1
|
Kisseleva T, Ganguly S, Murad R, Wang A, Brenner DA. Regulation of Hepatic Stellate Cell Phenotypes in Metabolic Dysfunction-Associated Steatohepatitis. Gastroenterology 2025:S0016-5085(25)00528-1. [PMID: 40120772 DOI: 10.1053/j.gastro.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
Hepatic stellate cells (HSCs) play a crucial role in the pathogenesis of liver fibrosis in metabolic dysfunction-associated steatohepatitis (MASH), a condition characterized by excessive fat accumulation in the hepatocytes, unrelated to alcohol consumption. In a healthy liver, HSCs are quiescent, store vitamin A, and function as pericytes. However, in response to liver injury and inflammation, HSCs become activated. In MASH, HSC activation is driven by metabolic stress, lipotoxicity, and chronic inflammation. Injured hepatocytes, recruited macrophage, capillarized sinusoidal endothelial cells, and permeable intestinal epithelium may each contribute to activating HSCS. This leads to a unique inflammatory environment that promotes fibrosis. MASH HSCs change their metabolism to favor glycolysis, glutaminolysis, and lactate generation. Activated HSCs transform into myofibroblast-like cells, producing excessive extracellular matrix components that result in fibrosis. In addition, HSCs in MASH have inflammatory and intermediate activated phenotypes. This fibrotic process is a key feature of MASH, which can lead to cirrhosis and liver cancer. Understanding the mechanisms of HSC activation and their role in MASH progression is essential for developing targeted therapies to treat and prevent liver fibrosis in affected individuals.
Collapse
Affiliation(s)
- Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, La Jolla, California
| | | | - Rabi Murad
- Sanford Burnham Prebys, La Jolla, California
| | - Allen Wang
- Center for Epigenetics, University of California, San Diego, La Jolla, California
| | - David A Brenner
- Sanford Burnham Prebys, La Jolla, California; Department of Medicine, University of California, La Jolla California.
| |
Collapse
|
2
|
Zhao X, Li Y, Yang S, Chen Y, Wu K, Geng J, Liu P, Wang Z, Dai H, Wang C. Orderly Regulation of Macrophages and Fibroblasts by Axl in Bleomycin-Induced Pulmonary Fibrosis in Mice. J Cell Mol Med 2025; 29:e70321. [PMID: 39779468 PMCID: PMC11710931 DOI: 10.1111/jcmm.70321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Pulmonary fibrosis is a pathological manifestation that occurs upon lung injury and subsequence aberrant repair with poor prognosis. However, current treatment is limited and does not distinguish different disease stages. Here, we aimed to study the differential functions of Axl, a receptor tyrosine kinase expressing on both macrophages and fibroblasts, in the whole course of pulmonary fibrosis. We used mice with Axl total knockout, conditionally knockout in macrophages or fibroblasts, or treating with Axl inhibitors in inflammation or fibrosis stages to examine the effect of temporary dysfunction of Axl on bleomycin (BLM)-induced pulmonary fibrosis. Primary bone marrow-derived monocytes and primary fibroblasts from mice were used for cell-type-specific studies. Lung tissue and plasma samples were collected from idiopathic pulmonary fibrosis (IPF) patients and healthy controls to assess the Axl levels. We found that Axl inhibited the M1 polarisation of macrophages; inhibition of Axl during acute phase exacerbated inflammatory response and subsequent pulmonary fibrosis. On the other hand, Axl promoted the proliferation and invasion of the fibroblasts, partially by accelerating the focal adhesion turnover; inhibiting Axl during the fibrotic phase significantly alleviated pulmonary fibrosis. Consistently, phosphorylated Axl levels increased in fibrotic foci in the lung sample of IPF patients. In contrast, the soluble Axl (sAxl) level decreased in their plasma as compared to healthy controls. These results indicate that Axl may sequentially and differentially regulate macrophages and fibroblasts in acute and fibrosis phases, implying the necessity of a stage-specific treatment for pulmonary fibrosis. In addition, the activated Axl on fibroblasts may be reflected by the lowered plasma sAxl level, which may act as a biomarker for IPF. Trial Registration: ClinicalTrials.gov identifier: NCT03730337.
