Dept. of Anesthesiology, Cleveland Clinic, Cleveland, Ohio, USA.
| | - M Hoyt
- Dept. of Anesthesiology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
22
|
Cheng X, Ju J, Huang W, Duan Z, Han Y. cpt1b Regulates Cardiomyocyte Proliferation Through Modulation of Glutamine Synthetase in Zebrafish. J Cardiovasc Dev Dis 2024; 11:344. [PMID: 39590187 PMCID: PMC11594654 DOI: 10.3390/jcdd11110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 11/28/2024] Open
Abstract
Carnitine palmitoyltransferase 1b (Cpt1b) is a crucial rate-limiting enzyme in fatty acid metabolism, but its role and mechanism in early cardiac development remains unclear. Here, we show that cpt1b regulates cardiomyocyte proliferation during zebrafish development. Knocking out entire cpt1b coding sequences leads to impaired cardiomyocyte proliferation, while cardiomyocyte-specific overexpression of cpt1b promotes cardiomyocyte proliferation. RNA sequencing analysis and pharmacological studies identified glutamine synthetase as a key downstream effector of cpt1b in regulating cardiomyocyte proliferation. Our study elucidates a novel mechanism whereby cpt1b promotes zebrafish cardiomyocyte proliferation through glutamine synthetase, which provides new perspectives on the significance of fatty acid metabolism in heart development and the interplay between fatty acid and amino acid metabolic pathways.
Collapse
Affiliation(s)
| | | | | | | | - Yanchao Han
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University, Suzhou Medical College, Soochow University, Suzhou 215000, China
| |
Collapse
|
23
|
Duan Y, Liu J, Li A, Liu C, Shu G, Yin G. The Role of the CPT Family in Cancer: Searching for New Therapeutic Strategies. BIOLOGY 2024; 13:892. [PMID: 39596847 PMCID: PMC11592116 DOI: 10.3390/biology13110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Along with abnormalities in glucose metabolism, disturbances in the balance of lipid catabolism and synthesis have emerged as a new area of cancer metabolism that needs to be studied in depth. Disturbances in lipid metabolic homeostasis, represented by fatty acid oxidation (FAO) imbalance, leading to activation of pro-cancer signals and abnormalities in the expression and activity of related metabolically critical rate-limiting enzymes, have become an important part of metabolic remodeling in cancer. The FAO process is a metabolic pathway that facilitates the breakdown of fatty acids into CO2 and H2O and releases large amounts of energy in the body under aerobic conditions. More and more studies have shown that FAO provides an important energy supply for the development of cancer cells. At the same time, the CPT family, including carnitine palmitoyltransferase 1 (CPT1) and carnitine palmitoyltransferase 2 (CPT2), are key rate-limiting enzymes for FAO that exert a pivotal influence on the genesis and progression of neoplastic growth. Therefore, we look at molecular structural properties of the CPT family, the roles they play in tumorigenesis and development, the target drugs, and the possible regulatory roles of CPTs in energy metabolism reprogramming to help understand the current state of CPT family research and to search for new therapeutic strategies.
Collapse
Affiliation(s)
- Yanxia Duan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Jiaxin Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Ailin Li
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Chang Liu
- School of Basic Medical Sciences, Central South University, Changsha 410000, China;
| | - Guang Shu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China; (Y.D.); (J.L.); (A.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha 410000, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha 410000, China
| |
Collapse
|
24
|
Xiao W, Lee LY, Loscalzo J. Metabolic Responses to Redox Stress in Vascular Cells. Antioxid Redox Signal 2024; 41:793-817. [PMID: 38985660 PMCID: PMC11876825 DOI: 10.1089/ars.2023.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 07/12/2024]
Abstract
Significance: Redox stress underlies numerous vascular disease mechanisms. Metabolic adaptability is essential for vascular cells to preserve energy and redox homeostasis. Recent Advances: Single-cell technologies and multiomic studies demonstrate significant metabolic heterogeneity among vascular cells in health and disease. Increasing evidence shows that reductive or oxidative stress can induce metabolic reprogramming of vascular cells. A recent example is intracellular L-2-hydroxyglutarate accumulation in response to hypoxic reductive stress, which attenuates the glucose flux through glycolysis and mitochondrial respiration in pulmonary vascular cells and provides protection against further reductive stress. Critical Issues: Regulation of cellular redox homeostasis is highly compartmentalized and complex. Vascular cells rely on multiple metabolic pathways, but the precise connectivity among these pathways and their regulatory mechanisms is only partially defined. There is also a critical need to understand better the cross-regulatory mechanisms between the redox system and metabolic pathways as perturbations in either systems or their cross talk can be detrimental. Future Directions: Future studies are needed to define further how multiple metabolic pathways are wired in vascular cells individually and as a network of closely intertwined processes given that a perturbation in one metabolic compartment often affects others. There also needs to be a comprehensive understanding of how different types of redox perturbations are sensed by and regulate different cellular metabolic pathways with specific attention to subcellular compartmentalization. Lastly, integration of dynamic changes occurring in multiple metabolic pathways and their cross talk with the redox system is an important goal in this multiomics era. Antioxid. Redox Signal. 41,793-817.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Laurel Y. Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Pallathadka H, Hsu CY, Obaid Saleh R, Renuka Jyothi S, Kumar A, Yumashev A, Sinha A, Hussein Zwamel A, Abed Jawad M, Alsaadi SB. Specific small interfering RNAs (siRNAs) for targeting the metastasis, immune responses, and drug resistance of colorectal cancer cells (CRC). Int Immunopharmacol 2024; 140:112730. [PMID: 39083927 DOI: 10.1016/j.intimp.2024.112730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Colorectal cancer (CRC) involves various genetic alterations, with liver metastasis posing a significant clinical challenge. Furthermore, CRC cells mostly show an increase in resistance to traditional treatments like chemotherapy. It is essential to investigate more advanced and effective therapies to prevent medication resistance and metastases and extend patient life. As a result, it is anticipated that small interfering RNAs (siRNAs) would be exceptional instruments that can control gene expression by RNA interference (RNAi). In eukaryotes, RNAi is a biological mechanism that destroys specific messenger RNA (mRNA) molecules, thereby inhibiting gene expression. In the management of CRC, this method of treatment represents a potential therapeutic agent. However, it is important to acknowledge that siRNA therapies have significant issues, such as low serum stability and nonspecific absorption into biological systems. Delivery mechanisms are thus being created to address these issues. In the current work, we address the potential benefits of siRNA therapy and outline the difficulties in treating CRCby focusing on the primary signaling pathways linked to metastasis as well as genes implicated in the multi-drug resistance (MDR) process.
Collapse
Affiliation(s)
| | - Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA.
| | - Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India.
| | - Ashwani Kumar
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Russia.
| | - Aashna Sinha
- School of Applied and Life Sciences, Divison of Research and Innovation Uttaranchal University, Dehradun, Uttarakhand, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq; Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical Laboratory Technique college, the Islamic University of Babylon, Babylon, Iraq.
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad 10011, Iraq.
| |
Collapse
|
26
|
Lee Y, Choi D, Park J, Kim JG, Choi T, Youn D. The Effects of Warm Acupuncture on the Expression of AMPK in High-Fat Diet-Induced MAFLD Rats. Curr Issues Mol Biol 2024; 46:11580-11592. [PMID: 39451567 PMCID: PMC11506734 DOI: 10.3390/cimb46100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
This study investigated the effects of acupuncture and warm acupuncture on the expression and mechanism of the AMP-activated protein kinase (AMPK) signalling pathway associated with lipid accumulation in the liver tissue of rats with metabolic dysfunction-associated fatty liver disease (MAFLD) induced by a high-fat diet. Sprague-Dawley rats were categorised into four groups: control (CON), untreated MAFLD (MAFLD), and two MAFLD groups treated with acupuncture (ACU) and warm acupuncture (WA). The treatment groups underwent 16 application sessions over 8 weeks at the SP9 and BL18 acupoints. We measured the expression levels of AMPK, sterol regulatory element-binding protein1 (SREBP1), acetyl-coenzyme A carboxylase (ACC), peroxisome proliferator-activated receptorα (PPARα), carnitine palmitoyltransferase1 (CPT1), and CPT2. AMPK was activated in both ACU and WA groups. WA downregulated both SREBP1 and ACC expression at the protein level, whereas the acupuncture treatment downregulated SREBP1 expression. Additionally, WA selectively induced the activation of signalling pathways related to AMPK, PPARα, CPT1, and CPT2 at the mRNA level. Histological observations confirmed that fat accumulation was reduced in both the ACU and the WA groups compared to the MAFLD group. The WA treatment-promoted amelioration of HFD-induced MAFLD may be related to the activation of the AMPK/SREBP1/ACC pathway in the liver.
