1
|
Paul BM, Sundararajan VV, Raj FJ, Kannan G, Durairajan MB, Thangaraj P. In silico docking, ADMET profiling, and bio-accessibility experimentation on Breynia retusa phytocompounds and in vitro validation for anti-proliferative potencies against ovarian carcinoma. 3 Biotech 2025; 15:121. [PMID: 40225420 PMCID: PMC11981996 DOI: 10.1007/s13205-025-04276-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
This study aimed to assess the medicinal properties of Breynia retusa, a plant rich in phytocompounds predominantly used as an ethnomedicinal agent in Western Ghats, which appeared to be promising for therapeutic use, especially in the treatment of ovarian cancer. Herein, its cytotoxic potential on ovarian cancer cell lines SKOV-3, neurotoxicity, antioxidant activity, and molecular docking was determined to aid in explaining the mechanisms of interactions with proteins related to ovarian cancer. B . retusa methanolic extract demonstrated exuberant antioxidant activity, with 81.91% scavenging ability of DPPH radicals and efficient reduction of phosphomolybdenum (22.98 mg ascorbic acid equivalents antioxidant capacity/g extract). The extract proved to be an important anti-inflammatory agent through membrane stabilization inhibition of 83%. The cytotoxicity study against the SKOV-3 cell line indicated an IC50 value of 34.01 µg/mL and a very negligible neurotoxicity in SH-SY5Y cell lines. The GC-MS and HPLC profiling indicated many anticancer compounds in the extract such as secalciferol, methyl gallate, ricinoleic acid, gallic acid, and naringenin. The docking study showed significant interactions of secalciferol molecules with the key ovarian cancer proteins, which include IGF1 (-6.758 kcal/mol) and c-ERBB2 (-4.281 kcal/mol). Fatty acid derivatives and methyl gallate showed efficient dock scores (< -5.0 kcal/mol) with antioxidant (catalase and superoxide dismutase) enzymes and inflammatory cytokines (IL-6 and COX-1), respectively, as evidences of antioxidant and anti-inflammatory potentials. The bio-accessibility of phenolics and their antioxidant activity ranged above 90%, indicating the promising bioavailability of phytochemicals expected in vivo. Hence the current study emphasizes the anticancer potential of B. retusa phytocompounds that appeared to interact very strongly with ovarian cancer targets and confirms the dose-dependent cytotoxic and antioxidant activities of B. retusa methanolic extract. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-025-04276-8.
Collapse
Affiliation(s)
- Benedict Mathews Paul
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Vetri Velavan Sundararajan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Francis Jegan Raj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Gowtham Kannan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Madhu Bala Durairajan
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Parimelazhagan Thangaraj
- Bioprospecting Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| |
Collapse
|
2
|
Uti DE, Atangwho IJ, Alum EU, Ntaobeten E, Obeten UN, Bawa I, Agada SA, Ukam CIO, Egbung GE. Antioxidants in cancer therapy mitigating lipid peroxidation without compromising treatment through nanotechnology. DISCOVER NANO 2025; 20:70. [PMID: 40272665 PMCID: PMC12021792 DOI: 10.1186/s11671-025-04248-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 04/03/2025] [Indexed: 04/27/2025]
Abstract
BACKGROUND Cancer treatments often exploit oxidative stress to selectively kill tumour cells by disrupting their lipid peroxidation membranes and inhibiting antioxidant enzymes. However, lipid peroxidation plays a dual role in cancer progression, acting as both a tumour promoter and a suppressor. Balancing oxidative stress through antioxidant therapy remains a challenge, as excessive antioxidant activity may compromise the efficacy of chemotherapy and radiotherapy. AIM This review explores the role of antioxidants in mitigating lipid peroxidation in cancer therapy while maintaining treatment efficacy. It highlights recent advancements in nanotechnology-based targeted antioxidant delivery to optimize therapeutic outcomes. METHODS A comprehensive literature review was conducted using reputable databases, including PubMed, Scopus, Web of Science, and ScienceDirect. The search focused on publications from the past five years (2020-2025), supplemented by relevant studies from earlier years. Keywords such as "antioxidants," "lipid peroxidation," "nanotechnology in cancer therapy," and "oxidative stress" were utilized. Relevant articles were critically analysed, and graphical illustrations were created. RESULTS Emerging evidence suggests that nanoparticles, including liposomes, polymeric nanoparticles, metal-organic frameworks, and others, can effectively encapsulate and control the release of antioxidants in tumour cells while minimizing systemic toxicity. Stimuli-responsive carriers with tumour-specific targeting mechanisms further enhance antioxidant delivery. Studies indicate that these strategies help preserve normal cells, mitigate oxidative stress-related damage, and improve treatment efficacy. However, challenges such as bioavailability, stability, and potential interactions with standard therapies remain. CONCLUSION Integrating nanotechnology with antioxidant-based interventions presents a promising approach for optimizing cancer therapy. Future research should focus on refining lipid peroxidation modulation strategies, assessing oxidative stress profiles during treatment, and employing biomarkers to determine optimal antioxidant dosing. A balanced approach to antioxidant use may enhance therapeutic efficacy while minimizing adverse effects.
Collapse
Affiliation(s)
- Daniel Ejim Uti
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda.
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria.
| | - Item Justin Atangwho
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| | - Esther Ugo Alum
- Department of Biochemistry, Research and Publications, Kampala International University, P.O. Box 20000, Kampala, Uganda
| | - Emmanuella Ntaobeten
- Department of Cancer and Haematology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Uket Nta Obeten
- Department of Chemistry/Biochemistry and Molecular Biology, Alex Ekwueme Federal University, Ndufu-Alike Ikwo, PMB 1010, Abakaliki, Ebonyi State, Nigeria
| | - Inalegwu Bawa
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | - Samuel A Agada
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Otukpo, Benue State, Nigeria
| | | | - Godwin Eneji Egbung
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar, Calabar, Nigeria
| |
Collapse
|
3
|
Kenawy ER, Tenhu H, Azaam MM, Khattab SA, Kenawy ME, Radwan AM, Abosharaf HA. Schiff bases of cellulose: Synthesis, characterization, and anticancer potency against hepatocellular carcinoma. Int J Biol Macromol 2025; 302:140506. [PMID: 39889996 DOI: 10.1016/j.ijbiomac.2025.140506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/03/2025]
Abstract
The development of innovative anticancer agents with minimal side effects is crucial. Polymeric Schiff bases have unique features that make them a promising option for therapeutic uses. They are well known for their biological properties, especially anticancer activity. Therefore, the current report describes the synthesis of Schiff bases derived from microcrystalline cellulose. Cellulose Schiff bases were synthesized through three steps. First, cellulose was periodate oxidized to produce dialdehyde cellulose (DAC). Afterwards, DAC was grafted with hyper-branched polyethylenimine (hPEI) to obtain aminated cellulose. Schiff bases were obtained by reacting hPEI-cellulose with various aldehydes. The final products were characterized by spectroscopic and thermal methods. The cellulose Schiff bases were evaluated for their anticancer activities, and it was observed that they were able to inhibit the growth of different types of cells. Importantly, one of the cellulose derivatives (SB4), which contains trimethoxy benzaldehyde moieties, was capable of inducing cell cycle arrest and apoptosis in hepatocellular carcinoma cells (Hep G2). Interestingly, SB4 could act as a pro-oxidant by inducing reactive oxygen species and oxidative stress with notable decline in the antioxidant system within Hep G2 cells. The results displayed that cellulose-based Schiff bases may offer a new strategy for liver cancer therapy.
Collapse
Affiliation(s)
- El-Refaie Kenawy
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | - Heikki Tenhu
- Department of Chemistry, University of Helsinki, PB 55, FI-00014 Helsinki, Finland
| | - Mohamed M Azaam
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Samar A Khattab
- Polymer Research Group, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt; Department of Chemistry, University of Helsinki, PB 55, FI-00014 Helsinki, Finland
| | - Marwa E Kenawy
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Aliaa M Radwan
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Hamed A Abosharaf
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
4
|
Anwar M, Rehman M, Ur-Rehman T, Khan MI, Ahmed N, Madni A, Tayyab M. Ternary lipids-based novel thermoresponsive lipid nanoparticles for targeting doxorubicin to breast cancer cells. J Pharm Sci 2025; 114:103723. [PMID: 40107421 DOI: 10.1016/j.xphs.2025.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Conventional thermoresponsive liposomes have failed to meet cancer targeting potential due to poor safety profile, unpredictable fate, and low therapeutic response in clinical studies. Recently, we reported phase-change nanostructured lipid carriers, termed thermoresponsive lipid nanoparticles (TLNs), for targeting cancer cells under hyperthermia. Herein, we have prepared ternary eutectic mixtures of myristic, stearic, and palmitic acid at a ratio of 2.5:1:1.5 yielded a melting point or solid-liquid phase transition temperature of 41°C. Doxorubicin (DOX)-loaded TLNs were fabricated and optimized using Box-Behnken Design Expert® software and exhibited desirable particle size (191.7±2.88 nm), polydispersity index (0.213±0.025), zeta-potential (-21.2±2.29 mV), spherical shape, high entrapment efficiency (92.24±1.05), and desirable physicochemical stability. In-vitro drug release studies showed hyperthermia-aided abrupt DOX release within 2 h at 41°C and 43°C while sustained drug release pattern for 12 h at 37°C. In-vitro cytotoxicity studies of TLN also exhibited the highest breast cancer (MCF-7) cells killing at hyperthermia (41°C), more than 3-fold compared to 37°C and free DOX solution. A 23-fold higher cell uptake in breast cancer cells further confirmed that ternary eutectic mixture-based DOX-loaded TLNs are an excellent candidate for breast cancer targeting and may be preferred over other nano-carriers due to the feasible preparation and superior stability.
Collapse
Affiliation(s)
- Maryam Anwar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Mubashar Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China.
| | - Tofeeq Ur-Rehman
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore 54000, Pakistan
| | - Naveed Ahmed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Tayyab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
5
|
Aly SH, Abulsoud AI, Moustafa YM, Abdel Mageed SS, Abdelmaksoud NM, El-Dakroury WA, Mohammed OA, Abdel-Reheim MA, Zaki MB, Rizk NI, Elshafei A, Elimam H, Ashraf A, Doghish AS. Harnessing natural compounds to modulate miRNAs in breast cancer therapy. Funct Integr Genomics 2024; 24:211. [PMID: 39528871 DOI: 10.1007/s10142-024-01489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/19/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Breast cancer's complexity and heterogeneity continue to present significant challenges in its treatment and management. Emerging research has underscored the pivotal role of microRNAs (miRNAs) in breast cancer pathogenesis, acting as crucial regulators of gene expression. This review delivers an in-depth analysis of miRNAs, highlighting their dual functions as both oncogenes and tumor suppressors, and detailing their impact on key biological processes, including cell proliferation, apoptosis, and metastasis. The mechanisms underlying miRNA action, particularly their interactions with target mRNAs and the factors influencing these dynamics, are thoroughly explored. Additionally, the review discusses the therapeutic prospects of miRNAs, with a focus on innovative delivery systems like nanoparticles that improve the stability and effectiveness of miRNA-based therapies. It also addresses the anticancer effects of natural compounds, such as genistein, hesperidin, quercetin, curcumin, resveratrol, epigallocatechin-3-gallate (EGCG), and glyceollins, which modulate miRNA expression and contribute to tumor growth inhibition. These advances seek to address the limitations of conventional therapies, paving the way for targeted interventions in breast cancer. By integrating current insights on miRNA biology, therapeutic strategies, and the potential of natural products to regulate miRNA expression, this review aims to shed light on miRNA- and natural product-based approaches as promising avenues for enhancing breast cancer treatment outcomes.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Nourhan M Abdelmaksoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed Elshafei
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat, Menoufia, 32897, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| |
Collapse
|
6
|
Zhou X, Zhang P, Yang Y, Shi W, Liu L, Lai Z, Zhang X, Pan P, Li L, Du J, Qian H, Cui S. Highly Potent and Intestine Specific P-Glycoprotein Inhibitor to Enable Oral Delivery of Taxol. Angew Chem Int Ed Engl 2024; 63:e202412649. [PMID: 39137118 DOI: 10.1002/anie.202412649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Taxol is widely used in cancer chemotherapy; however, the oral absorption of Taxol remains a formidable challenge. Since the intestinal p-glycoprotein (P-gp) mediated drug efflux is one of the primary causes, the development of P-gp inhibitor is emerging as a promising strategy to realize Taxol's oral delivery. Because P-gp exists in many tissues, the non-selective P-gp inhibitors would lead to toxicity. Correspondingly, a potent and intestine specific P-gp inhibitor would be an ideal solution to boost the oral absorption of Taxol and avoid exogenous toxicity. Herein, we would like to report a highly potent and intestine specific P-gp inhibitor to enable oral delivery of Taxol in high efficiency. Through a multicomponent reaction and post-modification, various benzofuran-fused-piperidine derivatives were achieved and the biological evaluation identified 16 c with potent P-gp inhibitory activity. Notably, 16 c was intestine specific and showed almost none absorption (F=0.82 %), but possessing higher efficacy than Encequidar to improve the oral absorption of Taxol. In MDA-MB-231 xenograft model, the oral administration of Taxol and 16 c showed high therapeutic efficiency and low toxicity, thus providing a valuable chemotherapy strategy.
