1
|
Li X, Li S, Li N. Research Progress on Natural Products Alleviating Liver Inflammation and Fibrosis via NF-κB Pathway. Chem Biodivers 2025; 22:e202402248. [PMID: 39576739 DOI: 10.1002/cbdv.202402248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/24/2024]
Abstract
Liver fibrosis is a key pathological process in chronic liver diseases, regulated by various cytokines and signaling pathways. Among these, the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway plays a significant role in the initiation and progression of liver fibrosis. Recently, natural products have garnered attention as potential anti-fibrotic agents. This review highlights recent studies on how natural products, including flavonoids, terpenoids, polysaccharides, phenols, alkaloids, quinones, phenylpropanoids, steroids, and nitrogen compounds, mitigate liver fibrosis by modulating the NF-κB signaling pathway. Specifically, it examines how these natural products influence NF-κB activation, nuclear translocation, and downstream signaling, thereby inhibiting inflammatory responses, reducing apoptosis, and regulating hepatic stellate cell (HSC) activity, ultimately achieving therapeutic effects against liver fibrosis. A deeper understanding of the mechanisms by which natural products regulate the NF-κB signaling pathway can provide crucial theoretical foundations and valuable insights for the development of novel anti-fibrotic drugs.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| | - Saifei Li
- Department of Pharmacy, Henan Medical College, Zhengzhou, Henan, China
| | - Ningning Li
- Department of Pathology, Henan Medical College, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Bahriz HA, Abdelaziz RR, El-Kashef DH. Desloratadine mitigates hepatocellular carcinoma in rats: Possible contribution of TLR4/MYD88/NF-κB pathway. Toxicol Appl Pharmacol 2025; 495:117202. [PMID: 39672344 DOI: 10.1016/j.taap.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/03/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Chemotherapeutic medication-induced systemic toxicity makes cancer treatment less effective. Thus, the need for drug repurposing, which aids in the development of safe and efficient cancer therapies, is urgent. The primary goal of this research was to assess desloratadine hepatoprotective abilities and its capacity to attenuate TLR4/MyD88/NF-κB inflammatory pathway in hepatocellular carcinoma (HCC) induced by thioacetamide (TAA). Male Sprague Dawely rats received TAA injections (200 mg/kg, i.p., 2 times/week) for 16 weeks. To confirm the development of HCC, liver function biomarkers and histopathological analysis were evaluated. Desloratadine (5 mg/kg, p.o.) was administered to rats in 2 treatment groups; HCC + DES 1 group received desloratadine with TAA for 1 month from week 13-16, HCC + DES 2 group received desloratadine with TAA for 2 months from week 9-16. Chronic TAA administration resulted in considerable overexpression of the profibrogenic cytokine TGF-β and elevation in protein expression of NF-κB besides levels of TLR4, MyD88, TRAF6, TAK1 and IL-1β. Desloratadine administration showed a significant improvement in liver function tests, as well as an increase in tissue antioxidant enzymes and an improvement in the liver's histopathological features. Collectively, desloratadine through modulating TLR4/MyD88/TRAF6/TAK1/NF-κB and acting as an antioxidant, is a promising treatment for HCC induced by TAA.
Collapse
MESH Headings
- Animals
- Toll-Like Receptor 4/metabolism
- Male
- Myeloid Differentiation Factor 88/metabolism
- Loratadine/analogs & derivatives
- Loratadine/pharmacology
- Loratadine/therapeutic use
- NF-kappa B/metabolism
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Rats
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Thioacetamide
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/prevention & control
- Liver/drug effects
- Liver/pathology
- Liver/metabolism
Collapse
Affiliation(s)
- Heba A Bahriz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
3
|
Farouk H, Nasr M, Elbaset MA, Shabana ME, Ahmed-Farid OAH, Ahmed RF. Baicalin nanoemulsion mitigates cisplatin-induced hepatotoxicity by alleviating oxidative stress, inflammation, and restoring cellular integrity. Toxicol Appl Pharmacol 2025; 495:117231. [PMID: 39832566 DOI: 10.1016/j.taap.2025.117231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Cisplatin is a widely used chemotherapeutic agent, but its clinical utility is limited by side effects affecting different systems and organs, including hepatotoxicity in some cases. Baicalin, a flavonoid isolated from Scutellaria baicalensis, possesses antioxidant, anti-inflammatory and hepatoprotective properties, but its low bioavailability limits its therapeutic use. This study aimed to investigate whether a nanoemulsion formulation of baicalin could enhance its efficacy against cisplatin-induced hepatic injury in rats. Rats were orally treated daily with baicalin either in nanoformulation (10 or 20 mg/kg body weight per day) or conventional form (100 mg/kg body weight per day) for 12 days. Cisplatin (10 mg/kg body weight) was injected intraperitoneally on day six and day twelve to induce hepatic injury. Samples were collected on day thirteen. Serum markers, oxidative stress parameters, inflammatory markers, cellular energy status, histopathology, and other endpoints were evaluated. Results revealed that cisplatin caused elevated serum enzymes, oxidative stress, inflammation, DNA damage, depleted cellular energy levels, and induced severe hepatic histological changes. The baicalin nanoemulsion especially the higher 20 mg/kg dose, significantly ameliorated cisplatin-induced abnormalities across the various parameters. The conventional baicalin suspension also provided protection, albeit to a lesser degree than the nanoemulsion. In conclusion, administering baicalin as a nanoemulsion potentiated its hepatoprotective effects against cisplatin toxicity. The nanoemulsion formulation strategy was proven promising for enhancing baicalin's therapeutic utility.
Collapse
Affiliation(s)
- Hadir Farouk
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622 Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Egypt; Faculty of Healthcare Technology, Saxony Egypt University for Applied Science and Technology, Egypt.
