1
|
Huang L, Zhang C, Chen X, Yang M, Xu R, Zhang D, He Y. A new method and mechanism for the rapid detoxification of the herb Pinelliae Rhizoma from the Araceae family, based on the dual destruction of raphides and lectin proteins. Int J Biol Macromol 2025; 310:143416. [PMID: 40268004 DOI: 10.1016/j.ijbiomac.2025.143416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/08/2025] [Accepted: 04/20/2025] [Indexed: 04/25/2025]
Abstract
Pinelliae Rhizoma (PR), a traditional herbal medicine and dietary supplement, is valued for its cough relief and anti-inflammatory effects. However, it can cause significant throat irritation. And unfortunately, current processing techniques can lead to a considerable loss of active constituents in PR. This study employed microwave irradiation to process PR and elucidated the mechanisms underlying its attenuation of PR's irritation. The results demonstrated that microwave irradiation significantly enhanced the processing efficiency, reducing the traditional processing cycle from 5 to 15 days to just 10 min, while preserving active ingredients and mitigating irritation. Subsequent analysis of the irritant components found that microwave treatment significantly reduced the raphides content, altering their morphology. Concurrently, the secondary structure of lectin proteins underwent significant changes, including an increase in β-sheets, a decrease in β-turns and random coils content, and the formation of insoluble aggregates. In conclusion, microwave irradiation is an effective method for reducing the irritation of PR, with the mechanism attributed to the physical destruction of raphides and alterations in the hydrophobicity of lectin proteins. This study provides a novel approach and method for the processing and development of Araceae herbs, as well as food products such as yam, konjac, and pineapple.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xinming Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Ming Yang
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Runchun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China; Sichuan Provincial Engineering Research Center of Innovative Re-development of Famous Classical Formulas, Tianfu TCM Innovation Harbour, Chengdu University of Traditional Chinese Medicine, Chengdu 611930, PR China.
| | - Yanan He
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China.
| |
Collapse
|
2
|
Liu Y, Zhu M, Duan R, Zhang J. Characterization and Biological Evaluation of Composite Nanofibrous Membranes Prepared from Hemp Salmon ( Oncorhynchus keta) Skin Collagen. Cells 2025; 14:537. [PMID: 40214490 PMCID: PMC11989064 DOI: 10.3390/cells14070537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Aquatic collagen, a natural macromolecule protein with excellent biocompatibility, has attracted attention in the field of medical materials. Compared to mammalian collagen, aquatic collagen offers unique advantages, including the absence of zoonotic disease risks and religious concerns. In this study, salmon skin collagen nanofiber membrane (GS) was prepared by electrostatic spinning. Then, skin collagen was combined with silk sericin (SS) and sodium hyaluronate (HA) to fabricate composite collagen nanofiber membrane (GF) using electrostatic spinning technology. GF membranes were further cross-linked (GFL) for use in a mouse wound healing model. The physicochemical properties and biocompatibility of GS, GF, and GFL were evaluated. FTIR analysis revealed that GFL exhibited a more stable secondary structure compared to GS and GF. DSC and TGA results indicated that GFL had the highest thermal stability, followed by GF. Cytotoxicity tests confirmed that GS, GF, and GFL were non-cytotoxic, with GF showing the highest cell viability rate of 175.23 ± 1.77%. In the wound healing model, GFL group achieved nearly complete healing by day 14 (98 ± 0.1%), compared to 76.04 ± 0.01% in the blank group. Measurement of TGF-β1 and VEGF levels in the healing tissue on day 14 indicated that the GFL group had progressed to the late stage of healing, whereas the blank group remained in the early stage. These results suggest that GFL holds significant potential as a medical biomaterial for wound healing applications.
Collapse
Affiliation(s)
- Yu Liu
- School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Mochi Zhu
- School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China;
| | - Rui Duan
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China;
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Junjie Zhang
- School of Marine Food and Bioengineering, Jiangsu Ocean University, Lianyungang 222005, China; (Y.L.)
- Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China;
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
3
|
Ma S, Duan Y, Yu Y, Hu Q, Tao Q, Li X, Kimatu BM, Ma G. Effects and Mechanisms of Pleurotus eryngii Polysaccharide on Intestinal Barrier Damage: Based on the Perspective of Its Interaction with Intestinal Mucus during Gut Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7755-7773. [PMID: 40109172 DOI: 10.1021/acs.jafc.4c11339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
In this study, pathways and mechanisms of action of a new type of Pleurotus eryngii polysaccharide (PEP) with known structural characteristics and probiotic properties in the intestine were investigated. An in vitro cell model was used to investigate the protective effects of complexes formed between PEPs and their related products with mucin against gut barrier damage. Dextran sulfate sodium salt-induced colitis was used to determine the characteristics of the interaction between PEPs and intestinal mucus (IMs) at different consumption times. Finally, the protective effect of PEPs against intestinal barrier damage was investigated, as mediated by IMs. The result showed that complexes of PEP-related products and mucin improved damage to the intestinal barrier. PEPs exhibited differential functional activities at different stages. In normal and colitis mice, the interactions between IMs and PEPs showed different characteristics. From the transport and absorption standpoint, the role of PEPs in driving intestinal health was also clarified in this study.