Collapse
MESH Headings
- Paclitaxel/administration & dosage
- Paclitaxel/chemistry
- Paclitaxel/pharmacology
- Paclitaxel/pharmacokinetics
- Humans
- Administration, Oral
- Animals
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Mice
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacokinetics
- Cell Line, Tumor
- Molecular Structure
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xianjing Zhou
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Ping Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Yuyan Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Lei Liu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zhencheng Lai
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Xing Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Peichen Pan
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lan Li
- Department of Gastroenterology, T, he First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Du
- Department of Gastroenterology, T, he First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, China Pharmaceutical University, 24 Tongjiaxiang Road, Nanjing, 210009, China
| | - Sunliang Cui
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| |
Collapse
|
7
|
Kul Köprülü T, Balkan J, Gezer B, Erkal Çam B. Glycolytic pathway analysis and gene expression profiles of combination of aloe vera and paclitaxel on non-small cell lung cancer and breast cancer. Med Oncol 2024; 41:277. [PMID: 39400682 DOI: 10.1007/s12032-024-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024]
Abstract
The purpose of this study is to enhance the effectiveness of known anticancer medications using natural compounds. The study investigated the impact of combining AVE with PAX on non-small cell lung cancer (A549) and breast cancer (MCF7). In this study, A549 and MCF7 cells were treated with PAX (5 μM), AVE (24 μg/mL), and a combination of PAX and AVE (5 μM + 24 μg/mL). The glucose consumption rates of the cells were determined by extracellular acidification rate (ECAR) thanks to the SeaHorse XFe24 instrument. In addition, gene expression profiles were determined by performing Total RNA sequencing with the Novaseq 6000 instrument. Finally, the expressions of GAPDH, BAX, and BCL-2 genes involved in the apoptotic pathway were detected by RT-qPCR. The combined application of PAX and AVE reduced the ECAR value in both cell lines. According to the RT-qPCR results, the expression level of the apoptotic gene BAX increased in both cell lines (p < 0.05). Total RNA sequencing revealed that the combination effects of PAX and AVE play a role in the ribosome mechanism, thereby affecting the protein translation system in MCF7 while apoptosis and cell cycle have come to the forefront in A549.
Collapse
Affiliation(s)
- Tuğba Kul Köprülü
- Experimental Medicine Application and Research Center, Validebağ Research Park, University of Health Sciences, Altunizade, Kalfaçeşme Street, Üsküdar, 34622, Istanbul, Turkey.
- Division of Medical Laboratory Techniques, Department of Medical Services and Techniques, University of Health Sciences, Istanbul, Turkey.
| | - Jülide Balkan
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, 34622, Istanbul, Turkey
| | - Bahar Gezer
- Department of Molecular Medicine, Hamidiye Institute of Health Sciences, University of Health Sciences, 34622, Istanbul, Turkey
| | - Burçin Erkal Çam
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Yıldız Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
8
|
Ghoushi E, Poudineh M, Parsamanesh N, Jamialahmadi T, Sahebkar A. Curcumin as a regulator of Th17 cells: Unveiling the mechanisms. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 8:100198. [PMID: 38525269 PMCID: PMC10959653 DOI: 10.1016/j.fochms.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Curcumin, a polyphenol natural product derived from turmeric, possesses diverse pharmacological effects due to its interactions with various cells and molecules. Recent studies have highlighted its immunomodulatory properties, including its impact on immune cells and mediators involved in immune responses. Th17 cells play a crucial role in promoting immune responses against extracellular pathogens by recruiting neutrophils and inducing inflammation. These cells produce inflammatory cytokines such as TNF-α, IL-21, IL-17A, IL-23, IL-17F, IL-22, and IL-26. Curcumin has been shown to significantly inhibit the proliferation of Th17 cells and reduce the production of inflammatory cytokines, including TNF-α, IL-22, and IL-17. This review aims to assess the effectiveness of curcumin and its underlying mechanisms in modulating Th17 cells.
Collapse
Affiliation(s)
- Ehsan Ghoushi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Liu Y, Li Y, Shen W, Li M, Wang W, Jin X. Trend of albumin nanoparticles in oncology: a bibliometric analysis of research progress and prospects. Front Pharmacol 2024; 15:1409163. [PMID: 39070787 PMCID: PMC11272567 DOI: 10.3389/fphar.2024.1409163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Background Delivery systems based on albumin nanoparticles (NPs) have recently garnered substantial interest in anti-tumor drug development. However, systematic bibliometric analyses in this field remain lacking. This study aimed to analyze the current research status, hotspots, and frontiers in the application of albumin NPs in the field of oncology from a bibliometric perspective. Methods Using the Web of Science Core Collection (WOSCC) as the data source, retrieved articles were analyzed using software, such as VOSviewer 1.6.18 and CiteSpace 6.1.6, and the relevant visualization maps were plotted. Results From 1 January 2000, to 15 April 2024, 2,262 institutions from 67 countries/regions published 1,624 articles related to the application of albumin NPs in the field of oncology. The USA was a leader in this field and held a formidable academic reputation. The most productive institution was the Chinese Academy of Sciences. The most productive author was Youn YS, whereas Kratz F was the most frequently co-cited author. The most productive journal was the International Journal of Nanomedicine, whereas the Journal of Controlled Release was the most co-cited journal. Future research hotspots and frontiers included "rapid and convenient synthesis methods predominated by self-assembly," "surface modification," "construction of multifunctional NPs for theranostics," "research on natural active ingredients mainly based on phenolic compounds," "combination therapy," and "clinical applications." Conclusion Based on our bibliometric analysis and summary, we obtained an overview of the research on albumin NPs in the field of oncology, identified the most influential countries, institutions, authors, journals, and citations, and discussed the current research hotspots and frontiers in this field. Our study may serve as an important reference for future research in this field.
Collapse
Affiliation(s)
- Ye Liu
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yi Li
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Wei Shen
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Min Li
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Wen Wang
- Department of Rheumatology and Immunology, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
| | - Xin Jin
- Department of Pharmacy, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, China
- Department of Pharmaceutics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Mao X, Wu S, Huang D, Li C. Complications and comorbidities associated with antineoplastic chemotherapy: Rethinking drug design and delivery for anticancer therapy. Acta Pharm Sin B 2024; 14:2901-2926. [PMID: 39027258 PMCID: PMC11252465 DOI: 10.1016/j.apsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 07/20/2024] Open
Abstract
Despite the considerable advancements in chemotherapy as a cornerstone modality in cancer treatment, the prevalence of complications and pre-existing diseases is on the rise among cancer patients along with prolonged survival and aging population. The relationships between these disorders and cancer are intricate, bearing significant influence on the survival and quality of life of individuals with cancer and presenting challenges for the prognosis and outcomes of malignancies. Herein, we review the prevailing complications and comorbidities that often accompany chemotherapy and summarize the lessons to learn from inadequate research and management of this scenario, with an emphasis on possible strategies for reducing potential complications and alleviating comorbidities, as well as an overview of current preclinical cancer models and practical advice for establishing bio-faithful preclinical models in such complex context.
Collapse
Affiliation(s)
- Xiaoman Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Medical Research Institute, Southwest University, Chongqing 400715, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
11
|
Bangay G, Brauning FZ, Rosatella A, Díaz-Lanza AM, Domínguez-Martín EM, Goncalves B, Hussein AA, Efferth T, Rijo P. Anticancer diterpenes of African natural products: Mechanistic pathways and preclinical developments. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155634. [PMID: 38718637 DOI: 10.1016/j.phymed.2024.155634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND The African continent is home to five biodiversity hotspots, boasting an immense wealth of medicinal flora, fungi and marine life. Diterpenes extracted from such natural products have compelling cytotoxic activities that warrant further exploration for the drug market, particularly in cancer therapy, where mortality rates remain elevated worldwide. PURPOSE To demonstrate the potential of African natural products on the global stage for cancer therapy development and provide an in-depth analysis of the current literature on the activity of cancer cytotoxic diterpenes from African natural sources (to our knowledge, the first of its kind); not only to reveal the most promising candidates for clinical development, but to demonstrate the importance of preserving the threatened ecosystems of Africa. METHODS A comprehensive search by means of the PRISMA strategy was conducted using electronic databases, namely Web of Science, PubMed, Google Scholar and ScienceDirect. The search terms employed were 'diterpene & mechanism & cancer' and 'diterpene & clinical & cancer'. The selection process involved assessing titles in English, Portuguese and Spanish, adhering to predefined eligibility criteria. The timeframe for inclusion spanned from 2010 to 2023, resulting in 218 relevant papers. Chemical structures were visualized using ChemDraw 21.0, PubChem was utilized to search for CID numbers. RESULTS Despite being one of the richest biodiverse zones in the world, African natural products are proportionally underreported compared to Asian countries or otherwise. The diterpenes andrographolide (Andrographis paniculata), forskolin (Coleus forskohlii), ent-kauranes from Isodon spp., euphosorophane A (Euphorbia sororia), cafestol & kahweol (Coffea spp.), macrocylic jolkinol D derivatives (Euphorbia piscatoria) and cyathane erinacine A (Hericium erinaceus) illustrated the most encouraging data for further cancer therapy exploration and development. CONCLUSIONS Diterpenes from African natural products have the potential to be economically significant active pharmaceutical and medicinal ingredients, specifically focussed on anticancer therapeutics.