Collapse
Affiliation(s)
- Yumi Lee
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Donghee Choi
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| | - Junghye Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea; (Y.L.); (J.P.); (J.G.K.)
| | - Taejin Choi
- DongHaeng Convalescent Hospital, Gwangju 61251, Republic of Korea;
| | - Daehwan Youn
- Department of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea;
| |
Collapse
|
27
|
Jin Y, Li K, Vik JO, Hillestad M, Olsen RE. Effect of Dietary Cholesterol, Phytosterol, and Docosahexaenoic Acid on Astaxanthin Absorption and Retention in Rainbow Trout. AQUACULTURE NUTRITION 2024; 2024:8265746. [PMID: 39555545 PMCID: PMC11496587 DOI: 10.1155/2024/8265746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/02/2024] [Accepted: 09/11/2024] [Indexed: 11/19/2024]
Abstract
Astaxanthin (Ax) determines the flesh redness of a salmonid fish which is the most desirable quality indicator by consumers. Fish cannot synthesize Ax de novo, therefore, the only way to increase flesh redness is to increase dietary input or improve the absorption and retention rate of dietary Ax. As a hydrophobic carotenoid, the absorption of Ax can be modulated by other lipid molecules in the diet. The present study explored the effect of three lipids, cholesterol (CH), phytosterol (PS), and docosahexaenoic acid (DHA) on Ax absorption, transport, and retention in rainbow trout. Dietary CH significantly improved Ax absorption by elevating plasma Ax levels (p < 0.05); however, it had no effect on the whole body Ax or flesh color. Dietary PS appears to inhibit Ax absorption since fish had significantly (p < 0.05) reduced whole body Ax. Dietary DHA appeared to have no effect on Ax absorption or retention. By comparing intestinal transcriptomes, a low density lipoprotein receptor (ldlr) gene was significantly downregulated in fish fed the CH diet as compared to the control diet. Since LDLR protein plays a major role in plasma lipoprotein turnover, we hypothesized that the inhibition of ldlr gene by high dietary CH resulted in higher retention of plasma Ax. The elevation of plasma Ax was not reflected in higher flesh coloration, which suggested other limiting factors governing Ax retention in the muscle. On the other hand, the transcriptomic and proteomic analyses found no changes of genes or proteins involved in Ax absorption, transport, or excretion in fish fed PS or DHA diets as compared to the control diet. In conclusion, this study has suggested that CH promotes Ax absorption by regulating lipoprotein retention and provide evidence for improving Ax absorption via dietary modulation.
Collapse
Affiliation(s)
- Yang Jin
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Aas, Norway
| | | | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | | | - Rolf Erik Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
28
|
Li Y, Li Z, Wang H. Gut dysbiosis of Rana zhenhaiensis tadpoles after lead (Pb) exposure based on integrated analysis of microbiota and gut transcriptome. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116922. [PMID: 39181079 DOI: 10.1016/j.ecoenv.2024.116922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Lead (Pb) is a ubiquitously detected heavy metal pollutant in aquatic ecosystems. Previous studies focused mainly on the response of gut microbiota to Pb stress, with less emphasis on gene expression in intestine, thereby limiting the information about impacts of Pb on intestinal homeostasis in amphibians. Here, microbial community and transcriptional response of intestines in Rana zhenhaiensis tadpoles to Pb exposure were evaluated. Our results showed that 10 μg/L Pb significantly decreased bacterial diversity compared to the controls by the Simpson index. Additionally, 1000 μg/L Pb exposure resulted in a significant reduction in the abundance of Fusobacteriota phylum and Cetobacterium genus but a significant expansion in Hafnia-Obesumbacterium genus. Moreover, transcriptome analysis revealed that about 90 % of the DEGs (8458 out of 9450 DEGs) were down-regulated in 1000 μg/L Pb group, mainly including genes annotated with biological functions in fatty acid degradation, and oxidative phosphorylation, while up-regulated DEGs involved in metabolism of xenobiotics by cytochrome P450. The expression of Gsto1, Gsta5, Gstt4, and Nadph showed strong correlation with the abundance of genera Serratia, Lactococcus, and Hafnia-Obesumbacterium. The findings of this study provide important insights into understanding the influence of Pb on intestinal homeostasis in amphibians.
Collapse
Affiliation(s)
- Yonghui Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Zizhu Li
- School of Life Sciences, Luoyang Normal University, Luoyang, Henan 471934, China.
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
29
|
Wang X, Yang C, Huang C, Wang W. Dysfunction of the carnitine cycle in tumor progression. Heliyon 2024; 10:e35961. [PMID: 39211923 PMCID: PMC11357771 DOI: 10.1016/j.heliyon.2024.e35961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The carnitine cycle is responsible for the transport of cytoplasmic fatty acids to the mitochondria for subsequent β-oxidation to maintain intracellular energy homeostasis. Recent studies have identified abnormalities in the carnitine cycle in various types of tumors; these abnormalities include the altered expression levels of carnitine cycle-related metabolic enzymes and transport proteins. Dysfunction of the carnitine cycle has been shown to influence tumorigenesis and progression by altering intracellular oxidative and inflammatory status or regulating tumor metabolic flexibility. Many therapeutic strategies targeting the carnitine cycle are actively being explored to modify the dysfunction of the carnitine cycle in patients with malignant tumors; such approaches include carnitine cycle-related enzyme inhibitors and exogenous carnitine supplementation. Therefore, here, we review the studies of carnitine in tumors, aiming to scientifically illustrate the dysfunction of the carnitine cycle in tumor progression and provide new ideas for further research.
Collapse
Affiliation(s)
- Xiangjun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
30
|
Liu R, Ding Y, Jing F, Chen Z, Su C, Pan L. Effects of dietary glycerol monolaurate on growth and digestive performance, lipid metabolism, immune defense and gut microbiota of shrimp (Penaeus vannamei). FISH & SHELLFISH IMMUNOLOGY 2024; 151:109666. [PMID: 38838839 DOI: 10.1016/j.fsi.2024.109666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The advancement of the Penaeus vannamei industry in a sustainable manner necessitates the creation of eco-friendly and exceptionally effective feed additives. To achieve this, 720 similarly-sized juvenile shrimp (0.88 ± 0.02 g) were randomly divided into four groups in this study, with each group consisting of three replicates, each tank (400 L) containing 60 shrimp. Four experimental diets were formulated by adding 0, 500, 1000, and 1500 mg kg-1 glycerol monolaurate (GML) to the basal diet, and the feeding trial lasted for 42 days. Subsequently, a 72-h White Spot Syndrome Virus (WSSV) challenge test was conducted. Polynomial orthogonal contrasts analysis revealed that with the increase in the concentration of GML, those indicators related to growth, metabolism and immunity, exhibit linear or quadratic correlations (P < 0.05). The results indicate that the GML groups exhibited a significant improvement in the shrimp weight gain rate, specific growth rate, and a reduction in the feed conversion ratio (P < 0.05). Furthermore, the GML groups promoted the lipase activity and reduced lipid content of the shrimp, augmented the expression of triglyceride and fatty acid decomposition-related genes and lowered the levels of plasma triglycerides (P < 0.05). GML can also enhanced the humoral immunity of the shrimp by activating the Toll-like receptor and Immune deficiency immune pathways, improved the phagocytic capacity and antibacterial ability of shrimp hemocytes. The challenge test revealed that GML significantly reduced the mortality of the shrimp compared to control group. The 16S rRNA sequencing indicates that the GML group can increases the abundance of beneficial bacteria. However, 1500 mg kg-1 GML adversely affected the stability of the intestinal microbiota, significantly upregulating intestinal antimicrobial peptide-related genes and tumor necrosis factor-alpha levels (P < 0.05). In summary, 1000 mg kg-1 GML was proven to enhance the growth performance, lipid absorption and metabolism, humoral immune response, and gut microbiota condition of P. vannamei, with no negative physiological effects.