Collapse
Affiliation(s)
- Sai Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yaning Duan
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yunyan Yu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qiuhui Hu
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Qi Tao
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xinyi Li
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Benard Muinde Kimatu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
- Department of Dairy and Food Science and Technology, Egerton University, P.O. Box, 536-20115, Egerton, Kenya
| | - Gaoxing Ma
- Collaborative Innovation Center for Modern Grain Circulation and Safety, Jiangsu Province Engineering Research Center of Edible Fungus Preservation and Intensive Processing, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
4
|
Hamdi M, Wang D, Li S, Su F. Unveiling an innovative sustainable blue resource-ecofriendly extraction technique towards a circular economy: Optimization of natural deep eutectic solvent and ultrasonication synergistic pathways for type-I collagen refined recovery from discarded fish scales. Int J Biol Macromol 2025; 300:140296. [PMID: 39863201 DOI: 10.1016/j.ijbiomac.2025.140296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/13/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
A vast sum of fish waste is being annually discarded by marine fishing industries imposing serious environmental pollution concerns. However, these aquatic discarded matters are captivating sources of collagen, a fibrous protein with eminent social and economic relevance. Collagen is conventionally recovered using outdated complex processes requiring many reagents, multiple steps, and extended periods. Hereupon, the current project is the first work on the isolation of Seabass fish scales (FSC) type-I collagen, with preserved secondary and triple helical structures of the native collagen, developing a simple, green, cost-effective, and eco-friendly methodology, utilizing sustainable natural deep eutectic solvents (NADES)-assisted ultrasonication (US) technical route. The operational conditions were optimized based on the one-factor-at-a-time modeling to maximize the yield with no alteration of collagen integrity. Recorded data confirmed type-I collagen with preserved triple helix integrity and thermal stability, improved bio-functionalities, in vitro fibril formation, and functional performances. Finally, the in vitro hemolysis and cytotoxicity tests confirmed the extracted collagens biocompatibility, demonstrating the feasibility of Seabass FSC waste and a NADES-coupled US brief process (20 min) to establish a more sustainable eco-friendly pathway to isolate high-quality type I-collagen, as an attempt to rise industries awareness about wastes valorization within the scheme of circular economy.
Collapse
Affiliation(s)
- Marwa Hamdi
- College of Chemistry and Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Dandan Wang
- College of Chemistry and Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Suming Li
- European Institute of Membranes, IEM UMR 5635, Montpellier University, CNRS, ENSCM, Montpellier, France
| | - Feng Su
- College of Chemistry and Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
5
|
Li G, Guo T, Chen H, Huang Z, Chen Q, Wu C, Wang Y. Extraction, characterization, and hemostatic effect of collagen from the scales of Megalonibea fusca. J Food Sci 2025; 90:e17644. [PMID: 39736136 DOI: 10.1111/1750-3841.17644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/01/2025]
Abstract
Marine collagen is gaining more attraction than terrestrial collagen because it is free of zoonotic disease and religious constrain. In this study, we aimed to investigate and compare the physicochemical properties and functional characteristics of acid-soluble collagen (ASC-MF) and pepsin-soluble collagen (PSC-MF) extracted from scales of Megalonibea fusca. ASC-MF and PSC-MF were evaluated in terms of yield, collagen type, amino acid composition, thermal stability, microstructure, cytotoxicity, and other physicochemical parameters. ASC-MF and PSC-MF depicted 1.72 ± 0.2% and 11.72 ± 0.3% of dry weight yields, respectively, and were identified as type I collagen with an intact triple-helical structure by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), spectroscopic analysis, and electron microscopy. Additionally, compared with many temperate and tropical species, ASC-MF and PSC-MF showed higher thermal stability, with the maximum transition temperature (Tmax) of 53.50°C (ASC-MF) and 43.16°C (PSC-MF). CCK-8 assay showed that ASC-MF and PSC-MF have no cytotoxicity in vitro. The determination of blood clotting index values showed that both ASC-MF and PSC-MF had good hemostatic ability. In summary, these findings show that PSC-MF isolated from the scales of M. fusca may be a feasible alternative to terrestrial collagen sources in food and biomedical applications.
Collapse
Affiliation(s)
- Guangfeng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Tengfei Guo
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Huaizhong Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhihao Huang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qunjie Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Chaoxi Wu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou, China
| | - Yifei Wang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Guangzhou, China
- Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangzhou, China
| |
Collapse
|
6
|
Bhaduri A, Ha T. Biowaste-Derived Triboelectric Nanogenerators for Emerging Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405666. [PMID: 39248387 PMCID: PMC11558148 DOI: 10.1002/advs.202405666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Triboelectric nanogenerators (TENGs) combine contact electrification and electrostatic induction effects to convert waste mechanical energy into electrical energy. As conventional devices contribute to electronic waste, TENGs based on ecofriendly and biocompatible materials have been developed for various energy applications. Owing to the abundance, accessibility, low cost, and biodegradability of biowaste (BW), recycling these materials has gained considerable attention as a green approach for fabricating TENGs. This review provides a detailed overview of BW materials, processing techniques for BW-based TENGs (BW-TENGs), and potential applications of BW-TENGs in emerging bioelectronics. In particular, recent progress in material design, fabrication methods, and biomechanical and environmental energy-harvesting performance is discussed. This review is aimed at promoting the continued development of BW-TENGs and their adoption for sustainable energy-harvesting applications in the field of bioelectronics.
Collapse
Affiliation(s)
- Abhisikta Bhaduri
- Dept. of Electronic Materials EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Tae‐Jun Ha
- Dept. of Electronic Materials EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| |
Collapse
|
7
|
Aron J, Bual R, Alimasag J, Arellano F, Baclayon L, Bantilan ZC, Lumancas G, Nisperos MJ, Labares M, Valle KDD, Bacosa H. Effects of Various Decellularization Methods for the Development of Decellularized Extracellular Matrix from Tilapia ( Oreochromis niloticus) Viscera. Int J Biomater 2024; 2024:6148496. [PMID: 39376509 PMCID: PMC11458291 DOI: 10.1155/2024/6148496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 10/09/2024] Open
Abstract
Tilapia, a widely farmed aquaculture fish, produces substantial waste, including viscera that contain extracellular matrix (ECM) utilized as a biomaterial for tissue regeneration applications. Extracting ECM from viscera requires a specific decellularization method, as no standardized protocol exists. This study performed three decellularization methods: sonication, orbital shaking at room temperature, and agitation at 4°C, using SDS and TX100 at concentrations of 0.1% and 0.3%. The effectiveness of each method was assessed through H&E staining, dsDNA quantification, and SEM imaging to verify cellular content removal and ECM structure preservation. Additional analyses, including ATR-FTIR, SDS-PAGE, protein quantification, HPLC, and detergent residue tests, were performed to examine functional groups, collagen composition, protein content, amino acid profiles, and detergent residues in the decellularized samples. The results of H&E staining showed a significant reduction in cellular components in all samples, which was confirmed through DNA quantification. Sonication with 0.3% SDS achieved the highest DNA removal rate (96.5 ± 1.1%), while SEM images revealed that agitation at 4°C with 0.3% TX100 better preserved ECM structure. Collagen was present in all samples, as confirmed by ATR-FTIR analysis, which revealed pronounced spectral peaks in the amide I, II, III, A, and B regions. Samples treated with agitation at 4°C using 0.1% SDS exhibited the highest protein content (875 ± 15 µg/mg), whereas those treated with TX100 had lower detergent residue. Overall, the decellularization methods effectively reduced DNA content while preserving ECM structure and components, highlighting the potential of tilapia viscera as bioscaffolds and offering insights into utilizing fish waste for high-value products.