Collapse
Affiliation(s)
- Gabrielle Bangay
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Florencia Z Brauning
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Andreia Rosatella
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Ana María Díaz-Lanza
- Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Eva María Domínguez-Martín
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Universidad de Alcalá de Henares. Facultad de Farmacia, Departamento de Ciencias Biomédicas (Área de Farmacología; Nuevos agentes antitumorales, Acción tóxica sobre células leucémicas). Ctra. Madrid-Barcelona km. 33,600 28805 Alcalá de Henares, Madrid, España
| | - Bruno Goncalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ahmed A Hussein
- Chemistry Department, Cape Peninsula University of Technology, Symphony Rd., Bellville 7535, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Patricia Rijo
- Center for Research in Biosciences & Health Technologies (CBIOS), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal; Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
12
|
Chen Q, Jiang Y, Yuan L, Liu L, Zhu X, Chen R, Wang Z, Wu K, Luo H, Ouyang Q. Preparation, Characterization, and Antioxidant Properties of Self-Assembled Nanomicelles of Curcumin-Loaded Amphiphilic Modified Chitosan. Molecules 2024; 29:2693. [PMID: 38893567 PMCID: PMC11173681 DOI: 10.3390/molecules29112693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/11/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Curcumin (Cur) is a phytochemical with various beneficial properties, including antioxidant, anti-inflammatory, and anticancer activities. However, its hydrophobicity, poor bioavailability, and stability limit its application in many biological approaches. In this study, a novel amphiphilic chitosan wall material was synthesized. The process was carried out via grafting chitosan with succinic anhydride (SA) as a hydrophilic group and deoxycholic acid (DA) as a hydrophobic group; 1H-NMR, FTIR, and XRD were employed to characterize the amphiphilic chitosan (CS-SA-DA). Using a low-cost, inorganic solvent-based procedure, CS-SA-DA was self-assembled to load Cur nanomicelles. This amphiphilic polymer formed self-assembled micelles with a core-shell structure and a critical micelle concentration (CMC) of 0.093 mg·mL-1. Cur-loaded nanomicelles were prepared by self-assembly and characterized by the Nano Particle Size Potential Analyzer and transmission electron microscopy (TEM). The mean particle size of the spherical Cur-loaded micelles was 770 nm. The drug entrapment efficiency and loading capacities were up to 80.80 ± 0.99% and 19.02 ± 0.46%, respectively. The in vitro release profiles of curcumin from micelles showed a constant release of the active drug molecule. Cytotoxicity studies and toxicity tests for zebrafish exhibited the comparable efficacy and safety of this delivery system. Moreover, the results showed that the entrapment of curcumin in micelles improves its stability, antioxidant, and anti-inflammatory activity.
Collapse
Affiliation(s)
- Qizhou Chen
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Yuwei Jiang
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Linlan Yuan
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Lifen Liu
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Xufeng Zhu
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Rimeng Chen
- Zhanjiang Institute for Drug Control, Zhanjiang 524023, China
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524023, China
| | - Kefeng Wu
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Hui Luo
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
| | - Qianqian Ouyang
- School of Ocean and Tropical Medicine, Research Center of Nano Technology and Application Engineering, Guangdong Medical University, Zhanjiang 524023, China; (Q.C.); (L.Y.); (X.Z.); (K.W.); (H.L.)
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524023, China
| |
Collapse
|
13
|
Kakoti BB, Alom S, Deka K, Halder RK. AMPK pathway: an emerging target to control diabetes mellitus and its related complications. J Diabetes Metab Disord 2024; 23:441-459. [PMID: 38932895 PMCID: PMC11196491 DOI: 10.1007/s40200-024-01420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/07/2024] [Indexed: 06/28/2024]
Abstract
Purpose In this extensive review work, the important role of AMP-activated protein kinase (AMPK) in causing of diabetes mellitus has been highlighted. Structural feature of AMPK as well its regulations and roles are described nicely, and the association of AMPK with the diabetic complications like nephropathy, neuropathy and retinopathy are also explained along with the connection between AMPK and β-cell function, insulin resistivity, mTOR, protein metabolism, autophagy and mitophagy and effect on protein and lipid metabolism. Methods Published journals were searched on the database like PubMed, Medline, Scopus and Web of Science by using keywords such as AMPK, diabetes mellitus, regulation of AMPK, complications of diabetes mellitus, autophagy, apoptosis etc. Result After extensive review, it has been found that, kinase enzyme like AMPK is having vital role in management of type II diabetes mellitus. AMPK involve in enhance the concentration of glucose transporter like GLUT 1 and GLUT 4 which result in lowering of blood glucose level in influx of blood glucose into the cells; AMPK increases the insulin sensitivity and decreases the insulin resistance and further AMPK decreases the apoptosis of β-cells which result into secretion of insulin and AMPK is also involve in declining of oxidative stress, lipotoxicity and inflammation, owing to which organ damage due to diabetes mellitus can be lowered by activation of AMPK. Conclusion As AMPK activation leads to overall control of diabetes mellitus, designing and developing of small molecules or peptide that can act as AMPK agonist will be highly beneficial for control or manage diabetes mellitus.
Collapse
Affiliation(s)
- Bibhuti B. Kakoti
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
| | - Shahnaz Alom
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacology, Girijananda Chowdhury Institute of Pharmaceutical Sciences, Girijananda Chowdhury University- Tezpur campus, 784501 Sonitpur, Assam India
| | - Kangkan Deka
- Department of Pharmaceutical Sciences, Dibrugarh University, 786004 Dibrugarh, Assam India
- Department of Pharmacognosy, NETES Institute of Pharmaceutical Science, NEMCARE Group of Institutions, 781125 Mirza, Kamrup, Assam India
| | - Raj Kumar Halder
- Ruhvenile Biomedical, Plot -8 OCF Pocket Institution, Sarita Vihar, 110076 Delhi, India
| |
Collapse
|
14
|
Wei X, Wang F, Tan P, Huang H, Wang Z, Xie J, Wang L, Liu D, Hu Z. The interactions between traditional Chinese medicine and gut microbiota in cancers: Current status and future perspectives. Pharmacol Res 2024; 203:107148. [PMID: 38522760 DOI: 10.1016/j.phrs.2024.107148] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
The gut microbiota, known as the "forgotten organ" and "human second genome," comprises a complex microecosystem. It significantly influences the development of various tumors, including colorectal, liver, stomach, breast, and lung cancers, through both direct and indirect mechanisms. These mechanisms include the "gut-liver" axis, the "lung-intestine" axis, and interactions with the immune system. The intestinal flora exhibits dual roles in cancer, both promoting and suppressing its progression. Traditional Chinese medicine (TCM) can alter cancer progression by regulating the intestinal flora. It modifies the intestinal flora's composition and structure, along with the levels of endogenous metabolites, thus affecting the intestinal barrier, immune system, and overall body metabolism. These actions contribute to TCM's significant antitumor effects. Moreover, the gut microbiota metabolizes TCM components, enhancing their antitumor properties. Therefore, exploring the interaction between TCM and the intestinal flora offers a novel perspective in understanding TCM's antitumor mechanisms. This paper succinctly reviews the association between gut flora and the development of tumors, including colorectal, liver, gastric, breast, and lung cancers. It further examines current research on the interaction between TCM and intestinal flora, with a focus on its antitumor efficacy. It identifies limitations in existing studies and suggests recommendations, providing insights into antitumor drug research and exploring TCM's antitumor effectiveness. Additionally, this paper aims to guide future research on TCM and the gut microbiota in antitumor studies.
Collapse
Affiliation(s)
- Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
15
|
Hasibuan PAZ, Keliat JM, Lubis MF, Nasution A. The ethyl acetate extract of Vernonia amygdalina leaf ameliorates gemcitabine effect against migration and invasion of PANC-1 cells via down-regulation the VEGF, COX 2, and RAS/MEK pathways. Saudi Pharm J 2024; 32:101872. [PMID: 38111670 PMCID: PMC10727942 DOI: 10.1016/j.jsps.2023.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/12/2023] [Indexed: 12/20/2023] Open
Abstract
Individuals diagnosed with cancer often turn to the use of herbal remedies with the intention of treating and ameliorating the condition, impeding the progression of metastasis, enhancing immune function, mitigating stress, and inducing relaxation. Recently, medicinal plants were combined with conventional chemotherapy to decrease the side effects and increase the effectiveness of chemotherapy. This study showed the effectiveness of gemcitabine (Gem) was significantly increased after being used together with ethyl acetate extract obtained from Vernonia amygdalina (Eav) leaves. The combination doses of Eav and Gem were determined based on cytotoxic activity using the MTT assay method. The anticancer effect of this combination was identified by several parameters including the apoptosis effect, anti-migration, and anti-invasion activities of PANC-1 cells. Furthermore, this effect was explained via protein expression evaluation using immunohistochemical and flow cytometry. The Eav has a better Inhibitory Concentration 50 (IC50) than Gem of 21.19 ± 0.64 µg/mL and 164.78 ± 1.40 µg/mL. The combination of Eav and Gem at IC50 (1:1) has the strongest activity than Eav and Gem alone at 500.00 µg/mL. The anti-cancer effect of this combination showed significantly increased levels of apoptosis, particularly in the early phase of 17.46 ± 0.35 % (p < 0.0001) than Eav and Gem alone of 7.76 ± 0.25 % and 7.06 ± 0.20 %. A similar impact was evaluated in the migration and invasion of PANC-1 cells after the combination treatment. The % relative migration and cell invasion were significantly decreased compared to the control group and Eav or Gem alone by 21.49 ± 0.96 % and 125.25 ± 5.25 cells, respectively (p < 0.0001). This study found that signature molecules of VEGF, COX2, RAS, and MEK were down-regulated after treatment. Our study suggested that the Eav ameliorates the Gem effect against PANC-1 cells through apoptosis, migration, and invasion influence via RAS/MEK pathways.
Collapse
Affiliation(s)
| | - Jane Melita Keliat
- Department of Pharmaceutical and Food Analysis, Faculty of Vocational, Universitas Sumatera Utara, Indonesia
| | - Muhammad Fauzan Lubis
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Indonesia
| | - Annisa Nasution
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Indonesia
| |
Collapse
|
16
|
Zhu T, Liang D, Zhang Q, Sun W, Shen X. Curcumin-encapsulated fish gelatin-based microparticles from microfluidic electrospray for postoperative gastric cancer treatment. Int J Biol Macromol 2024; 254:127763. [PMID: 37924901 DOI: 10.1016/j.ijbiomac.2023.127763] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Gastric cancer is the fifth most frequently diagnosed malignant neoplasm and the third leading cause of cancer-related mortality. Nevertheless, the therapeutic efficacy of conventional surgical and chemotherapeutic interventions in clinical practice is often unsatisfactory. Curcumin (Cur) has shown promise as a therapeutic agent in prior studies. However, its progress in this context has been impeded by challenges including low solubility, instability in aqueous environments, and rapid metabolism. In this study, we develop methacrylate fish gelatin (FGMA) hydrogel microparticles (FGMPs@Cur) encapsulating Cur via microfluidic electrospray technology for postoperative comprehensive treatment of gastric cancer. Comprehensive characterizations and analyses were conducted to assess the cytotoxicity against gastric cancer cells and potential tissue reparative effects of FGMPs@Cur. In vitro experiments revealed that FGMPs@Cur exhibited a remarkable cytotoxic effect on nearly 80 % of gastric cancer cells while maintaining at least 95 % viability of normal cells in cell compatibility tests. In vivo results demonstrated that FGMPs@Cur significantly reduced tumor volume to 47 % of the control group, and notable tissue regeneration was observed at the surgical site. These properties indicated that such a hydrogel microparticle system is a promising candidate for postoperative gastric cancer treatment in practical application.