Collapse
Affiliation(s)
- Xinyu Zhao
- The Second Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
| | - Yupeng Li
- The Second Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
| | - Shengnan Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Department of Respiratory and Critical Care MedicineTianjin Chest HospitalChina
| | | | - Kaiwei Wu
- Peking Union Medical CollegeBeijingChina
| | - Jing Geng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
| | - Peipei Liu
- Department of Medicine and Women's Guild Lung InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Zai Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
- Institute of Clinical Medical SciencesChina‐Japan Friendship HospitalBeijingChina
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory DiseasesChina‐Japan Friendship HospitalBeijingChina
- National Center for Respiratory Medicine, Institute of Respiratory MedicineChinese Academy of Medical SciencesBeijingChina
| | - Chen Wang
- The Second Affiliated Hospital of Harbin Medical UniversityHeilongjiangChina
| |
Collapse
|
3
|
Wen YQ, Zou ZY, Zhao GG, Zhang MJ, Zhang YX, Wang GH, Shi JJ, Wang YY, Song YY, Wang HX, Chen RY, Zheng DX, Duan XQ, Liu YM, Gonzalez FJ, Fan JG, Xie C. FXR activation remodels hepatic and intestinal transcriptional landscapes in metabolic dysfunction-associated steatohepatitis. Acta Pharmacol Sin 2024; 45:2313-2327. [PMID: 38992119 PMCID: PMC11489735 DOI: 10.1038/s41401-024-01329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Abstract
The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Ying-Quan Wen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zi-Yuan Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Guan-Guan Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Meng-Jiao Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gai-Hong Wang
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Jing-Jing Shi
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Yuan-Yang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Ye-Yu Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Hui-Xia Wang
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Ru-Ye Chen
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | | | - Xiao-Qun Duan
- Industrial Technology Research Institute of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Ya-Meng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Gao Fan
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China.
| | - Cen Xie
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
4
|
Hurtado-Lorenzo A, Swantek JL. The landscape of new therapeutic opportunities for IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:1-83. [PMID: 39521596 DOI: 10.1016/bs.apha.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This chapter presents an overview of the emerging strategies to address the unmet needs in the management of inflammatory bowel diseases (IBD). IBD poses significant challenges, as over half of patients experience disease progression despite interventions, leading to irreversible complications, and a substantial proportion do not respond to existing therapies, such as biologics. To overcome these limitations, we describe a diverse array of novel therapeutic approaches. In the area of immune homeostasis restoration, the focus is on targeting cytokine networks, leukocyte trafficking, novel immune pathways, and cell therapies involving regulatory T cells and mesenchymal stem cells (MSC). Recognizing the critical role of impaired intestinal barrier integrity in IBD, we highlight therapies aimed at restoring barrier function and promoting mucosal healing, such as those targeting cell proliferation, tight junctions, and lipid mediators. Addressing the challenges posed by fibrosis and fistulas, we describe emerging targets for reversing fibrosis like kinase and cytokine inhibitors and nuclear receptor agonists, as well as the potential of MSC for fistulas. The restoration of a healthy gut microbiome, through strategies like fecal microbiota transplantation, rationally defined bacterial consortia, and targeted antimicrobials, is also highlighted. We also describe innovative approaches to gut-targeted drug delivery to enhance efficacy and minimize side effects. Reinforcing these advancements is the critical role of precision medicine, which emphasizes the use of multiomics analysis for the discovery of biomarkers to enable personalized IBD care. Overall, the emerging landscape of therapeutic opportunities for IBD holds great potential to surpass the therapeutic ceiling of current treatments.