Collapse
Affiliation(s)
- Jemwel Aron
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
- Chemical Engineering Department, University of San Agustin, Iloilo City 5000, Philippines
| | - Ronald Bual
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
- Department of Chemical Engineering and Technology, College of Engineering, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Johnel Alimasag
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Fernan Arellano
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Lean Baclayon
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Zesreal Cain Bantilan
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Gladine Lumancas
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Michael John Nisperos
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Marionilo Labares
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Kit Dominick Don Valle
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Hernando Bacosa
- Environmental Science Graduate Program-Department of Biological Sciences, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
- Center for Sustainable Polymers, MSU-Iligan Institute of Technology, Iligan City 9200, Philippines
| |
Collapse
|
8
|
Dong H, Chen J, Li Y, Wang C, Jiao C, Wang L. Influence of Liquid Nitrogen Pre-Freezing and Drying Methods on the Collagen Content, Physical Properties, and Flavor of Fish Swim Bladder. Foods 2024; 13:2790. [PMID: 39272555 PMCID: PMC11395389 DOI: 10.3390/foods13172790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Fish swim bladder (FSB) is a type of traditional nutraceutical, but the lack of high-quality drying methods limits its premium market development. In order to obtain optimal-quality dried FSBs from Chinese longsnout catfish, the effects of liquid nitrogen pre-freezing (LNF) and drying on the physical properties and flavor of FSB were evaluated. Four methods were used for FSB drying, including natural air-drying (ND), hot-air-drying (HD), LNF combined with freeze-drying (LN-FD), and LNF combined with HD (LN-HD). Color, collagen content, rehydration ratio, textural properties, and flavor characteristics (by GC-IMS, E-nose, and E-tongue) were measured to clarify the differences among four dried FSBs. The results showed that ND cannot effectively remove moisture from FSB as the final product showed a stronger sourness in taste. HD led to a decrease in the collagen content and the collapse of the fiber structure in FSB. Compared to HD, LN-HD showed a higher collagen content (0.56 g/g) and a different flavor fingerprint. FSB treated by LN-FD had better physical qualities in terms of an attractive color, a high collagen content (0.79 g/g), low shrinkage, a higher rehydration ratio (2.85), and a soft texture, while also possessing richer characteristic flavors. The application of LN-FD may help the optimization of the nutrition level, rehydration ability, mouthfeel, and flavor of dried FSB.
Collapse
Affiliation(s)
- Hongbing Dong
- Collage of Food Science and Technology, Wuhan Business University, Wuhan 430056, China
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiwang Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
- Enterprise-University Cooperative Innovation Center for Cryogenic Food Processing Technology Using Liquid Nitrogen, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yujie Li
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Wang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chuyi Jiao
- Enterprise-University Cooperative Innovation Center for Cryogenic Food Processing Technology Using Liquid Nitrogen, Wuhan Polytechnic University, Wuhan 430023, China
| | - Liuqing Wang
- Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
9
|
Jimenez-Champi D, Romero-Orejon FL, Muñoz AM, Ramos-Escudero F. The Revalorization of Fishery By-Products: Types, Bioactive Compounds, and Food Applications. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:6624083. [PMID: 39105167 PMCID: PMC11300074 DOI: 10.1155/2024/6624083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/17/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Recently, fish consumption has been increasing; subsequently, the number of by-products has also increased. However, generated residues are frequently discarded, and an appropriate management is necessary to properly use all fish by-products. Fishery by-products are well known for their content of bioactive compounds, such as unsaturated fatty acids, amino acids, minerals, peptides, enzymes, gelatin, collagen, and chitin. Several studies have reported that fishery by-products could provide significant properties, including antioxidant, antihypertensive, antimicrobial, anti-inflammatory, and antiobesity. Consequently, fish discards are of considerable interest to different industrial sectors, including food, nutraceuticals, medical, and pharmacology. In the food industry, the interest in using fishery by-products is focused on hydrolysates as food additives, collagen and gelatin as protein sources, chitin and chitosan to form edible films to protect food during storage, and oils as a source of Omega-3 and useful as antioxidants. Although different studies reported good results with the use of these by-products, identifying new applications in the food sector, as well as industrial applications, remains necessary.
Collapse
Affiliation(s)
- Diana Jimenez-Champi
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Frank L. Romero-Orejon
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
| | - Ana María Muñoz
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Food Science and Nutrition InstituteUniversidad San Ignacio de Loyola (ICAN-USIL), Lima, Peru
| | - Fernando Ramos-Escudero
- NutritionHealthFunctional Foods and Nutraceuticals Research UnitUniversidad San Ignacio de Loyola (UNUSAN-USIL), Lima, Peru
- Health Sciences FacultyUniversidad San Ignacio de Loyola, Lima, Peru
| |
Collapse
|
10
|
Lan X, Luo M, Li M, Mu L, Li G, Chen G, He Z, Xiao J. Swim bladder-derived biomaterials: structures, compositions, properties, modifications, and biomedical applications. J Nanobiotechnology 2024; 22:186. [PMID: 38632585 PMCID: PMC11022367 DOI: 10.1186/s12951-024-02449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/01/2024] [Indexed: 04/19/2024] Open
Abstract
Animal-derived biomaterials have been extensively employed in clinical practice owing to their compositional and structural similarities with those of human tissues and organs, exhibiting good mechanical properties and biocompatibility, and extensive sources. However, there is an associated risk of infection with pathogenic microorganisms after the implantation of tissues from pigs, cattle, and other mammals in humans. Therefore, researchers have begun to explore the development of non-mammalian regenerative biomaterials. Among these is the swim bladder, a fish-derived biomaterial that is rapidly used in various fields of biomedicine because of its high collagen, elastin, and polysaccharide content. However, relevant reviews on the biomedical applications of swim bladders as effective biomaterials are lacking. Therefore, based on our previous research and in-depth understanding of this field, this review describes the structures and compositions, properties, and modifications of the swim bladder, with their direct (including soft tissue repair, dural repair, cardiovascular repair, and edible and pharmaceutical fish maw) and indirect applications (including extracted collagen peptides with smaller molecular weights, and collagen or gelatin with higher molecular weights used for hydrogels, and biological adhesives or glues) in the field of biomedicine in recent years. This review provides insights into the use of swim bladders as source of biomaterial; hence, it can aid biomedicine scholars by providing directions for advancements in this field.