Collapse
Affiliation(s)
- Renzhi Liu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yanjun Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Futao Jing
- Shandong Fisheries Development and Resources Conservation Center, Jinan, 250013, China
| | - Zhifei Chen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chen Su
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
31
|
Xie J, Zhu H, Zhao S, Ma Y, Shi P, Zhan X, Tian W, Wang Y. Identification and analysis of biomarkers associated with oxidative stress and ferroptosis in recurrent miscarriage. Medicine (Baltimore) 2024; 103:e38875. [PMID: 39029052 PMCID: PMC11398789 DOI: 10.1097/md.0000000000038875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/19/2024] [Indexed: 07/21/2024] Open
Abstract
Recurrent miscarriage (RM) has a huge impact on women. Both oxidative stress and ferroptosis play an important role in the pathogenesis of RM. Hence, it was vital to screen the ferroptosis oxidation-related biomarkers for the diagnosis and treatment of RM. We introduced transcript data to screen out differentially expressed genes (DEGs) in RM. Ferroptosis oxidation-related differentially expressed genes were obtained by overlapping DEGs and oxidative stress related genes with correlations >0.9 with ferroptosis-related genes. Least Absolute Shrinkage and Selectionator operator regression and support vector machine based recursive feature elimination algorithm were implemented to screen feature genes. The biomarkers associated with ferroptosis oxidation were screened via receiver operating characteristic curve analysis. We finally analyzed the competing endogenous RNAs regulatory network and potential drugs of biomarkers. We identified 1047 DEGs in RM. Then, 9 ferroptosis oxidation-related differentially expressed genes were obtained via venn diagram. Subsequently, 8 feature genes (PTPN6, GJA1, HMOX1, CPT1A, CREB3L1, SNCA, EPAS1, and TGM2) were identified via machine learning. Moreover, 4 biomarkers associated with ferroptosis oxidation, including PTPN6, GJA1, CPT1A, and CREB3L1, were screened via receiver operating characteristic curve analysis. We constructed the '227 long noncoding RNAs-4 mRNAs-36 microRNAs' network, in which hsa-miR-635 was associated with CREB3L1 and PTPN6. There were 11 drugs with therapeutic potential on 3 biomarkers associated with ferroptosis oxidation. We also observed higher expression of CPT1A and CREB3L1 in RM group compared to the healthy control group by quantitative real-time reverse transcription polymerase chain reaction. Overall, we obtained 4 biomarkers (PTPN6, GJA1, CPT1A, and CREB3L1) associated with ferroptosis and oxidative stress, which laid a theoretical foundation for the diagnosis and treatment of RM.
Collapse
Affiliation(s)
- Jinxia Xie
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongli Zhu
- Xi’an Gynecology and Obstetrics Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Shaozhi Zhao
- Xi’an Gynecology and Obstetrics Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Yongqin Ma
- Xi’an Gynecology and Obstetrics Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Panpan Shi
- Xi’an Gynecology and Obstetrics Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Xuxin Zhan
- Xi’an Gynecology and Obstetrics Hospital, Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
32
|
Liang C, Li X, Song G, Schmidt SF, Sun L, Chen J, Pan X, Zhao H, Yan Y. Adipose Kiss1 controls aerobic exercise-related adaptive responses in adipose tissue energy homeostasis. FASEB J 2024; 38:e23743. [PMID: 38877852 DOI: 10.1096/fj.202302598rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/13/2024] [Accepted: 05/31/2024] [Indexed: 06/29/2024]
Abstract
Kisspeptin signaling regulates energy homeostasis. Adiposity is the principal source and receiver of peripheral Kisspeptin, and adipose Kiss1 metastasis suppressor (Kiss1) gene expression is stimulated by exercise. However, whether the adipose Kiss1 gene regulates energy homeostasis and plays a role in adaptive alterations during prolonged exercise remains unknown. Here, we investigated the role of Kiss1 role in mice and adipose tissues and the adaptive changes it induces after exercise, using adipose-specific Kiss1 knockout (Kiss1adipoq-/-) and adeno-associated virus-induced adipose tissue Kiss1-overexpressing (Kiss1adipoq over) mice. We found that adipose-derived kisspeptin signal regulates lipid and glucose homeostasis to maintain systemic energy homeostasis, but in a sex-dependent manner, with more pronounced metabolic changes in female mice. Kiss1 regulated adaptive alterations of genes and proteins in tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OxPhos) pathways in female gWAT following prolonged aerobic exercise. We could further show that adipose Kiss1 deficiency leads to reduced peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1α) protein content of soleus muscle and maximum oxygen uptake (VO2 max) of female mice after prolonged exercise. Therefore, adipose Kisspeptin may be a novel adipokine that increases organ sensitivity to glucose, lipids, and oxygen following exercise.
Collapse
Affiliation(s)
- Chunyu Liang
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
- School of Physical Education, Guangxi University (GXU), Nanning, China
| | - Xuehan Li
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Ge Song
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Søren Fisker Schmidt
- Department of Biochemistry and Molecular Biology, Center for Functional Genomics and Tissue Plasticity (ATLAS), University of Southern Denmark (SDU), Odense, Denmark
| | - Lingyu Sun
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Jianhao Chen
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Xinliang Pan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Haotian Zhao
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| | - Yi Yan
- Department of Sport Biochemistry, School of Sport Science, Beijing Sport University (BSU), Beijing, China
- Laboratory of Sports Stress and Adaptation, General Administration of Sport of China, Beijing, China
| |
Collapse
|
33
|
Rezq S, Huffman AM, Basnet J, Alsemeh AE, do Carmo JM, Yanes Cardozo LL, Romero DG. MicroRNA-21 modulates brown adipose tissue adipogenesis and thermogenesis in a mouse model of polycystic ovary syndrome. Biol Sex Differ 2024; 15:53. [PMID: 38987854 PMCID: PMC11238487 DOI: 10.1186/s13293-024-00630-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/26/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS), the most common endocrine disorder in premenopausal women, is associated with increased obesity, hyperandrogenism, and altered brown adipose tissue (BAT) thermogenesis. MicroRNAs play critical functions in brown adipocyte differentiation and maintenance. We aim to study the role of microRNA-21 (miR-21) in altered energy homeostasis and BAT thermogenesis in a PCOS mouse model of peripubertal androgen exposure. METHODS Three-week-old miR-21 knockout (miR21KO) or wild-type (WT) female mice were treated with dihydrotestosterone (DHT) or vehicle for 90 days. Body composition was determined by EchoMRI. Energy expenditure (EE), oxygen consumption (VO2), carbon dioxide production (VCO2), and respiratory exchange ratio (RER) were measured by indirect calorimetry. Androgen receptor (AR), and markers of adipogenesis, de novo lipogenesis, angiogenesis, extracellular matrix remodeling, and thermogenesis were quantified by RT-qPCR and/or Western-blot. RESULTS MiR-21 ablation attenuated DHT-mediated increase in body weight while having no effect on fat or BAT mass. MiR-21 ablation attenuated DHT-mediated BAT AR upregulation. MiR-21 ablation did not alter EE; however, miR21KO DHT-treated mice have reduced VO2, VCO2, and RER. MiR-21 ablation reversed DHT-mediated decrease in food intake and increase in sleep time. MiR-21 ablation decreased some adipogenesis (Adipoq, Pparγ, and Cebpβ) and extracellular matrix remodeling (Mmp-9 and Timp-1) markers expression in DHT-treated mice. MiR-21 ablation abolished DHT-mediated increases in thermogenesis markers Cpt1a and Cpt1b, while decreasing CIDE-A expression. CONCLUSIONS Our findings suggest that BAT miR-21 may play a role in regulating DHT-mediated thermogenic dysfunction in PCOS. Modulation of BAT miR-21 levels could be a novel therapeutic approach for the treatment of PCOS-associated metabolic derangements.