Collapse
Affiliation(s)
- Andrés Hurtado-Lorenzo
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States.
| | - Jennifer L Swantek
- Translational Research & IBD Ventures, Research Department, Crohn's & Colitis Foundation, New York, NY, United States
| |
Collapse
|
5
|
Al Ageeli E. Dual Roles of microRNA-122 in Hepatocellular Carcinoma and Breast Cancer Progression and Metastasis: A Comprehensive Review. Curr Issues Mol Biol 2024; 46:11975-11992. [PMID: 39590305 PMCID: PMC11592835 DOI: 10.3390/cimb46110711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
microRNA-122 (miR-122) plays crucial yet contrasting roles in hepatocellular carcinoma (HCC) and breast cancer (BC), two prevalent and aggressive malignancies. This review synthesizes current research on miR-122's functions in these cancers, focusing on its potential as a diagnostic, prognostic, and therapeutic target. A comprehensive literature search was conducted using PubMed, Web of Science, and Scopus databases. In HCC, miR-122 is downregulated in most cases, suppressing oncogenic pathways and reducing tumor growth and metastasis. Restoring miR-122 levels has shown promising therapeutic potential, increasing sensitivity to treatments like sorafenib. In contrast, in BC, miR-122 plays a pro-metastatic role, especially in triple-negative breast cancer (TNBC) and metastatic lesions. miR-122's ability to influence key pathways, such as the Wnt/β-catenin and NF-κB pathways in HCC, and its role in enhancing the Warburg effect in BC underline its significance in cancer biology. miR-122, a key factor in breast cancer radioresistance, suppresses tumors in radiosensitive cells. Inhibiting miR-122 could reverse resistance and potentially overcome radiotherapy resistance. Given its context-dependent functions, miR-122 could serve as a potential therapeutic target, where restoring or inhibiting its expression may help in treating HCC and BC, respectively. The dual roles of miR-122 underscore its significance in cancer biology and its potential in precision medicine.
Collapse
Affiliation(s)
- Essam Al Ageeli
- Department of Basic Medical Sciences (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
6
|
Touny AA, Venkataraman B, Ojha S, Pessia M, Subramanian VS, Hariharagowdru SN, Subramanya SB. Phytochemical Compounds as Promising Therapeutics for Intestinal Fibrosis in Inflammatory Bowel Disease: A Critical Review. Nutrients 2024; 16:3633. [PMID: 39519465 PMCID: PMC11547603 DOI: 10.3390/nu16213633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVE Intestinal fibrosis, a prominent consequence of inflammatory bowel disease (IBD), presents considerable difficulty owing to the absence of licensed antifibrotic therapies. This review assesses the therapeutic potential of phytochemicals as alternate methods for controlling intestinal fibrosis. Phytochemicals, bioactive molecules originating from plants, exhibit potential antifibrotic, anti-inflammatory, and antioxidant activities, targeting pathways associated with inflammation and fibrosis. Compounds such as Asperuloside, Berberine, and olive phenols have demonstrated potential in preclinical models by regulating critical signaling pathways, including TGF-β/Smad and NFκB, which are integral to advancing fibrosis. RESULTS The main findings suggest that these phytochemicals significantly reduce fibrotic markers, collagen deposition, and inflammation in various experimental models of IBD. These phytochemicals may function as supplementary medicines to standard treatments, perhaps enhancing patient outcomes while mitigating the adverse effects of prolonged immunosuppressive usage. Nonetheless, additional clinical trials are necessary to validate their safety, effectiveness, and bioavailability in human subjects. CONCLUSIONS Therefore, investigating phytochemicals may lead to crucial advances in the formulation of innovative treatment approaches for fibrosis associated with IBD, offering a promising avenue for future therapeutic development.
Collapse
Affiliation(s)
- Aya A. Touny
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt
| | - Balaji Venkataraman
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Mauro Pessia
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
| | | | - Shamanth Neralagundi Hariharagowdru
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sandeep B. Subramanya
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.A.T.); (B.V.); (M.P.); (S.N.H.)
- Zayed Bin Sultan Center for Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
7
|
Saeedi BJ, Carr HE, Higgins PDR, Steiner CA. AXL: A novel therapeutic target in IBD. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 101:141-157. [PMID: 39521598 DOI: 10.1016/bs.apha.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inflammatory bowel diseases (IBD) and their sequela (colitis-associate carcinoma and fibrostenotic complications) remain a significant clinical challenge and novel therapeutic targets are desperately needed. AXL, a receptor tyrosine kinase, has been implicated in myriad cellular functions central to the pathogenesis of IBD. These include facilitating epithelial-to-mesenchymal transition, dampening of Toll-like receptor and natural killer cell mediated immune responses, driving proliferation, and propagating fibrogenic signaling. The vast majority of preclinical research on AXL has focused on its role in cancer. As such, pharmacologic AXL inhibitors are currently in clinical trials, but the indications remain limited to malignancy. In this chapter, we summarize the current preclinical data of AXL in IBD, colitis associated carcinoma, and fibrostenotic disease, and highlight its potential as a novel therapeutic target.
