1
|
Raheja S, Verona G, Florent P, Rendell NB, Nocerino P, Ellemerich S, Fernandes R, Botcher N, Rowczenio D, Gilbertson JA, Simons JP, Gillmore JD, Bellotti V, Taylor GW, Canetti D. Oxidative conversion of transthyretin in formalin-fixed clinical amyloid samples results in the formation of the His90Asp and His90Asn variants. Amyloid 2025; 32:46-53. [PMID: 39676281 DOI: 10.1080/13506129.2024.2436990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/20/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Proteomics is routinely used to type clinical amyloid deposits, and offers additional benefit of identifying genetic variants, which can be diagnostically useful. Reviewing the proteomics data for ATTR patients attending our Centre revealed an unusually large number of samples containing a rare pathogenic H90D TTR variant alongside the more common H90N variant. METHODS These findings raised questions to their source. Proteomics was used to monitor the generation of H90D/H90N variants in fresh, frozen, stored samples during extraction and digestion, and also following Cu2+-mediated oxidation. RESULTS There was no evidence that the variants were present in the circulation, except in one patient with genetically confirmed H90D TTR, in fresh fat aspirates or tissues from an ATTR amyloid mouse model. The variant could be generated in vitro from both wild-type TTR and ex vivo ATTR fibrils by non-enzymic oxidation of histidine at position 90. These data suggest that the H90D variant can be generated artefactually from wild-type 90H TTR through a radical-mediated oxidation of histidine, followed by its conversion to asparagine and aspartic acid. This probably occurs during storage. CONCLUSIONS In the absence of genetic data, the identification of H90D TTR in stored tissue by proteomics should be treated with caution.
Collapse
Affiliation(s)
- Simran Raheja
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Guglielmo Verona
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Paolo Florent
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Nigel B Rendell
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Paola Nocerino
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Stephan Ellemerich
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | | | | | | | | | - J Paul Simons
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Julian D Gillmore
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
- National Amyloidosis Centre, London, UK
| | - Vittorio Bellotti
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
- Research Department, Fondazione IRCSS Policlinico San Matteo, Pavia, Italy
| | - Graham W Taylor
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| | - Diana Canetti
- Centre for Amyloidosis, Division of Medicine, University College London, London, UK
| |
Collapse
|
2
|
Bijzet J, Nienhuis HLA, Kroesen BJ, Diepstra A, Hazenberg BPC. ELISA-4-amyloid: diagnostic accuracy of an ELISA panel for typing the four main types of systemic amyloidosis in subcutaneous abdominal fat tissue samples. Amyloid 2024; 31:275-284. [PMID: 39105560 DOI: 10.1080/13506129.2024.2385977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Reliable typing of amyloid is essential. Amyloid extraction from tissue enables immunochemical typing of the precursor protein using an enzyme-linked immunosorbent assay (ELISA). OBJECTIVE To assess the diagnostic accuracy of a panel of ELISAs for typing the four main types (AA, ATTR, AL-kappa and AL-lambda amyloid). METHODS From 1996 to 2023 subcutaneous abdominal fat tissue aspirates were obtained from 1339 amyloidosis patients and 868 controls. Amyloid was visually graded 0-4+ in Congo red-stained smears. Amyloid extracted from tissue by Guanidine was typed using a panel comprising four ELISAs. RESULTS All amyloid protein concentrations in extracts correlated with amyloid grade in smears. Typing sensitivity was low (23.3%) in samples with grade 1+/2+ amyloid. Overall typing sensitivity of the panel was 81.6% for all easily visible amyloid (grade 3+/4+): high for AA (98.8%) and ATTR (96.8%) and fair for AL-kappa (66.7%) and AL-lambda (75.9). Overall typing specificity was 98.0% and the overall positive predictive value was 98.0%. CONCLUSIONS We describe a highly specific ELISA panel for routine typing of the main amyloid types in fat tissue. Until more sensitive typing techniques will become generally available, typing easily visible amyloid in fat tissue using this ELISA panel is reliable, affordable and straightforward.
