1
|
Zhang Z, Xiong R, Hu Q, Zhang Q, Wang S, Chen Y. Review on anti-tumour lipid nano drug delivery systems of traditional Chinese medicine. J Drug Target 2025; 33:704-716. [PMID: 39743936 DOI: 10.1080/1061186x.2024.2448708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
In recent years, the use of traditional Chinese medicine (TCM) in the treatment of cancer has received widespread attention. Treatment of tumours using TCM can effectively reduce the side effects of anti-tumour drugs, meanwhile to improve the treatment efficacy of patients. However, most of the active ingredients in TCM, such as saponins, alkaloids, flavonoids, volatile oils, etc., have defects such as low bioavailability and poor solubility in clinical application, which seriously restrict the application of TCM. Meanwhile, the encapsulation of TCM into lipid nano-delivery systems for cancer therapy has received much attention. Lipid nano-delivery systems are obtained by using phospholipids as the base material and adding other auxiliary materials under a certain preparation process, including, for example, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), microemulsions, and self-microemulsion drug delivery systems (SMEDDS), can resolve the application problems of TCM by improving the efficacy of active ingredients of TCM and reducing the toxicity of anti-tumour drugs. This paper focuses on the categories, development status, and research progress of lipid nano delivery system of TCM, aiming to provide a certain theoretical basis for further in-depth research and rational application of these systems.
Collapse
Affiliation(s)
- Ziwei Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Rui Xiong
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Qiyan Hu
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Qiang Zhang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Shaozhen Wang
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| | - Yunyan Chen
- School of Pharmacy, Wannan Medical College, Wuhu, China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, China
| |
Collapse
|
2
|
Raviv T, Shteinfer-Kuzmine A, Moyal MM, Shoshan-Barmatz V. Resveratrol's Pro-Apoptotic Effects in Cancer Are Mediated Through the Interaction and Oligomerization of the Mitochondrial VDAC1. Int J Mol Sci 2025; 26:3963. [PMID: 40362204 PMCID: PMC12071565 DOI: 10.3390/ijms26093963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Resveratrol is a naturally occurring phenolic compound found in various foods such as red wine, chocolate, peanuts, and blueberries. Both in-vitro and in-vivo studies have shown that it has a broad spectrum of pharmacological effects such as providing cellular protection and promoting longevity. These effects include antioxidant, anti-inflammatory, neuroprotective, and anti-viral properties, as well as improvements in cardio-metabolic health and anti-aging benefits. Additionally, resveratrol has demonstrated the ability to induce cell death and inhibit tumor growth across different types and stages of cancer. However, the dual effects of resveratrol-acting to support cell survival in some contexts, while inducing cell death in others-is still not fully understood. In this study, we identify a novel target for resveratrol: the voltage-dependent anion channel 1 (VDAC1), a multi-functional outer mitochondrial membrane protein that plays a key role in regulating both cell survival and death. Our findings show that resveratrol increased VDAC1 expression levels and promoted its oligomerization, leading to apoptotic cell death. Additionally, resveratrol elevated intracellular Ca2+ levels and enhanced the production of reactive oxygen species (ROS). Resveratrol also induced the detachment of hexokinase I from VDAC1, a key enzyme in metabolism, and regulating apoptosis. When VDAC1 expression was silenced using specific siRNA, resveratrol-induced cell death was significantly reduced, indicating that VDAC1 is essential for its pro-apoptotic effects. Additionally, both resveratrol and its analog, trans-2,3,5,4'-tetrahydroxystilbene-2-O-glucoside (TSG), directly interacted with purified VDAC1, as revealed by microscale thermophoresis, with similar binding affinities. However, unlike resveratrol, TSG did not induce VDAC1 overexpression or apoptosis. These results demonstrate that resveratrol-induced apoptosis is linked to increased VDAC1 expression and its oligomerization. This positions resveratrol not only as a protective agent, but also as a pro-apoptotic compound. Consequently, resveratrol offers a promising therapeutic approach for cancer, with potentially fewer side effects compared to conventional treatments, due to its natural origins in plants and food products.
Collapse
Affiliation(s)
- Tal Raviv
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (M.M.M.)
| | - Meital M. Moyal
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (M.M.M.)
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (M.M.M.)
| |
Collapse
|
3
|
Tu KX, Ou QJ, Lin FT, Zhao YT, Zhou RH, Zhou RL, Fang YJ, Zhang CX. Higher Intake of Resveratrol Is Associated With a Lower Risk of Colorectal Cancer: A Large-Scale Case-Control Study. Phytother Res 2025. [PMID: 40259782 DOI: 10.1002/ptr.8510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/28/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025]
Abstract
Resveratrol, a natural bioactive compound derived from plants, has shown potential anti-colorectal cancer effects in preclinical studies, though population-based epidemiologic evidence is limited. This study aimed to investigate the association between resveratrol intake and colorectal cancer risk in a population from Guangdong, China. Conducted between July 2010 and January 2024, this case-control study included 3030 newly diagnosed colorectal cancer patients and 3044 frequency-matched controls by sex and age (± 5 years). Dietary data were collected using a validated food frequency questionnaire with 81 items, and resveratrol intake was estimated from resveratrol and piceid content based on the China Food Composition Table Standard Edition. Multivariable unconditional logistic regression models were applied to estimate the odds ratios (OR) and 95% confidence intervals (CI) for the association between resveratrol intake and colorectal cancer risk. The results indicated that higher dietary resveratrol intake was associated with a reduced risk of colorectal cancer. The highest quintile of total resveratrol intake was associated with a 44% lower risk of colorectal cancer compared to the lowest quintile (OR: 0.56, 95% CI: 0.44-0.72, ptrend < 0.001). This association was consistent for resveratrol derived from vegetables, fruits, edible fungi, and nuts. Sex-stratified analysis revealed a stronger protective effect in men (pinteraction = 0.033). Overall, these findings suggest that achievable dietary levels of resveratrol may be associated with a lower risk of colorectal cancer. Further prospective cohort studies and randomized controlled trials are needed to confirm these results.
Collapse
Affiliation(s)
- Ke-Xin Tu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qing-Jian Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fang-Ting Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yu-Tong Zhao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ru-Hua Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruo-Lin Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yu-Jing Fang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Vafajoo M, Shahidi M, Shahriyary F, Amirzargar MR, Kooshari A. Resveratrol decreases extracellular traps (ETs) in acute promyelocytic leukemia (NB4) cells. PLoS One 2025; 20:e0321221. [PMID: 40245018 PMCID: PMC12005550 DOI: 10.1371/journal.pone.0321221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/03/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Activated neutrophils can create structures known as neutrophil extracellular traps (NETs/ETs) consisting of nuclear components and granules. The ETOsis phenomenon leads to activating the platelets and coagulation factors. Accordingly, coagulation and fibrinolysis can be promoted. Resveratrol (RSV) is a botanical antioxidant with anti-inflammatory and anti-leukemia effects. The present study was conducted to assess the effect of RSV on the occurrence of ETOsis in the NB4 cell line. METHODS Human acute promyelocytic leukemia cell line (NB4) were stimulated and treated by lipopolysaccharides (LPS) and RSV, respectively. Sytox green and a fluorescent microscope were used to assess the ETOsis in NB4 cells. Furthermore, the expression level of peptidylarginine deiminase 4 (PAD4) gene and the occurrence of ETOsis in NB4 cells were evaluated by real-time PCR and flow cytometry, respectively. Moreover, an enzyme-linked immunosorbent assay (ELISA) kit was utilized to measure tumor necrosis factor-α (TNF-α) cytokine. RESULTS Following treatment with RSV, a significant decrease in PAD4 gene expression and TNF-α cytokine concentration in the supernatant of NB4 cell line culture medium was observed. Besides, the amount of ETOsis in the NB4 cells treated with LPS and RSV decreased. CONCLUSION The findings demonstrated that RSV can inhibit the process of ETOsis in NB4 cells. By inhibiting the process of ETOsis, RSV may be able to reduce the bleeding and, consequently, the failure after treatment in acute promyelocytic leukemia (APL) patients.
Collapse
Affiliation(s)
- Mahshid Vafajoo
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Minoo Shahidi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Shahriyary
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Kooshari
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Khanishayan A, Rahgozar S, Zebardast D. The significance of the activating transcription factor 6 gene in the pathogenesis of drug resistant cancer. Tissue Cell 2025; 93:102786. [PMID: 39946967 DOI: 10.1016/j.tice.2025.102786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Chemotherapy remains a cornerstone in cancer therapy, but its effectiveness is often hindered by the development of drug resistance, a significant factor contributing to over 90 % of cancer-related deaths worldwide. A critical aspect of this resistance involves chronic endoplasmic reticulum stress, which activates the unfolded protein response (UPR), mainly through the activation of Activating Transcription Factor 6 (ATF6). Elevated ATF6 expression has been found to correlate with poor survival outcomes and increased resistance to chemotherapy across several malignancies. This study specifically investigates the role of ATF6 in cancer pathogenesis, focusing on its involvement in resistance mechanisms and the progression of the disease. Given the complex interactions between the UPR and other cellular pathways, including the DNA damage response (DDR), our findings emphasize the potential of targeting ATF6 and UPR and DDR pathways as a novel therapeutic strategy. This approach could potentially overcome chemoresistance and improve outcomes in cancer treatment.
Collapse
Affiliation(s)
- Ashkan Khanishayan
- University of Isfahan, Isfahan, Iran, and University of Arizona, United States
| | | | | |
Collapse
|
6
|
Radeva L, Yoncheva K. Resveratrol-A Promising Therapeutic Agent with Problematic Properties. Pharmaceutics 2025; 17:134. [PMID: 39861780 PMCID: PMC11768323 DOI: 10.3390/pharmaceutics17010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Resveratrol is a natural polyphenol (stilbenoid), which can be found in grape skin, red wine, blueberries, peanuts and others. The biological properties of resveratrol, in particular antioxidant, anti-inflammatory, anticancer, estrogenic, vasorelaxant and cardioprotective activity, are the main reason for its importance in medicine and pharmacy. Despite all of its advantages, however, there are many problems related to this polyphenolic substance, such as low stability, water insolubility, poor bioavailability and fast metabolism. For this reason, scientists are currently searching for different approaches to dealing with these problematic properties and improving the therapeutic usage of resveratrol. This review summarizes the mechanisms of the biological effects of resveratrol, determined in vitro and in vivo, and the main limitations of the drug. The article emphasizes new approaches for the improvement of resveratrol delivery, in particular nanoencapsulation, formation of nanocrystals, prodrugs and structure analogues.