Collapse
Affiliation(s)
- Tianru Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Danna Liang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Qingfei Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China.
| | - Weijian Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical Uiversity, Wenzhou 325035, China.
| |
Collapse
|
17
|
Bapat RA, Bedia SV, Bedia AS, Yang HJ, Dharmadhikari S, Abdulla AM, Chaubal TV, Bapat PR, Abullais SS, Wahab S, Kesharwani P. Current appraises of therapeutic applications of nanocurcumin: A novel drug delivery approach for biomaterials in dentistry. ENVIRONMENTAL RESEARCH 2023; 238:116971. [PMID: 37717805 DOI: 10.1016/j.envres.2023.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Curcumin is a natural herb and polyphenol that is obtained from the medicinal plant Curcuma longa. It's anti-bacterial, anti-inflammatory, anti-cancer, anti-mutagenic, antioxidant and antifungal properties can be leveraged to treat a myriad of oral and systemic diseases. However, natural curcumin has weak solubility, limited bioavailability and undergoes rapid degradation, which severely limits its therapeutic potential. To overcome these drawbacks, nanocurcumin (nCur) formulations have been developed for improved biomaterial delivery and enhanced treatment outcomes. This novel biomaterial holds tremendous promise for the treatment of various oral diseases, the majority of which are caused by dental biofilm. These include dental caries, periodontal disease, root canal infection and peri-implant diseases, as well as other non-biofilm mediated oral diseases such as oral cancer and oral lichen planus. A number of in-vitro studies have demonstrated the antibacterial efficacy of nCur in various formulations against common oral pathogens such as S. mutans, P. gingivalis and E. faecalis, which are strongly associated with dental caries, periodontitis and root canal infection, respectively. In addition, some clinical studies were suggestive of the notion that nCur can indeed enhance the clinical outcomes of oral diseases such as periodontitis and oral lichen planus, but the level of evidence was very low due to the small number of studies and the methodological limitations of the available studies. The versatility of nCur to treat a diverse range of oral diseases augurs well for its future in dentistry, as reflected by rapid pace in which studies pertaining to this topic are published in the scientific literature. In order to keep abreast of the latest development of nCur in dentistry, this narrative review was undertaken. The aim of this narrative review is to provide a contemporaneous update of the chemistry, properties, mechanism of action, and scientific evidence behind the usage of nCur in dentistry.
Collapse
Affiliation(s)
- Ranjeet A Bapat
- Division of Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, 57000, Malaysia
| | - Sumit V Bedia
- Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital Navi Mumbai, Maharashtra, 400614, India
| | - Aarti S Bedia
- Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital Navi Mumbai, Maharashtra, 400614, India
| | - Ho Jan Yang
- Oral Health Division, Ministry of Health, Malaysia
| | - Suyog Dharmadhikari
- D Y Patil Deemed to Be University School of Dentistry, Nerul, Navi-mumbai, 400706, India
| | - Anshad Mohamed Abdulla
- Department of Pediatric dentistry and Orthodontic Sciences, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Tanay V Chaubal
- Division of Restorative Dentistry, School of Dentistry, International Medical University, Kuala Lumpur, 57000, Malaysia
| | | | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 61421, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
18
|
Gao G, Zhou W, Jiang X, Ma J. Bovine serum albumin and folic acid-modified aurum nanoparticles loaded with paclitaxel and curcumin enhance radiotherapy sensitization for esophageal cancer. Int J Radiat Biol 2023; 100:411-419. [PMID: 37934908 DOI: 10.1080/09553002.2023.2281524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Nanocarrier systems have been used in the study of esophageal cancer (EC) and other diseases, with significant advantages in improving the non-targeted and nonspecific toxicity of traditional formulations. Some chemotherapeutic drugs and high atomic number nanomaterials have sensitization effects on ionizing radiation and can be used as chemoradiation sensitizers. METHODS Aurum (Au) nanoparticles were modified by bovine serum albumin (BSA) and folic acid (FA), and were core-loaded with paclitaxel (PTX) and curcumin (CUR). The basic characteristics of FA-BSA-Au@PTX/CUR nanomedicines were evaluated by transmission electron microscopy, Fourier transform infrared spectroscopy, and Malvern Zetasizer. The encapsulation and release of drugs were monitored by ultraviolet-visible spectrophotometry (UV-Vis). The biological toxicity and radiotherapy sensitization effect of FA-BSA-Au@PTX/CUR were observed by cell viability, colony formation, cell apoptosis, cell cycle distribution, and γ-H2AX analysis experiments. RESULTS The prepared nanomedicines showed good stability and spherical morphology. The results of cell uptake and cell viability detection revealed that FA-BSA-Au@PTX/CUR could specifically target EC cell KYSE150 and exert a certain inhibitory effect on proliferation, with no obvious toxicity on healthy cells Het-1A. In addition, the results of the colony formation experiment, cell apoptosis detection, cell cycle distribution, and γ-H2AX analysis showed that compared with X-rays alone, FA-BSA-Au@PTX/CUR combined with X-rays exhibited relatively stronger radiotherapy sensitization and anti-tumor activity. CONCLUSIONS FA-BSA-Au@PTX/CUR could target EC cancer cells and act as a safe and effective radiotherapy sensitizer to improve the radiotherapy efficacy of EC.
Collapse
Affiliation(s)
- Guangyi Gao
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Wenhang Zhou
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Xuan Jiang
- Department of Oncology, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, China
| | - Jun Ma
- Department of Oncology, Huai'an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai'an, China
| |
Collapse
|
19
|
Zhai X, Tang S, Meng F, Ma J, Li A, Zou X, Zhou B, Peng F, Bai J. A dual drug-loaded peptide system with morphological transformation prolongs drug retention and inhibits breast cancer growth. BIOMATERIALS ADVANCES 2023; 154:213650. [PMID: 37857084 DOI: 10.1016/j.bioadv.2023.213650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
The treatment of breast cancer relies heavily on chemotherapy, but chemotherapy is limited by the disadvantages of poor targeting, susceptibility to extracellular matrix (ECM) interference and a short duration of action in tumor cells. To address these limitations, we developed an amphipathic peptide containing an RGD motif, Pep1, that encapsulated paclitaxel (PTX) and losartan potassium (LP) to form the drug-loaded peptide PL/Pep1. PL/Pep1 self-assembled into spherical nanoparticles (NPs) under normal physiological conditions and transformed into aggregates containing short nanofibers at acidic pH. The RGD peptide facilitated tumor targeting and the aggregates prolonged drug retention in the tumor, which allowed more drug to reach and accumulate in the tumor tissue to promote apoptosis and remodel the tumor microenvironment. The results of in vitro and in vivo experiments confirmed the superiority of PL/Pep1 in terms of targeting, prolonged retention and facilitated penetration for antitumor therapy. In conclusion, amphipathic peptides as coloaded drug carriers are a new platform and strategy for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Xiaoqing Zhai
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Shusen Tang
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Fanhu Meng
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Jihong Ma
- School of Clinical Medicine, Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang 261053, China
| | - Aimei Li
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China
| | - Xiangyu Zou
- School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
20
|
Maeoka R, Ouji Y, Nakazawa T, Matsuda R, Morimoto T, Yokoyama S, Yamada S, Nishimura F, Nakagawa I, Park YS, Yoshikawa M, Nakase H. Local administration of shikonin improved the overall survival in orthotopic murine glioblastoma models with temozolomide resistance. Biomed Pharmacother 2023; 166:115296. [PMID: 37557011 DOI: 10.1016/j.biopha.2023.115296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Glioblastoma is a type of intracranial malignancy. Shikonin, a Chinese traditional medicine, has been shown to have anti-tumor efficacy toward human glioblastoma cells in vitro. However, shikonin cannot easily cross the blood-brain barrier. To address this issue, we evaluated the anti-tumor effects of direct intracranial infusion of shikonin in in vivo orthotopic syngeneic murine glioblastoma models using C57BL/6 mice. MATERIALS AND METHODS The cytotoxic effects of shikonin against murine glioblastoma cells, SB28 and CT-2A, were reported resistance to temozolomide, were evaluated using an allophycocyanin-conjugated annexin V and propidium iodide assay with flow cytometry. Impedance-based real-time cell analysis (RTCA) was used to analyze the inhibitory effects of shikonin on growth and proliferation. To evaluate the anti-tumor activity of shikonin in vivo, we used orthotopic syngeneic murine glioblastoma models with SB28 and CT-2A cells. RESULTS In flow cytometry-based cytotoxic assays, shikonin induced apoptosis. RTCA indicated that shikonin decreased the cell index of murine glioblastoma cells, SB28 and CT-2A, in a dose-dependent manner (p < 0.0001 for both cell lines), while temozolomide did not (p = 0.91 and 0.82, respectively). In murine glioblastoma models, SB28 and CT-2A, direct intracranial infusion of shikonin, as a local chemotherapy, improved the overall survival of mice in a dose-dependent manner compared with control groups (p < 0.0001 and p = 0.02, respectively). While temozolomide did not (p = 0.48 and 0.52, respectively). CONCLUSIONS The direct intracranial infusion of shikonin has potential as a local therapy for patients with glioblastoma.
Collapse
Affiliation(s)
- Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan.
| | - Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan; Grandsoul Research Institute for Immunology, Inc., Uda, Nara, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Shohei Yokoyama
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, Kashihara, Nara, Japan
| | - Hiroyuki Nakase
- Department of Neurosurgery, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
21
|
Li X. Doxorubicin-mediated cardiac dysfunction: Revisiting molecular interactions, pharmacological compounds and (nano)theranostic platforms. ENVIRONMENTAL RESEARCH 2023; 234:116504. [PMID: 37356521 DOI: 10.1016/j.envres.2023.116504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 06/27/2023]
Abstract
Although chemotherapy drugs are extensively utilized in cancer therapy, their administration for treatment of patients has faced problems that regardless of chemoresistance, increasing evidence has shown concentration-related toxicity of drugs. Doxorubicin (DOX) is a drug used in treatment of solid and hematological tumors, and its function is based on topoisomerase suppression to impair cancer progression. However, DOX can also affect the other organs of body and after chemotherapy, life quality of cancer patients decreases due to the side effects. Heart is one of the vital organs of body that is significantly affected by DOX during cancer chemotherapy, and this can lead to cardiac dysfunction and predispose to development of cardiovascular diseases and atherosclerosis, among others. The exposure to DOX can stimulate apoptosis and sometimes, pro-survival autophagy stimulation can ameliorate this condition. Moreover, DOX-mediated ferroptosis impairs proper function of heart and by increasing oxidative stress and inflammation, DOX causes cardiac dysfunction. The function of DOX in mediating cardiac toxicity is mediated by several pathways that some of them demonstrate protective function including Nrf2. Therefore, if expression level of such protective mechanisms increases, they can alleviate DOX-mediated cardiac toxicity. For this purpose, pharmacological compounds and therapeutic drugs in preventing DOX-mediated cardiotoxicity have been utilized and they can reduce side effects of DOX to prevent development of cardiovascular diseases in patients underwent chemotherapy. Furthermore, (nano)platforms are used comprehensively in treatment of cardiovascular diseases and using them for DOX delivery can reduce side effects by decreasing concentration of drug. Moreover, when DOX is loaded on nanoparticles, it is delivered into cells in a targeted way and its accumulation in healthy organs is prevented to diminish its adverse impacts. Hence, current paper provides a comprehensive discussion of DOX-mediated toxicity and subsequent alleviation by drugs and nanotherapeutics in treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaofeng Li
- Department of Emergency, Shanghai Tenth People's Hospital, School of Medicine Tongji University, Shanghai, 200072, China.
| |
Collapse
|
22
|
Asnaashari S, Amjad E, Sokouti B. Synergistic effects of flavonoids and paclitaxel in cancer treatment: a systematic review. Cancer Cell Int 2023; 23:211. [PMID: 37743502 PMCID: PMC10518113 DOI: 10.1186/s12935-023-03052-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/03/2023] [Indexed: 09/26/2023] Open
Abstract
Paclitaxel is a natural anticancer compound with minimal toxicity, the capacity to stabilize microtubules, and high efficiency that has remained the standard of treatment alongside platinum-based therapy as a remedy for a variety of different malignancies. In contrast, polyphenols such as flavonoids are also efficient antioxidant and anti-inflammatory and have now been shown to possess potent anticancer properties. Therefore, the synergistic effects of paclitaxel and flavonoids against cancer will be of interest. In this review, we use a Boolean query to comprehensively search the well-known Scopus database for literature research taking the advantage of paclitaxel and flavonoids simultaneously while treating various types of cancer. After retrieving and reviewing the intended investigations based on the input keywords, the anticancer mechanisms of flavonoids and paclitaxel and their synergistic effects on different targets raging from cell lines to animal models are discussed in terms of the corresponding involved signaling transduction. Most studies demonstrated that these signaling pathways will induce apoptotic / pro-apoptotic proteins, which in turn may activate several caspases leading to apoptosis. Finally, it can be concluded that the results of this review may be beneficial in serving as a theoretical foundation and reference for future studies of paclitaxel synthesis, anticancer processes, and clinical applications involving different clinical trials.