Collapse
Affiliation(s)
- Johan Bijzet
- Department of Laboratory Medicine, Groningen Amyloidosis Center of Expertise (GrACE), University Medical Center Groningen, Groningen, The Netherlands
| | - Hans L A Nienhuis
- Department of Internal Medicine, Groningen Amyloidosis Center of Expertise (GrACE), University Medical Center Groningen, Groningen, The Netherlands
| | - Bart-Jan Kroesen
- Department of Laboratory Medicine, Groningen Amyloidosis Center of Expertise (GrACE), University Medical Center Groningen, Groningen, The Netherlands
| | - Arjan Diepstra
- Department of Pathology and Medical Biology, Groningen Amyloidosis Center of Expertise (GrACE), University Medical Center Groningen, Groningen, The Netherlands
| | - Bouke P C Hazenberg
- Department of Rheumatology & Clinical Immunology, Groningen Amyloidosis Center of Expertise (GrACE), University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Plasmin activity promotes amyloid deposition in a transgenic model of human transthyretin amyloidosis. Nat Commun 2021; 12:7112. [PMID: 34876572 PMCID: PMC8651690 DOI: 10.1038/s41467-021-27416-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiac ATTR amyloidosis, a serious but much under-diagnosed form of cardiomyopathy, is caused by deposition of amyloid fibrils derived from the plasma protein transthyretin (TTR), but its pathogenesis is poorly understood and informative in vivo models have proved elusive. Here we report the generation of a mouse model of cardiac ATTR amyloidosis with transgenic expression of human TTRS52P. The model is characterised by substantial ATTR amyloid deposits in the heart and tongue. The amyloid fibrils contain both full-length human TTR protomers and the residue 49-127 cleavage fragment which are present in ATTR amyloidosis patients. Urokinase-type plasminogen activator (uPA) and plasmin are abundant within the cardiac and lingual amyloid deposits, which contain marked serine protease activity; knockout of α2-antiplasmin, the physiological inhibitor of plasmin, enhances amyloid formation. Together, these findings indicate that cardiac ATTR amyloid deposition involves local uPA-mediated generation of plasmin and cleavage of TTR, consistent with the previously described mechano-enzymatic hypothesis for cardiac ATTR amyloid formation. This experimental model of ATTR cardiomyopathy has potential to allow further investigations of the factors that influence human ATTR amyloid deposition and the development of new treatments. ATTR amyloidosis causes heart failure through the accumulation of misfolded transthyretin in cardiac muscle. Here the authors report a mouse model of ATTR amyloidosis and demonstrate the involvement of protease activity in ATTR amyloid deposition.
Collapse
|
4
|
Canetti D, Nocerino P, Rendell NB, Botcher N, Gilbertson JA, Blanco A, Rowczenio D, Morelli A, Mangione PP, Corazza A, Verona G, Giorgetti S, Marchese L, Westermark P, Hawkins PN, Gillmore JD, Bellotti V, Taylor GW. Clinical ApoA-IV amyloid is associated with fibrillogenic signal sequence. J Pathol 2021; 255:311-318. [PMID: 34331462 PMCID: PMC9291309 DOI: 10.1002/path.5770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/01/2021] [Accepted: 07/27/2021] [Indexed: 11/11/2022]
Abstract
Apolipoprotein A‐IV amyloidosis is an uncommon form of the disease normally resulting in renal and cardiac dysfunction. ApoA‐IV amyloidosis was identified in 16 patients attending the National Amyloidosis Centre and in eight clinical samples received for histology review. Unexpectedly, proteomics identified the presence of ApoA‐IV signal sequence residues (p.18‐43 to p.20‐43) in 16/24 trypsin‐digested amyloid deposits but in only 1/266 non‐ApoA‐IV amyloid samples examined. These additional signal residues were also detected in the cardiac sample from the Swedish patient in which ApoA‐IV amyloid was first described, and in plasma from a single cardiac ApoA‐IV amyloidosis patient. The most common signal‐containing peptide observed in ApoA‐IV amyloid, p.20‐43, and to a far lesser extent the N‐terminal peptide, p.21‐43, were fibrillogenic in vitro at physiological pH, generating Congo red‐positive fibrils. The addition of a single signal‐derived alanine residue to the N‐terminus has resulted in markedly increased fibrillogenesis. If this effect translates to the mature circulating protein in vivo, then the presence of signal may result in preferential deposition as amyloid, perhaps acting as seed for the main circulating native form of the protein; it may also influence other ApoA‐IV‐associated pathologies. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Diana Canetti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Paola Nocerino