Collapse
|
7
|
Kadry MO. Resveratrol-based nano-formulations as an emerging therapeutic strategy for ovarian carcinoma: autophagy stimulation and SIRT-1/Beclin/MMP-9/P53/AKT signaling. Cancer Nanotechnol 2024; 15:36. [DOI: 10.1186/s12645-024-00274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/25/2024] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
Resveratrol (RVS) is a stilbene derivative polyphenolic compound extensively recognized for its anti-inflammatory, antioxidant and anti-aging properties, along with its enormous promise in carcinoma treatment. Unfortunately, the oral supplementation of RVS possesses physicochemical and pharmacokinetic constraints that hinder its effects, necessitating the development of suitable administration strategies to improve its effectiveness. As a result, the current study evaluates the use of resveratrol nano-formulations in ovarian cancer therapy. Ovarian cancer was induced in rats using (35 mg/kg BW) 20-Methyl cholanthrene (20-MC) followed by resveratrol and resveratrol nano-formulations therapy for one month.
Results
20-MC highlighted a noticeable alleviation in autophagy (ATF) biomarkers SIRT-1 and Beclin, inflammatory and apoptotic biomarkers MMP-9, P53 and AKT in addition to oxidative and nitrosative stress biomarkers TAC and NOX and ovarian cancer tumor biomarker CA-125.
Conclusions
Resveratrol and resveratrol nano-formulations modulated autophagy, inflammatory and oxidative stress biomarkers with the upper effect for resveratrol nano-formulations in competing 20-MC-induced ovarian cancer.
Collapse
|
8
|
Demir K, Turgut R, Şentürk S, Işıklar H, Günalan E. The Therapeutic Effects of Bioactive Compounds on Colorectal Cancer via PI3K/Akt/mTOR Signaling Pathway: A Critical Review. Food Sci Nutr 2024; 12:9951-9973. [PMID: 39723045 PMCID: PMC11666977 DOI: 10.1002/fsn3.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 12/28/2024] Open
Abstract
Understanding the molecular signaling pathways of colorectal cancer (CRC) can be accepted as the first step in treatment strategy. Permanent mTOR signaling activation stimulates the CRC process via various biological processes. It supplies the survival of CRC stem cells, tumorigenesis, morbidity, and decreased response to drugs in CRC pathogenesis. Therefore, inhibition of the mTOR signaling by numerous bioactive components may be effective against CRC. The study aims to discuss the therapeutic capacity of various polyphenols, terpenoids, and alkaloids on CRC via the PI3K/Akt/mTOR pathway. The potential molecular effects of bioactive compounds on the mTOR pathway's upstream and downstream targets are examined. Each bioactive component causes various physiological processes, such as triggering free radical production, disruption of mitochondrial membrane potential, cell cycle arrest, inhibition of CRC stem cell migration, and suppression of glycolysis through mTOR signaling inhibition. As a result, carcinogenesis is inhibited by inducing apoptosis and autophagy. However, it should be noted that studies are primarily in vitro dose-dependent treatment researchers. This study raises awareness about the role of phenolic compounds in treating CRC, contributing to their future use as anticancer agents. These bioactive compounds have the potential to be developed into food supplementation to prevent and treat various cancer types including CRC. This review has the potential to lead to further development of clinical studies. In the future, mTOR inhibition by applying several bioactive agents using advanced drug delivery systems may contribute to CRC treatment with 3D cell culture and in vivo clinical studies.
Collapse
Affiliation(s)
- Kübra Demir
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
- Faculty of Health Science, Department of Nutrition and DieteticsSabahattin Zaim UniversityIstanbulTürkiye
| | - Rana Turgut
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Selcen Şentürk
- Institute of Graduate EducationIstanbul Health and Technology UniversityIstanbulTürkiye
| | - Handan Işıklar
- Faculty of Medicine, Department of Internal MedicineYalova UniversityYalovaTürkiye
| | - Elif Günalan
- Faculty of Health Science, Department of Nutrition and DieteticsIstanbul Health and Technology UniversityIstanbulTürkiye
| |
Collapse
|
9
|
Brockmueller A, Buhrmann C, Moravejolahkami AR, Shakibaei M. Resveratrol and p53: How are they involved in CRC plasticity and apoptosis? J Adv Res 2024; 66:181-195. [PMID: 38190940 PMCID: PMC11674784 DOI: 10.1016/j.jare.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC), which is mainly caused by epigenetic and lifestyle factors, is very often associated with functional plasticity during its development. In addition, the malignant plasticity of CRC cells underscores one of their survival abilities to functionally adapt to specific stresses, including inflammation, that occur during carcinogenesis. This leads to the generation of various subsets of cancer cells with phenotypic diversity and promotes epithelial-mesenchymal transition (EMT), formation of cancer cell stem cells (CSCs) and metabolic reprogramming. This can enhance cancer cell differentiation and facilitate tumorigenic potential, drug resistance and metastasis. AIM OF REVIEW The tumor protein p53 acts as one of the central suppressors of carcinogenesis by regulating its target genes, whose proteins are involved in the plasticity of cancer cells, autophagy, cell cycle, apoptosis, DNA repair. The aim of this review is to summarize the latest published research on resveratrol's effect in the prevention of CRC, its regulatory actions, specifically on the p53 pathway, and its treatment options. KEY SCIENTIFIC CONCEPTS OF REVIEW Resveratrol, a naturally occurring polyphenol, is a potent inducer of a variety of tumor-controlling. However, the underlying mechanisms linking the p53 signaling pathway to the functional anti-plasticity effect of resveratrol in CRC are still poorly understood. Therefore, this review discusses novel relationships between anti-cellular plasticity/heterogeneity, pro-apoptosis and modulation of tumor protein p53 signaling in CRC oncogenesis, as one of the crucial mechanisms by which resveratrol prevents malignant phenotypic changes leading to cell migration and drug resistance, thus improving the ongoing treatment of CRC.
Collapse
Affiliation(s)
- Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany
| | - Constanze Buhrmann
- Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Amir Reza Moravejolahkami
- Department of Clinical Nutrition, School of Nutrition & Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany.
| |
Collapse
|
10
|
Radeva L, Yordanov Y, Spassova I, Kovacheva D, Tzankova V, Yoncheva K. Double Encapsulation of Resveratrol and Doxorubicin in Composite Nanogel-An Opportunity to Reduce Cardio- and Neurotoxicity of Doxorubicin. Gels 2024; 10:699. [PMID: 39590055 PMCID: PMC11593847 DOI: 10.3390/gels10110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
The simultaneous encapsulation of drugs into nanosized delivery systems could be beneficial for cancer therapies since it could alleviate adverse reactions as well as provide synergistic effects. However, the encapsulation of hydrophobic drugs into hydrophilic nanoparticles, such as nanogels, could be challenging. Therefore, innovative technological approaches are needed. In this research, a composite nanogel system was prepared from chitosan, albumin, and hydroxypropyl-β-cyclodextrin for co-delivery of the hydrophilic anticancer drug doxorubicin and hydrophobic antioxidant resveratrol. The nanoparticles were characterized using dynamic light scattering and found to have a hydrodynamic diameter of approx. 31 nm, narrow size distribution (PDI = 0.188), positive ƺ-potential (+51.23 mV), and pH-dependent release of the loaded drugs. FTIR and X-ray analyses proved the successful development of the composite nanogel. Moreover, the double-loaded system showed that the loading of resveratrol exerted protection against doxorubicin-induced toxicity in cardioblast H9c2 and neuroblast SH-SY5Y cells. The simultaneous loading did not influence the cytostatic effect of the antitumor agent in lymphoma L5178Y and L5178MDR cell lines.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (Y.Y.); (V.T.)
| | - Yordan Yordanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (Y.Y.); (V.T.)
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.S.); (D.K.)
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (Y.Y.); (V.T.)
| | - Krassimira Yoncheva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (Y.Y.); (V.T.)
| |
Collapse
|
11
|
Dewanjee S, Bhattacharya H, Bhattacharyya C, Chakraborty P, Fleishman J, Alexiou A, Papadakis M, Jha SK. Nrf2/Keap1/ARE regulation by plant secondary metabolites: a new horizon in brain tumor management. Cell Commun Signal 2024; 22:497. [PMID: 39407193 PMCID: PMC11476647 DOI: 10.1186/s12964-024-01878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Brain cancer is regarded as one of the most life-threatening forms of cancer worldwide. Oxidative stress acts to derange normal brain homeostasis, thus is involved in carcinogenesis in brain. The Nrf2/Keap1/ARE pathway is an important signaling cascade responsible for the maintenance of redox homeostasis, and regulation of anti-inflammatory and anticancer activities by multiple downstream pathways. Interestingly, Nrf2 plays a somewhat, contradictory role in cancers, including brain cancer. Nrf2 has traditionally been regarded as a tumor suppressor since its cytoprotective functions are considered to be the principle cellular defense mechanism against exogenous and endogenous insults, such as xenobiotics and oxidative stress. However, hyperactivation of the Nrf2 pathway supports the survival of normal as well as malignant cells, protecting them against oxidative stress, and therapeutic agents. Plants possess a pool of secondary metabolites with potential chemotherapeutic/chemopreventive actions. Modulation of Nrf2/ARE and downstream activities in a Keap1-dependant manner, with the aid of plant-derived secondary metabolites exhibits promise in the management of brain tumors. Current article highlights the effects of Nrf2/Keap1/ARE cascade on brain tumors, and the potential role of secondary metabolites regarding the management of the same.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India.
| | - Hiranmoy Bhattacharya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Chiranjib Bhattacharyya
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Joshua Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Department of Research & Development, Funogen, Athens, 11741, Greece
- Department of Research & Development, AFNP Med, Wien, 1030, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, Delhi, 110008, India.
| |
Collapse
|
12
|
Singh H, Mishra AK, Mohanto S, Kumar A, Mishra A, Amin R, Darwin CR, Emran TB. A recent update on the connection between dietary phytochemicals and skin cancer: emerging understanding of the molecular mechanism. Ann Med Surg (Lond) 2024; 86:5877-5913. [PMID: 39359831 PMCID: PMC11444613 DOI: 10.1097/ms9.0000000000002392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 10/04/2024] Open
Abstract
Constant exposure to harmful substances from both inside and outside the body can mess up the body's natural ways of keeping itself in balance. This can cause severe skin damage, including basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma. However, plant-derived compounds found in fruits and vegetables have been shown to protect against skin cancer-causing free radicals and other harmful substances. It has been determined that these dietary phytochemicals are effective in preventing skin cancer and are widely available, inexpensive, and well-tolerated. Studies have shown that these phytochemicals possess anti-inflammatory, antioxidant, and antiangiogenic properties that can aid in the prevention of skin cancers. In addition, they influence crucial cellular processes such as angiogenesis and cell cycle control, which can halt the progression of skin cancer. The present paper discusses the benefits of specific dietary phytochemicals found in fruits and vegetables, as well as the signaling pathways they regulate, the molecular mechanisms involved in the prevention of skin cancer, and their drawbacks.