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622 Giza, Egypt
| | - Marwa E Shabana
- Department of Pathology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622 Giza, Egypt
| | | | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical studies Institute, National Research Centre, (ID: 60014618), Dokki, 12622 Giza, Egypt
| |
Collapse
|
4
|
El-Kashef DH, Abdel-Rahman N, Sharawy MH. Apocynin alleviates thioacetamide-induced acute liver injury: Role of NOX1/NOX4/NF-κB/NLRP3 pathways. Cytokine 2024; 183:156747. [PMID: 39236429 DOI: 10.1016/j.cyto.2024.156747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/01/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
The liver has a distinctive capacity to regenerate, yet severe acute injury can be life-threatening if not treated appropriately. Inflammation and oxidative stress are central processes implicated in the pathophysiology of acute livery injury. NOX isoforms are important enzymes for ROS generation, NF-κB and NLRP3 activation, its inhibition could be vital in alleviating acute liver injury (ALI). Here in our study, we used apocynin, a natural occurring potent NOX inhibitor, to exploreits potential protective effect against thioacetamide (TAA)-induced ALI through modulating crucial oxidative and inflammatory pathways. Rats were injected once with TAA (500 mg/kg/i.p) and treated with apocynin (10 mg/kg/i.p) twice before TAA challenge. Sera and hepatic tissues were collected for biochemical, mRNA expression, western blot analysis and histopathological assessments. Pretreatment with apocynin improved liver dysfunction evidenced by decreased levels of aminotransferases, ALP, GGT and bilirubin. Apocynin reduced mRNA expression of NOX1 and NOX4 which in turn alleviated oxidative stress, as shown by reduction in MDA and NOx levels, and elevation in GSH levels andcatalase and SOD activities. Moreover, apocynin significantly reduced MPO gene expression. We also demonstrate that apocynin ameliorated inflammation through activating IκBα and suppressing IKKα, IKKβ, NF-κBp65 and p-NF-κBp65, IL-6 andTNF-α. Additionally, apocynin potentiated the gene expression of anti-inflammatory IL-10 and reduced levels of hepatic NLRP3, Caspase-1 and IL-1β. These results suggest that apocynin protects against ALI in association with the inhibition of NOX1 and NOX4 and regulating oxidative and inflammatory pathways.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Noha Abdel-Rahman
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Maha H Sharawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
5
|
Ali SA, Datusalia AK. Berberine attenuates ECM accumulation and the progression of acute liver failure through inhibition of NLRP3 inflammasome signalling. Toxicol Appl Pharmacol 2024; 492:117129. [PMID: 39428072 DOI: 10.1016/j.taap.2024.117129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/10/2024] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Acute liver failure (ALF) is a life-threatening disease, characterized by upregulated extracellular matrix deposition and inflammatory signalling, with no effective treatment options and targets. The present study was designed to investigate the preventive and therapeutic effects of berberine (BBR) and its underlying mechanism in thioacetamide (TAA)-induced ALF. Male SD rats were administered with TAA 300 mg/kg, i.p., thrice to induce ALF and pre- or post-treated with BBR. To decipher the effects of BBR LFT markers, histopathological analysis of key fibrotic and inflammatory proteins was performed. In addition, the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α were assessed by ELISA. Our work showed TAA-induced ALF animals were associated with increased ALT, AST, bilirubin (LFT markers) and histopathological alterations with profuse infiltration of inflammatory cells in the liver tissue. Treatment with BBR has significantly inhibited LFT markers and histological alterations triggered by TAA. In addition, TAA animals demonstrated increased collagen accumulation and upregulated expression of TGF-β1, vimentin, and α-SMA compared to control. The excessive accumulation of collagen, TGF-β1, vimentin, and α-SMA were significantly modulated with BBR treatment. Further, the fluorescence intensity of ROS an activator of NLRP3 including the NLRP3 inflammasome, and its downstream signalling ASC, cleaved IL-1β, and other pro-inflammatory cytokines like TNF-α and IL-6 stimulated by TAA were attenuated by BBR treatment. The current work indicated that BBR significantly ameliorated TAA-induced ALF by inhibiting the extracellular matrix accumulation associated with the NLRP3/IL-1β signalling pathway and could be a viable therapeutic option to treat ALF and other fibroinflammatory diseases.
Collapse
Affiliation(s)
- Syed Afroz Ali
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Ashok Kumar Datusalia
- Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India; Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India.
| |
Collapse
|
6
|
Zhang Q, Guo S, Wang H. The Protective Role of Baicalin in the Regulation of NLRP3 Inflammasome in Different Diseases. Cell Biochem Biophys 2024:10.1007/s12013-024-01597-y. [PMID: 39443419 DOI: 10.1007/s12013-024-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome consists of pro-caspase-1, NLRP3 and apoptosis-related speckle-like protein (ASC). It can detect multiple microorganisms, endogenous danger signals and environmental stimulus including adenosine triphosphate (ATP), urate, cholesterol crystals, and so on, thereby forming activated NLRP3 inflammasome. During the course of the activation of NLRP3 inflammasome, pro-caspase-1 is transformed into activated caspase-1 that results in the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. The dysfunction of NLRP3 inflammasome participates in multiple diseases such as liver diseases, renal diseases, nervous system diseases and diabetes. Baicalin is the primary bioactive component of Scutellaria baicalensis, which has been used since ancient times. Baicalin has many types of biological functions, such as anti-bacterial, anti-tumor and antioxidant. More and more evidence suggests that baicalin regulation of NLRP3 inflammasome is involved in different diseases. However, the mechanism is still elusive. Here, we reviewed the progress of baicalin regulation of NLRP3 inflammasome in many kinds of diseases to lay a foundation for future researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
7
|
Niu C, Zhang J, Okolo PI. The possible pathogenesis of liver fibrosis: therapeutic potential of natural polyphenols. Pharmacol Rep 2024; 76:944-961. [PMID: 39162986 DOI: 10.1007/s43440-024-00638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/21/2024]
Abstract
Liver fibrosis is the formation of a fibrous scar resulting from chronic liver injury, independently from etiology. Although many of the mechanical details remain unknown, activation of hepatic stellate cells (HSCs) is a central driver of liver fibrosis. Extracellular mechanisms such as apoptotic bodies, paracrine stimuli, inflammation, and oxidative stress are critical in activating HSCs. The potential for liver fibrosis to reverse after removing the causative agent has heightened interest in developing antifibrotic therapies. Polyphenols, the secondary plant metabolites, have gained attention because of their health-beneficial properties, including well-recognized antioxidant and anti-inflammatory activities, in the setting of liver fibrosis. In this review, we present an overview of the mechanisms underlying liver fibrosis with a specific focus on the activation of resident HSCs. We highlight the therapeutic potential and promising role of natural polyphenols to mitigate liver fibrosis pathogenesis, focusing on HSCs activation. We also discuss the translational gap from preclinical findings to clinical treatments involved in natural polyphenols in liver fibrosis.