Collapse
Affiliation(s)
- Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, China
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Meiling Li
- Southwest Hospital of Army Military Medical University, Chongqing, 400038, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China
| | - Gong Chen
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China.
| | - Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu, 610106, China.
| | - Jingang Xiao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, 646000, China.
- Institute of Stomatology, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
11
|
Zheng Y, Li Y, Ke C, Gao X, Liu Z, Chen J. Comparison of Structural and Physicochemical Characteristics of Skin Collagen from Chum Salmon (Cold-Water Fish) and Nile Tilapia (Warm-Water Fish). Foods 2024; 13:1213. [PMID: 38672886 PMCID: PMC11049058 DOI: 10.3390/foods13081213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
This study compared collagens from cold-water and warm-water fish for their structural, rheological, and functional properties, and explored their potential applications, aiming to realize the high-value utilization of marine biological resources. To this end, chum salmon skin collagen (CSSC) and Nile tilapia skin collagen (NTSC) were both successfully extracted. Collagens from the two species had different primary and secondary structures, with NTSC having a higher molecular weight, imino acid content, and α-helices and β-turns content. The denaturation temperatures were 12.01 °C for CSSC and 31.31 °C for NTSC. CSSC was dominated by viscous behavior and its structure varied with temperature, while NTSC was dominated by elastic behavior and its structure remained stable with temperature. Both collagens had good oil holding capacity, foaming capacity, and emulsifying activity, but NTSC had better water holding capacity and foaming and emulsifying stability. Their different properties make CSSC more suitable for the preservation of frozen and chilled foods and the production of sparkling beverages, and give NTSC greater potential in biofunctional materials and solid food processing.
Collapse
Affiliation(s)
- Yan Zheng
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (Y.L.); (C.K.); (X.G.)
| | - Yushuang Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (Y.L.); (C.K.); (X.G.)
| | - Cong Ke
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (Y.L.); (C.K.); (X.G.)
| | - Xiyuan Gao
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (Y.L.); (C.K.); (X.G.)
| | - Zhiyu Liu
- Fisheries Research Institute of Fujian, Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms in Fujian, Xiamen 361021, China
| | - Junde Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Y.Z.); (Y.L.); (C.K.); (X.G.)
| |
Collapse
|
12
|
Pan H, Zhang X, Ni J, Liang Q, Jiang X, Zhou Z, Shi W. Effects of Ultrasonic Power on the Structure and Rheological Properties of Skin Collagen from Albacore ( Thunnus alalunga). Mar Drugs 2024; 22:84. [PMID: 38393055 PMCID: PMC10890499 DOI: 10.3390/md22020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The effects of ultrasonic power (0, 150, 300, 450, and 600 W) on the extraction yield and the structure and rheological properties of pepsin-soluble collagen (PSC) from albacore skin were investigated. Compared with the conventional pepsin extraction method, ultrasonic treatment (UPSC) significantly increased the extraction yield of collagen from albacore skin, with a maximum increase of 8.56%. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that peptides of low molecular weight were produced when the ultrasonic power exceeded 300 W. Meanwhile, secondary structure, tertiary structure, and X-ray diffraction analyses showed that the original triple helix structure of collagen was intact after the ultrasonic treatment. The collagen solutions extracted under different ultrasonic powers had significant effects on the dynamic frequency sweep, but a steady shear test suggested that the collagen extracted at 150 W had the best viscosity. These results indicate that an ultrasonic power between 150 and 300 W can improve not only the extraction yield of natural collagen, but also the rheological properties of the collagen solution without compromising the triple helix structure.
Collapse
Affiliation(s)
- Hao Pan
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.P.)
| | - Xuehua Zhang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.P.)
| | - Jianbo Ni
- Pingtairong Ocean Fisheries Co., Ltd., Zhoushan 316100, China
| | - Qianqian Liang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.P.)
| | - Xin Jiang
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.P.)
| | - Zihui Zhou
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.P.)
| | - Wenzheng Shi
- College of Food Sciences & Technology, Shanghai Ocean University, Shanghai 201306, China; (H.P.)
- National Research and Development Center for Processing Technology of Freshwater Aquatic Products (Shanghai), Shanghai 201306, China
| |
Collapse
|
13
|
Zhang X, Tang X, Xu J, Zheng Y, Lin J, Zou H. Transcriptome analysis reveals dysfunction of the endoplasmic reticulum protein processing in the sonic muscle of small yellow croaker (Larimichthys polyactis) following noise exposure. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106299. [PMID: 38154196 DOI: 10.1016/j.marenvres.2023.106299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/25/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
Noise pollution is increasingly prevalent in aquatic ecosystems, causing detrimental effects on growth and behavior of marine fishes. The physiological responses of fish to underwater noise are poorly understood. In this study, we used RNA-sequencing (RNA-seq) to study the transcriptome of the sonic muscle in small yellow croaker (Larimichthys polyactis) after exposure to a 120 dB noise for 30 min. The behavioral experiment revealed that noise exposure resulted in accelerated tail swimming behavior at the beginning of the exposure period, followed by loss of balance at the end of experiment. Transcriptomic analysis found that most highly expressed genes in the sonic muscle, including parvalbumin, slc25a4, and troponin C were related with energy metabolism and locomotor function. Further, a total of 1261 differentially expressed genes (DEGs) were identified, including 284 up-regulated and 977 down-regulated genes in the noise exposure group compared with the control group. Gene ontology (GO) analysis indicated that the most enriched categories of DEGs included protein folding and response to unfolding protein. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis found over-represented pathways including protein processing in the endoplasmic reticulum, chaperones and folding catalysts, as well as arginine and proline metabolism. Specifically, many genes related to fatty acid and collagen metabolism were up-regulated in the noise exposure group. Taken together, our results indicate that exposure to noise stressors alters the swimming behavior of croaker, inducing endoplasmic reticulum stress, disrupting lipid metabolism, and causing collagen degradation in the sonic muscle of L. polyactis.