Collapse
Affiliation(s)
- Harpreet Singh
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | | | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka
| | - Arvind Kumar
- School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh
| | - Amrita Mishra
- School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi
| | - Ruhul Amin
- Faculty of Pharmaceutical Science, Assam downtown University, Panikhaiti, Gandhinagar, Guwahati, Assam
| | | | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
13
|
Arun V, Govindaraju L, Paranthaman RV, Priyadharshini R, Kalaiselvam R, Rajan RM. Antibacterial efficacy of carnosic acid as an intracanal medicament against Enterococcus faecalis: Quantitative polymerase chain reaction study. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:1010-1014. [PMID: 39583274 PMCID: PMC11581366 DOI: 10.4103/jcde.jcde_405_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 11/26/2024]
Abstract
Aim The aim of this study was to quantitatively assess the antibacterial effectiveness of carnosic acid, propolis, and calcium hydroxide when used as intracanal medications against Enterococcus faecalis. Methodology Forty-six human mandibular single-rooted premolar root lengths were standardized to 12 mm after decoronation. Cleaning and shaping were performed. The specimens were placed in Eppendorf Tubes and autoclaved. E. faecalis was inoculated into the canals and incubated for 21 days. The teeth were categorized into four groups: I - carnosic acid, II - propolis, III - calcium hydroxide, and IV - nonmedicated group. The medicaments were applied to the root canals and incubated for 14 days. The DNA extraction of E. faecalis was obtained from dentinal shavings harvested at 400-μm depth and a real-time quantitative polymerase chain reaction was performed. Statistical Analysis Data were analyzed using the Kruskal-Wallis test and Dunn's intergroup comparison test in SPSS software. Results E. faecalis present were 4.14, 6.98, 3.80, and 56.84 mean copies/μl in groups I, III, III, and IV, respectively. A significant difference in antibacterial efficacy was observed between medicated and untreated control groups. However, no statistically significant differences were observed among the groups treated with different medicaments. Conclusion Carnosic acid has promising antibacterial activity against E. faecalis when used as an intracanal medicament.
Collapse
Affiliation(s)
- Varshitha Arun
- Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Lokhasudhan Govindaraju
- Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Rishaba Varma Paranthaman
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Rekha Priyadharshini
- Department of Microbiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Rajeswari Kalaiselvam
- Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, Tamil Nadu, India
| | - R. Mathan Rajan
- Department of Conservative Dentistry and Endodontics, Sri Ramachandra Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
15
|
Unnikrishnan Meenakshi D, Narde GK, Ahuja A, Al Balushi K, Francis AP, Khan SA. Therapeutic Applications of Nanoformulated Resveratrol and Quercetin Phytochemicals in Colorectal Cancer-An Updated Review. Pharmaceutics 2024; 16:761. [PMID: 38931884 PMCID: PMC11206904 DOI: 10.3390/pharmaceutics16060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Natural compounds such as polyphenols play several positive roles in maintaining the oxidative and inflammatory capacity of cells, which leads to their potential use as anticancer therapeutics. There is promising evidence for the in vitro and in vivo anticancer activity of many polyphenols, including resveratrol and quercetin, specifically in the treatment of colorectal cancer (CRC). There is a clear association between resveratrol and quercetin in interfering with the mechanistic pathways involved in CRC, such as Wnt, P13K/AKT, caspase-3, MAPK, NF-κB, etc. These molecular pathways establish the role of resveratrol and quercetin in controlling cancer cell growth, inducing apoptosis, and inhibiting metastasis. The major bottleneck in the progression of the use of resveratrol and quercetin as anticancer therapeutics is their reduced bioavailability in vivo because of their rapid metabolism in humans. Recent advancements in various nanotechnological formulations are promising for overcoming these bioavailability issues. Various nanoformulations of resveratrol and quercetin have shown an optimistic impact on reducing the solubility and improving the stability of resveratrol and quercetin in vivo. A combinatorial approach using nanoformulations of resveratrol with quercetin could potentially increase the impact of resveratrol in controlling CRC cell proliferation. This review discusses the mechanism of resveratrol and quercetin, the two bioactive polyphenolics, in colon cancer, with an emphasis on various types of nanoformulations of the two molecules targeting colon cancer. It also explores the synergistic effect of combining resveratrol and quercetin in various nanoformulations, targeting colon cancer. This research delves into the enhanced pharmacokinetics and potential chemotherapeutic benefits of these bioactive polyphenolics when used together in innovative ways.
Collapse
Affiliation(s)
| | - Gurpreet Kaur Narde
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| | - Alka Ahuja
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| | - Khalid Al Balushi
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India;
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| |
Collapse
|
16
|
Li C, Zhang J, Pan P, Zhang J, Hou X, Wang Y, Chen G, Muhammad P, Reis RL, Ding L, Wang Y. Humanistic Health Management and Cancer: Associations of Psychology, Nutrition, and Exercise with Cancer Progression and Pathogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400665. [PMID: 38526194 PMCID: PMC11165509 DOI: 10.1002/advs.202400665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The incidence rate of cancer is increasing year by year due to the aging of the population, unhealthy living, and eating habits. At present, surgery and medication are still the main treatments for cancer, without paying attention to the impact of individual differences in health management on cancer. However, increasing evidence suggests that individual psychological status, dietary habits, and exercise frequency are closely related to the risk and prognosis of cancer. The reminder to humanity is that the medical concept of the unified treatment plan is insufficient in cancer treatment, and a personalized treatment plan may become a breakthrough point. On this basis, the concept of "Humanistic Health Management" (HHM) is proposed. This concept is a healthcare plan that focuses on self-health management, providing an accurate and comprehensive evaluation of individual lifestyle habits, psychology, and health status, and developing personalized and targeted comprehensive cancer prevention and treatment plans. This review will provide a detailed explanation of the relationship between psychological status, dietary, and exercise habits, and the regulatory mechanisms of cancer. Intended to emphasize the importance of HHM concept in cancer prevention and better prognostic efficacy, providing new ideas for the new generation of cancer treatment.
Collapse
Affiliation(s)
- Chenchen Li
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junfeng Zhang
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Pengcheng Pan
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Junjie Zhang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Xinyi Hou
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Yan Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Guoping Chen
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Pir Muhammad
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| | - Rui L. Reis
- 3B's Research GroupI3Bs‐Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoGuimarães4805‐017Portugal
| | - Lin Ding
- Translational Medicine Collaborative Innovation CenterShenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and TechnologyThe Second Clinical Medical College of Jinan University)ShenzhenGuangdong518055P. R. China
- Guangdong Engineering Technology Research Center of Stem Cell and Cell TherapyShenzhen Key Laboratory of Stem Cell Research and Clinical TransformationShenzhen Immune Cell Therapy Public Service PlatformShenzhen518020P. R. China
| | - Yanli Wang
- International Joint Research Center of Human‐machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province & Key Laboratory of Tropical Translational Medicine of Ministry of EducationSchool of Pharmacy & The First Affiliated HospitalHainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
17
|
Bhuia MS, Chowdhury R, Akter MA, Ali MA, Afroz M, Akbor MS, Sonia FA, Mubarak MS, Islam MT. A mechanistic insight into the anticancer potentials of resveratrol: Current perspectives. Phytother Res 2024. [PMID: 38768953 DOI: 10.1002/ptr.8239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Resveratrol is a widely recognized polyphenolic phytochemical found in various plants and their fruits, such as peanuts, grapes, and berry fruits. It is renowned for its several health advantages. The phytochemical is well known for its anticancer properties, and a substantial amount of clinical evidence has also established its promise as a chemotherapeutic agent. This study focuses on assessing the anticancer properties of resveratrol and gaining insight into the underlying molecular mechanisms. It also evaluates the biopharmaceutical, toxicological characteristics, and clinical utilization of resveratrol to determine its suitability for further development as a reliable anticancer agent. Therefore, the information about preclinical and clinical studies was collected from different electronic databases up-to-date (2018-2023). Findings from this study revealed that resveratrol has potent therapeutic benefits against various cancers involving different molecular mechanisms, such as induction of oxidative stress, cytotoxicity, inhibition of cell migration and invasion, autophagy, arresting of the S phase of the cell cycle, apoptotic, anti-angiogenic, and antiproliferative effects by regulating different molecular pathways including PI3K/AKT, p38/MAPK/ERK, NGFR-AMPK-mTOR, and so on. However, the compound has poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of resveratrol). Clinical application also showed therapeutic benefits in several types of cancer with no serious adverse effects. We suggest additional extensive studies to further check the efficacy, safety, and long-term hazards. This could involve a larger number of clinical samples to establish the compound as a reliable drug in the treatment of cancer.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
| | - Mst Asma Akter
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Arman Ali
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Fatema Akter Sonia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
18
|
Tshivhase AM, Matsha T, Raghubeer S. The protective role of resveratrol against high glucose-induced oxidative stress and apoptosis in HepG2 cells. Food Sci Nutr 2024; 12:3574-3584. [PMID: 38726423 PMCID: PMC11077230 DOI: 10.1002/fsn3.4027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 05/12/2024] Open
Abstract
High glucose concentrations result in oxidative stress, leading to damage of cellular constituents like DNA, proteins, and lipids, ultimately resulting in apoptosis. Resveratrol, a polyphenol phytoalexin, has been studied for its potential therapeutic effects on diabetes. This study investigated the influence of high glucose (HG) on HepG2 cells and assessed resveratrol's effect on high-glucose-induced oxidative stress and apoptosis. HepG2 cells were cultured for 48 and 72 h with high glucose (40 mM), low resveratrol (25 μM), high resveratrol (50 μM), high glucose + low resveratrol, and high glucose + high resveratrol. After exposure, oxidative and apoptosis-related gene expression was evaluated using quantitative polymerase chain reaction (qPCR), and lactate dehydrogenase (LDH) release was measured using the supernatant. In HepG2 cells cultured with high glucose, all antioxidant enzymes (SOD, superoxide dismutase; GPx1, glutathione peroxidase 1; CAT, catalase; Nrf2, nuclear factor erythroid 2-related factor 2; and NQO1, NAD(P)H quinone oxidoreductase 1) were significantly reduced; however, when HepG2 cells were cultured with resveratrol (25 and 50 μM) and high glucose, the expression levels of all antioxidant enzymes were increased. The anti-apoptotic gene (B-cell lymphoma 2; Bcl2) and the DNA repair gene (Oxoguanine glycosylase-1, OGG1) were significantly decreased following high glucose exposure to HepG2 cells. Surprisingly, the expression levels of Bcl2 and OGG1 were notably elevated after resveratrol treatment. Furthermore, high glucose levels increased the LHD release in HepG2 cells, whereas resveratrol treatment reduced the LDH release. Our results demonstrate that resveratrol provides protection against oxidative stress and apoptosis induced by high glucose in HepG2 cells. Hence, resveratrol shows potential as an effective approach to address the impaired antioxidant response resulting from elevated glucose levels commonly observed in diabetes and metabolic disorders.