Collapse
Affiliation(s)
- Samar Rezq
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Alexandra M Huffman
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Jelina Basnet
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Amira E Alsemeh
- Department of Anatomy, Histology, and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiorenal and Metabolic Diseases Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Licy L Yanes Cardozo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Medicine, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Damian G Romero
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Women's Health Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Cardiovascular-Renal Research Center, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
34
|
Helgudóttir SS, Mørkholt AS, Lichota J, Bruun-Nyzell P, Andersen MC, Kristensen NMJ, Johansen AK, Zinn MR, Jensdóttir HM, Nieland JDV. Rethinking neurodegenerative diseases: neurometabolic concept linking lipid oxidation to diseases in the central nervous system. Neural Regen Res 2024; 19:1437-1445. [PMID: 38051885 PMCID: PMC10883494 DOI: 10.4103/1673-5374.387965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Currently, there is a lack of effective medicines capable of halting or reversing the progression of neurodegenerative disorders, including amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis, or Alzheimer's disease. Given the unmet medical need, it is necessary to reevaluate the existing paradigms of how to target these diseases. When considering neurodegenerative diseases from a systemic neurometabolic perspective, it becomes possible to explain the shared pathological features. This innovative approach presented in this paper draws upon extensive research conducted by the authors and researchers worldwide. In this review, we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases. We provide an overview of the risk factors associated with developing neurodegenerative disorders, including genetic, epigenetic, and environmental factors. Additionally, we examine pathological mechanisms implicated in these diseases such as oxidative stress, accumulation of misfolded proteins, inflammation, demyelination, death of neurons, insulin resistance, dysbiosis, and neurotransmitter disturbances. Finally, we outline a proposal for the restoration of mitochondrial metabolism, a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
Collapse
Affiliation(s)
| | | | - Jacek Lichota
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Mads Christian Andersen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nanna Marie Juhl Kristensen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Amanda Krøger Johansen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mikela Reinholdt Zinn
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Hulda Maria Jensdóttir
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- 2N Pharma ApS, NOVI Science Park, Aalborg, Denmark
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
35
|
Xie Y, Yuan Q, Tang B, Xie Y, Cao Y, Qiu Y, Zeng J, Wang Z, Su H, Zhang C. CPT1A Protects Podocytes From Lipotoxicity and Apoptosis In Vitro and Alleviates Diabetic Nephropathy In Vivo. Diabetes 2024; 73:879-895. [PMID: 38506804 DOI: 10.2337/db23-0811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
Defective fatty acid oxidation (FAO) has been implicated in diabetic kidney disease (DKD), yet little is known about the role of carnitine palmitoyltransferase-1A (CPT1A), a pivotal rate-limiting enzyme of FAO, in the progression of DKD. Here, we investigate whether CPT1A is a reliable therapeutic target for DKD. We first confirmed the downregulation expression of CPT1A in glomeruli from patients with diabetes. We further evaluated the function of CPT1A in diabetic models. Overexpression of CPT1A exhibited protective effects in diabetic conditions, improving albuminuria and glomerular sclerosis as well as mitigating glomerular lipid deposits and podocyte injury in streptozotocin-induced diabetic mice. Mechanistically, CPT1A not only fostered lipid consumption via fatty acid metabolism pathways, thereby reducing lipotoxicity, but also anchored Bcl2 to the mitochondrial membrane, thence preventing cytochrome C release and inhibiting the mitochondrial apoptotic process. Furthermore, a novel transcription factor of CPT1A, FOXA1, was identified. We elucidate the crucial role of CPT1A in mitigating podocyte injury and the progression of DKD, indicating that targeting CPT1A may be a promising avenue for DKD treatment. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yajuan Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Xie
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiling Cao
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Qiu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jieyu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
36
|
Tovar R, de Ceglia M, Rodríguez-Pozo M, Vargas A, Gavito A, Suárez J, Boronat A, de la Torre R, de Fonseca FR, Baixeras E, Decara J. Hydroxytyrosol Linoleoyl Ether Ameliorates Metabolic-Associated Fatty Liver Disease Symptoms in Obese Zucker Rats. ACS Pharmacol Transl Sci 2024; 7:1571-1583. [PMID: 38751648 PMCID: PMC11092116 DOI: 10.1021/acsptsci.4c00105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/18/2024]
Abstract
A main hepatic consequence of obesity is metabolic-associated fatty liver disease (MAFLD), currently treated by improving eating habits and administrating fibrates yet often yielding suboptimal outcomes. Searching for a new therapeutic approach, we aimed to evaluate the efficacy of hydroxytyrosol linoleoyl ether (HTLE), a dual Ppar-α agonist/Cb1 antagonist with inherent antioxidant properties, as an antisteatotic agent. Using lean and obese Zucker rats, they were administrated daily doses of HTLE (3 mg/kg) over a 15-day period, evaluating its safety profile, pharmacokinetics, impact on body weight, hepatic fat content, expression of key enzymes involved in lipogenesis/fatty acid oxidation, and antioxidant capacity. HTLE decreased the body weight and food intake in both rat genotypes. Biochemical analysis demonstrated a favorable safety profile for HTLE along with decreased concentrations of urea, total cholesterol, and aspartate aminotransferase AST transaminases in plasma. Notably, HTLE exhibited potent antisteatotic effects in obese rats, evidenced by a decrease in liver fat content and downregulation of lipogenesis-related enzymes, alongside increased expression of proteins controlling lipid oxidation. Moreover, HTLE successfully counteracted the redox imbalance associated with MAFLD in obese rats, attenuating lipid peroxidation and replenishing both glutathione levels and the overall antioxidant. Our findings highlight the effectiveness of triple-action strategies in managing MAFLD effectively. Based on our results in the Zucker rat model, HTLE emerges as a promising candidate with triple functionality as an anorexigenic, antisteatotic, and antioxidant agent, offering potential relief from MAFLD symptoms associated with obesity while exhibiting minimal side effects. In conclusion, our study positions HTLE as a highly promising compound for therapeutic intervention in MAFLD treatment, warranting further exploration in clinical trials.
Collapse
Affiliation(s)
- Rubén Tovar
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
- Facultad
de Ciencias, Universidad de Málaga,
Campus Universitario de Teatinos s/n, Málaga 29010, Spain
| | - Marialuisa de Ceglia
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
| | - Miguel Rodríguez-Pozo
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
| | - Antonio Vargas
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
| | - Ana Gavito
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
| | - Juan Suárez
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
- Departamento
de Anatomía Humana, Medicina Legal e Historia de la Ciencia,
Facultad de Medicina, Universidad de Málaga,
Campus Universitario de Teatinos s/n, Málaga 29010, Spain
| | - Anna Boronat
- Grupo
de Farmacología Integrada y Neurociencia de Sistemas, Programa
de investigación en Neurociencias, Instituto de Investigaciones Médicas Hospital del Mar (IMIM), C/del Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael de la Torre
- Grupo
de Farmacología Integrada y Neurociencia de Sistemas, Programa
de investigación en Neurociencias, Instituto de Investigaciones Médicas Hospital del Mar (IMIM), C/del Dr. Aiguader 88, Barcelona 08003, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
| | - Elena Baixeras
- Departamento
de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Málaga, Campus Universitario
de Teatinos s/n, Málaga 29010, Spain
| | - Juan Decara
- Instituto
de Investigación Biomédica de Málaga y Plataforma
en Nanomedicina-IBIMA Plataforma BIONAND, Hospital Universitario Regional de Málaga, UGC Salud Mental, Av. Carlos Haya 82, Málaga 29010, Spain
- Departamento
de Anatomía Humana, Medicina Legal e Historia de la Ciencia,
Facultad de Medicina, Universidad de Málaga,
Campus Universitario de Teatinos s/n, Málaga 29010, Spain
| |
Collapse
|
37
|
Fan Z, Hao Y, Huo Y, Cao F, Li L, Xu J, Song Y, Yang K. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem 2024; 271:116408. [PMID: 38621327 DOI: 10.1016/j.ejmech.2024.116408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
As an essential form of lipid modification for maintaining vital cellular functions, palmitoylation plays an important role in in the regulation of various physiological processes, serving as a promising therapeutic target for diseases like cancer and neurological disorders. Ongoing research has revealed that palmitoylation can be categorized into three distinct types: N-palmitoylation, O-palmitoylation and S-palmitoylation. Herein this paper provides an overview of the regulatory enzymes involved in palmitoylation, including palmitoyltransferases and depalmitoylases, and discusses the currently available broad-spectrum and selective inhibitors for these enzymes.