Collapse
Affiliation(s)
- Xuguang Zhang
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Xianming Tang
- Hainan Provincial Key Laboratory of Tropical Maricultural Technology, Hainan Academy of Ocean and Fisheries Sciences, Haikou, Hainan, 571126, China
| | - Jianan Xu
- Shanghai Aquatic Wildlife Conservation Research Center, Shanghai, 200003, China
| | - Yueping Zheng
- Shanghai Aquatic Wildlife Conservation Research Center, Shanghai, 200003, China
| | - Jun Lin
- Engineering Technology Research Center of Marine Ranching, College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Huafeng Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
14
|
Wu K, Li Y, Chen J. Effect of pH on the Structure, Functional Properties and Rheological Properties of Collagen from Greenfin Horse-Faced Filefish ( Thamnaconus septentrionalis) Skin. Mar Drugs 2024; 22:45. [PMID: 38248670 PMCID: PMC10817565 DOI: 10.3390/md22010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Collagen is an important biopolymer widely used in food, cosmetics and biomedical applications. Understanding the effect of pH on the structure and properties of collagen is beneficial for its further processing and exploitation. In this study, greenfin horse-faced filefish skin collagen (GHSC) was prepared and identified as a type I collagen. We systematically investigated the effect of pH on the structural, functional and rheological properties of GHSC. Scanning electron microscopy showed that the collagen morphology changed from an ordered stacked sheet structure to a rough silk-like structure as pH increased. Gaussian-fitted Fourier infrared spectroscopy results of the collagen revealed that it unfolded with increasing pH. Moreover, the ordered structure was reduced, and random coils became the dominant conformation. Its β-sheet and random coil contents increased from 18.43 ± 0.08 and 33.62 ± 0.17 to 19.72 ± 0.02 and 39.53 ± 1.03%, respectively, with increasing pH. α-helices and β-turns decreased from 35.00 ± 0.26 and 12.95 ± 0.01 to 29.39 ± 0.92 and 11.36 ± 0.10%, respectively. The increase in β-sheets and random coils allowed the pI-treated collagen to exhibit maximum water contact angle. The emulsification and foaming properties decreased and then increased with increasing pH in a V-shape. The increased net surface charge and β-sheets in collagen benefited its emulsification and foaming properties. The rheological results showed that the protoprotein exhibited shear-thinning properties in all pH ranges. The collagen solutions showed liquid-like behaviour in low-pH (2, 4) solutions and solid-like behaviour in high-pH (6, 7.83 and 10) solutions. Moreover, the frequency-dependent properties of the storage modulus (G') and loss modulus (G″) of the collagen solutions weakened with increasing pH. Collagen has considerable frequency-dependent properties of G' and G″ at low pH (2, 4). Thus, the importance of collagen raw material preparation for subsequent processing was emphasised, which may provide new insights into applying collagen-based materials in food, biomaterials and tissue engineering.
Collapse
Affiliation(s)
| | | | - Junde Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (K.W.); (Y.L.)
| |
Collapse
|
15
|
Ma L, Yang X, Yang X, Lu S, Zhang H, Fan Y. Stability protection of lutein emulsions by utilizing a functional conjugate of collagen and Lycium barbarum L. leaf flavonoid. Food Res Int 2024; 176:113775. [PMID: 38163700 DOI: 10.1016/j.foodres.2023.113775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Lutein exhibits excellent functional activity making it useful in many fields. Nevertheless, its use is limited by its physical and chemical instability. Here, collagen and Lycium barbarum L. leaf flavonoids (LBLF) were used as emulsifiers, their structures were characterized, the properties of the complexes were evaluated, and their stabilizing effects on lutein emulsions were explored. According to the results, the encapsulation rate of the complex of collagen-LBLF was (68.67 ± 1.43) % and the drug loading was (6.92 ± 0.13) %. Collagen compounded LBLF with a changed structure and morphology, resulting in improved antioxidant capacity, better foaming and emulsification, and reduced hydrophobicity. In addition, the thiobarbituric acid value of collagen-LBLF stabilized lutein emulsion (0.0012 ± 0.00011) mg/kg was significantly lower than that of collagen stabilized lutein emulsion (0.0021 ± 0.00016) mg/kg (P < 0.05), indicating that the composite stabilized lutein emulsion obtained higher stability. LBLF contributed a high free radical scavenging effect and inhibited lutein degradation during storage. During simulated digestion, collagen-LBLF effectively stabilized the emulsion and protected lutein from destruction, made it release more slowly, and benefited the bio-accessibility of lutein during the next utilization step. Based on the present study, improved storage and digestion stabilities of lutein wereachievedby the utilization of collagen-LBLF complex, which provides a new method for the preparation and application of composite functional emulsifiers.