Collapse
Affiliation(s)
- Abegail Mukhethwa Tshivhase
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyBellvilleSouth Africa
| | - Tandi Matsha
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyBellvilleSouth Africa
- Sefako Makgatho Health Sciences UniversityGa‐RankuwaSouth Africa
| | - Shanel Raghubeer
- SAMRC/CPUT Cardiometabolic Health Research Unit, Department of Biomedical Sciences, Faculty of Health and Wellness SciencesCape Peninsula University of TechnologyBellvilleSouth Africa
| |
Collapse
|
19
|
Salla M, Karaki N, El Kaderi B, Ayoub AJ, Younes S, Abou Chahla MN, Baksh S, El Khatib S. Enhancing the Bioavailability of Resveratrol: Combine It, Derivatize It, or Encapsulate It? Pharmaceutics 2024; 16:569. [PMID: 38675230 PMCID: PMC11053528 DOI: 10.3390/pharmaceutics16040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Overcoming the limited bioavailability and extensive metabolism of effective in vitro drugs remains a challenge that limits the translation of promising drugs into clinical trials. Resveratrol, despite its well-reported therapeutic benefits, is not metabolically stable and thus has not been utilized as an effective clinical drug. This is because it needs to be consumed in large amounts to overcome the burdens of bioavailability and conversion into less effective metabolites. Herein, we summarize the more relevant approaches to modify resveratrol, aiming to increase its biological and therapeutic efficacy. We discuss combination therapies, derivatization, and the use of resveratrol nanoparticles. Interestingly, the combination of resveratrol with established chemotherapeutic drugs has shown promising therapeutic effects on colon cancer (with oxaliplatin), liver cancer (with cisplatin, 5-FU), and gastric cancer (with doxorubicin). On the other hand, derivatizing resveratrol, including hydroxylation, amination, amidation, imidation, methoxylation, prenylation, halogenation, glycosylation, and oligomerization, differentially modifies its bioavailability and could be used for preferential therapeutic outcomes. Moreover, the encapsulation of resveratrol allows its trapping within different forms of shells for targeted therapy. Depending on the nanoparticle used, it can enhance its solubility and absorption, increasing its bioavailability and efficacy. These include polymers, metals, solid lipids, and other nanoparticles that have shown promising preclinical results, adding more "hype" to the research on resveratrol. This review provides a platform to compare the different approaches to allow directed research into better treatment options with resveratrol.
Collapse
Affiliation(s)
- Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
| | - Nadine Karaki
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Chemistry and Biochemistry, Faculty of Arts and Sciences, Lebanese University, Zahlé 1801, Lebanon
| | - Belal El Kaderi
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Abeer J. Ayoub
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon;
- INSPECT-LB (National Institute of Public Health, Clinical Epidemiology and Toxicology-Lebanon (INSPECT-LB)), Beirut 1103, Lebanon
| | - Maya N. Abou Chahla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Shairaz Baksh
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada;
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| | - Sami El Khatib
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
20
|
Fu Q, Lu Z, Chang Y, Jin T, Zhang M. Bibliometric and visualized analysis of resveratrol in anticancer investigations. Food Sci Nutr 2024; 12:2223-2239. [PMID: 38628201 PMCID: PMC11016421 DOI: 10.1002/fsn3.3932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 04/19/2024] Open
Abstract
A growing number of publications have shown that resveratrol has anticancer effects and has become a hotspot in cancer research. The purpose of this study is to analyze the academic results and research trends in resveratrol within the field of anticancer and to predict the future trends in this field. We conducted a literature search for resveratrol in anticancer research from 2003 to 2022 using the Science Citation Index Expanded of the Web of Science Core Collection. The visualization software was used to perform the bibliometric analysis. A total of 1463 publications from 2003 to 2022 were retrieved. China had the highest number of publications. Taipei Medical University became the research institution with the largest number of publications worldwide. The journals with the highest output and co-citation frequency were Molecules and Cancer Research. Levenson, Anait S and Jaeger, Walter published the largest number of papers. Jang, MS was the most co-cited author. Timeline View shows trends and relationship between research topics over time and suggests that the emerging frontier of resveratrol in anticancer may be "resveratrol induces apoptosis." As more and more evidence shows the important role of resveratrol in anticancer, further research on its mechanisms and target discovery may become a major direction for future research. The bibliometric analysis findings of this study will significantly contribute to scholars' comprehensive understanding of the anticancer effects and mechanisms of action of resveratrol, aiding in delineating research hotspots and frontier directions within this field, thereby providing guidance for future investigations.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Zhongqi Lu
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Ying Chang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Tiefeng Jin
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| | - Meihua Zhang
- Department of Ultrasound MedicineAffiliated Hospital of Yanbian UniversityYanjiP. R. China
- Department of Pathology and Cancer Research CenterYanbian University Medical CollegeYanjiP. R. China
- Key Laboratory of the Science and Technology Department of Jilin ProvinceYanjiP. R. China
| |
Collapse
|
21
|
Jurczyk M, Musiał-Kulik M, Foryś A, Godzierz M, Kaczmarczyk B, Kasperczyk J, Wrześniok D, Beberok A, Jelonek K. Comparison of PLLA-PEG and PDLLA-PEG micelles for co-encapsulation of docetaxel and resveratrol. J Biomed Mater Res B Appl Biomater 2024; 112:e35318. [PMID: 37650461 DOI: 10.1002/jbm.b.35318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
The interest in combining chemosensitizers with cytostatics in cancer therapy is growing, which causes also a need to develop their delivery systems. Example of the combination with beneficial therapeutic effects is docetaxel (Dtx) and resveratrol (Res). Although poly(lactide)-co-poly(ethylene glycol) (PLA-PEG) micelles have been considered as one of the most promising platforms for drug delivery, their properties may depend on the stereoisomeric form of hydrophobic block. Therefore, the aim of this study was evaluation of the effect of PLA block on co-encapsulation and release rate of Dtx and Res, which has not been studied so far. This article presents a comparison of single- (Dtx or Res) and dual-drug (Dtx and Res) loaded micelles obtained from poly(l,l-lactide)-co-poly(ethylene glycol) (PLLA-PEG) and poly(d,l-lactide)-co-poly(ethylene glycol) (PDLLA-PEG). The analyzes of the micelles have been conducted including morphology, drug(s) encapsulation efficiency, intermolecular interactions, in vitro drug release, and cytotoxicity. Differences in drug loading ability and release profile have been observed between Res and Dtx but also depending on the polymer and number of drugs in micelles (single vs. dual loaded). The PLLA-PEG micelles have a significantly higher Dtx encapsulation capacity than PDLLA-PEG micelles. The highest cytotoxicity was shown for Dtx and Res dual-loaded micelles, regardless of the polymer. The findings may be used for selection of PLA-based drug delivery systems containing Dtx and Res.
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Monika Musiał-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Marcin Godzierz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Bożena Kaczmarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Sosnowiec, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| |
Collapse
|
22
|
Anwar MJ, Altaf A, Imran M, Amir M, Alsagaby SA, Abdulmonem WA, Mujtaba A, El-Ghorab AH, Ghoneim MM, Hussain M, Jbawi EA, Shaker ME, Abdelgawad MA. Anti-cancer perspectives of resveratrol: a comprehensive review. FOOD AGR IMMUNOL 2023; 34. [DOI: 10.1080/09540105.2023.2265686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 11/28/2024] Open
Affiliation(s)
- Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Areeba Altaf
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Muhammad Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering and Technology, Hamdard University Islamabad. Islamabad Campus, Islamabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni suef, Egypt
| |
Collapse
|
23
|
Anwar MJ, Altaf A, Imran M, Amir M, Alsagaby SA, Abdulmonem WA, Mujtaba A, El-Ghorab AH, Ghoneim MM, Hussain M, Jbawi EA, Shaker ME, Abdelgawad MA. Anti-cancer perspectives of resveratrol: a comprehensive review. FOOD AGR IMMUNOL 2023; 34. [DOI: https:/doi.org/10.1080/09540105.2023.2265686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 05/18/2024] Open
Affiliation(s)
- Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Areeba Altaf
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Muhammad Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering and Technology, Hamdard University Islamabad. Islamabad Campus, Islamabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni suef, Egypt
| |
Collapse
|
24
|
Józkowiak M, Kobylarek D, Bryja A, Gogola-Mruk J, Czajkowski M, Skupin-Mrugalska P, Kempisty B, Spaczyński RZ, Piotrowska-Kempisty H. Steroidogenic activity of liposomal methylated resveratrol analog 3,4,5,4'-tetramethoxystilbene (DMU-212) in human luteinized granulosa cells in a primary three-dimensional in vitro model. Endocrine 2023; 82:681-694. [PMID: 37572199 PMCID: PMC10618382 DOI: 10.1007/s12020-023-03458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/14/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE Steroid hormone secretion is one of the key functions of granulosa cells (GCs). Resveratrol is a natural polyphenol, known for its beneficial health effects, such as improving reproductive health. However, its application is limited due to poor bioavailability. The methoxy derivative of resveratrol (DMU-212) was demonstrated to be more lipophilic, and therefore of greater bioavailability. However, since the addition of methoxy groups to the stilbene scaffold was found to make the molecule insoluble in water, DMU-212 was loaded into liposomes. This study aimed to evaluate how the liposomal formulation of DMU-212 (lipDMU-212) alters estradiol and progesterone secretion of human ovarian GCs in a primary three-dimensional cell culture model. METHODS DMU-212-loaded liposomes were prepared by thin film hydration followed by extrusion. Cell viability was measured after exposure of GCs spheroids to the liposomal formulation of DMU-212 using CellTiter-Glo® 3D Cell Viability Assay. The secretion of estradiol and progesterone was determined using commercial ELISA kits. RT-qPCR was conducted to analyze the expression of steroidogenesis-related genes. Finally, the western blot technique was used to analyze the effect of lipDMU-212 and FSH treatments on CYP11A1 and HSD3B1 protein levels. RESULTS lipDMU-212 was found to significantly increase estradiol and progesterone secretion in a dose-dependent manner by enhancing the expression of CYP11A1, HSD3B1, StAR, CYP17A1, CYP19A1, and HSD17B1 genes. We have also shown that lipDMU-212, used alone and in combination with FSH, significantly increased the expression of the HSD3B1 and CYP11A1 proteins in GCs. Furthermore, our study suggests that lipDMU-212 increases FSH activity. CONCLUSIONS This is the first study to describe the steroidogenic activity of liposomal formulation of DMU-212, possibly through increasing the StAR and CYP19A1 expression. These findings suggest that lipDMU-212 might have a beneficial effect in the treatment of disorders related to estrogen deficiency and hyperandrogenism, such as PCOS.
Collapse
Affiliation(s)
- Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
| | - Dominik Kobylarek
- Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Artur Bryja
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Justyna Gogola-Mruk
- Laboratory of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Mikołaj Czajkowski
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | - Paulina Skupin-Mrugalska
- Department of Inorganic & Analytical Chemistry, Collegium Pharmaceuticum, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Robert Z Spaczyński
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland.