Collapse
Affiliation(s)
- Zeshuai Fan
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yuchen Hao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Jianmei Xu
- Department of hematopathology, Affiliated Hospital of Hebei University, Hebei University, Baoding, 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei, 071002, China.
| |
Collapse
|
38
|
Muroya S, Horiuchi Y, Iguchi K, Higuchi T, Sakamoto S, Ojima K, Matsukawa K. Depth of Interbreed Difference in Postmortem Bovine Muscle Determined by CE-FT/MS and LC-FT/MS Metabolomics. Metabolites 2024; 14:261. [PMID: 38786738 PMCID: PMC11123161 DOI: 10.3390/metabo14050261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Japanese Brown (JBR) cattle have moderately marbled beef compared to the highly marbled beef of Japanese Black (JBL) cattle; however, their skeletal muscle properties remain poorly characterized. To unveil interbreed metabolic differences over the previous results, we explored the metabolome network changes before and after postmortem 7-day aging in the trapezius muscle of the two cattle breeds by employing a deep and high-coverage metabolomics approach. Using both capillary electrophoresis (CE) and ultra-high-performance liquid chromatography (UHPLC)-Fourier transform mass spectrometry (FT/MS), we detected 522 and 384 annotated peaks, respectively, across all muscle samples. The CE-based results showed that the cattle were clearly separated by breed and postmortem age in multivariate analyses. The metabolism related to glutathione, glycolysis, vitamin K, taurine, and arachidonic acid was enriched with differentially abundant metabolites in aged muscles, in addition to amino acid (AA) metabolisms. The LC-based results showed that the levels of bile-acid-related metabolites, such as tauroursodeoxycholic acid (TUDCA), were high in fresh JBR muscle and that acylcarnitines were enriched in aged JBR muscle, compared to JBL muscle. Postmortem aging resulted in an increase in fatty acids and a decrease in acylcarnitine in the muscles of both cattle breeds. In addition, metabolite set enrichment analysis revealed that JBR muscle was distinctive in metabolisms related to pyruvate, glycerolipid, cardiolipin, and mitochondrial energy production, whereas the metabolisms related to phosphatidylethanolamine, nucleotide triphosphate, and AAs were characteristic of JBL. This suggests that the interbreed differences in postmortem trapezius muscle are associated with carnitine/acylcarnitine transport, β-oxidation, tricarboxylic acid cycle, and mitochondrial membrane stability, in addition to energy substrate and AA metabolisms. These interbreed differences may characterize beef quality traits such as the flavor intensity and oxidative stability.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
- Faculty of Veterinary Medicine, Kagoshima University, Korimoto 890-0065, Kagoshima, Japan
| | - Yuta Horiuchi
- Human Metabolome Technologies Inc., Tsuruoka 997-0052, Yamagata, Japan
| | - Kazuki Iguchi
- Human Metabolome Technologies Inc., Tsuruoka 997-0052, Yamagata, Japan
| | - Takuma Higuchi
- Science Research Center, Kochi University, Nankoku 783-8505, Kochi, Japan
| | - Shuji Sakamoto
- Science Research Center, Kochi University, Nankoku 783-8505, Kochi, Japan
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan
| | - Kazutsugu Matsukawa
- Department of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan
| |
Collapse
|
39
|
Zhang Y, Qiu W, Zhang H, Chen T, Xu F, Gu X, Han L. Clinical characteristics and genetic analysis of six children with carnitine palmitoyltransferase 2 deficiency. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:207-212. [PMID: 38650450 PMCID: PMC11057986 DOI: 10.3724/zdxbyxb-2023-0611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
OBJECTIVES To investigate the clinical characteristic and genetic variants of children with carnitine palmitoyltransferase 2 (CPT2) deficiency. METHODS The clinical and genetic data of 6 children with CPT2 deficiency were retrospectively analyzed. The blood acylcarnitines and genetic variants were detected with tandem mass spectrometry and whole-exon gene sequencing, respectively. RESULTS There were 4 males and 2 females with a mean age of 32 months (15 d-9 years) at diagnosis. One case was asymptomatic and with normal laboratory test results, 2 had delayed onset, and 3 were of infantile type. Three cases were diagnosed at neonatal screening, and 3 cases presented with clinical manifestations of fever, muscle weakness, and increased muscle enzymes. Five children presented with decreased free carnitine and elevated levels of palmitoyl and octadecenoyl carnitines. CPT2 gene variants were detected at 8 loci in 6 children (4 harboring biallelic mutations and 2 harboring single locus mutations), including 3 known variants (p.R631C, p.T589M, and p.D255G) and 5 newly reported variants (p.F352L, p.R498L, p.F434S, p.A515P, and c.153-2A>G). It was predicted by PolyPhen2 and SIFT software that c.153-2A>G and p.F352L were suspected pathogenic variants, while p.R498L, p.F434S and p.A515P were variants of unknown clinical significance. CONCLUSIONS The clinical phenotypes of CPT2 deficiency are diverse. An early diagnosis can be facilitated by neonatal blood tandem mass spectrometry screening and genetic testing, and most patients have good prognosis after a timely diagnosis and treatment.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Endocrinology, Hangzhou Children's Hospital, Hangzhou 310005, China.
| | - Wenjuan Qiu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Huiwen Zhang
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China.