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Nigel B Rendell
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Nicola Botcher
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Janet A Gilbertson
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Angel Blanco
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Dorota Rowczenio
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Alessandra Morelli
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - P Patrizia Mangione
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK.,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | | | - Guglielmo Verona
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Sofia Giorgetti
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Loredana Marchese
- Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Philip N Hawkins
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Julian D Gillmore
- National Amyloidosis Centre, University College London and Royal Free Hospital, London, UK
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK.,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| |
Collapse
|
5
|
Gottwald J, Röcken C. The amyloid proteome: a systematic review and proposal of a protein classification system. Crit Rev Biochem Mol Biol 2021; 56:526-542. [PMID: 34311636 DOI: 10.1080/10409238.2021.1937926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloidosis is a disease caused by pathological fibril aggregation and deposition of proteins in different tissues and organs. Thirty-six fibril-forming proteins have been identified. So far, proteomic evaluation of amyloid focused on the detection and characterization of fibril proteins mainly for diagnostic purposes or to find novel fibril-forming proteins. However, amyloid deposits are a complex mixture of constituents that show organ-, tissue-, and amyloid-type specific patterns, that is the amyloid proteome. We carried out a comprehensive literature review on publications investigating amyloid via liquid chromatography coupled to tandem mass spectrometry, including but not limited to sample preparation by laser microdissection. Our review confirms the complexity and dynamics of the amyloid proteome, which can be divided into four functional categories: amyloid proteome-category 1 (APC1) includes exclusively fibrillary proteins found in the patient; APC2 includes potential fibril-forming proteins found in other types of amyloid; and APC3 and APC4 summarizes non-fibril proteins-some being amyloid signature proteins. Our categorization may help to systemically explore the nature and role of the amyloid proteome in the manifestation, progression, and clearance of disease. Further exploration of the amyloid proteome may form the basis for the development of novel diagnostic tools, thereby enabling the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Juliane Gottwald
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
6
|
Lin XY, Pan D, Sang LX, Chang B. Primary localized gastric amyloidosis: A scoping review of the literature from clinical presentations to prognosis. World J Gastroenterol 2021; 27:1132-1148. [PMID: 33828390 PMCID: PMC8006099 DOI: 10.3748/wjg.v27.i12.1132] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/10/2021] [Accepted: 02/24/2021] [Indexed: 02/06/2023] Open
Abstract
Localized gastric amyloidosis (LGA) is a rare disease characterized by abnormal extracellular deposition of amyloid protein restricted to the stomach and it is confirmed by positive results of Congo red staining. Over decades, only a few cases have been reported and studies or research focusing on it are few. Although LGA has a low incidence, patients may suffer a lot from it and require proper diagnosis and management. However, the pathology of LGA remains unknown and no overall review of LGA from its presentations to its prognosis has been published. Patients with LGA are often asymptomatic or manifest atypical symptoms, making it difficult to differentiate from other gastrointestinal diseases. Here, we report the case of a 70-year-old woman with LGA and provide an overview of case reports of LGA available to us. Based on that, we conclude current concepts of clinical manifestations, diagnosis, treatment, and prognosis of LGA, aiming at providing a detailed diagnostic procedure for clinicians and promoting the guidelines of LGA. In addition, a few advanced technologies applied in amyloidosis are also discussed in this review, aiming at providing clinicians with a reference of diagnostic process. With this review, we hope to raise awareness of LGA among the public and clinicians.