Collapse
Affiliation(s)
- Chengu Niu
- Internal medicine residency program, Rochester General Hospital, 1425 Portland Avenue, Rochester, NY, 14621, USA.
| | - Jing Zhang
- Rainier Springs Behavioral Health Hospital, 2805 NE 129th St, Vancouver, WA, 98686, USA
| | - Patrick I Okolo
- Division of Gastroenterology, Rochester General Hospital, Rochester, NY, 14621, USA
| |
Collapse
|
8
|
Zhang Y, Ren L, Tian Y, Guo X, Wei F, Zhang Y. Signaling pathways that activate hepatic stellate cells during liver fibrosis. Front Med (Lausanne) 2024; 11:1454980. [PMID: 39359922 PMCID: PMC11445071 DOI: 10.3389/fmed.2024.1454980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Liver fibrosis is a complex process driven by various factors and is a key feature of chronic liver diseases. Its essence is liver tissue remodeling caused by excessive accumulation of collagen and other extracellular matrix. Activation of hepatic stellate cells (HSCs), which are responsible for collagen production, plays a crucial role in promoting the progression of liver fibrosis. Abnormal expression of signaling pathways, such as the TGF-β/Smads pathway, contributes to HSCs activation. Recent studies have shed light on these pathways, providing valuable insights into the development of liver fibrosis. Here, we will review six signaling pathways such as TGF-β/Smads that have been studied more in recent years.
Collapse
Affiliation(s)
- Youtian Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Long Ren
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yinting Tian
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaohu Guo
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yawu Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Department of General Surgery, The Second Hospital of Lanzhou University, Lanzhou, China
- The Laboratory of Hepatic-Biliary-Pancreatic, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
9
|
Ma W, Liu T, Ogaji OD, Li J, Du K, Chang Y. Recent advances in Scutellariae radix: A comprehensive review on ethnobotanical uses, processing, phytochemistry, pharmacological effects, quality control and influence factors of biosynthesis. Heliyon 2024; 10:e36146. [PMID: 39262990 PMCID: PMC11388511 DOI: 10.1016/j.heliyon.2024.e36146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/13/2024] Open
Abstract
Background Scutellariae radix (SR) is the dried root of Scutellaria baicalensis Georgi. It has a long history of ethnic medicinal use, traditionally recognized for its efficacy in clearing heat, drying dampness, eliminating fire, removing toxins , stopping bleeding and tranquilizing fetus to prevent miscarriage. Clinically, it is used to treat cold, fever, migraine, hand-foot-and-mouth diseases, liver cancer and inflammatory diseases. Purpose The review aims to provide a comprehensive reference on the ethnobotanical uses, processing, phytochemistry, pharmacological effect, quality control and influence factors of biosynthesis for a deeper understanding of SR. Results and conclusion A total of 210 isolated components have been reported in the literature, including flavonoids and their glycosides, phenylpropanoids, phenylethanoid glycosides, phenolic acids, volatile components, polysaccharides and others. The extract of SR and its main flavonoids such as baicalin, baicalein, wogonin, wogonoside, and scutellarin showed antioxidant, anti-inflammatory, anti-tumor, antiviral, hepatoprotective, and neuroprotective effects. However, further studies are required to elucidate its mechanisms of action and clinical applications. The pharmacodynamic evaluation based on traditional efficacy should be conducted. Although various analytical methods have been established for the quality control of SR, there are gaps in the research regarding efficacy-related quality markers and the development of quality control standards for its processed products. The regulatory mechanisms of flavonoids biosynthesis remain to be explored while the influence of environmental and transcription factors on the biosynthesis have been studied. In conclusion, SR is a promising herbal medicine with significant potential for future development.
Collapse
Affiliation(s)
- Wentao Ma
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Tianyu Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Omachi Daniel Ogaji
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Kunze Du
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| |
Collapse
|
10
|
Zhao B, Liu K, Liu X, Li Q, Li Z, Xi J, Xie F, Li X. Plant-derived flavonoids are a potential source of drugs for the treatment of liver fibrosis. Phytother Res 2024; 38:3122-3145. [PMID: 38613172 DOI: 10.1002/ptr.8193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/28/2024] [Accepted: 03/10/2024] [Indexed: 04/14/2024]
Abstract
Liver fibrosis is a dynamic pathological process that can be triggered by any chronic liver injury. If left unaddressed, it will inevitably progress to the severe outcomes of liver cirrhosis or even hepatocellular carcinoma. In the past few years, the prevalence and fatality of hepatic fibrosis have been steadily rising on a global scale. As a result of its intricate pathogenesis, the quest for pharmacological interventions targeting liver fibrosis has remained a formidable challenge. Currently, no pharmaceuticals are exhibiting substantial clinical efficacy in the management of hepatic fibrosis. Hence, it is of utmost importance to expedite the development of novel therapeutics for the treatment of this condition. Various research studies have revealed the ability of different natural flavonoid compounds to alleviate or reverse hepatic fibrosis through a range of mechanisms, which are related to the regulation of liver inflammation, oxidative stress, synthesis and secretion of fibrosis-related factors, hepatic stellate cells activation, and proliferation, and extracellular matrix synthesis and degradation by these compounds. This review summarizes the progress of research on different sources of natural flavonoids with inhibitory effects on liver fibrosis over the last decades. The anti-fibrotic effects of natural flavonoids have been increasingly studied, making them a potential source of drugs for the treatment of liver fibrosis due to their good efficacy and biosafety.