| |
Collapse
|
40
|
Serra G, Antona V, Insinga V, Morgante G, Vassallo A, Placa SL, Piro E, Salerno S, Schierz IAM, Gitto E, Giuffrè M, Corsello G. Carnitine palmitoyltransferase II (CPT II) deficiency responsible for refractory cardiac arrhythmias, acute multiorgan failure and early fatal outcome. Ital J Pediatr 2024; 50:67. [PMID: 38616285 PMCID: PMC11017661 DOI: 10.1186/s13052-024-01632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Carnitine palmitoyltransferase II (CPT II) deficiency is a rare inborn error of mitochondrial fatty acid metabolism with autosomal recessive pattern of inheritance. Its phenotype is highly variable (neonatal, infantile, and adult onset) on the base of mutations of the CPT II gene. In affected subjects, long-chain acylcarnitines cannot be subdivided into carnitine and acyl-CoA, leading to their toxic accumulation in different organs. Neonatal form is the most severe, and all the reported patients died within a few days to 6 months after birth. Hereby, we report on a male late-preterm newborn who presented refractory cardiac arrhythmias and acute multiorgan (hepatic, renal, muscular) injury, leading to cerebral hemorrhage, hydrocephalus, cardiovascular failure and early (day 5 of life) to death. Subsequently, extended metabolic screening and target next generation sequencing (NGS) analysis allowed the CPT II deficiency diagnosis. CASE PRESENTATION The male proband was born at 36+ 4 weeks of gestation by spontaneous vaginal delivery. Parents were healthy and nonconsanguineous, although both coming from Nigeria. Family history was unremarkable. Apgar score was 9/9. At birth, anthropometric measures were as follows: weight 2850 g (47th centile, -0.07 standard deviations, SD), length 50 cm (81st centile, + 0.89 SD) and occipitofrontal circumference (OFC) 35 cm (87th centile, + 1.14 SD). On day 2 of life our newborn showed bradycardia (heart rate around 80 bpm) and hypotonia, and was then transferred to the Neonatal Intensive Care Unit (NICU). There, he subsequently manifested many episodes of ventricular tachycardia, which were treated with pharmacological (magnesium sulfate) and electrical cardioversion. Due to the critical conditions of the baby (hepatic, renal and cardiac dysfunctions) and to guarantee optimal management of the arrythmias, he was transferred to the Pediatric Cardiology Reference Center of our region (Sicily, Italy), where he died 2 days later. Thereafter, the carnitines profile evidenced by the extended metabolic screening resulted compatible with a fatty acid oxidation defect (increased levels of acylcarnitines C16 and C18, and low of C2); afterwards, the targeted next generation sequencing (NGS) analysis revealed the known c.680 C > T p. (Pro227Leu) homozygous missense mutation of the CPTII gene, for diagnosis of CPT II deficiency. Genetic investigations have been, then, extended to the baby's parents, who were identified as heterozygous carriers of the same variant. When we meet again the parents for genetic counseling, the mother was within the first trimester of her second pregnancy. Therefore, we offered to the couple and performed the prenatal target NGS analysis on chorionic villi sample, which did not detect any alterations, excluding thus the CPT II deficiency in their second child. CONCLUSIONS CPTII deficiency may be suspected in newborns showing cardiac arrhythmias, associated or not with hypertrophic cardiomyopathy, polycystic kidneys, brain malformations, hepatomegaly. Its diagnosis should be even more suspected and investigated in cases of increased plasmatic levels of creatine phosphokinase and acylcarnitines in addition to kidney, heart and liver dysfunctions, as occurred in the present patient. Accurate family history, extended metabolic screening, and multidisciplinary approach are necessary for diagnosis and adequate management of affected subjects. Next generation sequencing (NGS) techniques allow the identification of the CPTII gene mutation, essential to confirm the diagnosis before or after birth, as well as to calculate the recurrence risk for family members. Our report broads the knowledge of the genetic and molecular bases of such rare disease, improving its clinical characterization, and provides useful indications for the treatment of patients.
Collapse
Affiliation(s)
- Gregorio Serra
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy.
| | - Vincenzo Antona
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Vincenzo Insinga
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Giusy Morgante
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Alessia Vassallo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Simona La Placa
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Ettore Piro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Sergio Salerno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Ingrid Anne Mandy Schierz
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Eloisa Gitto
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", University of Messina, Messina, Italy
| | - Mario Giuffrè
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| | - Giovanni Corsello
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties "Giuseppe D'Alessandro", University of Palermo, Palermo, Italy
| |
Collapse
|
41
|
He W, Liu X, Feng Y, Ding H, Sun H, Li Z, Shi B. Dietary fat supplementation relieves cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis in pigs. J Anim Sci Biotechnol 2024; 15:56. [PMID: 38584279 PMCID: PMC11000307 DOI: 10.1186/s40104-024-01014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/14/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND Cold stress has negative effects on the growth and health of mammals, and has become a factor restricting livestock development at high latitudes and on plateaus. The gut-liver axis is central to energy metabolism, and the mechanisms by which it regulates host energy metabolism at cold temperatures have rarely been illustrated. In this study, we evaluated the status of glycolipid metabolism and oxidative stress in pigs based on the gut-liver axis and propose that AMP-activated protein kinase (AMPK) is a key target for alleviating energy stress at cold temperatures by dietary fat supplementation. RESULTS Dietary fat supplementation alleviated the negative effects of cold temperatures on growth performance and digestive enzymes, while hormonal homeostasis was also restored. Moreover, cold temperature exposure increased glucose transport in the jejunum. In contrast, we observed abnormalities in lipid metabolism, which was characterized by the accumulation of bile acids in the ileum and plasma. In addition, the results of the ileal metabolomic analysis were consistent with the energy metabolism measurements in the jejunum, and dietary fat supplementation increased the activity of the mitochondrial respiratory chain and lipid metabolism. As the central nexus of energy metabolism, the state of glycolipid metabolism and oxidative stress in the liver are inconsistent with that in the small intestine. Specifically, we found that cold temperature exposure increased glucose transport in the liver, which fully validates the idea that hormones can act on the liver to regulate glucose output. Additionally, dietary fat supplementation inhibited glucose transport and glycolysis, but increased gluconeogenesis, bile acid cycling, and lipid metabolism. Sustained activation of AMPK, which an energy receptor and regulator, leads to oxidative stress and apoptosis in the liver; dietary fat supplementation alleviates energy stress by reducing AMPK phosphorylation. CONCLUSIONS Cold stress reduced the growth performance and aggravated glycolipid metabolism disorders and oxidative stress damage in pigs. Dietary fat supplementation improved growth performance and alleviated cold temperature-induced energy stress through AMPK-mediated mitochondrial homeostasis. In this study, we highlight the importance of AMPK in dietary fat supplementation-mediated alleviation of host energy stress in response to environmental changes.
Collapse
Affiliation(s)
- Wei He
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Xinyu Liu
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Ye Feng
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Hongwei Ding
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Haoyang Sun
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Zhongyu Li
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China
| | - Baoming Shi
- College of Animal Science and Technology, Northeast Agricultural University, 600 Changjiang Street, Harbin, 150030, PR China.
| |
Collapse
|
42
|
Everard E, Laeremans H, Boemer F, Marie S, Vincent MF, Dewulf JP, Debray FG, De Laet C, Nassogne MC. Impact of newborn screening for fatty acid oxidation disorders on neurological outcome: A Belgian retrospective and multicentric study. Eur J Paediatr Neurol 2024; 49:60-65. [PMID: 38377647 DOI: 10.1016/j.ejpn.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/22/2024]
Abstract
Fatty acid oxidation (FAO) disorders are autosomal recessive genetic disorders affecting either the transport or the oxidation of fatty acids. Acute symptoms arise during prolonged fasting, intercurrent infections, or intense physical activity. Metabolic crises are characterized by alteration of consciousness, hypoglycemic coma, hepatomegaly, cardiomegaly, arrhythmias, rhabdomyolysis, and can lead to death. In this retrospective and multicentric study, the data of 54 patients with FAO disorders were collected. Overall, 35 patients (64.8%) were diagnosed after newborn screening (NBS), 17 patients on clinical presentation (31.5%), and two patients after family screening (3.7%). Deficiencies identified included medium-chain acyl-CoA dehydrogenase (MCAD) deficiency (75.9%), very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency (11.1%), long-chain hydroxyacyl-CoA dehydrogenase (LCHAD) deficiency (3.7%), mitochondrial trifunctional protein (MTP) deficiency (1.8%), and carnitine palmitoyltransferase 2 (CPT 2) deficiency (7.4%). The NBS results of 25 patients were reviewed and the neurological outcome of this population was compared with that of the patients who were diagnosed on clinical presentation. This article sought to provide a comprehensive overview of how NBS implementation in Southern Belgium has dramatically improved the neurological outcome of patients with FAO disorders by preventing metabolic crises and death. Further investigations are needed to better understand the physiopathology of long-term complications in order to improve the quality of life of patients and to ensure optimal management.