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland.
| |
Collapse
|
25
|
Wu SX, Xiong RG, Huang SY, Zhou DD, Saimaiti A, Zhao CN, Shang A, Zhang YJ, Gan RY, Li HB. Effects and mechanisms of resveratrol for prevention and management of cancers: An updated review. Crit Rev Food Sci Nutr 2023; 63:12422-12440. [PMID: 35852215 DOI: 10.1080/10408398.2022.2101428] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is a severe public health problem. Resveratrol is a famous natural compound that has various bioactivities, such as antioxidant, anti-inflammatory, antidiabetic and antiaging activities. Especially, resveratrol could prevent and treat various cancers, such as oral, thyroid, breast, lung, liver, pancreatic, gastric, colorectal, bladder, prostate and ovarian cancers. The underlying mechanisms have been widely studied, such as inhibiting cell proliferation, suppressing metastasis, inducing apoptosis, stimulating autophagy, modulating immune system, attenuating inflammation, regulating gut microbiota and enhancing effects of other anticancer drugs. In this review, we summarize effects and mechanisms of resveratrol on different cancers. This paper is helpful to develop resveratrol, crude extract containing resveratrol, or foods containing resveratrol into functional food, dietary supplements or auxiliary agents for prevention and management of cancers.
Collapse
Affiliation(s)
- Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| | - Cai-Ning Zhao
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ao Shang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yun-Jian Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
26
|
Vivanco PG, Taboada P, Coelho A. The Southern European Atlantic Diet and Its Supplements: The Chemical Bases of Its Anticancer Properties. Nutrients 2023; 15:4274. [PMID: 37836558 PMCID: PMC10574233 DOI: 10.3390/nu15194274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Scientific evidence increasingly supports the strong link between diet and health, acknowledging that a well-balanced diet plays a crucial role in preventing chronic diseases such as obesity, diabetes, cardiovascular issues, and certain types of cancer. This perspective opens the door to developing precision diets, particularly tailored for individuals at risk of developing cancer. It encompasses a vast research area and involves the study of an expanding array of compounds with multilevel "omics" compositions, including genomics, transcriptomics, proteomics, epigenomics, miRNomics, and metabolomics. We review here the components of the Southern European Atlantic Diet (SEAD) from both a chemical and pharmacological standpoint. The information sources consulted, complemented by crystallographic data from the Protein Data Bank, establish a direct link between the SEAD and its anticancer properties. The data collected strongly suggest that SEAD offers an exceptionally healthy profile, particularly due to the presence of beneficial biomolecules in its foods. The inclusion of olive oil and paprika in this diet provides numerous health benefits, and scientific evidence supports the anticancer properties of dietary supplements with biomolecules sourced from vegetables of the brassica genus. Nonetheless, further research is warranted in this field to gain deeper insights into the potential benefits of the SEAD's bioactive compounds against cancer.
Collapse
Affiliation(s)
- Pablo García Vivanco
- Spanish Academy of Nutrition and Dietetics, 31006 Pamplona, Spain
- Nutrition and Digestive Working Group, Spanish Society of Clinical, Family, and Community Pharmacy (SEFAC), 28045 Madrid, Spain
| | - Pablo Taboada
- Department of Condensed Matter Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alberto Coelho
- Institute of Materials-USC (IMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
27
|
Cao L, Zhao S, Han K, Fan L, Zhao C, Yin S, Hu H. Managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis. J Nutr Biochem 2023; 120:109427. [PMID: 37549833 DOI: 10.1016/j.jnutbio.2023.109427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/13/2023] [Accepted: 08/02/2023] [Indexed: 08/09/2023]
Abstract
Ferroptosis is an iron-dependent form of programmed cell death driven by excessive oxidation of polyunsaturated phospholipids on cellular membranes. Accumulating evidence suggests that ferroptosis has been implicated in the pathological process of various diseases, such as cardiovascular diseases, neurological diseases, liver diseases, kidney injury, lung injury, diabetes, and cancer. Targeting ferroptosis is therefore considered to be a reasonable strategy to fight against ferroptosis-associated diseases. Many dietary bioactive agents have been identified to be able to either suppress or promote ferroptosis, indicating that ferroptosis-based intervention by dietary approach may be an effective strategy for preventing and treating diseases associated with ferroptosis dysregulation. In this review, we summarize the present understanding of the functional role of ferroptosis in the pathogenesis of aforementioned diseases with an emphasis on the evidence of managing ferroptosis-related diseases with indirect dietary modulators of ferroptosis and propose issues that need to be addressed to promote practical application of dietary approach targeting ferroptosis.
Collapse
Affiliation(s)
- Lixing Cao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shuang Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Kai Han
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Beijing, China.
| | - Chong Zhao
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Shutao Yin
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China
| | - Hongbo Hu
- College of Food Science and Nutritional Engineering, Beijing Key Laboratory for Food Non-thermal Processing, China Agricultural University, Beijing, China.
| |
Collapse
|
28
|
González D, Rojas M, Rojano B, Restrepo G. Low-density lipoproteins, resveratrol and quercetin as alternative additives to improve boar semen cooling. Reprod Domest Anim 2023; 58:1420-1427. [PMID: 37587646 DOI: 10.1111/rda.14457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Low-density lipoproteins (LDL), quercetin (Q) and resveratrol (R) have been used for sperm preservation to improve sperm quality in different species. To evaluate the effects of LDL, Q and R during the cooling of boar semen. Fifteen boar semen samples were diluted in a BTS extender supplemented with the treatments: LDL at 6%, Q at 10 μM (Q10), 30 μM (Q30) and 50 μM (Q50), or R at 10 μM (R10), 30 μM (R30) and 50 μM. A control without supplementation was included. The semen was stored by cooling at 16°C for 96 h. Every 24 h, sperm motility and kinetics were evaluated using a computer-assisted sperm analyzer (IVOS). At 24 and 96 h of cooling, functional membrane integrity and mitochondrial membrane potential (ΔΨM) of sperm were evaluated by the hypoosmotic swelling test (HOST) an flow cytometry with JC-1 probe, respectively, LDL improved progressive motility of sperm during cooling. Likewise, LDL increased average path velocity (VAP) and straight-line velocity (VSL) and/or curvilinear velocity (VCL) during the first 48 h of cooling. The use of Q between 10 and 30 μM caused a reduction in total motility, progressive motility and amplitude of the lateral head displacement during the entire cooling period, as well as a decrease in VAP, VSL and VCL at 96 h of cooling. LDL, Q10, Q30 and Q50 modulated mitochondrial activity by reducing high-ΔΨM sperm at 0 and 96 h of cooling. During the cooling of the boar semen prior to artificial insemination, the parameters of sperm quality that could influence fertility decrease; however, the inclusion of antioxidants and additives that protect the plasma membrane, such as LDL, could mitigate the damaging effects on spermatozoa. It is concluded that LDL can improve the motility and kinetics of boar semen during cooling while it could modulating the sperm's mitochondrial activity. On the contrary, Q could alter the motility and kinetics of boar sperm during the cooling period.
Collapse
Affiliation(s)
- Darío González
- Faculty of Sciences, Universidad Nacional de Colombia, Medellín, Colombia
| | - Mauricio Rojas
- Faculty of Medicine, Cell Immunology and Immunogenetics Group, Universidad de Antioquia, Medellín, Colombia
- Flow Cytometry Unit, University Research Headquarters, Universidad de Antioquia, Medellín, Colombia
| | - Benjamín Rojano
- Faculty of Sciences, Universidad Nacional de Colombia, Medellín, Colombia
| | - Giovanni Restrepo
- Faculty of Agricultural Sciences, Universidad Nacional de Colombia, Medellín, Colombia
| |
Collapse
|
29
|
Sarfraz M, Arafat M, Zaidi SHH, Eltaib L, Siddique MI, Kamal M, Ali A, Asdaq SMB, Khan A, Aaghaz S, Alshammari MS, Imran M. Resveratrol-Laden Nano-Systems in the Cancer Environment: Views and Reviews. Cancers (Basel) 2023; 15:4499. [PMID: 37760469 PMCID: PMC10526844 DOI: 10.3390/cancers15184499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The genesis of cancer is a precisely organized process in which normal cells undergo genetic alterations that cause the cells to multiply abnormally, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Potential drugs that could modify these carcinogenic pathways are the ones that will be used in clinical trials as anti-cancer drugs. Resveratrol (RES) is a polyphenolic natural antitoxin that has been utilized for the treatment of several diseases, owing to its ability to scavenge free radicals, control the expression and activity of antioxidant enzymes, and have effects on inflammation, cancer, aging, diabetes, and cardioprotection. Although RES has a variety of pharmacological uses and shows promising applications in natural medicine, its unpredictable pharmacokinetics compromise its therapeutic efficacy and prevent its use in clinical settings. RES has been encapsulated into various nanocarriers, such as liposomes, polymeric nanoparticles, lipidic nanocarriers, and inorganic nanoparticles, to address these issues. These nanocarriers can modulate drug release, increase bioavailability, and reach therapeutically relevant plasma concentrations. Studies on resveratrol-rich nano-formulations in various cancer types are compiled in the current article. Studies relating to enhanced drug stability, increased therapeutic potential in terms of pharmacokinetics and pharmacodynamics, and reduced toxicity to cells and tissues are the main topics of this research. To keep the readers informed about the current state of resveratrol nano-formulations from an industrial perspective, some recent and significant patent literature has also been provided. Here, the prospects for nano-formulations are briefly discussed, along with machine learning and pharmacometrics methods for resolving resveratrol's pharmacokinetic concerns.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain P.O. Box 64141, United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain P.O. Box 64141, United Arab Emirates
| | - Syeda Huma H. Zaidi
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | | | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia (M.I.)
| | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Mohammed Sanad Alshammari
- Department of Computer Science, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia (M.I.)
| |
Collapse
|
30
|
Li L, Wang Z, Guo H, Lin Q. Nanomaterials: a promising multimodal theranostics platform for thyroid cancer. J Mater Chem B 2023; 11:7544-7566. [PMID: 37439780 DOI: 10.1039/d3tb01175e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Thyroid cancer is the most prevalent malignant neoplasm of the cervical region and endocrine system, characterized by a discernible upward trend in incidence over recent years. Ultrasound-guided fine needle aspiration is the current standard for preoperative diagnosis of thyroid cancer, albeit with limitations and a certain degree of false-negative outcomes. Although differentiated thyroid carcinoma generally exhibits a favorable prognosis, dedifferentiation is associated with an unfavorable clinical course. Anaplastic thyroid cancer, characterized by high malignancy and aggressiveness, remains an unmet clinical need with no effective treatments available. The emergence of nanomedicine has opened new avenues for cancer theranostics. The unique features of nanomaterials, including multifunctionality, modifiability, and various detection modes, enable non-invasive and convenient thyroid cancer diagnosis through multimodal imaging. For thyroid cancer treatment, nanomaterial-based photothermal therapy or photodynamic therapy, combined with chemotherapy, radiotherapy, or gene therapy, holds promise in reducing invasiveness and prolonging patient survival or alleviating pain in individuals with anaplastic thyroid carcinoma. Furthermore, nanomaterials enable simultaneous diagnosis and treatment of thyroid cancer. This review aims to provide a comprehensive survey of the latest developments in nanomaterials for thyroid cancer diagnosis and treatment and encourage further research in developing innovative and effective theranostic approaches for thyroid cancer.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Hui Guo
- Department of Endocrinology, Lequn Branch, The First Hospital of Jilin University, Changchun, 130031, China.