Collapse
Affiliation(s)
- Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fan Xie
- Hospital of Chengdu University of Traditional Chinese Medicine 610032, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Yu C, Guo X, Cui X, Su G, Wang H. Functional Food Chemical Ingredient Strategies for Non-alcoholic Fatty Liver Disease (NAFLD) and Hepatic Fibrosis: Chemical Properties, Health Benefits, Action, and Application. Curr Nutr Rep 2024; 13:1-14. [PMID: 38172459 DOI: 10.1007/s13668-023-00514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW The liver is an important digestive gland in the body. Lifestyle and dietary habits are increasingly damaging our liver, leading to various diseases and health problems. Non-alcoholic fatty liver disease (NAFLD) has become one of the most serious liver disease problems in the world. Diet is one of the important factors in maintaining liver health. Functional foods and their components have been identified as novel sources of potential preventive agents in the prevention and treatment of liver disease in daily life. However, the effects of functional components derived from small molecules in food on different types of liver diseases have not been systematically summarized. RECENT FINDINGS The components and related mechanisms in functional foods play a significant role in the development and progression of NAFLD and liver fibrosis. A variety of structural components are found to treat and prevent NAFLD and liver fibrosis through different mechanisms, including flavonoids, alkaloids, polyphenols, polysaccharides, unsaturated fatty acids, and peptides. On the other hand, the relevant mechanisms include oxidative stress, inflammation, and immune regulation, and a large number of literature studies have confirmed a close relationship between the mechanisms. The purpose of this article is to examine the current literature related to functional foods and functional components used for the treatment and protection against NAFLD and hepatic fibrosis, focusing on chemical properties, health benefits, mechanisms of action, and application in vitro and in vivo. The roles of different components in the biological processes of NAFLD and liver fibrosis were also discussed.
Collapse
Affiliation(s)
- Chong Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaohe Guo
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaohang Cui
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
12
|
Koc K, Ozek NS, Aysin F, Demir O, Yilmaz A, Yilmaz M, Geyikoglu F, Erol HS. Hispidulin exerts a protective effect against oleic acid induced-ARDS in the rat via inhibition of ACE activity and MAPK pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:755-766. [PMID: 36624973 DOI: 10.1080/09603123.2023.2166023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
This study investigates the protective role of Hispidulin on acute respiratory distress syndrome (ARDS) in rats. Rats were divided into three groups: control, ARDS, ARDS+ Hispidulin. The ARDS models were established by injecting rats with oleic acid. Hispidulin (100 mg/kg) was injected i.p. an hour before ARDS. Myeloperoxidase (MPO), Interleukin-8 (IL-8), Mitogen-activated protein kinases (MAPK), Lipid Peroxidation (LPO), Superoxide Dismutase (SOD), Glutathione (GSH), and Angiotensin-converting enzyme (ACE) were determined by ELISA. Tumor necrosis factor-alpha (TNF-α) expression was described by RT-qPCR. Caspase-3 immunostaining was performed to evaluate apoptosis. Compared with the model group, a significant decrease was observed in the MPO, IL-8, MAPK, ACE, LPO levels, and TNF-α expression in the ARDS+ Hispidulin group. Moreover, reduced caspase-3 immunoreactivity and activity of ACE were detected in the Hispidulin+ARDS group. The protective effect of Hispidulin treatment may act through inhibition of the ACE activity and then regulation of inflammatory cytokine level and alteration of apoptosis.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
- East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Ozlem Demir
- Department of Histology and Embryology, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Asli Yilmaz
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Mehmet Yilmaz
- Department of Nanoscience and Nanoengineering, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Kastamonu University, Faculty of Veterinary Medicine, Kastamonu, TURKEY
| |
Collapse
|
13
|
Yang F, Lv XT, Lin XL, Wang RH, Wang SM, Wang GE. Restraint stress promotes nonalcoholic steatohepatitis by regulating the farnesoid X receptor/NLRP3 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1961-1971. [PMID: 37997375 PMCID: PMC10753372 DOI: 10.3724/abbs.2023240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 11/25/2023] Open
Abstract
Psychological stress promotes nonalcoholic steatohepatitis (NASH) development. However, the pathogenesis of psychological stress-induced NASH remains unclear. This study aims to explore the underlying mechanism of restraint stress-induced NASH, which mimics psychological stress, and to discover potential NASH candidates. Methionine choline deficient diet- and high fat diet-induced hepatosteatotic mice are subjected to restraint stress to induce NASH. The mice are administrated with Xiaoyaosan granules, NOD-like receptor family pyrin domain containing 3 (NLRP3) inhibitors, farnesoid X receptor (FXR) agonists, or macrophage scavengers. Pathological changes and NLRP3 signaling in the liver are determined. These results demonstrate that restraint stress promotes hepatic inflammation and fibrosis in hepatosteatotic mice. Restraint stress increases the expressions of NLRP3, Caspase-1, Gasdermin D, interleukin-1β, cholesterol 7α-hydroxylase, and sterol 12α-hydroxylase and decreases the expression of FXR in NASH mice. Xiaoyaosan granules reverse hepatic inflammation and fibrosis and target FXR and NLRP3 signals. In addition, inhibition of NLRP3 reduces the NLRP3 inflammasome and liver damage in mice with restraint stress-induced NASH. Elimination of macrophages and activation of FXR also attenuate inflammation and fibrosis by inhibiting NLRP3 signaling. However, NLRP3 inhibitors or macrophage scavengers fail to affect the expression of FXR. In conclusion, restraint stress promotes NASH-related inflammation and fibrosis by regulating the FXR/NLRP3 signaling pathway. Xiaoyaosan granules, NLRP3 inhibitors, FXR agonists, and macrophage scavengers are potential candidates for the treatment of psychological stress-related NASH.