Collapse
Affiliation(s)
- Emilie Everard
- Pediatric Neurology Unit, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium.
| | | | - François Boemer
- Biochemical Genetics Lab, Department of Human Genetics, CHU Sart-Tilman, University of Liège, Liège, Belgium.
| | - Sandrine Marie
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium.
| | - Marie-Françoise Vincent
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium.
| | - Joseph P Dewulf
- Laboratoire des Maladies Métaboliques Héréditaires/Biochimie Génétique et Centre de Dépistage Néonatal, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium.
| | | | - Corinne De Laet
- Nutrition and Metabolism Unit, Department of Pediatrics, University Children's Hospital Queen Fabiola, Brussels, Belgium.
| | - Marie-Cécile Nassogne
- Pediatric Neurology Unit, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| |
Collapse
|
43
|
Du J, Sudlow LC, Biswas H, Mitchell JD, Mollah S, Berezin MY. Identification Drug Targets for Oxaliplatin-Induced Cardiotoxicity without Affecting Cancer Treatment through Inter Variability Cross-Correlation Analysis (IVCCA). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.11.579390. [PMID: 38405766 PMCID: PMC10888841 DOI: 10.1101/2024.02.11.579390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The successful treatment of side effects of chemotherapy faces two major limitations: the need to avoid interfering with pathways essential for the cancer-destroying effects of the chemotherapy drug, and the need to avoid helping tumor progression through cancer promoting cellular pathways. To address these questions and identify new pathways and targets that satisfy these limitations, we have developed the bioinformatics tool Inter Variability Cross-Correlation Analysis (IVCCA). This tool calculates the cross-correlation of differentially expressed genes, analyzes their clusters, and compares them across a vast number of known pathways to identify the most relevant target(s). To demonstrate the utility of IVCCA, we applied this platform to RNA-seq data obtained from the hearts of the animal models with oxaliplatin-induced CTX. RNA-seq of the heart tissue from oxaliplatin treated mice identified 1744 differentially expressed genes with False Discovery Rate (FDR) less than 0.05 and fold change above 1.5 across nine samples. We compared the results against traditional gene enrichment analysis methods, revealing that IVCCA identified additional pathways potentially involved in CTX beyond those detected by conventional approaches. The newly identified pathways such as energy metabolism and several others represent promising target for therapeutic intervention against CTX, while preserving the efficacy of the chemotherapy treatment and avoiding tumor proliferation. Targeting these pathways is expected to mitigate the damaging effects of chemotherapy on cardiac tissues and improve patient outcomes by reducing the incidence of heart failure and other cardiovascular complications, ultimately enabling patients to complete their full course of chemotherapy with improved quality of life and survival rates.
Collapse
Affiliation(s)
- Junwei Du
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering, Washington University, St. Louis, MO 63130, USA
| | - Leland C. Sudlow
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Hridoy Biswas
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
| | - Joshua D. Mitchell
- Cardio-Oncology Center of Excellence, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamim Mollah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Mikhail Y. Berezin
- Mallinckrodt Institute of Radiology, Washington University School of Medicine St. Louis, MO 63110, USA
- Institute of Materials Science & Engineering, Washington University, St. Louis, MO 63130, USA
| |
Collapse
|
44
|
Lin Y, Li X, Shan H, Gao J, Yang Y, Jiang L, Sun L, Chen Y, Liu F, Yu X. Scd-1 deficiency promotes the differentiation of CD8 + T effector. Front Cell Infect Microbiol 2024; 14:1325390. [PMID: 38379772 PMCID: PMC10876803 DOI: 10.3389/fcimb.2024.1325390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
The impact of various fatty acid types on adaptive immunity remains uncertain, and their roles remain unelucidated. Stearoyl-CoA desaturase (Scd) is a Δ-9 desaturase, which is a key rate-limiting enzyme for the conversion of saturated fatty acids (SFA) to monounsaturated fatty acids (MUFA) in the fatty acid de novo synthesis. Scd-1 converts stearic acid (SA) and palmitic acid (PA) to oleic acid (OA) and palmitoleic acid (PO), respectively. In this study, through a series of experiments, we showed that Scd-1 and its resulting compound, OA, have a substantial impact on the transformation of CD8+ naïve T cells into effector T cells. Inactivation of Scd-1 triggers the specialization of CD8+ T cells into the Teff subset, enhancing the effector function and mitochondrial metabolism of Teff cells, and OA can partially counteract this. A deeper understanding of lipid metabolism in immune cells and its impact on cell function can lead to new therapeutic approaches for controlling the immune response and improving prognosis.
Collapse
Affiliation(s)
- Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xushuo Li
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanying Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, Shanghai, China
| | - Linlan Jiang
- Department of Oncology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lu Sun
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuwen Chen
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fangming Liu
- Jinshan Hospital Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
45
|
Lin LC, Liu ZY, Yang JJ, Zhao JY, Tao H. Lipid metabolism reprogramming in cardiac fibrosis. Trends Endocrinol Metab 2024; 35:164-175. [PMID: 37949734 DOI: 10.1016/j.tem.2023.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Cardiac fibrosis is a critical pathophysiological process that occurs with diverse types of cardiac injury. Lipids are the most important bioenergy substrates for maintaining optimal heart performance and act as second messengers to transduce signals within cardiac cells. However, lipid metabolism reprogramming is a double-edged sword in the regulation of cardiomyocyte homeostasis and heart function. Moreover, lipids can exert diverse effects on cardiac fibrosis through different signaling pathways. In this review, we provide a brief overview of aberrant cardiac lipid metabolism and recent progress in pharmacological research targeting lipid metabolism alterations in cardiac fibrosis.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
46
|
Xiao S, Qi M, Zhou Q, Gong H, Wei D, Wang G, Feng Q, Wang Z, Liu Z, Zhou Y, Ma X. Macrophage fatty acid oxidation in atherosclerosis. Biomed Pharmacother 2024; 170:116092. [PMID: 38157642 DOI: 10.1016/j.biopha.2023.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Atherosclerosis significantly contributes to the development of cardiovascular diseases (CVD) and is characterized by lipid retention and inflammation within the artery wall. Multiple immune cell types are implicated in the pathogenesis of atherosclerosis, macrophages play a central role as the primary source of inflammatory effectors in this pathogenic process. The metabolic influences of lipids on macrophage function and fatty acid β-oxidation (FAO) have similarly drawn attention due to its relevance as an immunometabolic hub. This review discusses recent findings regarding the impact of mitochondrial-dependent FAO in the phenotype and function of macrophages, as well as transcriptional regulation of FAO within macrophages. Finally, the therapeutic strategy of macrophage FAO in atherosclerosis is highlighted.
Collapse
Affiliation(s)
- Sujun Xiao
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxu Qi
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qinyi Zhou
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huiqin Gong
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Duhui Wei
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guangneng Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qilun Feng
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhou Wang
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhe Liu
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yiren Zhou
- The Affiliated Nanhua Hospital, Department of Emergency, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiaofeng Ma
- The Affiliated Nanhua Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
47
|
Hu M, Zhang J, Wu J, Su P. Lead exposure induced lipid metabolism disorders by regulating the lipophagy process in microglia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125991-126008. [PMID: 38008839 DOI: 10.1007/s11356-023-31086-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Environmental lead (Pb) pollution is a worldwide public health problem and causes various diseases, especially neurodegenerative diseases. It is increasingly recognized that microglia-mediated neuroinflammation plays a crucial role in lead neurotoxicity, but the underlying mechanisms remain to be further explored. Recent studies indicated that cell metabolism, especially lipid metabolism, regulates many microglial functions, including cytokine secretion and phagocytosis. Whether lipid metabolism is involved in Pb-induced neuroinflammation is still unknown. In the current studies, we investigated the effects of Pb on microglial lipid metabolism by utilizing lipidomics. Histochemistry staining and oxygen consumption rate (OCR) were used to validate lipidomics results. Fenofibrate (FEN), a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, was applied to investigate whether lipid metabolism regulation mitigated Pb's neuroinflammatory response. Microglial autophagic proteins were detected to investigate the role of lipophagy in Pb's effect on lipid metabolism. Our results showed that Pb exposure increased concentrations of various lipid metabolites and induced lipid metabolism disorders, especially in fatty acid metabolism. Pb caused lipid droplet (LD) accumulation and slightly enhanced fatty acid oxidation (FAO) in microglia. FEN pretreatment markedly inhibited Pb's effects on LDs and further mitigated Pb-induced inflammatory response by reducing pro-cytokines' expression and enhancing phagocytosis function. FEN intervention also inhibited Pb's neurotoxicity by improving cognition-related behaviors. Pb exposure induced an abnormal increase of autophagic proteins, but the FEN addition partially neutralized Pb's effects on autophagy. Our data indicate that the Pb-induced neuroinflammation is regulated by fatty acid metabolism via the lipophagy process. Therapies focusing on lipid metabolism regulation are powerful tactics in Pb toxicity prevention and treatment.