Collapse
Affiliation(s)
- Xin-Yu Lin
- Department of Neurology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
7
|
Clotet-Freixas S, McEvoy CM, Batruch I, Pastrello C, Kotlyar M, Van JAD, Arambewela M, Boshart A, Farkona S, Niu Y, Li Y, Famure O, Bozovic A, Kulasingam V, Chen P, Kim SJ, Chan E, Moshkelgosha S, Rahman SA, Das J, Martinu T, Juvet S, Jurisica I, Chruscinski A, John R, Konvalinka A. Extracellular Matrix Injury of Kidney Allografts in Antibody-Mediated Rejection: A Proteomics Study. J Am Soc Nephrol 2020; 31:2705-2724. [PMID: 32900843 DOI: 10.1681/asn.2020030286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Antibody-mediated rejection (AMR) accounts for >50% of kidney allograft loss. Donor-specific antibodies (DSA) against HLA and non-HLA antigens in the glomeruli and the tubulointerstitium cause AMR while inflammatory cytokines such as TNFα trigger graft injury. The mechanisms governing cell-specific injury in AMR remain unclear. METHODS Unbiased proteomic analysis of laser-captured and microdissected glomeruli and tubulointerstitium was performed on 30 for-cause kidney biopsy specimens with early AMR, acute cellular rejection (ACR), or acute tubular necrosis (ATN). RESULTS A total of 107 of 2026 glomerular and 112 of 2399 tubulointerstitial proteins was significantly differentially expressed in AMR versus ACR; 112 of 2026 glomerular and 181 of 2399 tubulointerstitial proteins were significantly dysregulated in AMR versus ATN (P<0.05). Basement membrane and extracellular matrix (ECM) proteins were significantly decreased in both AMR compartments. Glomerular and tubulointerstitial laminin subunit γ-1 (LAMC1) expression decreased in AMR, as did glomerular nephrin (NPHS1) and receptor-type tyrosine-phosphatase O (PTPRO). The proteomic analysis revealed upregulated galectin-1, which is an immunomodulatory protein linked to the ECM, in AMR glomeruli. Anti-HLA class I antibodies significantly increased cathepsin-V (CTSV) expression and galectin-1 expression and secretion in human glomerular endothelial cells. CTSV had been predicted to cleave ECM proteins in the AMR glomeruli. Glutathione S-transferase ω-1, an ECM-modifying enzyme, was significantly increased in the AMR tubulointerstitium and in TNFα-treated proximal tubular epithelial cells. CONCLUSIONS Basement membranes are often remodeled in chronic AMR. Proteomic analysis performed on laser-captured and microdissected glomeruli and tubulointerstitium identified early ECM remodeling, which may represent a new therapeutic opportunity.
Collapse
Affiliation(s)
- Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie Anh Dung Van
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Madhurangi Arambewela
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yun Niu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yanhong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Olusegun Famure
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrea Bozovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Peixuen Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - S Joseph Kim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Emilie Chan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Syed Ashiqur Rahman
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Systems Immunology, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Systems Immunology, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tereza Martinu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Juvet
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrzej Chruscinski
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada .,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Canetti D, Rendell NB, Gilbertson JA, Botcher N, Nocerino P, Blanco A, Di Vagno L, Rowczenio D, Verona G, Mangione PP, Bellotti V, Hawkins PN, Gillmore JD, Taylor GW. Diagnostic amyloid proteomics: experience of the UK National Amyloidosis Centre. Clin Chem Lab Med 2020; 58:948-957. [PMID: 32069225 DOI: 10.1515/cclm-2019-1007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/16/2020] [Indexed: 11/15/2022]
Abstract
Systemic amyloidosis is a serious disease which is caused when normal circulating proteins misfold and aggregate extracellularly as insoluble fibrillary deposits throughout the body. This commonly results in cardiac, renal and neurological damage. The tissue target, progression and outcome of the disease depends on the type of protein forming the fibril deposit, and its correct identification is central to determining therapy. Proteomics is now used routinely in our centre to type amyloid; over the past 7 years we have examined over 2000 clinical samples. Proteomics results are linked directly to our patient database using a simple algorithm to automatically highlight the most likely amyloidogenic protein. Whilst the approach has proved very successful, we have encountered a number of challenges, including poor sample recovery, limited enzymatic digestion, the presence of multiple amyloidogenic proteins and the identification of pathogenic variants. Our proteomics procedures and approaches to resolving difficult issues are outlined.