Collapse
Affiliation(s)
- Fan Yang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Xi-Ting Lv
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Xiao-Li Lin
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Ruo-Hong Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Shu-Mei Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
- Key Laboratory of Digital Quality Evaluation of Traditional Chinese MedicineNational Administration of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhou510006China
- Guangdong Provincial Traditional Chinese Medicine Quality Engineering and Technology Research CenterGuangdong Pharmaceutical UniversityGuangzhou510006China
| | - Guo-En Wang
- School of Chinese Materia MedicaGuangdong Pharmaceutical UniversityGuangzhou510006China
- Key Laboratory of Digital Quality Evaluation of Traditional Chinese MedicineNational Administration of Traditional Chinese MedicineGuangdong Pharmaceutical UniversityGuangzhou510006China
- Guangdong Provincial Traditional Chinese Medicine Quality Engineering and Technology Research CenterGuangdong Pharmaceutical UniversityGuangzhou510006China
| |
Collapse
|
14
|
Ibrahim MY, Alamri ZZ, Juma ASM, Hamood SA, Shareef SH, Abdulla MA, Jayash SN. Hepatoprotective Effects of Biochanin A on Thioacetamide-Induced Liver Cirrhosis in Experimental Rats. Molecules 2023; 28:7608. [PMID: 38005330 PMCID: PMC10674479 DOI: 10.3390/molecules28227608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The protective effect of biochanin A (BCA) on the histopathology, immunohistochemistry, and biochemistry of thioacetamide (TAA)-induced liver cirrhosis in vivo was investigated. There was a significant reduction in liver weight and hepatocyte propagation, with much lower cell injury in rat groups treated with BCA (25 mg/kg and 50 mg/kg) following a TAA induction. These groups had significantly lower levels of proliferating cell nuclear antigen (PCNA) and α-smooth muscle actin (α-SMA). The liver homogenates showed increased antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), as well as decreased malondialdehyde (MDA) levels. The serum biomarkers associated with liver function, namely alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma glutamyl transaminase (GGT), returned to normal levels, comparable to those observed in both the normal control group and the reference control group. Taken together, the normal microanatomy of hepatocytes, the inhibition of PCNA and α-SMA, improved antioxidant enzymes (SOD, CAT, and GPx), and condensed MDA with repairs of liver biomarkers validated BCA's hepatoprotective effect.
Collapse
Affiliation(s)
| | - Zaenah Zuhair Alamri
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah 21589, Saudi Arabia;
| | - Ameena S. M. Juma
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil 44001, Iraq; (A.S.M.J.); (M.A.A.)
| | - Sarah Ashour Hamood
- Biomedical Engineering Department, Al-Essra University College, Baghdad 10011, Iraq;
| | - Suhayla Hamad Shareef
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil 44001, Iraq;
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil 44001, Iraq; (A.S.M.J.); (M.A.A.)
| | - Soher Nagi Jayash
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
15
|
Awadeen RH, Boughdady MF, Zaghloul RA, Elsaed WM, Abu Hashim II, Meshali MM. Formulation of lipid polymer hybrid nanoparticles of the phytochemical Fisetin and its in vivo assessment against severe acute pancreatitis. Sci Rep 2023; 13:19110. [PMID: 37925581 PMCID: PMC10625596 DOI: 10.1038/s41598-023-46215-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023] Open
Abstract
Fisetin (FST) is a naturally occurring flavonol that has recently emerged as a bioactive phytochemical with an impressive array of biological activities. To the author knowledge, boosting the activity of FST against severe acute pancreatitis (SAP) through a nanostructured delivery system (Nanophytomedicine) has not been achieved before. Thereupon, FST-loaded lipid polymer hybrid nanoparticles (FST-loaded LPHNPs) were prepared through conjoined ultrasonication and double emulsion (w/o/w) techniques. Comprehensive in vitro and in vivo evaluations were conducted. The optimized nanoparticle formula displayed a high entrapment efficiency % of 61.76 ± 1.254%, high loading capacity % of 32.18 ± 0.734, low particle size of 125.39 ± 0.924 nm, low particle size distribution of 0.357 ± 0.012, high zeta potential of + 30.16 ± 1.416 mV, and high mucoadhesive strength of 35.64 ± 0.548%. In addition, it exhibited a sustained in vitro release pattern of FST. In the in vivo study, oral pre-treatment of FST-loaded LPHNPs protected against L-arginine induced SAP and multiple organ injuries in rats compared to both FST alone and plain LPHNPs, as well as the untreated group, proven by both biochemical studies, that included both amylase and lipase activities, and histochemical studies of pancreas, liver, kidney and lungs. Therefore, the study could conclude the potential efficacy of the novel phytopharmaceutical delivery system of FST as a prophylactic regimen for SAP and consequently, associated multiple organ injuries.
Collapse
Affiliation(s)
- Randa Hanie Awadeen
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Wael M Elsaed
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Irhan Ibrahim Abu Hashim
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| | - Mahasen Mohamed Meshali
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Dakahlia, Egypt
| |
Collapse
|
16
|
Mik P, Barannikava K, Surkova P. Biased Quantification of Rat Liver Fibrosis-Meta-Analysis with Practical Recommendations and Clinical Implications. J Clin Med 2023; 12:5072. [PMID: 37568474 PMCID: PMC10420125 DOI: 10.3390/jcm12155072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
For liver fibrosis assessment, the liver biopsy is usually stained with Masson's trichrome (MT) or picrosirius red (PSR) to quantify liver connective tissue (LCT) for fibrosis scoring. However, several concerns of such semiquantitative assessments have been raised, and when searching for data on the amount of LCT in healthy rats, the results vastly differ. Regarding the ongoing reproducibility crisis in science, it is necessary to inspect the results and methods, and to design an unbiased and reproducible method of LCT assessment. We searched the Medline database using search terms related to liver fibrosis, LCT and collagen, rat strains, and staining methods. Our search identified 74 eligible rat groups in 57 studies. We found up to 170-fold differences in the amount of LCT among healthy Wistar and Sprague-Dawley rats, with significant differences even within individual studies. Biased sampling and quantification probably caused the observed differences. In addition, we also found incorrect handling of liver fibrosis scoring. Assessment of LCT using stereological sampling methods (such as systematic uniform sampling) would provide us with unbiased data. Such data could eventually be used not only for the objective assessment of liver fibrosis but also for validation of noninvasive methods of the assessment of early stages of liver fibrosis.