Collapse
Affiliation(s)
- Min Hu
- College of Urban and Environmental Sciences, Northwest University, No. 1 Xuefu Ave., Guodu Education and Hi-Tech Industries Zone, Xi'an, 710075, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health & Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, No.169, Changle West Road, Xi'an, 710032, China
| | - Jinxia Wu
- Department of Occupational and Environmental Health & Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, No.169, Changle West Road, Xi'an, 710032, China
| | - Peng Su
- Department of Occupational and Environmental Health & Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Air Force Medical University, No.169, Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
48
|
Gao X, Zhang J, Qin Q, Wu P, Zhang H, Meng Q. Metabolic changes during larval-pupal metamorphosis of Helicoverpa armigera. INSECT SCIENCE 2023; 30:1663-1676. [PMID: 37200210 DOI: 10.1111/1744-7917.13201] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/20/2023]
Abstract
Energy metabolism is essential for insect metamorphosis. The accumulation and utilization of energy is still not completely clear during larval-pupal metamorphosis of holometabolous insects. We used metabolome and transcriptome analysis to reveal key metabolic changes in the fat body and plasma and the underlying metabolic regulation mechanism of Helicoverpa armigera, an important global agricultural insect pest, during larval-pupal metamorphosis. During the feeding stage, activation of aerobic glycolysis provided intermediate metabolites and energy for cell proliferation and lipid synthesis. During the non-feeding stages (the initiation of the wandering stage and the prepupal stage), aerobic glycolysis was suppressed, while, triglyceride degradation was activated in the fat body. The blocking of metabolic pathways in the fat body was probably caused by 20-hydroxyecdysone-induced cell apoptosis. 20-hydroxyecdysone cooperated with carnitine to promote the degradation of triglycerides and the accumulation of acylcarnitines in the hemolymph, allowing rapid transportation and supply of lipids from the fat body to other organs, which provided a valuable reference for revealing the metabolic regulation mechanism of lepidopteran larvae during the last instar. Carnitine and acylcarnitines are first reported to be key factors that mediate the degradation and utilization of lipids during larval-pupal metamorphosis of lepidopteran insects.
Collapse
Affiliation(s)
- Xinxin Gao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jihong Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qilian Qin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Peipei Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qian Meng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
49
|
Brunetti AE, Lyra ML, Bauermeister A, Bunk B, Boedeker C, Müsken M, Neto FC, Mendonça JN, Caraballo-Rodríguez AM, Melo WG, Pupo MT, Haddad CF, Cabrera GM, Overmann J, Lopes NP. Host macrocyclic acylcarnitines mediate symbiotic interactions between frogs and their skin microbiome. iScience 2023; 26:108109. [PMID: 37867936 PMCID: PMC10587524 DOI: 10.1016/j.isci.2023.108109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/23/2023] [Accepted: 09/28/2023] [Indexed: 10/24/2023] Open
Abstract
The host-microbiome associations occurring on the skin of vertebrates significantly influence hosts' health. However, the factors mediating their interactions remain largely unknown. Herein, we used integrated technical and ecological frameworks to investigate the skin metabolites sustaining a beneficial symbiosis between tree frogs and bacteria. We characterize macrocyclic acylcarnitines as the major metabolites secreted by the frogs' skin and trace their origin to an enzymatic unbalance of carnitine palmitoyltransferases. We found that these compounds colocalize with bacteria on the skin surface and are mostly represented by members of the Pseudomonas community. We showed that Pseudomonas sp. MPFS isolated from frogs' skin can exploit acylcarnitines as its sole carbon and nitrogen source, and this metabolic capability is widespread in Pseudomonas. We summarize frogs' multiple mechanisms to filter environmental bacteria and highlight that acylcarnitines likely evolved for another function but were co-opted to provide nutritional benefits to the symbionts.
Collapse
Affiliation(s)
- Andrés E. Brunetti
- Instituto de Biología Subtropical (IBS, UNaM-CONICET), Posadas, Misiones N3300LQH, Argentina
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745 Jena, Germany
| | - Mariana L. Lyra
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi 129188, United Arab Emirates
| | - Anelize Bauermeister
- Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Niedersachsen, Germany
| | - Christian Boedeker
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Niedersachsen, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Niedersachsen, Germany
| | - Fausto Carnevale Neto
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Jacqueline Nakau Mendonça
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Andrés Mauricio Caraballo-Rodríguez
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Weilan G.P. Melo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Mônica T. Pupo
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| | - Célio F.B. Haddad
- Departamento de Biodiversidade e Centro de Aquicultura da UNESP (CAUNESP), Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, São Paulo 13506-900, Brazil
| | - Gabriela M. Cabrera
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos aplicados a la Química Orgánica (UMYMFOR), Buenos Aires C1428EGA, Argentina
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Niedersachsen, Germany
| | - Norberto P. Lopes
- NPPNS, Department of Biomolecular Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo 14040-903, Brazil
| |
Collapse
|
50
|
Barouei J, Martinic A, Bendiks Z, Mishchuk D, Heeney D, Slupsky CM, Marco ML. Type 2-resistant starch and Lactiplantibacillus plantarum NCIMB 8826 result in additive and interactive effects in diet-induced obese mice. Nutr Res 2023; 118:12-28. [PMID: 37536013 DOI: 10.1016/j.nutres.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
Little is known about how combining a probiotic with prebiotic dietary fiber affects the ability of either biotic to improve health. We hypothesized that prebiotic, high-amylose maize type 2-resistant starch (RS) together with probiotic Lactiplantibacillus plantarum NCIMB8826 (LP) as a complementary synbiotic results in additive effects on the gut microbiota in diet-induced obese mice and other body sites. Diet-induced obese C57BL/6J male mice were fed a high-fat diet adjusted to contain RS (20% by weight), LP (109 cells every 48 hours), or both (RS+LP) for 6 weeks. As found for mice fed RS, cecal bacterial alpha diversity was significantly reduced in mice given RS+LP compared with those fed LP and high-fat controls. Similarly, both RS+LP and RS also conferred lower quantities of cecal butyrate and serum histidine and higher ileal TLR2 transcript levels and adipose tissue interleukin-6 protein. As found for mice fed LP, RS+LP-fed mice had higher colonic tissue TH17 cytokines, reduced epididymal fat immune and oxidative stress responses, reduced serum carnitine levels, and increased transcript quantities of hepatic carnitine palmitoyl transferase 1α. Notably, compared with RS and LP consumed separately, there were also synergistic increases in colonic glucose and hepatic amino acids as well antagonistic effects of LP on RS-mediated increases in serum adiponectin and urinary toxin levels. Our findings show that it is not possible to fully predict outcomes of synbiotic applications based on findings of the probiotic or the prebiotic tested separately; therefore, studies should be conducted to test new synbiotic formulations.
Collapse
Affiliation(s)
- Javad Barouei
- Integrated Food Security Research Center, College of Agriculture and Human Sciences, Prairie View A&M University, Prairie View, TX; Department of Food Science & Technology, University of California, Davis, CA
| | - Alice Martinic
- Department of Nutrition, University of California, Davis, CA
| | - Zach Bendiks
- Department of Food Science & Technology, University of California, Davis, CA
| | - Darya Mishchuk
- Department of Food Science & Technology, University of California, Davis, CA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, CA
| | - Carolyn M Slupsky
- Department of Food Science & Technology, University of California, Davis, CA; Department of Nutrition, University of California, Davis, CA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA.
| |
Collapse
|