Collapse
Affiliation(s)
- Diana Canetti
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Nigel B Rendell
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Janet A Gilbertson
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Nicola Botcher
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Paola Nocerino
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Angel Blanco
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Lucia Di Vagno
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Dorota Rowczenio
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Guglielmo Verona
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - P Patrizia Mangione
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK.,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK.,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Philip N Hawkins
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Julian D Gillmore
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| | - Graham W Taylor
- Wolfson Drug Discovery Unit and National Amyloidosis Centre, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, University College London, London, UK
| |
Collapse
|
9
|
Rezk T, Gilbertson JA, Mangione PP, Rowczenio D, Rendell NB, Canetti D, Lachmann HJ, Wechalekar AD, Bass P, Hawkins PN, Bellotti V, Taylor GW, Gillmore JD. The complementary role of histology and proteomics for diagnosis and typing of systemic amyloidosis. J Pathol Clin Res 2019; 5:145-153. [PMID: 30740936 PMCID: PMC6648380 DOI: 10.1002/cjp2.126] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/30/2022]
Abstract
The tissue diagnosis of amyloidosis and confirmation of fibril protein type, which are crucial for clinical management, have traditionally relied on Congo red (CR) staining followed by immunohistochemistry (IHC) using fibril protein specific antibodies. However, amyloid IHC is qualitative, non-standardised, requires operator expertise, and not infrequently fails to produce definitive results. More recently, laser dissection mass spectrometry (LDMS) has been developed as an alternative method to characterise amyloid in tissue sections. We sought to compare these techniques in a real world setting. During 2017, we performed LDMS on 640 formalin-fixed biopsies containing amyloid (CR+ve) comprising all 320 cases that could not be typed by IHC (IHC-ve) and 320 randomly selected CR+ve samples that had been typed (IHC+ve). In addition, we studied 60 biopsies from patients in whom there was a strong suspicion of amyloidosis, but in whom histology was non-diagnostic (CR-ve). Comprehensive clinical assessments were conducted in 532 (76%) of cases. Among the 640 CR+ve samples, 602 (94%) contained ≥2 of 3 amyloid signature proteins (ASPs) on LDMS (ASP+ve) supporting the presence of amyloid. A total of 49 of the 60 CR-ve samples were ASP-ve; 7 of 11 that were ASP+ve were glomerular. The amyloid fibril protein was identified by LDMS in 255 of 320 (80%) of the IHC-ve samples and in a total of 545 of 640 (85%) cases overall. The LDMS and IHC techniques yielded discordant results in only 7 of 320 (2%) cases. CR histology and LDMS are corroborative for diagnosis of amyloid, but LDMS is superior to IHC for confirming amyloid type.
Collapse
Affiliation(s)
- Tamer Rezk
- National Amyloidosis Centre, University College London, London, UK.,Department of Renal Medicine, University College London, London, UK
| | | | - P Patrizia Mangione
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London, UK.,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Dorota Rowczenio
- National Amyloidosis Centre, University College London, London, UK
| | - Nigel B Rendell
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Diana Canetti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Helen J Lachmann
- National Amyloidosis Centre, University College London, London, UK
| | | | - Paul Bass
- Department of Renal Medicine, University College London, London, UK
| | - Philip N Hawkins
- National Amyloidosis Centre, University College London, London, UK
| | - Vittorio Bellotti
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London, UK.,Department of Molecular Medicine, Institute of Biochemistry, University of Pavia, Pavia, Italy
| | - Graham W Taylor
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London, UK
| | | |
Collapse
|
10
|
Taylor GW, Gilbertson JA, Sayed R, Blanco A, Rendell NB, Rowczenio D, Rezk T, Mangione PP, Canetti D, Bass P, Hawkins PN, Gillmore JD. Proteomic Analysis for the Diagnosis of Fibrinogen Aα-chain Amyloidosis. Kidney Int Rep 2019; 4:977-986. [PMID: 31317119 PMCID: PMC6612008 DOI: 10.1016/j.ekir.2019.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 01/09/2023] Open
Abstract