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| |
Collapse
|
31
|
Othman NM, Elhawary YM, Elbeltagy MG, Badr AE. The Effect of Rosmarinus Officinalis as a Potential Root Canal Medication on the Viability of Dental Pulp Stem Cells. J Contemp Dent Pract 2023; 24:623-631. [PMID: 38152933 DOI: 10.5005/jp-journals-10024-3570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
AIM The objective of the current study was to assess and compare the impact of triple antibiotic paste (TAP) and calcium hydroxide (Ca(OH)2) with rosmarinic acid (RA) on the viability of dental pulp stem cells (DPSCs). MATERIALS AND METHODS Dental pulp stem cells were isolated and characterized using flow cytometry. The cells were treated with (0.25, 0.5, 1, 2.5, and 5 mg/mL) concentrations for TAP and Ca(OH)2 and (6.25, 12.5, 25, 50, and 100 µM) concentrations for RA. Cell viability was evaluated after 3 days, with cell proliferation further analyzed over 3, 5, and 7 days utilizing the MTT assay. The optical density (OD) was quantified at 570 nm, subsequently enabling the determination of corrected OD and cell viability. ANOVA followed by the post hoc Tuckey test evaluated the statistical significance at p < 0.05. RESULTS Following the cell viability test, 0.25 and 0.5 mg/mL of TAP and Ca(OH)2 showed no significant difference for DPSCs compared to the control group. While dosages of 1 mg/mL, 2.5 mg/mL, and 5 mg/mL significantly reduced cell viability (p < 0.05). However, 6.25 µM and 12.5 µM concentrations of RA showed a significant increase in cell viability compared to untreated cells, 25 µM and 50 µM concentrations showed no significant difference compared to untreated cells while 100 µM concentration showed a decrease in cell viability (p < 0.05). Moreover, RA at a concentration of 12.5 µM exhibited a significant enhancement in cell proliferation rates after 5 and 7 days. CONCLUSION Rosmarinic acid showed a significant increase in cell viability when used at 6.25 and 12.5 µM concentrations compared to TAP and CA(OH)2. CLINICAL SIGNIFICANCE The assessment of cytotoxicity associated with bioactive compounds like RA, which processes antimicrobial and anti-inflammatory properties, holds importance. This evaluation could pave the way for novel intracanal medicaments that enhance the regenerative potential of DPSCs.
Collapse
Affiliation(s)
- Nesma Mohamed Othman
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt, Phone: +201000011044, e-mail: , https://orcid.org/0009-0007-9756-7079
| | - Yousry Mahmoud Elhawary
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt, https://orcid.org/0000-0001-7182-9551
| | - Mohamed G Elbeltagy
- Department of Stem Cells Research, Urology and Nephrology Center, Faculty of Medicine, Mansoura University, Mansoura, Egypt, https://orcid.org/0000-0003-3309-4480
| | - Amany Elsaid Badr
- Department of Endodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt, https://orcid.org/0000-0002-3811-149X
| |
Collapse
|
32
|
Cordeiro-Massironi K, Soares-Freitas RAM, Sampaio GR, Pinaffi-Langley ACDC, Bridi R, de Camargo AC, Torres EAFS. In Vitro Digestion of Peanut Skin Releases Bioactive Compounds and Increases Cancer Cell Toxicity. Antioxidants (Basel) 2023; 12:1356. [PMID: 37507896 PMCID: PMC10376574 DOI: 10.3390/antiox12071356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
Peanut skin is a rich source of bioactive compounds which may be able to reduce the risk factors associated with metabolic syndromes. This study aimed to characterize bio-compounds from peanut skin (Arachis hypogaea) and their bioactivity (antioxidant activity, inhibition of lipase, and carbohydrase enzymes) and to evaluate their anti-proliferative properties in colorectal cancer cells (HCT116) upon in vitro digestion. Peanut skin was digested in two sequential phases, and the final content, named phase-1 (P1) and phase-2 (P2) extracts, was evaluated. Several bioactive compounds were positively identified and quantified by liquid chromatography, including quinic acid, released especially after in vitro digestion. The total phenolic content and, regardless of the method, the antioxidant activity of P1 was higher than P2. P1 also showed a lower enzyme inhibitory concentration IC50 than P2, lipase, and α-glucosidase. For cell viability in HCT116 cells, lower concentrations of P1 were found for IC50 compared to P2. In conclusion, bioactive compounds were released mainly during the first phase of the in vitro digestion. The digested samples presented antioxidant activity, enzyme inhibitory activity, and cancer cell cytotoxicity, especially those from the P1 extract. The potential applications of such a by-product in human health are reported.
Collapse
Affiliation(s)
- Karina Cordeiro-Massironi
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | | | - Geni Rodrigues Sampaio
- Department of Nutrition, School of Public Health, University of São Paulo, São Paulo 01246-904, Brazil
| | - Ana Clara da C Pinaffi-Langley
- Department of Nutrition Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA
| | - Raquel Bridi
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380000, Chile
| | | | | |
Collapse
|
33
|
Aung NN, Pengnam S, Ngawhirunpat T, Rojanarata T, Patrojanasophon P, Opanasopit P, Pamornpathomkul B. Fabrication of polyvinyl pyrrolidone-K90/Eudragit RL100-based dissolving microneedle patches loaded with alpha-arbutin and resveratrol for skin depigmentation. Biomater Sci 2023. [PMID: 37183632 DOI: 10.1039/d3bm00132f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Alpha-arbutin (AA) and resveratrol (Res) are widely used in skin-lightening products. However, current topical formulations have minimal skin-lightening effects due to the low absorption and poor solubility of these active compounds. This study investigated the efficacy and safety of using dissolving microneedle (DMN) patches to improve the delivery of AA and Res for skin depigmentation. The DMN patches (F0-F3) fabricated from polyvinyl pyrrolidone-K90 (PVP-K90)/Eudragit RL100 blends successfully penetrated excised porcine skin and showed sufficient mechanical strength to resist compression forces. Loading DMNs with 10% AA and 2% Res at a ratio of 5 : 1 (F3) resulted in a synergistic interaction between the drugs with desirable dissolving ability, drug loading, and stability. Furthermore, both in vitro and in vivo studies revealed that the use of F3 DMN patches successfully enhanced the intradermal delivery of AA and Res over a 24 h period, with the delivered amount being higher (∼2.6 times) than that provided by a cream formulation (P < 0.05). After removing the DMN patches, the mice's skin was spontaneously and completely resealed within 12 h. In clinical studies, F3 DMN patches slightly decreased the melanin index of the participants without causing skin irritation or erythema at any time during the 24 h period when the patches were applied (P < 0.05). Moreover, application of the patches for 24 h was not found to affect skin hydration, transepidermal water loss, or skin elasticity. Therefore, AA/Res-loaded DMN patches could offer a promising approach for the effective local delivery of cosmetic agents for skin depigmentation.
Collapse
Affiliation(s)
- Nway Nway Aung
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
- Pharmaceutical Factory, Kyaukse, Myanmar
| | - Supusson Pengnam
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
34
|
Radeva L, Yordanov Y, Spassova I, Kovacheva D, Tzankova V, Yoncheva K. Double-Loaded Doxorubicin/Resveratrol Polymeric Micelles Providing Low Toxicity on Cardiac Cells and Enhanced Cytotoxicity on Lymphoma Cells. Pharmaceutics 2023; 15:pharmaceutics15041287. [PMID: 37111772 PMCID: PMC10143567 DOI: 10.3390/pharmaceutics15041287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The anthracycline antibiotic doxorubicin is a well-known antitumour agent, however its cardiotoxicity is a significant obstacle to therapy. The aim of the present study was to improve the safety of doxorubicin through its simultaneous encapsulation with a cardioprotective agent (resveratrol) in Pluronic micelles. The formation and double-loading of the micelles was performed via the film hydration method. Infrared spectroscopy proved the successful incorporation of both drugs. X-ray diffraction analyses revealed that resveratrol was loaded in the core, whereas doxorubicin was included in the shell. The double-loaded micelles were characterised by a small diameter (26 nm) and narrow size distribution, which is beneficial for enhanced permeability and retention effects. The in vitro dissolution tests showed that the release of doxorubicin depended on the pH of the medium and was faster than that of resveratrol. In vitro studies on cardioblasts showed the opportunity to reduce the cytotoxicity of doxorubicin through the presence of resveratrol in double-loaded micelles. Higher cardioprotection was observed when the cells were treated with the double-loaded micelles compared with referent solutions with equal concentrations of both drugs. In parallel, treatments of L5178 lymphoma cells with the double-loaded micelles revealed that the cytotoxic effect of doxorubicin was enhanced. Thus, the study demonstrated that the simultaneous delivery of doxorubicin and resveratrol via the micellar system enabled the cytotoxicity of doxorubicin in lymphoma cells and lowered its cardiotoxicity in cardiac cells.
Collapse
Affiliation(s)
- Lyubomira Radeva
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Yordan Yordanov
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Virginia Tzankova
- Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | | |
Collapse
|
35
|
Szczepańska P, Rychlicka M, Groborz S, Kruszyńska A, Ledesma-Amaro R, Rapak A, Gliszczyńska A, Lazar Z. Studies on the Anticancer and Antioxidant Activities of Resveratrol and Long-Chain Fatty Acid Esters. Int J Mol Sci 2023; 24:ijms24087167. [PMID: 37108328 PMCID: PMC10139102 DOI: 10.3390/ijms24087167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Resveratrol (RES) is gaining recognition as a natural bioactive compound. To expand the possible applications of RES with its enhanced bioactivity as well as to increase the health benefits of long-chain fatty acids, a lipophilization process of RES was performed using three fatty acids: palmitic acid (PA), oleic acid (OA), and conjugated linoleic acid (CLA). The obtained mono-, di-, and tri-esters of RES were evaluated for their anticancer and antioxidant properties against lung carcinoma (A549), colorectal adenocarcinoma (HT29), and pancreatic ductal adenocarcinoma (BxPC3) cell lines. Human fibroblast (BJ) cells were used as a control. Several parameters were investigated: cell viability and apoptosis, including the expression of major pro- and anti-apoptotic markers, as well as the expression of superoxide dismutase, a key enzyme of the body's antioxidant barrier. Three of the obtained esters: mono-RES-OA, mono-RES-CLA, and tri-RES-PA, which significantly reduced the tumor cell viability up to 23%, at concentrations 25, 10, 50 μg/mL, respectively, turned out to be particularly interesting. The above-mentioned resveratrol derivatives similarly increased the tumor cells' apoptosis by modifying their caspase activity of pro-apoptotic pathways (p21, p53, and Bax). Moreover, among the mentioned esters, mono-RES-OA induced apoptosis of the analyzed cell lines most strongly, reducing the number of viable cells up to 48% for HT29 cells versus 36% for pure RES. Furthermore, the selected esters exhibited antioxidant properties towards the normal BJ cell line by regulating the expression of major pro-antioxidant genes (superoxide dismutases-SOD1 and SOD2) without the effect on their expression in the tumor, and therefore reducing the defense of cancer cells against increased oxidative stress induced by high ROS accumulation. The obtained results indicate that the esters of RES and long-chain fatty acids allow enhancement of their biological activity. The RES derivatives have the potential for being applied in cancer prevention and treatment, as well as for oxidative stress suppression.