Collapse
Affiliation(s)
- Solmaz Asnaashari
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Amjad
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Babak Sokouti
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Ilhan H. Nanoarchitectonics of the Effects of Curcumin Carbon Dot-Decorated Chitosan Nanoparticles on Proliferation and Apoptosis-Related Gene Expressions in HepG2 Hepatocellular Carcinoma Cells. ACS OMEGA 2023; 8:33554-33563. [PMID: 37744806 PMCID: PMC10515349 DOI: 10.1021/acsomega.3c03405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023]
Abstract
This study examines the potential anticancer properties of curcumin carbon nanodot-decorated chitosan nanoparticles (CCM@CD/CS-NP) in HepG2 hepatocellular carcinoma cells. CCM@CD/CS-NPs were synthesized, and their size, morphology, and elemental analysis were characterized. The combination of curcumin carbon dots and chitosan in the form of a nanoparticle has a number of benefits, including improved solubility and bioavailability of curcumin, enhanced stability and biocompatibility of carbon dots, and sustained release of the drug due to the mucoadhesive properties of chitosan. The purpose of this research was to examine the efficacy of curcumin carbon dot-decorated chitosan nanoparticles as an anticancer agent in the treatment of HepG2 cell lines. The cell proliferation and apoptosis-related gene expressions in HepG2 cells were assessed to investigate the potential use of nanoparticles in vitro. The IC50 value for the inhibitory effect of CCM@CD/CS-NPs on cell growth and proliferation was determined to be 323.61 μg/mL at 24 h and 267.73 μg/mL at 48 h. Increased caspase-3 and -9 activation shows that CCM@CD/CS-NPs promoted apoptosis in HepG2 cells. It was also shown that the overexpression of Bax and the downregulation of Bcl-2 were responsible for the apoptotic impact of CCM@CD/CS-NPs. The nanoparticles have been shown to have minimal toxicity to normal liver cells, indicating their potential as a safe and effective treatment for HepG2. These novel nanomaterials effectively suppressed tumor development and boosted the rate of apoptotic cell death.
Collapse
Affiliation(s)
- Hasan Ilhan
- Department of Chemistry,
Faculty of Science, Ordu University, Ordu 52200, Turkey
| |
Collapse
|
24
|
Amiri M, Molavi O, Sabetkam S, Jafari S, Montazersaheb S. Stimulators of immunogenic cell death for cancer therapy: focusing on natural compounds. Cancer Cell Int 2023; 23:200. [PMID: 37705051 PMCID: PMC10500939 DOI: 10.1186/s12935-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023] Open
Abstract
A growing body of evidence indicates that the anticancer effect of the immune system can be activated by the immunogenic modulation of dying cancer cells. Cancer cell death, as a result of the activation of an immunomodulatory response, is called immunogenic cell death (ICD). This regulated cell death occurs because of increased immunogenicity of cancer cells undergoing ICD. ICD plays a crucial role in stimulating immune system activity in cancer therapy. ICD can therefore be an innovative route to improve anticancer immune responses associated with releasing damage-associated molecular patterns (DAMPs). Several conventional and chemotherapeutics, as well as preclinically investigated compounds from natural sources, possess immunostimulatory properties by ICD induction. Natural compounds have gained much interest in cancer therapy owing to their low toxicity, low cost, and inhibiting cancer cells by interfering with different mechanisms, which are critical in cancer progression. Therefore, identifying natural compounds with ICD-inducing potency presents agents with promising potential in cancer immunotherapy. Naturally derived compounds are believed to act as immunoadjuvants because they elicit cancer stress responses and DAMPs. Acute exposure to DAMP molecules can activate antigen-presenting cells (APCs), such as dendritic cells (DCs), which leads to downstream events by cytotoxic T lymphocytes (CTLs) and natural killer cells (NKs). Natural compounds as inducers of ICD may be an interesting approach to ICD induction; however, parameters that determine whether a compound can be used as an ICD inducer should be elucidated. Here, we aimed to discuss the impact of multiple ICD inducers, mainly focusing on natural agents, including plant-derived, marine molecules, and bacterial-based compounds, on the release of DAMP molecules and the activation of the corresponding signaling cascades triggering immune responses. In addition, the potential of synthetic agents for triggering ICD is also discussed.
Collapse
Affiliation(s)
- Mina Amiri
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahnaz Sabetkam
- Department of Anatomy, Faculty of Medicine, university of Kyrenia, Kyrenia, Northern Cyprus
- Department of Anatomy and histopathology, Faculty of medicine, Tabriz medical sciences, Islamic Azad University, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Junyaprasert VB, Thummarati P. Innovative Design of Targeted Nanoparticles: Polymer-Drug Conjugates for Enhanced Cancer Therapy. Pharmaceutics 2023; 15:2216. [PMID: 37765185 PMCID: PMC10537251 DOI: 10.3390/pharmaceutics15092216] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Polymer-drug conjugates (PDCs) have shown great promise in enhancing the efficacy and safety of cancer therapy. These conjugates combine the advantageous properties of both polymers and drugs, leading to improved pharmacokinetics, controlled drug release, and targeted delivery to tumor tissues. This review provides a comprehensive overview of recent developments in PDCs for cancer therapy. First, various types of polymers used in these conjugates are discussed, including synthetic polymers, such as poly(↋-caprolactone) (PCL), D-α-tocopheryl polyethylene glycol (TPGS), and polyethylene glycol (PEG), as well as natural polymers such as hyaluronic acid (HA). The choice of polymer is crucial to achieving desired properties, such as stability, biocompatibility, and controlled drug release. Subsequently, the strategies for conjugating drugs to polymers are explored, including covalent bonding, which enables a stable linkage between the polymer and the drug, ensuring controlled release and minimizing premature drug release. The use of polymers can extend the circulation time of the drug, facilitating enhanced accumulation within tumor tissues through the enhanced permeability and retention (EPR) effect. This, in turn, results in improved drug efficacy and reduced systemic toxicity. Moreover, the importance of tumor-targeting ligands in PDCs is highlighted. Various ligands, such as antibodies, peptides, aptamers, folic acid, herceptin, and HA, can be incorporated into conjugates to selectively deliver the drug to tumor cells, reducing off-target effects and improving therapeutic outcomes. In conclusion, PDCs have emerged as a versatile and effective approach to cancer therapy. Their ability to combine the advantages of polymers and drugs offers enhanced drug delivery, controlled release, and targeted treatment, thereby improving the overall efficacy and safety of cancer therapies. Further research and development in this field has great potential to advance personalized cancer treatment options.
Collapse
|
26
|
Mirzaei S, Ranjbar B, Tackallou SH. Molecular profile of non-coding RNA-mediated glycolysis control in human cancers. Pathol Res Pract 2023; 248:154708. [PMID: 37536019 DOI: 10.1016/j.prp.2023.154708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
The glycolysis is a common characteristic of cancer and it is responsible for providing enough energy to ensure growth. The glycolysis suppression is beneficial in tumor growth reduction. The stimulation/inhibition of glycolysis in cancer is tightly regulated by ncRNAs. The regulation of glycolysis by ncRNAs can influence proliferation and therapy response of tumor. The miRNAs are capable of inactivating enzymes responsible for glycolysis and suppressing signaling networks resulting in glycolysis induction. By regulation of glycolysis, miRNAs can affect therapy response. The lncRNAs and circRNAs follow a same pathway and by targeting glycolysis, they affect progression and therapy response of tumor. Noteworthy, lncRNAs and circRNAs sponge miRNAs in glycolysis mechanism control in tumor cells. Furthermore, ncRNA-mediated regulation of glycolysis mechanism can influence metastasis to organs of body. The ncRNAs regulating glycolysis are reliable biomarkers in cancer patients and more importantly, exosomal ncRNAs due to their presence in body fluids, are minimally-invasive biomarkers.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | | |
Collapse
|
27
|
Kumorkiewicz-Jamro A, Górska R, Krok-Borkowicz M, Reczyńska-Kolman K, Mielczarek P, Popenda Ł, Spórna-Kucab A, Tekieli A, Pamuła E, Wybraniec S. Betalains isolated from underexploited wild plant Atriplex hortensis var. rubra L. exert antioxidant and cardioprotective activity against H9c2 cells. Food Chem 2023; 414:135641. [PMID: 36809729 DOI: 10.1016/j.foodchem.2023.135641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
Atriplex hortensis var. rubra L. extracts prepared from leaves, seeds with sheaths, and stems were characterized for betalainic profiles by spectrophotometry, LC-DAD-ESI-MS/MS and LC-Orbitrap-MS techniques. The presence of 12 betacyanins in the extracts was strongly correlated with high antioxidant activity measured by ABTS, FRAP, and ORAC assays. Comparative assessment between samples indicated the highest potential for celosianin and amaranthin (IC50 21.5 and 32.2 μg/ml, respectively). The chemical structure of celosianin was elucidated for the first time by complete 1D and 2D NMR analysis. Our findings also demonstrate that betalain-rich A. hortensis extracts and purified pigments (amaranthin and celosianin) do not induce cytotoxicity in a wide concentration range in rat cardiomyocytes model (up to 100 μg/ml for extracts and 1 mg/ml for pigments). Furthermore, tested samples effectively protect H9c2 cells from H2O2-induced cell death and prevent from apoptosis induced by Paclitaxel. The effects were observed at sample concentrations between 0.1 and 10 μg/ml.
Collapse
Affiliation(s)
- Agnieszka Kumorkiewicz-Jamro
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland; South Australian Health and Medical Research Institute, Adelaide 5000 SA, Australia; Faculty of Health and Medical Science, University of Adelaide, Adelaide 5005 SA, Australia.
| | - Renata Górska
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Małgorzata Krok-Borkowicz
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059, Cracow, Poland; Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Łukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Aneta Spórna-Kucab
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Anna Tekieli
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Sławomir Wybraniec
- Department of Chemical Technology and Environmental Analysis, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| |
Collapse
|
28
|
Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, Zandieh MA, Behroozaghdam M, Mirzaei S, Hushmandi K, Nabavi N, Salimimoghadam S, Ren J, Rashidi M, Raesi R, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Deciphering STAT3 signaling potential in hepatocellular carcinoma: tumorigenesis, treatment resistance, and pharmacological significance. Cell Mol Biol Lett 2023; 28:33. [PMID: 37085753 PMCID: PMC10122325 DOI: 10.1186/s11658-023-00438-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200032, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Unraveling the function of epithelial-mesenchymal transition (EMT) in colorectal cancer: Metastasis, therapy response, and revisiting molecular pathways. Biomed Pharmacother 2023; 160:114395. [PMID: 36804124 DOI: 10.1016/j.biopha.2023.114395] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Colorectal cancer (CRC) is a dangerous form of cancer that affects the gastrointestinal tract. It is a major global health concern, and the aggressive behavior of tumor cells makes it difficult to treat, leading to poor survival rates for patients. One major challenge in treating CRC is the metastasis, or spread, of the cancer, which is a major cause of death. In order to improve the prognosis for patients with CRC, it is necessary to focus on ways to inhibit the cancer's ability to invade and spread. Epithelial-mesenchymal transition (EMT) is a process that is linked to the spread of cancer cells, also known as metastasis. The process transforms epithelial cells into mesenchymal ones, increasing their mobility and ability to invade other tissues. This has been shown to be a key mechanism in the progression of colorectal cancer (CRC), a particularly aggressive form of gastrointestinal cancer. The activation of EMT leads to increases in the spread of CRC cells, and during this process, levels of the protein E-cadherin decrease while levels of N-cadherin and vimentin increase. EMT also contributes to the development of resistance to chemotherapy and radiation therapy in CRC. Non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), play a role in regulating EMT in CRC, often through their ability to "sponge" microRNAs. Anti-cancer agents have been shown to suppress EMT and reduce the progression and spread of CRC cells. These findings suggest that targeting EMT or related mechanisms may be a promising approach for treating CRC patients in the clinic.