Collapse
Affiliation(s)
- Li Ma
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Xiaohua Yang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Xue Yang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Shun Lu
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Huiling Zhang
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Yanli Fan
- School of Food Science and Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
16
|
Hu YD, Xi QH, Kong J, Zhao YQ, Chi CF, Wang B. Angiotensin-I-Converting Enzyme (ACE)-Inhibitory Peptides from the Collagens of Monkfish ( Lophius litulon) Swim Bladders: Isolation, Characterization, Molecular Docking Analysis and Activity Evaluation. Mar Drugs 2023; 21:516. [PMID: 37888451 PMCID: PMC10608021 DOI: 10.3390/md21100516] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
The objective of this study was to isolate and characterize collagen and angiotensin-I-converting enzyme (ACE)-inhibitory (ACEi) peptides from the swim bladders of monkfish (Lophius litulon). Therefore, acid-soluble collagen (ASC-M) and pepsin-soluble collagen (PSC-M) with yields of 4.27 ± 0.22% and 9.54 ± 0.51%, respectively, were extracted from monkfish swim bladders using acid and enzyme methods. The ASC-M and PSC-M contained Gly (325.2 and 314.9 residues/1000 residues, respectively) as the major amino acid, but they had low imino acid content (192.5 and 188.6 residues/1000 residues, respectively) in comparison with collagen from calf skins (CSC) (216.6 residues/1000 residues). The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) patterns and ultraviolet (UV) absorption spectrums of ASC-M and PSC-M illustrated that they were mainly composed of type I collagen. Subsequently, three ACEi peptides were isolated from a PSC-M hydrolysate prepared via a double-enzyme system (alcalase + neutrase) and identified as SEGPK (MHP6), FDGPY (MHP7) and SPGPW (MHP9), with molecular weights of 516.5, 597.6 and 542.6 Da, respectively. SEGPK, FDGPY and SPGPW displayed remarkable anti-ACE activity, with IC50 values of 0.63, 0.94 and 0.71 mg/mL, respectively. Additionally, a molecular docking assay demonstrated that the affinities of SEGPK, FDGPY and SPGPW with ACE were -7.3, -10.9 and -9.4 kcal/mol, respectively. The remarkable ACEi activity of SEGPK, FDGPY and SPGPW was due to their connection with the active pockets and/or sites of ACE via hydrogen bonding, hydrophobic interaction and electrostatic force. Moreover, SEGPK, FDGPY and SPGPW could protect HUVECs by controlling levels of nitric oxide (NO) and endothelin-1 (ET-1). Therefore, this work provides an effective means for the preparation of collagens and novel ACEi peptides from monkfish swim bladders, and the prepared ACEi peptides, including SEGPK, FDGPY and SPGPW, could serve as natural functional components in the development of health care products to control hypertension.
Collapse
Affiliation(s)
- Yu-Dong Hu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing-Hao Xi
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jing Kong
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yu-Qin Zhao
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
17
|
He J, Shi R, Ji R. Effect of Ultrasound Pre-Treatment on Extraction and Characterization of Collagen from Bactrian Camel Skin. Polymers (Basel) 2023; 15:polym15081943. [PMID: 37112089 PMCID: PMC10145430 DOI: 10.3390/polym15081943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023] Open
Abstract
The objective of this study was to evaluate the effect of ultrasound pre-treatment on the characterization from Bactrian camel skin. It was possible to produce and characterize collagen extracted from Bactrian camel skin. The results showed that the yield of collagen was higher in ultrasound pre-treatment (UPSC) (41.99%) than the pepsin-soluble collagen extraction (PSC) (26.08%). All extracts were identified as type I collagens using sodium dodecyl sulfate polyacrylamide gel electrophoresis and retained their helical structure, as confirmed through Fourier transform infrared spectroscopy. The scanning electron microscopy analysis of UPSC revealed that some physical changes were caused by sonication. UPSC had smaller particle size than PSC. The viscosity of UPSC always plays a leading role in the range of 0-10 Hz. However, the contribution of elasticity to the solution system of PSC increased in the range of 1-10 Hz. Moreover, ultrasound-treated collagen had superior solubility property at pH 1-4 and at <3% (w/v) NaCl than non-ultrasound treated collagen. Therefore, the utilization of ultrasound for the extraction of pepsin soluble collagen is a good alternative technology to expand the application at industrial level.
Collapse
Affiliation(s)
- Jing He
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Rui Shi
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
| | - Rimutu Ji
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010010, China
- China-Mongolia Joint Laboratory of Biopolymer Application "One Belt One Road", Hohhot 010018, China
| |
Collapse
|
18
|
Zu XY, Li MJ, Xiong GQ, Cai J, Liao T, Li HL. Silver Carp (Hypophthalmichthys molitrix) Scales Collagen Peptides (SCPs): Preparation, Whitening Activity Screening and Characterization. Foods 2023; 12:foods12071552. [PMID: 37048373 PMCID: PMC10094440 DOI: 10.3390/foods12071552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
This study involves the preparation of scale collagen peptides (SCPs) with whitening activity from silver carp (Hypophthalmichthys molitrix) and their characterization and peptide sequence identification. In this article, scanning electron microscopy (SEM) was used to observe structure changes of sliver carp scales; enzymatic hydrolysis was optimized through protease screening and response surface optimization. The ultrafiltration was used to separate SCPs and the whitening activity was comprehensively evaluated using radical scavenging rate and tyrosinase-inhibiting activity, among others. An optimal component was characterized and identified using various modern spectral analysis techniques. The results showed that the surface of silver carp scales after decalcification was smooth and clear. The pepsin had the highest peptide yield and tyrosinase-inhibiting activity (90.01% and 82.25%, respectively). The optimal enzymatic hydrolysis conditions were an enzyme dosage of 16.1%, a solid–liquid ratio of 1:15.6 and a time of 4.9 h. The proportions of hydrophobic and basic amino acids in the peptide composition were 32.15% and 13.12%, respectively. Compared with SCPs2, SCPs1 (6096.68–9513.70 Da) showed better ·OH scavenging ability, tyrosinase-inhibiting activity and moisture absorption. SCPs1 was a macromolecular fragment of type I collagen with a triple helix structure, containing three peptide sequences with the potential for tyrosinase activity inhibition (AGPPGADGQTGQRGE, SGPAGIAGPAGPRGPAGPNGPPGKD and KRGSTGEQGSTGPLGMRGPRGAA). These results show that SCPs1 is a collagen peptide product with whitening potential.