Introduction Hereditary fibrinogen Aα-chain (AFib) amyloidosis is a relatively uncommon renal disease associated with a small number of pathogenic fibrinogen Aα (FibA) variants; wild-type FibA normally does not result in amyloid deposition. Proteomics is now routinely used to identify the amyloid type in clinical samples, and we report here our algorithm for identification of FibA in amyloid. Methods Proteomics data from 1001 Congo red–positive patient samples were examined using the Mascot search engine to interrogate the Swiss-Prot database and generate protein identity scores. An algorithm was applied to identify FibA as the amyloid protein based on Mascot scores. FibA variants were identified by appending the known amyloidogenic variant sequences to the Swiss-Prot database. Results AFib amyloid was identified by proteomics in 64 renal samples based on the Mascot scores relative to other amyloid proteins, the presence of a pathogenic variant, and coverage of the p.449-621 sequence. Contamination by blood could be excluded from a comparison of the FibA score with that of the fibrinogen β and γ chains. The proteomics results were consistent with the clinical diagnosis. Four additional renal samples did not fulfill all the criteria using the algorithm but were adjudged as AFib amyloid based on a full assessment of the clinical and biochemical results. Conclusion AFib amyloid can be identified reliably in glomerular amyloid by proteomics using a score-based algorithm. Proteomics data should be used as a guide to AFib diagnosis, with the results considered together with all available clinical and laboratory information.
Collapse
Affiliation(s)
- Graham W Taylor
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Janet A Gilbertson
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Rabya Sayed
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK.,Centre for Nephrology, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Angel Blanco
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Nigel B Rendell
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Dorota Rowczenio
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Tamer Rezk
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK.,Centre for Nephrology, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - P Patrizia Mangione
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Diana Canetti
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Paul Bass
- Centre for Nephrology, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Philip N Hawkins
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK
| | - Julian D Gillmore
- National Amyloidosis Centre and Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, University College London, London, UK.,Centre for Nephrology, Division of Medicine, Royal Free Campus, University College London, London, UK
| |
Collapse
|
11
|
Campo H, García-Domínguez X, López-Martínez S, Faus A, Vicente Antón JS, Marco-Jiménez F, Cervelló I. Tissue-specific decellularized endometrial substratum mimicking different physiological conditions influences in vitro embryo development in a rabbit model. Acta Biomater 2019; 89:126-138. [PMID: 30849561 DOI: 10.1016/j.actbio.2019.03.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 02/02/2023]
Abstract
In the last decades, the decellularization (DC) of organs has become an established technique in the field of regenerative medicine to yield complex and vascularized bioscaffolds. Furthermore, it has been demonstrated in vitro that these decellularized scaffolds retain their native tissue-specificity. This is also the case when this tissue-specific extracellular matrix (ECM) is solubilized and used as hydrogels or coatings to create a biomimetic environment. In this study we investigated if this specificity not only remains when applied to distinct tissues but even more, that these differences can be distinguished within the same tissue at different stages of proliferation. To address this question, a sensitive in vitro animal model was used: rabbit embryos at the third day of development were cultured on coatings made from acellular endometrium that was non-proliferating (non-synchronous, NS) and proliferating (synchronous with the embryo, S) and their development was compared. For this, we obtained whole NS and S rabbit uteri and subjected them to an adapted decellularization protocol. The acellular endometrium was carefully separated by microdissection and converted into a pre-gel solution to be used as hydrogels and coatings for in vitro assays. First, the characteristics of these NS and S hydrogels were investigated by proteomic analysis, electron microscopy and gelling kinetics. When used as substrata for day 3 embryos culture, it became apparent that only the acellular ECM from synchronous endometrial coating achieved similar results to the gold standard culture protocols and conditions, possibly because of the slow release of growth factors present in the synchronous/proliferating endometrium. STATEMENT OF SIGNIFICANCE: It has been shown by in vitro culture of stem cells, progenitor cells and primary culture cells that decellularized tissues retain their specific functions and biochemical and structural compositions. The present work demonstrates that using a mild SDS and perfusion based decellularization (DC) protocol not only effectively decellularize whole rabbit uteri, adding to the growing field of reproductive tissue engineering, but more importantly that the differences in the proliferating endometrium are translated after DC. This implies that DC not only retains the interspecificity of tissues but also the intraspecificity of a developing hormonally stimulated tissue. For the first time, we demonstrate that the coating from decellularized synchronous endometrium acts as a biological support for in vitro embryo development, achieving comparable results with the current gold standard that only uses serum-containing media.