Collapse
|
30
|
Hashemi M, Zandieh MA, Talebi Y, Rahmanian P, Shafiee SS, Nejad MM, Babaei R, Sadi FH, Rajabi R, Abkenar ZO, Rezaei S, Ren J, Nabavi N, Khorrami R, Rashidi M, Hushmandi K, Entezari M, Taheriazam A. Paclitaxel and docetaxel resistance in prostate cancer: Molecular mechanisms and possible therapeutic strategies. Biomed Pharmacother 2023; 160:114392. [PMID: 36804123 DOI: 10.1016/j.biopha.2023.114392] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Prostate cancer is among most malignant tumors around the world and this urological tumor can be developed as result of genomic mutations and their accumulation during progression towards advanced stage. Due to lack of specific symptoms in early stages of prostate cancer, most cancer patients are diagnosed in advanced stages that tumor cells display low response to chemotherapy. Furthermore, genomic mutations in prostate cancer enhance the aggressiveness of tumor cells. Docetaxel and paclitaxel are suggested as well-known compounds for chemotherapy of prostate tumor and they possess a similar function in cancer therapy that is based on inhibiting depolymerization of microtubules, impairing balance of microtubules and subsequent delay in cell cycle progression. The aim of current review is to highlight mechanisms of paclitaxel and docetaxel resistance in prostate cancer. When oncogenic factors such as CD133 display upregulation and PTEN as tumor-suppressor shows decrease in expression, malignancy of prostate tumor cells enhances and they can induce drug resistance. Furthermore, phytochemicals as anti-tumor compounds have been utilized in suppressing chemoresistance in prostate cancer. Naringenin and lovastatin are among the anti-tumor compounds that have been used for impairing progression of prostate tumor and enhancing drug sensitivity. Moreover, nanostructures such as polymeric micelles and nanobubbles have been utilized in delivery of anti-tumor compounds and decreasing risk of chemoresistance development. These subjects are highlighted in current review to provide new insight for reversing drug resistance in prostate cancer.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Yasmin Talebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sareh Sadat Shafiee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Roghayeh Babaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
31
|
Madamsetty V, Vazifehdoost M, Alhashemi SH, Davoudi H, Zarrabi A, Dehshahri A, Fekri HS, Mohammadinejad R, Thakur VK. Next-Generation Hydrogels as Biomaterials for Biomedical Applications: Exploring the Role of Curcumin. ACS OMEGA 2023; 8:8960-8976. [PMID: 36936324 PMCID: PMC10018697 DOI: 10.1021/acsomega.2c07062] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Since the first report on the pharmacological activity of curcumin in 1949, enormous amounts of research have reported diverse activities for this natural polyphenol found in the dietary spice turmeric. However, curcumin has not yet been used for human application as an approved drug. The clinical translation of curcumin has been hampered due to its low solubility and bioavailability. The improvement in bioavailability and solubility of curcumin can be achieved by its formulation using drug delivery systems. Hydrogels with their biocompatibility and low toxicity effects have shown a substantial impact on the successful formulation of hydrophobic drugs for human clinical trials. This review focuses on hydrogel-based delivery systems for curcumin and describes its applications as anti-cancer as well as wound healing agents.
Collapse
Affiliation(s)
- Vijay
Sagar Madamsetty
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Maryam Vazifehdoost
- Department
of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman 6718773654, Iran
| | - Samira Hossaini Alhashemi
- Pharmaceutical
Sciences Research Center, Shiraz University
of Medical Sciences, Shiraz 7146864685, Iran
| | - Hesam Davoudi
- Department
of Biology, Faculty of Sciences, University
of Zanjan, Zanjan 4537138111, Iran
| | - Ali Zarrabi
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Ali Dehshahri
- Department
of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Hojjat Samareh Fekri
- Student Research
Committee, Kerman University of Medical
Sciences, Kerman 7619813159, Iran
| | - Reza Mohammadinejad
- Research
Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
32
|
Necroptosis Induced by Delta-Tocotrienol Overcomes Docetaxel Chemoresistance in Prostate Cancer Cells. Int J Mol Sci 2023; 24:ijms24054923. [PMID: 36902362 PMCID: PMC10003232 DOI: 10.3390/ijms24054923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Prostate cancer (PCa) represents the fifth cause of cancer death in men. Currently, chemotherapeutic agents for the treatment of cancers, including PCa, mainly inhibit tumor growth by apoptosis induction. However, defects in apoptotic cellular responses frequently lead to drug resistance, which is the main cause of chemotherapy failure. For this reason, trigger non-apoptotic cell death might represent an alternative approach to prevent drug resistance in cancer. Several agents, including natural compounds, have been shown to induce necroptosis in human cancer cells. In this study we evaluated the involvement of necroptosis in anticancer activity of delta-tocotrienol (δ-TT) in PCa cells (DU145 and PC3). Combination therapy is one tool used to overcome therapeutic resistance and drug toxicity. Evaluating the combined effect of δ-TT and docetaxel (DTX), we found that δ-TT potentiates DTX cytotoxicity in DU145 cells. Moreover, δ-TT induces cell death in DU145 cells that have developed DTX resistance (DU-DXR) activating necroptosis. Taken together, obtained data indicate the ability of δ-TT to induce necroptosis in both DU145, PC3 and DU-DXR cell lines. Furthermore, the ability of δ-TT to induce necroptotic cell death may represent a promising therapeutical approach to overcome DTX chemoresistance in PCa.
Collapse
|
33
|
Chai J, Zhu J, Tian Y, Yang K, Luan J, Wang Y. Carbon monoxide therapy: a promising strategy for cancer. J Mater Chem B 2023; 11:1849-1865. [PMID: 36786000 DOI: 10.1039/d2tb02599j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cancer is one of the acute life-threatening diseases endangering the whole of humanity. The treatment modalities for cancer are various. However, in most cases, a single treatment choice provides multiple side effects, poor targeting, and ineffective treatment. In recent years, the physiological regulatory function of carbon monoxide (CO) in the cancer process has been reported gradually, and CO-related nano-drugs have been explored. It shows better application prospects in cancer treatment and provides new ideas for treatment. The present review introduces the pathophysiological role of CO. The recent advances in cancer therapy, such as CO-mediated gas therapy, combined application of CO chemotherapy, photodynamic therapy (PDT), photothermal therapy (PTT), and immunotherapy, are described. Current challenges and future developments in CO-based treatment are also discussed. This review provides comprehensive information on recent advances in CO therapy and also some valuable guidance for promoting the progress of gas therapy nanomedicine.
Collapse
Affiliation(s)
- Jingjing Chai
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Junfei Zhu
- China-Japan Friendship Hospital, No. 2 Sakura East Street, Chaoyang District, Beijing, China
| | - Yu Tian
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Kui Yang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| | - Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, Wuhu, China.
| |
Collapse
|
34
|
Ali YA, Ahmed OM, Soliman HA, Abdel-Gabbar M, Al-Dossari M, El-Gawaad NSA, El-Nahass ES, Ahmed NA. Rutin and Hesperidin Alleviate Paclitaxel-Induced Nephrocardiotoxicity in Wistar Rats via Suppressing the Oxidative Stress and Enhancing the Antioxidant Defense Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5068304. [PMID: 36874615 PMCID: PMC9977529 DOI: 10.1155/2023/5068304] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/05/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Paclitaxel is a primary chemotherapy agent that displays antitumor activity against a variety of solid tumors. However, the clinical effectiveness of the drug is hampered by its nephrotoxic and cardiotoxic side effects. Thus, this investigation aimed at assessing the protective effects of rutin, hesperidin, and their combination to alleviate nephrotoxicity caused by paclitaxel (Taxol), cardiotoxicity in male Wistar rats, as well as oxidative stress. Rutin (10 mg/kg body weight), hesperidin (10 mg/kg body weight), and their mixture were given orally every other day for six weeks. Rats received intraperitoneal injections of paclitaxel twice weekly, on the second and fifth days of the week, at a dose of 2 mg/kg body weight. In paclitaxel-treated rats, the treatment of rutin and hesperidin decreased the elevated serum levels of creatinine, urea, and uric acid, indicating a recovery of kidney functions. The cardiac dysfunction in paclitaxel-treated rats that got rutin and hesperidin treatment also diminished, as shown by a substantial reduction in elevated CK-MB and LDH activity. Following paclitaxel administration, the severity of the kidney and the heart's histopathological findings and lesion scores were markedly decreased by rutin and hesperidin administration. Moreover, these treatments significantly reduced renal and cardiac lipid peroxidation while markedly increased GSH content and SOD and GPx activities. Thus, paclitaxel likely induces toxicity in the kidney and the heart by producing oxidative stress. The treatments likely countered renal and cardiac dysfunction and histopathological changes by suppressing oxidative stress and augmenting the antioxidant defenses. Rutin and hesperidin combination was most efficacious in rescuing renal and cardiac function as well as histological integrity in paclitaxel-administered rats.
Collapse
Affiliation(s)
- Yasmine A. Ali
- Biochemistry Department, Faculty of Science, Beni-Sued University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Sued University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Sued University, P.O. Box 62521, Beni-Suef, Egypt
| | - M. Al-Dossari
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
35
|
Alkahtani S, S. AL-Johani N, Alarifi S, Afzal M. Cytotoxicity Mechanisms of Blue-Light-Activated Curcumin in T98G Cell Line: Inducing Apoptosis through ROS-Dependent Downregulation of MMP Pathways. Int J Mol Sci 2023; 24:ijms24043842. [PMID: 36835252 PMCID: PMC9961595 DOI: 10.3390/ijms24043842] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
We examined the photodynamic activation of Curcumin under blue light in glioblastoma T98G cells. The therapeutic effect of Curcumin, in both the absence and presence of blue light, was measured by the MTT assay and apoptosis progression using flow cytometry. Fluorescence imaging was carried out to evaluate Curcumin uptake. Photodynamic activation of Curcumin (10 µM), in the presence of blue light, enhanced its cytotoxic effect, resulting in the activation of ROS-dependent apoptotic pathways in T98G cells. The gene expression studies showed the expression of matrixes metalloproteinase 2 (MMP2) and 9 (MMP9) decrease with Curcumin (10 µM) under blue light exposure, indicating possible proteolytic mechanisms. Moreover, the cytometric appearance displayed that the expressions of NF-κB and Nrf2 were found to be increased upon exposure to blue light, which revealed a significant induction of expression of nuclear factor as a result of blue-light-induced oxidative stress and cell death. These data further demonstrate that Curcumin exhibited a photodynamic effect via induction of ROS-mediated apoptosis in the presence of blue light. Our results suggest that the application of blue light enhances the therapeutic efficacy of Curcumin in glioblastoma because of the phototherapeutic effect.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah S. AL-Johani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence:
| |
Collapse
|
36
|
Zhao Y, Tang C, Huang J, Zhang H, Shi J, Xu S, Ma L, Peng C, Liu Q, Xiong Y. Screening Multidrug Resistance Reversal Agents in Traditional Chinese Medicines by Efflux Kinetics of D-Luciferin in MCF-7/DOX Fluc Cells. ACS OMEGA 2023; 8:4853-4861. [PMID: 36777569 PMCID: PMC9909823 DOI: 10.1021/acsomega.2c07096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
In this study, we established a simple and rapid in vitro method for screening multidrug resistance (MDR) reversal agents in traditional Chinese medicines (TCMs), which could better correspond to the MDR reversing effect in vivo. Here, D-luciferin, a substrate for the enzyme firefly luciferase and also a substrate for ATP-binding cassette transporters (ABC transporters), was used as the probe to detect its efflux kinetics caused by ABC transporters. First, we established a stable doxorubicin (DOX)-resistant cell line (MCF-7/DOXFluc) that overexpressed luciferase. Then, some kinds of TCMs were chosen for the MDR reversal agents to measure its effect on inhibiting the D-luciferin outflow from MCF-7/DOXFluc, and the ideal reversal agent with the least D-luciferin efflux from MCF-7/DOXFluc was selected to further investigate its effect combined with DOX on MCF-7/DOXFluc tumor-bearing mice. The results indicated that quercetin (Qu) could remarkably increase the retention of D-luciferin in MCF-7/DOXFluc in vitro and in vivo. Also, the combination of Qu and DOX could exceedingly inhibit the tumor growth, which proved the feasibility of this in vitro screening method. The study proposed a feasible method for mass screening of MDR agents from TCMs in vitro.