Collapse
Affiliation(s)
- Patrik Mik
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Biomedical Center and Department of Histology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Katsiaryna Barannikava
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Polina Surkova
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
17
|
Shaaban AA, Zaghloul RA, Kafl HE, El-Kashef DH. Ameliorative effect of desloratadine against cisplatin-induced renal and testicular toxicity in rats: Attention to TLR4/NLRP3 inflammasome signaling pathway. Life Sci 2023; 316:121441. [PMID: 36709911 DOI: 10.1016/j.lfs.2023.121441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
Cisplatin (CIS) is a potent anticancer drug that is used in the treatment of different types of cancer. Owing to its serious side effects, its clinical use is considerably limited. AIMS This study was mapped to investigate the potential effects of desloratadine (DES) against CIS-induced nephrotoxicity and testicular injury. MAIN METHODS DES (5 and 10 mg/kg) was orally administered for 10 days, and CIS was injected once (10 mg/kg, i.p.) in adult male rats on day 9 to induce both renal and testicular toxicity. KEY FINDINGS DES significantly attenuated CIS-induced alterations in histopathology and biomarkers. DES resulted in a significant reduction in serum levels of creatinine (Cr), urea, and blood urea nitrogen (BUN), in addition to a marked decrease in urinary levels of albumin and total protein. Additionally, DES efficiently reinstated the oxidative balance by preventing the elevation of malondialdehyde (MDA) and enhancing superoxide dismutase (SOD) activity, and increasing glutathione (GSH) levels. Moreover, DES produced a profound decrease in renal and testicular levels of nucleotide-binding domain-(NOD) like receptor 3 (NLRP3), interleukin (IL)-1β, and caspase-1 when compared to the CIS group. Furthermore, DES significantly decreased CIS-induced elevation in toll-like receptor 4 (TLR4), tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-κB) levels in both renal and testicular tissues. SIGNIFICANCE DES can be used as adjuvant therapy with CIS in cancerous cases, pending further clinical studies.
Collapse
Affiliation(s)
- Ahmed A Shaaban
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, 35516, Egypt
| | - Hoda E Kafl
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
18
|
Yang J, Han F, Wu G, Dong Y, Su H, Xu J, Li J. Dysregulated B7H4/JAK2/STAT3 Pathway Involves in Hypertriglyceridemia Acute Pancreatitis and Is Attenuated by Baicalin. Dig Dis Sci 2023; 68:478-486. [PMID: 35781653 DOI: 10.1007/s10620-022-07606-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Patients with hypertriglyceridemia (HTG) are prone to develop more severe acute pancreatitis (AP). However, the specific molecular mechanism still has not been elaborated clearly, and effective drugs for treating HTG-AP are not yet readily available. Baicalin is an ingredient isolated from a natural product that with potential to attenuate inflammation and pain in AP. AIMS The aim of the present study was to explore the effect of baicalin on HTG-AP and the possible mechanism involved. METHODS A mouse model of HTG-AP was successfully established by administering Poloxamer 407 and L-arginine intraperitoneally. We analyzed pathological changes, and performed TUNEL staining, DHE staining, and western blot to detect apoptosis, inflammation, oxidative stress, and B7H4/JAK2/STAT3 signaling in the pancreas. RESULTS Treatment with baicalin decreased serum triglyceride, cholesterol, lipase, amylase levels, and attenuated pancreatic edema. After intervention with baicalin, apoptosis and inflammation in HTG-AP mice were alleviated, as indicated by the decrease of Bax, cleaved-caspase-3, IL-6, TNF-α, and IL-1β. Baicalin also alleviated oxidative stress by decreasing NOX2, increasing SOD2 protein expression, and regulating Nrf2/Keap1 signaling in HTG-AP mice. Furthermore, baicalin decreased the upregulated B7H4/JAK2/STAT3 pathway in HTG-AP. CONCLUSIONS In conclusion, our data suggested that baicalin could attenuate HTG-AP, possibly through regulating B7H4/JAK2/STAT3 signaling.
Collapse
Affiliation(s)
- Jie Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Fei Han
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Guanghai Wu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Ya Dong
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Hang Su
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
| | - Jing Xu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Jun Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
19
|
Eraky SM, El-Kashef DH, El-Sherbiny M, Abo El-Magd NF. Naringenin mitigates thioacetamide-induced hepatic encephalopathy in rats: targeting the JNK/Bax/caspase-8 apoptotic pathway. Food Funct 2023; 14:1248-1258. [PMID: 36625308 DOI: 10.1039/d2fo03470k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hepatic encephalopathy (HE) is a serious neurological disorder which is related to liver dysfunction. HE was induced by thioacetamide (TAA) injection (350 mg kg-1, i.p.) for 3 consecutive days. This study was performed to investigate the prophylactic impact of naringenin against TAA-induced HE. Naringenin (100 mg kg-1) was orally administered for 7 days starting 4 days prior to TAA injection. Naringenin effectively mitigated TAA-induced behavioural, structural and functional alterations. Naringenin ameliorated TAA-induced cognitive impairment as evidenced by the increase in the fall-off time in the rotarod test, decrease in the escape latency in the Morris water maze test and increase in the time spent in the center and in the number of rearing in the open field test. Additionally, naringenin significantly decreased the serum levels of transaminases, alkaline phosphatase, gamma-glutamyl transferase, bile and ammonia. Moreover, naringenin succeeded in reducing the levels of hepatic and cerebral c-Jun N-terminal kinases (JNK) as well as hepatic SORT1 levels. In addition, naringenin successfully elevated the levels of hepatic and cerebral pro-brain-derived neurotrophic factor (pro-BDNF) and BDNF in addition to the cerebral SORT1 level. Finally, naringenin markedly decreased the expression of Bax and caspase-8 as presented by the immunohistochemical results. Collectively, the ameliorative effect of naringenin on the development of HE might be attributed to the modulation of the JNK/Bax/caspase-8 apoptotic pathway.