Collapse
Affiliation(s)
- Xiao-Yan Zu
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Mei-Jin Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Guang-Quan Xiong
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Jun Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Tao Liao
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hai-Lan Li
- Key Laboratory of Cold Chain Logistics Technology for Agro-Product (Ministry of Agriculture and Rural Affairs), Institute of Agro-Products Processing and Nuclear Agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
19
|
Liu H, Zhang H, Wang K, Qi L, Guo Y, Zhang C, Xu Y. Impact of Ultrasonication on the Self-Assembly Behavior and Gel Properties of Bovine Bone Collagen I. Molecules 2023; 28:molecules28073096. [PMID: 37049859 PMCID: PMC10095610 DOI: 10.3390/molecules28073096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/17/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
This study deliberated the effect of ultrasonic treatment on collagen self-assembly behavior and collagen fibril gel properties. Bovine bone collagen I which had undergone ultrasonic treatment with different power (0–400 W) and duration (0–60 min) was analyzed. SDS-PAGE and spectroscopic analysis revealed that ultrasonic treatment decreased collagen molecular order degree and the number of hydrogen bonds, stretching collagen telopeptide regions while maintaining the integrity of the collagen triple-helical structure. Ultrasonic treatment (p ≤ 200 W, t ≤ 15 min) dispersed the collagen aggregates more evenly, and accelerated collagen self-assembly rate with a decreased but more homogeneous fibril diameter (82.78 ± 16.47–115.52 ± 19.51 nm) and D-periodicity lengths (62.1 ± 2.9–66.5 ± 1.8 nm) than that of the untreated collagen (119.15 ± 27.89 nm; 66.5 ± 1.8 nm). Meanwhile, ultrasonic treatment (p ≤ 200 W, t ≤ 15 min) decreased the viscoelasticity index and gel strength, enhancing thermal stability and promoting specific surface area and porosity of collagen fibril gels than that of the untreated collagen fibril gel. These results testified that collagen self-assembly behavior and collagen fibril gel properties can be regulated by ultrasonic treatment through multi-hierarchical structural alteration. This study provided a new approach for controlling in vitro collagen fibrillogenesis process so as to manufacture novel desirable collagen-based biomaterials with propitious performances for further valorization.
Collapse
|
20
|
Shen Z, Zhang Q, Li L, Li D, Takagi Y, Zhang X. Properties of Grass Carp ( Ctenopharyngodon idella) Collagen and Gel for Application in Biomaterials. Gels 2022; 8:699. [PMID: 36354607 PMCID: PMC9689431 DOI: 10.3390/gels8110699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2023] Open
Abstract
The biochemical properties of collagens and gels from grass carp (Ctenopharyngodon idella) were studied to explore the feasibility of their application in biomaterials. The yields of skin collagen (SC) and swim bladder collagen (SBC) extracted from grass carp were 10.41 ± 0.67% and 6.11 ± 0.12% on a wet basis, respectively. Both collagens were characterized as type I collagen. Denaturation temperatures of SC and SBC were 37.41 ± 0.02 °C and 39.82 ± 0.06 °C, respectively. SC and SBC had high fibril formation ability in vitro, and higher values of salinity (NaCl, 0-280 mM) and pH (6-8) in formation solution were found to result in faster self-assembly of SC and SBC fibrils as well as thicker fibrils. Further tests of SC gels with regular morphology revealed that their texture properties and water content were affected by pH and NaCl concentration. The hardness, springiness, and cohesiveness of SC gels increased and the chewiness and water content decreased as pH increased from 7 to 8 and NaCl concentration increased from 140 to 280 mM. These properties suggest that collagens from grass carp may be useful in biomaterial applications in the future.
Collapse
Affiliation(s)
- Zhiyuan Shen
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Zhang
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Dapeng Li
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yasuaki Takagi
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | - Xi Zhang
- National Demonstration Center for Experimental Aquaculture Education, Hubei Provincial Engineering Laboratory for Pond Aquaculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
21
|
Guan Y, He J, Chen J, Li Y, Zhang X, Zheng Y, Jia L. Valorization of Fish Processing By-Products: Microstructural, Rheological, Functional, and Properties of Silver Carp Skin Type I Collagen. Foods 2022; 11:2985. [PMID: 36230061 PMCID: PMC9562877 DOI: 10.3390/foods11192985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to develop aquatic collagen production from fish processing by-product skin as a possible alternative to terrestrial sources. Silver carp skin collagen (SCSC) was isolated and identified as type I collagen, and LC-MS/MS analysis confirmed the SCSC as Hypophthalmichthys molitrix type I collagen, where the yield of SCSC was 40.35 ± 0.63% (dry basis weight). The thermal denaturation temperature (Td) value of SCSC was 30.37 °C, which was superior to the collagen of deep-sea fish and freshwater fish. Notably, SCSC had higher thermal stability than human placental collagen, and the rheological experiments showed that the SCSC was a shear-thinning pseudoplastic fluid. Moreover, SCSC was functionally superior to some other collagens from terrestrial sources, such as sheep, chicken cartilage, and pig skin collagen. Additionally, SCSC could provide a suitable environment for MC3T3-E1 cell growth and maintain normal cellular morphology. These results indicated that SCSC could be used for further applications in food, cosmetics, and biomedical fields.
Collapse
Affiliation(s)
- Yongxin Guan
- College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Jianlin He
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Junde Chen
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yushuang Li
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xingkun Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yan Zheng
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Linyan Jia
- College of Chemistry and Chemical Engineering, Mudanjiang Normal University, Mudanjiang 157011, China
| |
Collapse
|
22
|
Dong Y, Dai Z. Physicochemical, Structural and Antioxidant Properties of Collagens from the Swim Bladder of Four Fish Species. Mar Drugs 2022; 20:md20090550. [PMID: 36135739 PMCID: PMC9506208 DOI: 10.3390/md20090550] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
This study aimed to isolate and characterize pepsin-solubilized collagen (PSC) from marine and freshwater fish swim bladders. The physicochemical properties, protein pattern, amino acid composition, structure, thermal denaturation temperature, and antioxidant activity of PSC from four different swim bladder sources were investigated and compared. The results demonstrated that the four types of collagen extracted were all type I collagen. The yield of PSC extracted from grass carp (GCSB-PSC), bighead carp (BCSB-PSC), grouper (GSB-PSC), and monkfish swim bladders (MSB-PSC) were 38.98, 27.97, 18.16, and 10.35%, respectively. Compared to the other three PSCs, BCSB-PSC has the highest thermal denaturation temperature (38.60 °C). Based on FTIR spectroscopy and circular dichroism (CD) analysis, the extracted PSCs retained the triple helix and secondary structure well. Antioxidant studies showed that in the swim bladders of four species the swim bladder PSC could scavenge DPPH and ABTS radicals. Overall, swim bladders from marine and freshwater fish can be utilized as raw materials for collagen extraction, and the extracted collagen has potential commercial applications.