Collapse
Affiliation(s)
- Yue Zhao
- College
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 311258, China
- Academy
of Chinese Medical Science, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 311258, China
| | - Chaoyuan Tang
- College
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 311258, China
- Changxing
People’s Hospital of Zhejiang, Huzhou, Zhejiang 313100, China
| | - Jingyi Huang
- College
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 311258, China
| | - Hongyan Zhang
- College
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 311258, China
| | - Jingbin Shi
- College
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 311258, China
| | - Shujun Xu
- College
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 311258, China
| | - Lisha Ma
- College
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 311258, China
| | - Chun Peng
- School
of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Qi Liu
- Department
of Dermatology, Johns Hopkins University
School of Medicine, Baltimore, Maryland 21231, United States
| | - Yang Xiong
- College
of Pharmaceutical Sciences, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 311258, China
- Academy
of Chinese Medical Science, Zhejiang Chinese
Medical University, Hangzhou, Zhejiang 311258, China
| |
Collapse
|
37
|
Chimento A, D’Amico M, De Luca A, Conforti FL, Pezzi V, De Amicis F. Resveratrol, Epigallocatechin Gallate and Curcumin for Cancer Therapy: Challenges from Their Pro-Apoptotic Properties. Life (Basel) 2023; 13:life13020261. [PMID: 36836619 PMCID: PMC9962739 DOI: 10.3390/life13020261] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Plant-derived bioactive compounds are gaining wide attention for their multiple health-promoting activities and in particular for their anti-cancer properties. Several studies have highlighted how they can prevent cancer initiation and progression, improve the effectiveness of chemotherapy, and, in some cases, limit some of the side effects of chemotherapy agents. In this paper, we provide an update of the literature on the anti-cancer effects of three extensively studied plant-derived compounds, namely resveratrol, epigallocatechin gallate, and curcumin, with a special focus on the anti-cancer molecular mechanisms inducing apoptosis in the major types of cancers globally.
Collapse
Affiliation(s)
- Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria D’Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Arianna De Luca
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
- Correspondence: ; Tel.: +39-0984-496204
| |
Collapse
|
38
|
Liang T, Wu X, Wang L, Song T, Wu P, Niu Y, Huang H. Correlation of NNMT and DKK1 Protein Expression With Clinicopathological Characteristics and Prognosis of Breast Cancer. Clin Med Insights Oncol 2023; 17:11795549231168073. [PMID: 37114075 PMCID: PMC10126688 DOI: 10.1177/11795549231168073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Background Nicotinamide N-methyltransferase (NNMT) and Dickkopf-1 (DKK1) play an important role in the development of breast cancer, and the purpose of this study was designed to examine the clinical and prognostic significance of NNMT and DKK1 in breast cancer. Methods The GEPIA2 database was used to evaluate the expression and survival of NNMT mRNA and DKK1 mRNA of breast cancer. Then an immunohistochemical study was carried out on 374 cases of breast tissue to identify the protein expression and significance of NNMT and DKK1. Next, the prognostic significance of DKK1 in breast cancer was explored by COX and Kaplan-Meier models. Results Protein NNMT expression was correlated with lymph node metastasis and histological grade (P < .05) while protein DKK1 expression was related to tumor size, pT stage, histological grade, and Ki-67 (P < .05). Protein DKK1 was related to disease-specific survival (DSS), and low DKK1 expression indicated a poor prognosis of breast cancer patients (P < .05). Combined expression of protein NNMT and protein DKK1 predicted different prognosis of DSS (P < .05). Conclusions Nicotinamide N-methyltransferase and DKK1 were linked to breast cancer malignancy and invasion. Breast cancer patients with low DKK1 expression had a worse prognosis. Oncotypes of NNMT and DKK1 expression predicted patient outcomes.
Collapse
Affiliation(s)
- Tairong Liang
- Department of Pathology, The Second
Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xiuqian Wu
- The Affiliated Cancer Hospital of
Shantou University Medical College, Shantou, China
| | - Lan Wang
- Department of Pathology, The Second
Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Tiantian Song
- Department of Pharmacology, Shantou
University Medical College, Shantou, China
- Department of Preventive Medicine,
Shantou University Medical College, Shantou, China
| | - Peishan Wu
- Department of Pathology, The Second
Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou
University Medical College, Shantou, China
| | - Haihua Huang
- Department of Pathology, The Second
Affiliated Hospital of Shantou University Medical College, Shantou, China
- Haihua Huang, Department of Pathology, The
Second Affiliated Hospital of Shantou University Medical College, Shantou
515000, China.
| |
Collapse
|
39
|
Wu D, Tian S, Zhu W. Modulating multidrug resistance to drug-based antitumor therapies through NF-κB signaling pathway: mechanisms and perspectives. Expert Opin Ther Targets 2023; 27:503-515. [PMID: 37314372 DOI: 10.1080/14728222.2023.2225767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Despite the advances made in cancer treatment in the past decades, therapeutic efficacy is still quite challenging, partially due to the emergence of multidrug resistance (MDR). It is crucial to decipher the underlying mechanisms of resistance in order to develop new therapeutic strategies for cancer patients. Previous studies have shown that activation of nuclear factor-κB (NF-κB) plays key roles in various cellular processes including proliferation, anti-apoptosis, metastasis, invasion, and chemoresistance. AREAS COVERED In this review, we conduct an integrated analysis of the evidence suggesting the vital roles of the NF-κB signaling pathway in MDR during chemotherapy, immunotherapy, endocrine, and targeted therapy. A literature search was performed on NF-κB and drug resistance in PubMed up to February 2023. EXPERT OPINION This review summarizes that the NF-κB signaling pathway exhibits a crucial role in enhancing drug resistance in chemotherapy, immunotherapy, endocrine, and targeted therapy. The application of combination therapy with existing antineoplastic drugs and a safe NF-κB inhibitor could become a promising strategy in cancer treatment. A better understanding of the pathway and mechanisms of drug resistance may help exploit safer and more effective NF-κB-targeting agents for clinical use in the future.
Collapse
Affiliation(s)
- Dapeng Wu
- Department of Oncology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Sai Tian
- Department of Pediatric Clinic, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Wenjing Zhu
- Clinical Research Center, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- Department of Respiratory and Critical Care Medicine, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| |
Collapse
|
40
|
Hashemi M, Mirzaei S, Zandieh MA, Rezaei S, Amirabbas Kakavand, Dehghanpour A, Esmaeili N, Ghahremanzade A, Saebfar H, Heidari H, Salimimoghadam S, Taheriazam A, Entezari M, Ahn KS. Long non-coding RNAs (lncRNAs) in hepatocellular carcinoma progression: Biological functions and new therapeutic targets. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 177:207-228. [PMID: 36584761 DOI: 10.1016/j.pbiomolbio.2022.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/29/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Liver is an important organ in body that performs vital functions such as detoxification. Liver is susceptible to development of cancers, and hepatocellular carcinoma (HCC) is among them. 75-85% of liver cancer cases are related to HCC. Therefore, much attention has been directed towards understanding factors mediating HCC progression. LncRNAs are epigenetic factors with more than 200 nucleotides in length located in both nucleus and cytoplasm and they are promising candidates in cancer therapy. Directing studies towards understanding function of lncRNAs in HCC is of importance. LncRNAs regulate cell cycle progression and growth of HCC cells, and they can also induce/inhibit apoptosis in tumor cells. LncRNAs affect invasion and metastasis in HCC mainly by epithelial-mesenchymal transition (EMT) mechanism. Revealing the association between lncRNAs and downstream signaling pathways in HCC is discussed in the current manuscript. Infectious diseases can affect lncRNA expression in mediating HCC development and then, altered expression level of lncRNA is associated with drug resistance and radio-resistance. Biomarker application of lncRNAs and their role in prognosis and diagnosis of HCC are also discussed to pave the way for treatment of HCC patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sahar Rezaei
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Negin Esmaeili
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azin Ghahremanzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Hajar Heidari
- Department of Biomedical Sciences, School of Public Health University at Albany State University of New York, Albany, NY, 12208, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.
| |
Collapse
|
41
|
Wei Y, Wei Y, Sheng L, Ma J, Su Z, Wen J, Li L, Jia Q, Liu H, Si H, Xiong L, Chen J, Cheng J, Zuo Y, Yang H, Zhao L. Construction of Curcumin and Paclitaxel Co-Loaded Lipid Nano Platform and Evaluation of Its Anti-Hepatoma Activity in vitro and Pharmacokinetics in vivo. Int J Nanomedicine 2023; 18:2087-2107. [PMID: 37122500 PMCID: PMC10135418 DOI: 10.2147/ijn.s399289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/26/2023] [Indexed: 05/02/2023] Open
Abstract
Purpose The present study aimed to construct a co-loading platform encapsulating curcumin and paclitaxel at ratios of 2:1-80:1 (w/w) designated "CU-PTX-LNP" and explored the synergistic effects of CU-PTX at different composite proportions on liver cancer cells using the combination index (CI) method. Methods The CU lipid nanoplatform (CU-LNP) formulation was optimized via single-factor and orthogonal experiments. Various concentrations of PTX were added to the optimal formulation of CU-LNP to generate CU-PTX-LNP and the nanoplatform characterized via differential scanning calorimetry (DSC), transmission electron microscope (TEM), X-ray diffraction (XRD), zeta potential, polydispersity index (PDI), and size analyses. The cumulative release, stability, and cytotoxicity of CU-PTX-LNP in LO2, HepG2, and SMMC-7221 cells were assessed in vitro, followed by safety investigation and pharmacokinetic studies in vivo. The anti-tumor activity of CU-PTX-LNP was also evaluated using nude mice. Results CU-PTX-LNP formulations containing CU:PTX at a range of proportions (2:1-80:1; w/w) appeared as uniformly dispersed nanosized spherical particles with high entrapment efficiency (EE> 90%), sustained release and long-lasting stability. Data from in vitro cytotoxicity assays showed a decrease in the IC50 value of PTX of CU-PTX-LNP (by 5.47-332.7 times in HepG2 and 4.29-143.21 times in SMMC-7221 cells) compared to free PTX. In vivo, CU-PTX-LNP displayed excellent biosafety, significant anti-tumor benefits and enhanced pharmacokinetic behavior with longer mean residence time (MRT(0-t); CU: 4.31-fold, PTX: 4.61-fold) and half-life (t1/2z; CU: 1.83-fold, PTX: 2.28-fold) relative to free drugs. Conclusion The newly designed CU-PTX-LNP platform may serve as a viable technological support system for the successful production of CU-PTX composite preparations.