Collapse
Affiliation(s)
- Salma M Eraky
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia. .,Department of Anatomy, Faculty of Medicine, Mansoura, Egypt
| | - Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
20
|
Zhang G, Zhao X, Cai J, Li S, Li X, Li W, Shi P, Liu D, Zheng D, Zhang T, Feng R, Liu H. XCHT alleviates the pancreatic fibrosis via VDR/NLRP3 signaling pathway in a mouse model of CP. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115689. [PMID: 36096349 DOI: 10.1016/j.jep.2022.115689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiao Chai Hu Tang (XCHT) derived from the classic medical book Shang Han Lun (Treatise on Febrile Diseases) in the Eastern Han Dynasty, which has been widely used in China and other Asian countries for the treatment of inflammation and fibrosis of chronic pancreatitis (CP), but the therapeutic mechanism of XCHT in pancreatic fibrosis remains unclear. AIM OF THE STUDY This study aimed to evaluate the intervention effects and explore pharmacological mechanism of XCHT on inflammation and fibrosis in cerulein-induced CP model. MATERIALS AND METHODS Fifty male C57BL/6 mice were randomly divided into five main groups, 10 animals in each: Control, CP model (50 μg/kg cerulein), high dose XCHT-treated CP group (60 g/kg XCHT), medium dose XCHT-treated CP group (30 g/kg XCHT) and low dose XCHT-treated CP group (15 g/kg XCHT). Different doses of XCHT were given to mice by gavage twice a day for 2 weeks after the CP model induction. Pancreatic tissues were harvested and the pancreatic inflammation and fibrosis were evaluated by histological score, Sirius red staining, and alpha-smooth muscle actin (α-SMA) immunohistochemical staining. ELISA, IHC and RT-qPCR were performed to detect the expression of Vitamin D3 (VD3) and Vitamin D receptor (VDR) in serum and pancreatic tissues, respectively. The expressions of NLRP3 inflammasome related genes and molecules were assayed by WB, IHC and RT-qPCR. RESULTS The pathohistological results demonstrated that XCHT markedly inhibited the fibrosis and chronic inflammation of cerulein-induced CP, indicated by reduction of collagen I, collagen III, α-SMA, and NLRP3 expressions. XCHT significantly increased VD3 and VDR expression while reduced the pancreatic NLRP3 expression. Correspondingly, XCHT decreased the levels of NLRP3 downstream targets IL-1β, TNF-α and IL-6. CONCLUSIONS These results revealed that XCHT suppressed the pancreatic fibrosis and chronic inflammation in cerulein-induced CP model by enhancing the VD3/VDR expression and inhibiting the secretion of NLRP3-assoicated inflammatory factors.
Collapse
Affiliation(s)
- Guixian Zhang
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China
| | - Xiumei Zhao
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China
| | - Jun Cai
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China
| | - Sainan Li
- Graduate School of Tianjin Medical University, Tianjin, 300070, China
| | - Xijing Li
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China
| | - Wenchang Li
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China
| | - Pengcheng Shi
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China
| | - Dawei Liu
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China
| | - Duo Zheng
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China
| | - Ting Zhang
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China
| | - Renrui Feng
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China
| | - Hongbin Liu
- Department of Cancer Pharmacology, Tianjin Institute of Medical and Pharmaceutical Sciences, Tianjin Medicine and Health Research Center, Duolun Rd, Tianjin, 300020, China.
| |
Collapse
|
21
|
Gong L, Zhou H, Zhang S, Wang C, Fu K, Ma C, Zhang Y, Peng C, Li Y. CD44-Targeting Drug Delivery System of Exosomes Loading Forsythiaside A Combats Liver Fibrosis via Regulating NLRP3-Mediated Pyroptosis. Adv Healthc Mater 2023; 12:e2202228. [PMID: 36603210 DOI: 10.1002/adhm.202202228] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/26/2022] [Indexed: 01/06/2023]
Abstract
Liver fibrosis is a progressive pathological process induced by various stimuli and may progress to liver cirrhosis and cancer. Forsythiaside A (FA) is an active ingredient extracted from traditional Chinese medicine Forsythiae Fructus and has prominent hepatoprotective activities. However, the unsatisfactory pharmacokinetic properties restrict its clinical application. In this study, the nanocarrier of CD44-specific ligand Hyaluronic acid (HA)-modified milk-derived exosomes (mExo) encapsulated with FA (HA-mExo-FA) is developed. As a result, HA modification could deliver drug-loaded exosomes to the target cells and form a specific ligand-receptor interaction with CD44, thus improving the anti-liver fibrosis effect of FA. In vitro findings indicate that HA-mExo-FA could inhibit TGF-β1-induced LX2 cell proliferation, reduce α-SMA and collagen gene and protein levels, and promote the apoptosis of activated LX2 cells. In vivo results demonstrate that HA-mExo-FA could improve liver morphology and function changes in zebrafish larvae. The anti-liver fibrosis mechanism of HA-mExo-FA may be attributed to the inhibition of NLRP3-mediated pyroptosis. In addition, the effect of HA-mExo-FA on TAA-induced increase in NLRP3 production is attenuated by NLRP3 inhibitor MCC950. Collectively, this study demonstrates the promising application of HA-mExo-FA in drug delivery with high specificity and provides a powerful and novel delivery platform for liver fibrosis therapy.
Collapse
Affiliation(s)
- Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shenglin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
22
|
Potential Therapeutic Implication of Herbal Medicine in Mitochondria-Mediated Oxidative Stress-Related Liver Diseases. Antioxidants (Basel) 2022; 11:antiox11102041. [PMID: 36290765 PMCID: PMC9598588 DOI: 10.3390/antiox11102041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022] Open
Abstract
Mitochondria are double-membrane organelles that play a role in ATP synthesis, calcium homeostasis, oxidation-reduction status, apoptosis, and inflammation. Several human disorders have been linked to mitochondrial dysfunction. It has been found that traditional therapeutic herbs are effective on alcoholic liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD) which are leading causes of liver cirrhosis and hepatocellular carcinoma. The generation of reactive oxygen species (ROS) in response to oxidative stress is caused by mitochondrial dysfunction and is considered critical for treatment. The role of oxidative stress, lipid toxicity, and inflammation in NAFLD are well known. NAFLD is a chronic liver disease that commonly progresses to cirrhosis and chronic liver disease, and people with obesity, insulin resistance, diabetes, hyperlipidemia, and hypertension are at a higher risk of developing NAFLD. NAFLD is associated with a number of pathological factors, including insulin resistance, lipid metabolic dysfunction, oxidative stress, inflammation, apoptosis, and fibrosis. As a result, the improvement in steatosis and inflammation is enough to entice researchers to look into liver disease treatment. However, antioxidant treatment has not been very effective for liver disease. Additionally, it has been suggested that the beneficial effects of herbal medicines on immunity and inflammation are governed by various mechanisms for lipid metabolism and inflammation control. This review provided a summary of research on herbal medicines for the therapeutic implementation of mitochondria-mediated ROS production in liver disease as well as clinical applications through herbal medicine. In addition, the pathophysiology of common liver disorders such as ALD and NAFLD would be investigated in the role that mitochondria play in the process to open new therapeutic avenues in the management of patients with liver disease.