Collapse
Affiliation(s)
- Hannes Campo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Ximo García-Domínguez
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València a, C/Camino de Vera s/n, 46022 Valencia, Spain
| | - Sara López-Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Amparo Faus
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - José Salvador Vicente Antón
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València a, C/Camino de Vera s/n, 46022 Valencia, Spain
| | - Francisco Marco-Jiménez
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València a, C/Camino de Vera s/n, 46022 Valencia, Spain
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain.
| |
Collapse
|
12
|
Canetti D, Rendell NB, Di Vagno L, Gilbertson JA, Rowczenio D, Rezk T, Gillmore JD, Hawkins PN, Verona G, Mangione PP, Giorgetti S, Mauri P, Motta S, De Palma A, Bellotti V, Taylor GW. Misidentification of transthyretin and immunoglobulin variants by proteomics due to methyl lysine formation in formalin-fixed paraffin-embedded amyloid tissue. Amyloid 2017; 24:233-241. [PMID: 29016222 DOI: 10.1080/13506129.2017.1385452] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proteomics is becoming the de facto gold standard for identifying amyloid proteins and is now used routinely in a number of centres. The technique is compound class independent and offers the added ability to identify variant and modified proteins. We re-examined proteomics results from a number of formalin-fixed paraffin-embedded amyloid samples, which were positive for transthyretin (TTR) by immunohistochemistry and proteomics, using the UniProt human protein database modified to include TTR variants. The amyloidogenic variant, V122I TTR, was incorrectly identified in 26/27 wild-type and non-V122I variant samples due to its close mass spectral similarity with the methyl lysine-modified WT peptide [126KMe]105-127 (p.[146 KMe]125-147) generated during formalin fixation. Similarly, the methyl lysine peptide, [50KMe]43-59, from immunoglobulin lambda light chain constant region was also misidentified as arising from a rare myeloma-derived lambda variant V49I. These processing-derived modifications are not present in fresh cardiac tissue, non-fixed fat nor serum and do not materially affect the identification of amyloid proteins. They could result in the incorrect assignment of a variant, and this may have consequences for the immediate family who will require genetic counselling and potentially early clinical intervention. As proteomics becomes a routine clinical test for amyloidosis, it becomes important to be aware of potentially confounding issues such as formalin-mediated lysine methylation, and how these may influence diagnosis and possibly treatment.
Collapse
Affiliation(s)
- Diana Canetti
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK.,c Department of Molecular Medicine , Institute of Biochemistry, University of Pavia , Pavia , Italy.,d CEINGE , University of Naples , Naples , Italy.,e Department of Chemical Sciences , University of Naples , Naples , Italy
| | - Nigel Brian Rendell
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK
| | - Lucia Di Vagno
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK
| | - Janet A Gilbertson
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK
| | - Dorota Rowczenio
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK
| | - Tamar Rezk
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK
| | - Julian D Gillmore
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK
| | - Phillip N Hawkins
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK
| | - Guglielmo Verona
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK
| | - Palma Patrizia Mangione
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK.,c Department of Molecular Medicine , Institute of Biochemistry, University of Pavia , Pavia , Italy
| | - Sofia Giorgetti
- c Department of Molecular Medicine , Institute of Biochemistry, University of Pavia , Pavia , Italy
| | - Pierluigi Mauri
- f Proteomics and Metabolomics Laboratory , CNR-ITB , Segrate , Italy
| | - Sara Motta
- f Proteomics and Metabolomics Laboratory , CNR-ITB , Segrate , Italy
| | | | - Vittorio Bellotti
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK.,c Department of Molecular Medicine , Institute of Biochemistry, University of Pavia , Pavia , Italy
| | - Graham W Taylor
- a Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins , University College London , London , UK.,b National Amyloidosis Centre, Division of Medicine , University College London , London , UK
| |
Collapse
|