Collapse
Affiliation(s)
- Yuxun Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Lin Sheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jingwen Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zhilian Su
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Lanmei Li
- Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong, Sichuan, People’s Republic of China
| | - Qiang Jia
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hui Si
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Ju Cheng
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Ying Zuo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Hongru Yang, Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China, Tel/Fax +86 830 8585668, Email
| | - Ling Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University; Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Correspondence: Ling Zhao, Key Laboratory of Medical Electrophysiology, Ministry of Education, Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China, Tel/Fax +86 830 3160093, Email
| |
Collapse
|
42
|
Ojaghzadeh Khalil Abad M, Masrournia M, Javid A. Simultaneous determination of paclitaxel and vinorelbine from environmental water and urine samples based on dispersive micro solid phase extraction-HPLC using a green and novel MOF-On-MOF sorbent composite. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
43
|
Natural Taxanes: From Plant Composition to Human Pharmacology and Toxicity. Int J Mol Sci 2022; 23:ijms232415619. [PMID: 36555256 PMCID: PMC9779243 DOI: 10.3390/ijms232415619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Biologically active taxanes, present in small- to medium-sized evergreen conifers of various Taxus species, are widely used for their antioxidant, antimicrobial and anti-inflammatory effects, but mostly for their antitumour effects used in the treatment of solid tumours of the breast, ovary, lung, bladder, prostate, oesophagus and melanoma. More of the substances found in Taxus plant extracts have medical potential. Therefore, at the beginning of this review, we describe the methods of isolation, identification and determination of taxanes in different plant parts. One of the most important taxanes is paclitaxel, for which we summarize the pharmacokinetic parameters of its different formulations. We also describe toxicological risks during clinical therapy such as hypersensitivity, neurotoxicity, gastrointestinal, cardiovascular, haematological, skin and renal toxicity and toxicity to the respiratory system. Since the effect of the drug-form PTX is enhanced by various Taxus spp. extracts, we summarize published clinical intoxications and all fatal poisonings for the Taxus baccata plant. This showed that, despite their significant use in anticancer treatment, attention should also be focused on the risk of fatal intoxication due to ingestion of extracts from these plants, which are commonly found in our surroundings.
Collapse
|
44
|
Pi C, Zhao W, Zeng M, Yuan J, Shen H, Li K, Su Z, Liu Z, Wen J, Song X, Lee RJ, Wei Y, Zhao L. Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Deliv 2022; 29:1878-1891. [PMID: 35748365 PMCID: PMC9246235 DOI: 10.1080/10717544.2022.2086938] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The main aim of this study was to improve the therapeutic potential of a paclitaxel (PTX) and curcumin (CU) combination regimen using solid lipid nanoparticles (SLNs). PTX and CU were successfully co-encapsulated at a predetermined ratio in SLNs (PC-SLNs) with high encapsulation efficiency (CU: 97.6%, PTX: 95.8%), appropriate particle size (121.8 ± 1.69 nm), small PDI (0.267 ± 0.023), and negative zeta potential (–30.4 ± 1.25 mV). Compared with PTX or the combination of CU and PTX (CU + PTX), PC-SLNs can greatly reduce the dose of PTX while still achieving the same therapeutic effect on four cancer cell lines, among which the inhibitory effect on A549 lung cancer cells was the strongest. PC-SLNs improved the area under the curve (CU: 1.40-fold; PTX: 2.88-fold), prolonged the residence time (CU: 6.94-fold; PTX: 2.51-fold), and increased the half-life (CU: 5.62-fold; PTX: 6.46-fold), achieving long circulation. PC-SLNs were used to treat lung cancer in a nude mouse xenograft tumor model and the tumor suppression rate reached 78.42%, while those of PTX and (CU + PTX) were 40.53% and 51.56%, respectively. As PC-SLNs can prevent P-glycoprotein efflux, reverse MDR and downregulate the NF-κB pathway. PC-SLNs are a potential antineoplastic agent that is more effective and less toxic in treating lung cancer.
Collapse
Affiliation(s)
- Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Zhilian Su
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd, Luzhou, Sichuan, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, Shapingba, P. R. China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, P. R. China.,Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Republic of Korea
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, P. R China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, P. R. China.,Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, Sichuan, P. R. China
| |
Collapse
|
45
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Wei Y, Zeng M, Pi C, Shen H, Yuan J, Zuo Y, Wen J, Guo P, Zhao W, Li K, Su Z, Song X, Fu S, Lee RJ, Zhao L. Novel Curcumin Derivative-Decorated Ultralong-Circulating Paclitaxel Nanoparticles: A Novel Delivery System with Superior Anticancer Efficacy and Safety. Int J Nanomedicine 2022; 17:5265-5286. [PMID: 36406640 PMCID: PMC9673813 DOI: 10.2147/ijn.s369761] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/02/2022] [Indexed: 11/15/2022] Open
Abstract
Purpose Paclitaxel (PTX) has been widely utilized for the treatment of breast cancer. However, drawbacks, such as poor aqueous solubility, rapid blood clearance and severe toxicity, greatly reduce its efficacy and safety. Herein, a novel self-developed curcumin derivative (CUD) was chosen as the carrier to develop a long-acting PTX nano-delivery system (PTX-Sln@CUD) in order to improve its pharmacokinetic behavior, anti-breast cancer efficacy and safety. Methods PTX-Sln@CUD was prepared using solid dispersion and ultrasonic technology. Relevant physical and chemical properties, including stability and release behavior, were characterized. The clearance of PTX-Sln@CUD in vivo was studied by pharmacokinetic experiments. The anti-tumor activity of PTX-Sln@CUD was investigated in vitro and in vivo. Hemolysis experiments, acute toxicity and cumulative toxicity studies were performed in mice to determine the safety of PTX-Sln@CUD. Results The average particle size, PDI, Zeta potential, encapsulation efficiency and loading efficiency of the PTX-Sln@CUD were 238.5 ± 4.79 nm, 0.225 ± 0.011, −33.8 ± 1.26 mV, 94.20 ± 0.49% and 10.98 ± 0.31%, respectively. PTX-Sln@CUD was found to be stable at room temperature for half a year. The cumulative release rates of PTX-Sln@CUD at 24, 96 and 168 h were 17.98 ± 2.60, 57.09 ± 2.32 and 72.66 ± 4.16%, respectively, which were adherent to zero-order kinetics. T1/2, MRT (0-t) and AUC (0-t) of the PTX-Sln@CUD group were 4.03-fold (44.293 h), 7.78-fold (38.444 h) and 6.18-fold (14.716 mg/L*h) of the PTX group, respectively. PTX-Sln@CUD group demonstrated stronger anti-breast cancer activity than the PTX group. Importantly, the PTX-Sln@CUD group was safer compared to the PTX group both in vitro and in vivo. Conclusion PTX-Sln@CUD was verified as promising therapeutic nanoparticles for breast cancer and provided a novel strategy to solve the problem of low efficacy and poor safety of clinical chemotherapy drugs.
Collapse
Affiliation(s)
- Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Mingtang Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Hongping Shen
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jiyuan Yuan
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ying Zuo
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- General Department, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Pu Guo
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Ke Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Zhilian Su
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
| | - Xinjie Song
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, People’s Republic of China
- Department of Food Science and Technology, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do, 38541, Republic of Korea
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Correspondence: Shaozhi Fu, Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China, Tel +86 830-3165698, Fax +86 830-3165690, Email
| | - Robert J Lee
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, People’s Republic of China
- Ling Zhao, Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, People’s Republic of China, Tel/Fax +86 830 3160093, Email
| |
Collapse
|
47
|
Thummarati P, Suksiriworapong J, Sakchaisri K, Nawroth T, Langguth P, Roongsawang B, Junyaprasert VB. Comparative study of dual delivery of gemcitabine and curcumin using CD44 targeting hyaluronic acid nanoparticles for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Therapeutic potency of curcumin for allergic diseases: A focus on immunomodulatory actions. Biomed Pharmacother 2022; 154:113646. [PMID: 36063645 DOI: 10.1016/j.biopha.2022.113646] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
In light of increasing research evidence on the molecular mechanisms of allergic diseases, the crucial roles of innate and acquired immunity in the disease's pathogenesis have been well highlighted. In this respect, much attention has been paid to the modulation of unregulated and unabated inflammatory responses aiming to suppress pathologic immune responses in treating allergic diseases. One of the most important natural compounds with a high potency of immune modulation is curcumin, an active polyphenol compound derived from turmeric, Curcuma longa L. Curcumin's immunomodulatory action mainly arises from its interactions with an extensive collection of immune cells such as mast cells, eosinophils, epithelial cells, basophils, neutrophils, and lymphocytes. Up to now, there has been no detailed investigation of curcumin's immunomodulatory actions in allergic diseases. So, the present review study aims to prepare an overview of the immunomodulatory effects of curcumin on the pathologic innate immune responses and dysregulated functions of T helper (TH) subtypes, including TH1, TH2, TH17, and regulator T cells (Tregs) by gathering evidence from several studies of In-vitro and In-vivo. As the second aim of the present review, we also discuss some novel strategies to overcome the limitation of curcumin in clinical use. Finally, this review also assesses the therapeutic potential of curcumin regarding its immunomodulatory actions in allergic diseases.
Collapse
|
49
|
Hashemi M, Mirzaei S, Barati M, Hejazi ES, Kakavand A, Entezari M, Salimimoghadam S, Kalbasi A, Rashidi M, Taheriazam A, Sethi G. Curcumin in the treatment of urological cancers: Therapeutic targets, challenges and prospects. Life Sci 2022; 309:120984. [PMID: 36150461 DOI: 10.1016/j.lfs.2022.120984] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2022]
Abstract
Urological cancers include bladder, prostate and renal cancers that can cause death in males and females. Patients with urological cancers are mainly diagnosed at an advanced disease stage when they also develop resistance to therapy or poor response. The use of natural products in the treatment of urological cancers has shown a significant increase. Curcumin has been widely used in cancer treatment due to its ability to trigger cell death and suppress metastasis. The beneficial effects of curcumin in the treatment of urological cancers is the focus of current review. Curcumin can induce apoptosis in the three types of urological cancers limiting their proliferative potential. Furthermore, curcumin can suppress invasion of urological cancers through EMT inhibition. Notably, curcumin decreases the expression of MMPs, therefore interfering with urological cancer metastasis. When used in combination with chemotherapy agents, curcumin displays synergistic effects in suppressing cancer progression. It can also be used as a chemosensitizer. Based on pre-clinical studies, curcumin administration is beneficial in the treatment of urological cancers and future clinical applications might be considered upon solving problems related to the poor bioavailability of the compound. To improve the bioavailability of curcumin and increase its therapeutic index in urological cancer suppression, nanostructures have been developed to favor targeted delivery.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maryamsadat Barati
- Department of Biology, Faculty of Basic (Fundamental) Science, Shahr Qods Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
50
|
Famurewa AC, Mukherjee AG, Wanjari UR, Sukumar A, Murali R, Renu K, Vellingiri B, Dey A, Valsala Gopalakrishnan A. Repurposing FDA-approved drugs against the toxicity of platinum-based anticancer drugs. Life Sci 2022; 305:120789. [PMID: 35817170 DOI: 10.1016/j.lfs.2022.120789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Platinum-based anticancer drugs (PADs), mainly cisplatin, carboplatin, and oxaliplatin, are widely used efficacious long-standing anticancer agents for treating several cancer types. However, clinicians worry about PAD chemotherapy and its induction of severe non-targeted organ toxicity. Compelling evidence has shown that toxicity of PAD on delicate body organs is associated with free radical generation, DNA impairment, endocrine and mitochondrial dysfunctions, oxidative inflammation, apoptosis, endoplasmic reticulum stress, and activation of regulator signaling proteins, cell cycle arrest, apoptosis, and pathways. The emerging trend is the repurposing of FDA-approved non-anticancer drugs (FNDs) for combating the side effects toxicity of PADs. Thus, this review chronicled the mechanistic preventive and therapeutic effects of FNDs against PAD organ toxicity in preclinical studies. FNDs are potential clinical drugs for the modulation of toxicity complications associated with PAD chemotherapy. Therefore, FNDs may be suggested as non-natural agent inhibitors of unpalatable side effects of PADs.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike lkwo, Nigeria.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|