Collapse
Affiliation(s)
- Patrycja Szczepańska
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| | - Magdalena Rychlicka
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Sylwia Groborz
- Department of Experimental Biology, Wroclaw University of Environmental and Life Sciences, ul. Norwida 27B, 50-375 Wroclaw, Poland
| | - Angelika Kruszyńska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Andrzej Rapak
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wroclaw, Poland
| | - Zbigniew Lazar
- Department of Biotechnology and Food Microbiology, Wroclaw University of Environmental and Life Sciences, Chelmonskiego 37, 51-630 Wroclaw, Poland
| |
Collapse
|
36
|
Dendrimer-Mediated Delivery of Anticancer Drugs for Colon Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15030801. [PMID: 36986662 PMCID: PMC10059812 DOI: 10.3390/pharmaceutics15030801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 03/05/2023] Open
Abstract
The third most common cancer worldwide is colon cancer (CC). Every year, there more cases are reported, yet there are not enough effective treatments. This emphasizes the need for new drug delivery strategies to increase the success rate and reduce side effects. Recently, a lot of trials have been done for developing natural and synthetic medicines for CC, among which the nanoparticle-based approach is the most trending. Dendrimers are one of the most utilized nanomaterials that are accessible and offer several benefits in the chemotherapy-based treatment of CC by improving the stability, solubility, and bioavailability of drugs. They are highly branched polymers, making it simple to conjugate and encapsulate medicines. Dendrimers have nanoscale features that enable the differentiation of inherent metabolic disparities between cancer cells and healthy cells, enabling the passive targeting of CC. Moreover, dendrimer surfaces can be easily functionalized to improve the specificity and enable active targeting of colon cancer. Therefore, dendrimers can be explored as smart nanocarriers for CC chemotherapy.
Collapse
|
37
|
Zhang Y, Zhang Z, Mousavi M, Moliani A, Bahmn Y, Bagheri H. Resveratrol inhibits glioblastoma cells and chemoresistance progression through blockade P-glycoprotein and targeting AKT/PTEN signaling pathway. Chem Biol Interact 2023; 376:110409. [PMID: 36804490 DOI: 10.1016/j.cbi.2023.110409] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Malignant gliomas have been categorized as a debilitating class of brain tumors that are resistant to radiation and chemotherapeutic drugs, and have a poor prognosis. Hyper-activation of PI3K/AKT pathway and overexpression of p-glycoprotein transporter contributes to enhanced glioblastoma survival and chemoresistance. Resveratrol which possibly inhibits PI3K pathway, has been thus investigated for a potential therapeutic role in glioma. In the present study, the effect of resveratrol on human U87MG and doxorubicin-resistant glioblastoma cells (U87MG/DOX) survival evaluated by MTT. The ability of resveratrol to overcome doxorubicin resistance in glioblastoma cells was also explored with Rhodamines 123 uptake and ELISA assays. Resveratrol reduced cell survival in a PTEN and P53-dependent manner which was an effect associated with the inhibition of PI3K signaling pathway and via the activation of P-glycoprotein. Our finding showed that resveratrol, as a glioblastoma cell growth inhibitor and chemosensitizer, could be promising if used in the treatment of brain cancer. Resveratrol inhibits the progression of glioblastoma cells and reverses chemoresistance by upregulating PTEN, and suppressing AKT and P-glycoprotein. Targeting PTEN with resveratrol may offer a novel therapeutic approach for the chemo-sensitization of glioblastoma cells.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, PR China
| | - Zhen Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, PR China
| | - Mahdi Mousavi
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, PR China
| | - Afshin Moliani
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, PR China
| | - Yousefi Bahmn
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, PR China.
| | - Hossein Bagheri
- Department of Anesthesiology, Shaanxi Provincial People's Hospital, Xi'an, 710068, PR China.
| |
Collapse
|
38
|
Bioaccessibility and Bioavailability of Diet Polyphenols and Their Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:ijms24043813. [PMID: 36835225 PMCID: PMC9961503 DOI: 10.3390/ijms24043813] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
It is generally accepted that diet-derived polyphenols are bioactive compounds with several potentially beneficial effects on human health. In general, polyphenols have several chemical structures, and the most representative are flavonoids, phenolic acids, and stilbenes. It should be noted that the beneficial effects of polyphenols are closely related to their bioavailability and bioaccessibility, as many of them are rapidly metabolized after administration. Polyphenols-with a protective effect on the gastrointestinal tract-promote the maintenance of the eubiosis of the intestinal microbiota with protective effects against gastric and colon cancers. Thus, the benefits obtained from dietary supplementation of polyphenols would seem to be mediated by the gut microbiota. Taken at certain concentrations, polyphenols have been shown to positively modulate the bacterial component, increasing Lactiplantibacillus spp. and Bifidobacterium spp. involved in the protection of the intestinal barrier and decreasing Clostridium and Fusobacterium, which are negatively associated with human well-being. Based on the diet-microbiota-health axis, this review aims to describe the latest knowledge on the action of dietary polyphenols on human health through the activity of the gut microbiota and discusses micro-encapsulation of polyphenols as a strategy to improve the microbiota.
Collapse
|
39
|
The effect of resveratrol in cardio-metabolic disorders during pregnancy and offspring outcomes: a review. J Dev Orig Health Dis 2023; 14:3-14. [PMID: 35678161 DOI: 10.1017/s2040174422000332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Resveratrol supplementation during pregnancy and lactation has been associated with a reduced risk of maternal obesity, gestational diabetes mellitus , and preeclampsia. In addition, emerging evidence has shown that maternal resveratrol supplementation diminishes cardio-metabolic disorders in offspring, highlighting its role in modulating adaptative responses involving phenotypical plasticity. Therefore, it is reasonable to infer that administration of resveratrol during pregnancy and lactation periods could be considered an important nutritional intervention to decrease the risk of maternal and offspring cardio-metabolic disorders. To highlight these new insights, this literature review will summarize the understanding emerging from experimental and clinical studies about resveratrol supplementation and its capacity to prevent or minimize maternal and offspring cardio-metabolic disorders.
Collapse
|
40
|
Önay Uçar E, Şengelen A, Mertoğlu Kamalı E. Hsp27, Hsp60, Hsp70, or Hsp90 depletion enhances the antitumor effects of resveratrol via oxidative and ER stress response in human glioblastoma cells. Biochem Pharmacol 2023; 208:115409. [PMID: 36603687 DOI: 10.1016/j.bcp.2022.115409] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023]
Abstract
Therapeutic resistance of gliomas is still a crucial issue and closely related to induced heat shock response (HSR). Resveratrol (RSV) is a promising experimental agent for glioblastoma (GB) therapy. However, the role of heat shock protein (Hsp)27, Hsp60, Hsp70, and Hsp90 on the therapeutic efficacy of RSV remains unclear in gliomas. Herein, small interfering (si)RNA transfection was performed to block Hsp expressions. RSV treatments reduced glioma cells' viability dose- and time-dependent while keeping HEK-293 normal cells alive. Furthermore, a low dose of RSV (15 µM/48 h) offered protection against oxidative stress and apoptosis due to Hsp depletion in healthy cells. On the contrary, in glioma cells, RSV (15 µM/48 h) increased ROS (reactive oxygen species) production, led to autophagy and induced endoplasmic reticulum (ER) stress and apoptosis, and reduced 2D- and 3D-clonogenic survival. Hsp27, Hsp60, Hsp70, or Hsp90 depletion also resulted in cell death through ER stress response and ROS burst. Remarkably, the heat shock response (increased HSF1 levels) due to Hsp depletion was attenuated by RSV in glioma cells. Collectively, our data show that these Hsp silencings make glioma cells more sensitive to RSV treatment, indicating that these Hsps are potential therapeutic targets for GB treatment.
Collapse
Affiliation(s)
- Evren Önay Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey.
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkey.
| | - Elif Mertoğlu Kamalı
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
41
|
Exploiting Polyphenol-Mediated Redox Reorientation in Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15121540. [PMID: 36558995 PMCID: PMC9787032 DOI: 10.3390/ph15121540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Polyphenol, one of the major components that exert the therapeutic effect of Chinese herbal medicine (CHM), comprises several categories, including flavonoids, phenolic acids, lignans and stilbenes, and has long been studied in oncology due to its significant efficacy against cancers in vitro and in vivo. Recent evidence has linked this antitumor activity to the role of polyphenols in the modulation of redox homeostasis (e.g., pro/antioxidative effect) in cancer cells. Dysregulation of redox homeostasis could lead to the overproduction of reactive oxygen species (ROS), resulting in oxidative stress, which is essential for many aspects of tumors, such as tumorigenesis, progression, and drug resistance. Thus, investigating the ROS-mediated anticancer properties of polyphenols is beneficial for the discovery and development of novel pharmacologic agents. In this review, we summarized these extensively studied polyphenols and discussed the regulatory mechanisms related to the modulation of redox homeostasis that are involved in their antitumor property. In addition, we discussed novel technologies and strategies that could promote the development of CHM-derived polyphenols to improve their versatile anticancer properties, including the development of novel delivery systems, chemical modification, and combination with other agents.