Collapse
|
23
|
Zaghloul RA, Abdelghany AM, Samra YA. Rutin and selenium nanoparticles protected against STZ-induced diabetic nephropathy in rats through downregulating Jak-2/Stat3 pathway and upregulating Nrf-2/HO-1 pathway. Eur J Pharmacol 2022; 933:175289. [PMID: 36122758 DOI: 10.1016/j.ejphar.2022.175289] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022]
Abstract
Diabetic nephropathy (DN) is a renal complication of diabetic hyperglycemia. The Signal transducer and activator of transcription 3 (Stat3) is a center molecule of the chronic inflammation causing DN progression. Therefore, the study investigated the possible inhibitory effects of Rutin (Ru) and Selenium (Se), formulated as nanoparticles (SeNPs), on Stat3 pathway in streptozotocin (STZ)-induced DN in Sprague-Dawley rats. Ru (100 mg/kg/orally) and SeNPs (equivalent to 5 mg of Se/kg/orally) were given as treatment for eight weeks. An assessment of fasting blood glucose, renal function biomarkers, GSH, and MDA was carried out spectrophotometrically. ELISA assessment of renal IL-6, NF-κB, TNF-α, Jak-2, and p-Stat3 was performed. Sirt-1, Nrf-2, and HO-1 were assessed immunohistochemically. DN group receiving Ru + SeNPs showed a decrease in fasting blood glucose, serum creatinine, and urea (163.8 ± 22.8, 0.54 ± 0.1, and 53.6 ± 25.7 mg/dl, respectively), compared to the DN group (443.8 ± 42.72, 1.58 ± 0.4, and 281.8 ± 47.35 mg/dl, respectively). In addition, it exhibited elevation in the levels of Sirt-1, Nrf-2 and HO-1 compared to the DN group. Finally, Ru + SeNPs exhibited a significant reduction in IL-6, NF-κB, TNF-α, Jak-2, and p-Stat3 (42.8 ± 10.3, 1.2 ± 0.1, 53.4 ± 3.87, 0.8 ± 0.06 and 1.1 ± 0.2 U/g tissue, respectively) when compared to the DN group (155.3 ± 13.97, 2.8 ± 0.3, 105.5 ± 32.84, 2.03 ± 0.2 and 2.56 ± 0.15 U/g tissue, respectively). Therefore, combining Ru with SeNPs has a potential renoprotective effect against DN by upregulating Nrf-2/HO-1 and downregulating Jak-2/Stat3 Pathways.
Collapse
Affiliation(s)
- Randa A Zaghloul
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Amr M Abdelghany
- Spectroscopy Department, Physics Research Institute, National Research Centre, 33 Elbehouth St., Dokki, 12311, Egypt; Basic Science Department, Horus University, New Damietta, Damietta, Egypt
| | - Yara A Samra
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Biochemistry Dept., Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| |
Collapse
|
24
|
Huang YT, Liang QQ, Zhang HR, Chen SY, Xu LH, Zeng B, Xu R, Shi FL, Ouyang DY, Zha QB, He XH. Baicalin inhibits necroptosis by decreasing oligomerization of phosphorylated MLKL and mitigates caerulein-induced acute pancreatitis in mice. Int Immunopharmacol 2022; 108:108885. [PMID: 35623294 DOI: 10.1016/j.intimp.2022.108885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/05/2022]
Abstract
Necroptosis is a form of regulated necrosis mainly controlled by receptor-interacting protein kinases 3 (RIPK3) and mixed lineage kinase domain-like protein (MLKL). Necroptosis has important roles in defensing against pathogenic infections, but it is also implicated in various inflammatory diseases including pancreatitis. Baicalin, a flavonoid from Scutellaria baicalensis Georgi, has been shown to possess anti-inflammatory and anti-pyroptosis properties, yet it is unclear whether baicalin can inhibit necroptosis and confer protection against necroptosis-related diseases. Here we reported that baicalin significantly inhibited necroptosis in macrophages induced by lipopolysaccharide plus pan-caspase inhibitor (IDN-6556), or by tumor-necrosis factor-α in combination with LCL-161 (Smac mimetic) and IDN-6556 (TSI). Mechanistically, baicalin did not inhibit the phosphorylation of RIPK1, RIPK3 and MLKL, nor membrane translocation of p-MLKL, during necroptotic induction, but instead inhibited p-MLKL oligomerization that is required for executing necroptosis. As intracellular reactive oxygen species (ROS) has been reported to be involved in p-MLKL oligomerization, we assessed the effects of N-acetyl-L-cysteine (NAC), an ROS scavenger, on necroptosis and found that NAC significantly attenuated TSI-induced necroptosis and intracellular ROS production concomitantly with reduced levels of oligomerized p-MLKL, mirroring the effect of baicalin. Indeed, inhibitory effect of baicalin was associated with reduced TSI-induced superoxide (indicating mitochondrial ROS) production and increased mitochondrial membrane potential within cells during necroptosis. Besides, oral administration of baicalin significantly reduced the severity of caerulein-induced acute pancreatitis in mice, an animal model of necroptosis-related disease. Collectively, baicalin can inhibit necroptosis through attenuating p-MLKL oligomerization and confers protection against caerulein-induced pancreatitis in mice.
Collapse
Affiliation(s)
- Yuan-Ting Huang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China
| | - Qi-Qi Liang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Rui Zhang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Si-Yuan Chen
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Li-Hui Xu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bo Zeng
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rong Xu
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Fu-Li Shi
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Dong-Yun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Qing-Bing Zha
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China; Department of Fetal Medicine, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Xian-Hui He
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Department of Clinical Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan 517000, China.
| |
Collapse
|
25
|
El-Ela SRA, Zaghloul RA, Eissa LA. Promising Cardioprotective Effect of Baicalin in Doxorubicin-Induced Cardiotoxicity through Targeting TLR4/NF-κB and Wnt/β-Catenin Pathways. Nutrition 2022; 102:111732. [DOI: 10.1016/j.nut.2022.111732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 11/25/2022]
|