Collapse
|
23
|
Chen Y, Hao S, Xuan HZ, Li M, Kong J, Zhang Q, Liu J. Interactional, Functional and Biological Properties of Lactone Sophorolipid (LSL) and Collagen Oligopeptides (COP) in Aqueous Solution. LUMINESCENCE 2022; 37:1666-1675. [PMID: 35834479 DOI: 10.1002/bio.4338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/14/2022] [Accepted: 07/10/2022] [Indexed: 11/07/2022]
Abstract
For the mixed aqueous solution of LSL and COP, the interaction mode and mechanism have been comprehensively studied using multispectral methods including fluorescence spectrum, ultraviolet-visible adsorption spectrum (UV-Vis), and circular dichroism spectrum (CD). Then its surface activity, particle size, foaming, emulsifying, viscosity, and antibacterial properties are evaluated in detail by surface tension measurement (ST), dynamic light scattering (DLS), oscillametric method, spectrophotometer, ubbelohde viscometer and zone of inhibition separately. Compared with the single LSL or COP aqueous solution, the mixed system shows different performance optimizations in different aspects. The surface activity and foaming properties are mainly attributed to LSL, and the viscosity is attributed to COP. Fluorescence spectroscopy results show that the fluorescence distribution of COP has significant changes by the LSL addition and a static quenching mechanism is proved. The results of UV-Vis and CD spectra also show the changing conformation of COP by the LSL addition. The data of thermodynamic parameters prove that the combination of LSL and COP is a spontaneous exothermic process and is an enthalpy-driven process. The interaction mechanism between LSL and COP is very helpful for the application and development of the mixed mild biosurfactant-protein system used in the cosmetic and food industries.
Collapse
Affiliation(s)
| | - Shengyu Hao
- School of Physical Science and Information Technology
| | - Hong Zhuan Xuan
- School of Life Science, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Mingyuan Li
- School of Chemistry and Chemical Engineering
| | - Jing Kong
- School of Chemistry and Chemical Engineering
| | - Qian Zhang
- School of Chemistry and Chemical Engineering
| | - Jie Liu
- School of Chemistry and Chemical Engineering
| |
Collapse
|
24
|
Liu H, Guo Y, Xu X, Liu J, Zhang H, Qi L, Zhang C, Gao H. Comparative assessment of bone collagen recovered from different livestock and poultry species: microstructure, physicochemical characteristics and functional properties. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Hong Liu
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Yujie Guo
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Xiong Xu
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Jiqian Liu
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Hongru Zhang
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Liwei Qi
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Chunhui Zhang
- Comprehensive Key Laboratory of Agro‐Products Processing, Ministry of Agriculture and Rural Affairs Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences Beijing 100193 China
| | - Hongwei Gao
- Xinjiang Taikun Group Co., Ltd. Xinjiang Uygur, Autonomous Region Changji 831100 China
| |
Collapse
|
25
|
Pian MH, Dong L, Yu ZT, Wei F, Li CY, Fan DC, Li SJ, Zhang Y, Wang S. Ozone-Microbubble-Washing with Domestic Equipment: Effects on the Microstructure, and Lipid and Protein Oxidation of Muscle Foods. Foods 2022; 11:903. [PMID: 35406990 PMCID: PMC8997542 DOI: 10.3390/foods11070903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 02/05/2023] Open
Abstract
This study aimed to compare ozone-microbubble-washing (OM) performed by domestic equipment with conventional water-washing (CW) regarding resultant quality attributes of muscle foods. For this purpose, muscle microstructure and lipid and protein oxidation were evaluated in pork and fish samples after OM and CW treatments. The assessment of muscle microstructure showed that OM treatment did not damage the microstructure of muscle fibers in both pork and fish samples. Thiobarbituric acid reactive substances (TBARS) values were not detected in both treatment groups, and they were substantially below the generally acceptable threshold (1 mg MDA/kg). The methylglyoxal (MGO) level of OM-treated fish samples was significantly higher than that of CW-treated fish samples. However, glyoxal (GO) and MGO levels of OM-treated pork samples were significantly lower than that of CW-treated pork samples. Similar types and sites of oxidative modification and similar numbers of modified peptides, as well as no significant difference in the concentration of total and most of the free amino acids (FAA) between treatment groups, indicated that OM treatment did not accelerate protein oxidation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China; (M.-H.P.); (L.D.); (Z.-T.Y.); (F.W.); (C.-Y.L.); (D.-C.F.); (S.-J.L.); (Y.Z.)
| |
Collapse
|
26
|
Properties and Characteristics of Acid-Soluble Collagen from Salmon Skin Defatted with the Aid of Ultrasonication. FISHES 2022. [DOI: 10.3390/fishes7010051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Salmon skin, a byproduct from the deskinning process, can be used as an alternative source of collagen. Due to the high fat content in skin, the defatting process is required prior to extraction. The properties and characteristics of acid-soluble collagen (ASC) from salmon skin (Oncorhynchus nerka), defatted using isopropanol without and with ultrasonication (70% amplitude for 10 min), were investigated. The ASC from the skin that was defatted with aid of ultrasonication (U-ASC) exhibited lower (p < 0.05) fat content (1.86%) with extraction yield (23.18% w/w, dry weight basis). U-ASC had a higher hydroxyproline content (49.15 mg/g dry sample) and maximum transition temperature (Tmax) (11.6 °C) than C-ASC (collagen extracted from skin defatted without ultrasonication). Both of the ASCs were classified as type I collagen. C-ASC and U-ASC had isoelectric points of 7.17 and 7.40, respectively. Fourier transform infrared (FTIR) and circular dichroism spectra reconfirmed the triple-helix structure of both ASCs. The major amino acid of both collagens was glycine (297–308 residues/1000 residues). A high amount of imino acid (191–193 residues/1000 residues) was also found. After gastrointestinal digestion, the degree of hydrolysis of the digested U-ASC (23.19%) was slightly higher than that of the digested C-ASC (22.31%). However, both digests had no differences in antioxidant activities. Both of the ASCs could be therefore used as functional ingredient.
Collapse
|