Collapse
|
42
|
Evaluation of the cytotoxic and genotoxic/antigenotoxic effects of resveratrol in human limbal explant cultures. Int Ophthalmol 2022; 43:1977-1985. [DOI: 10.1007/s10792-022-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 11/12/2022] [Indexed: 11/30/2022]
|
43
|
Martelli A, Omrani M, Zarghooni M, Citi V, Brogi S, Calderone V, Sureda A, Lorzadeh S, da Silva Rosa SC, Grabarek BO, Staszkiewicz R, Los MJ, Nabavi SF, Nabavi SM, Mehrbod P, Klionsky DJ, Ghavami S. New Visions on Natural Products and Cancer Therapy: Autophagy and Related Regulatory Pathways. Cancers (Basel) 2022; 14:5839. [PMID: 36497321 PMCID: PMC9738256 DOI: 10.3390/cancers14235839] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marzieh Omrani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Maryam Zarghooni
- Department of Laboratory Medicine & Pathobiology, University of Toronto Alumna, Toronto, ON M5S 3J3, Canada
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition, Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C. da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Beniamin Oscar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
| | - Marek J. Los
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyed Fazel Nabavi
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite 62760-000, Brazil
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030 San Salvatore Telesino, Italy
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
44
|
Jang JY, Im E, Kim ND. Mechanism of Resveratrol-Induced Programmed Cell Death and New Drug Discovery against Cancer: A Review. Int J Mol Sci 2022; 23:13689. [PMID: 36430164 PMCID: PMC9697740 DOI: 10.3390/ijms232213689] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene), a polyphenol found in grapes, red wine, peanuts, and apples, has been reported to exhibit a wide range of biological and pharmacological properties. In addition, resveratrol has been reported to intervene in multiple stages of carcinogenesis. It has also been known to kill several human cancer cells through programmed cell death (PCD) mechanisms such as apoptosis, autophagy, and necroptosis. However, resveratrol has limitations in its use as an anticancer agent because it is susceptible to photoisomerization owing to its unstable double bond, short half-life, and is rapidly metabolized and eliminated. Trans-(E)-resveratrol is nontoxic, and has several biological and pharmacological activities. However, little is known about the pharmacological properties of the photoisomerized cis-(Z)-resveratrol. Therefore, many studies on resveratrol derivatives and analogues that can overcome the shortcomings of resveratrol and increase its anticancer activity are underway. This review comprehensively summarizes the literature related to resveratrol-induced PCD, such as apoptosis, autophagy, necroptosis, and the development status of synthetic resveratrol derivatives and analogues as novel anticancer drugs.
Collapse
Affiliation(s)
| | | | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Korea
| |
Collapse
|
45
|
Transdermal diffusion of resveratrol by multilamellar liposomes: Effect of encapsulation on its stability. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
46
|
Silva AF, Monteiro M, Nunes R, Baião A, Braga SS, Sarmento B, Coimbra MA, Silva AM, Cardoso SM. Bread enriched with resveratrol: Influence of the delivery vehicles on its bioactivity. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Wang Q, Yu Q, Wu M. Antioxidant and neuroprotective actions of resveratrol in cerebrovascular diseases. Front Pharmacol 2022; 13:948889. [PMID: 36133823 PMCID: PMC9483202 DOI: 10.3389/fphar.2022.948889] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022] Open
Abstract
Cerebralvascular diseases are the most common high-mortality diseases worldwide. Despite its global prevalence, effective treatments and therapies need to be explored. Given that oxidative stress is an important risk factor involved with cerebral vascular diseases, natural antioxidants and its derivatives can be served as a promising therapeutic strategy. Resveratrol (3, 5, 4′-trihydroxystilbene) is a natural polyphenolic antioxidant found in grape skins, red wine, and berries. As a phytoalexin to protect against oxidative stress, resveratrol has therapeutic value in cerebrovascular diseases mainly by inhibiting excessive reactive oxygen species production, elevating antioxidant enzyme activity, and other antioxidant molecular mechanisms. This review aims to collect novel kinds of literature regarding the protective activities of resveratrol on cerebrovascular diseases, addressing the potential mechanisms underlying the antioxidative activities and mitochondrial protection of resveratrol. We also provide new insights into the chemistry, sources, and bioavailability of resveratrol.
Collapse
Affiliation(s)
- Qing Wang
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases and Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- Department of Histology and Embryology, Xi’an Medical University, Xi’an, China
- Department of Pharmacology, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Min Wu
- Shaanxi Prov Peoples Hospital, Shaanxi Prov Key Lab Infect and Immune Dis, Xian, China
- *Correspondence: Min Wu,
| |
Collapse
|
48
|
Talib WH, Daoud S, Mahmod AI, Hamed RA, Awajan D, Abuarab SF, Odeh LH, Khater S, Al Kury LT. Plants as a Source of Anticancer Agents: From Bench to Bedside. Molecules 2022; 27:molecules27154818. [PMID: 35956766 PMCID: PMC9369847 DOI: 10.3390/molecules27154818] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/03/2022] Open
Abstract
Cancer is the second leading cause of death after cardiovascular diseases. Conventional anticancer therapies are associated with lack of selectivity and serious side effects. Cancer hallmarks are biological capabilities acquired by cancer cells during neoplastic transformation. Targeting multiple cancer hallmarks is a promising strategy to treat cancer. The diversity in chemical structure and the relatively low toxicity make plant-derived natural products a promising source for the development of new and more effective anticancer therapies that have the capacity to target multiple hallmarks in cancer. In this review, we discussed the anticancer activities of ten natural products extracted from plants. The majority of these products inhibit cancer by targeting multiple cancer hallmarks, and many of these chemicals have reached clinical applications. Studies discussed in this review provide a solid ground for researchers and physicians to design more effective combination anticancer therapies using plant-derived natural products.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
- Correspondence:
| | - Safa Daoud
- Department Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman 11931, Jordan;
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Sara Feras Abuarab
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lena Hisham Odeh
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (R.A.H.); (D.A.); (S.F.A.); (L.H.O.); (S.K.)
| | - Lina T. Al Kury
- Department of Health Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi 144534, United Arab Emirates;
| |
Collapse
|
49
|
Asadollahi L, Mahoutforoush A, Dorreyatim SS, Soltanfam T, Paiva-Santos AC, Peixoto D, Veiga F, Hamishehkar H, Zeinali M, Abbaspour-Ravasjani S. Co-Delivery of Erlotinib and Resveratrol via Nanostructured Lipid Carriers: A Synergistically Promising Approach for Cell Proliferation Prevention and ROS-Mediated Apoptosis Activation. Int J Pharm 2022; 624:122027. [PMID: 35850183 DOI: 10.1016/j.ijpharm.2022.122027] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 10/17/2022]
Abstract
Cancer treatments are always associated with various challenges, and scientists are constantly trying to find new therapies and methods. Erlotinib (ELT) is a well-known medicine against non-small cell lung cancer (NSCLC). However, treatments by ELT disrupt therapy due to drug resistance and pose severe challenges to patients. To achieve high-performance treatment, we gained nanostructured lipid carriers (NLCs) to evaluate synergistic anticancer effects of co-delivery of ELT and resveratrol (RES), a natural herbal derived phenol against NSCLC. NLCs are prepared via the hot homogenization method and characterized. In vitro cytotoxicity of formulations were evaluated on adenocarcinoma human alveolar basal epithelial (A549) cells. Prepared NLCs showed a narrow particle size (97.52 ±17.14 nm), negative zeta potential (-7.67 ± 4.55 mV), and high encapsulation efficiency (EE%) was measured for the prepared co-delivery system (EE% 89.5 ± 5.16 % for ELT and 90.1 ± 6.61 % for RES). In vitro outcomes from cell viability study (12.63 % after 48 h of treatment), apoptosis assay (85.50%.), cell cycle (40.00% arrest in G2-M), and western blotting investigations (decreasing of protein expression levels of survivin, Bcl-2, P-Caspase 3 P-caspase 9, and P-ERK 1/2, and additionally, increasing protein levels of BAX, P53, C-Caspase 3 and 9), DAPI staining, and colony formation assays showed the augment cytotoxic performances for co-delivery of ELT and RES loaded NLCs. Our study introduced the co-delivery of ELT and RES by NLCs as a novel strategy to elevate the efficacy of chemotherapeutics for NSCLC.
Collapse
Affiliation(s)
- Leila Asadollahi
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Mahoutforoush
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Sina Dorreyatim
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tannaz Soltanfam
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research and Development Unit, Daana Pharma Co, Tabriz, Iran
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Zeinali
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research and Development Unit, Daana Pharma Co, Tabriz, Iran.
| | | |
Collapse
|
50
|
Barber TM, Kabisch S, Randeva HS, Pfeiffer AFH, Weickert MO. Implications of Resveratrol in Obesity and Insulin Resistance: A State-of-the-Art Review. Nutrients 2022; 14:nu14142870. [PMID: 35889827 PMCID: PMC9320680 DOI: 10.3390/nu14142870] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Resveratrol is a polyphenol chemical that naturally occurs in many plant-based dietary products, most notably, red wine. Discovered in 1939, widespread interest in the potential health benefits of resveratrol emerged in the 1970s in response to epidemiological data on the cardioprotective effects of wine. Objective: To explore the background of resveratrol (including its origins, stability, and metabolism), the metabolic effects of resveratrol and its mechanisms of action, and a potential future role of dietary resveratrol in the lifestyle management of obesity. Data sources: We performed a narrative review, based on relevant articles written in English from a Pubmed search, using the following search terms: “resveratrol”, “obesity”, “Diabetes Mellitus”, and “insulin sensitivity”. Results: Following its ingestion, resveratrol undergoes extensive metabolism. This includes conjugation (with sulfate and glucuronate) within enterocytes, hydrolyzation and reduction within the gut through the action of the microbiota (with the formation of metabolites such as dihydroresveratrol), and enterohepatic circulation via the bile. Ex vivo studies on adipose tissue reveal that resveratrol inhibits adipogenesis and prevents the accumulation of triglycerides through effects on the expression of Peroxisome Proliferator-activated Receptor γ (PPARγ) and sirtuin 1, respectively. Furthermore, resveratrol induces anti-inflammatory effects, supported by data from animal-based studies. Limited data from human-based studies reveal that resveratrol improves insulin sensitivity and fasting glucose levels in patients with Type 2 Diabetes Mellitus and may improve inflammatory status in human obesity. Although numerous mechanisms may underlie the metabolic benefits of resveratrol, evidence supports a role in its interaction with the gut microbiota and modulation of protein targets, including sirtuins and proteins related to nitric oxide, insulin, and nuclear hormone receptors (such as PPARγ). Conclusions: Despite much interest, there remain important unanswered questions regarding its optimal dosage (and how this may differ between and within individuals), and possible benefits within the general population, including the potential for weight-loss and improved metabolic function. Future studies should properly address these important questions before we can advocate the widespread adoption of dietary resveratrol supplementation.
Collapse
Affiliation(s)
- Thomas M. Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Stefan Kabisch
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany; (S.K.); (A.F.H.P.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
| | - Andreas F. H. Pfeiffer
- Department of Endocrinology and Metabolic Medicine, Campus Benjamin Franklin, Charité University Medicine, Hindenburgdamm 30, 12203 Berlin, Germany; (S.K.); (A.F.H.P.)
- Deutsches Zentrum für Diabetesforschung e.V., Geschäftsstelle am Helmholtz-Zentrum München, Ingolstädter Landstraße, 85764 Neuherberg, Germany
| | - Martin O. Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK; (T.M.B.); (H.S.R.)
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- NIHR CRF Human Metabolism Research Unit, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry CV2 2DX, UK
- Centre for Sport, Exercise and Life Sciences, Faculty of Health & Life Sciences, Coventry University, Coventry CV1 2TU, UK
- Correspondence:
| |
Collapse
|