Collapse
Affiliation(s)
- Bejan J Saeedi
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States.
| | - Hannah E Carr
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Peter D R Higgins
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, MI, United States
| | - Calen A Steiner
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Mucosal Inflammation Program, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
8
|
Matsuda T, Kaji K, Nishimura N, Asada S, Koizumi A, Tanaka M, Yorioka N, Tsuji Y, Kitagawa K, Sato S, Namisaki T, Akahane T, Yoshiji H. Cabozantinib prevents the progression of metabolic dysfunction-associated steatohepatitis by inhibiting the activation of hepatic stellate cell and macrophage and attenuating angiogenic activity. Heliyon 2024; 10:e38647. [PMID: 39398008 PMCID: PMC11470516 DOI: 10.1016/j.heliyon.2024.e38647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Cabozantinib, a multiple tyrosine kinase inhibitor targeting AXL, vascular endothelial growth factor receptor (VEGFR), and MET, is used clinically to treat certain cancers, including hepatocellular carcinoma. This study aimed to assess the impact of cabozantinib on liver fibrosis and hepatocarcinogenesis in a rat model of metabolic dysfunction-associated steatohepatitis (MASH). MASH-based liver fibrosis and hepatocarcinogenesis were induced in rats by feeding them a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for eight and 16 weeks, respectively. Cabozantinib (1 or 2 mg/kg, daily) was administered concurrently with the diet in the fibrosis model and after eight weeks in the carcinogenesis model. Treatment with cabozantinib significantly attenuated hepatic inflammation and fibrosis without affecting hepatocyte steatosis and ballooning in CDAHFD-fed rats. Cabozantinib-treated rats exhibited a marked reduction in α-smooth muscle actin+ activated hepatic stellate cell (HSC) expansion, CD68+ macrophage infiltration, and CD34+ pathological angiogenesis, along with reduced hepatic AXL, VEGF, and VEGFR2 expression. Consistently, cabozantinib downregulated the hepatic expression of profibrogenic markers (Acta2, Col1a1, Tgfb1), inflammatory cytokines (Tnfa, Il1b, Il6), and proangiogenic markers (Vegfa, Vwf, Ang2). In a cell-based assay of human activated HSCs, cabozantinib inhibited Akt activation induced by GAS6, a ligand of AXL, leading to reduced cell proliferation and profibrogenic activity. Cabozantinib also suppressed lipopolysaccharide-induced proinflammatory responses in human macrophages, VEGFA-induced collagen expression and proliferation in activated HSCs, and VEGFA-stimulated proliferation in vascular endothelial cells. Meanwhile, administration of cabozantinib did not affect Ki67+ hepatocyte proliferation or serum albumin levels, indicating no negative impact on regenerative capacity. Treatment with cabozantinib also reduced the placental glutathione transferase+ preneoplastic lesions in CDAHFD-fed rats. In conclusion, cabozantinib shows promise as a novel option for preventing MASH progression.
Collapse
Affiliation(s)
- Takuya Matsuda
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Shohei Asada
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Aritoshi Koizumi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Misako Tanaka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
9
|
Ali MH, Talha M, Hussain SA. The Role of Hepatic Stellate Cells and the Gas6/Axl Axis in Liver Fibrosis and Hepatocellular Carcinoma. J Clin Exp Hepatol 2024; 14:101400. [PMID: 38601748 PMCID: PMC11002857 DOI: 10.1016/j.jceh.2024.101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Affiliation(s)
- Mohammad Haris Ali
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - Muhammad Talha
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - Syed A.S. Hussain
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| |
Collapse
|
10
|
Apostolo D, D’Onghia D, Nerviani A, Ghirardi GM, Sola D, Perazzi M, Tonello S, Colangelo D, Sainaghi PP, Bellan M. Could Gas6/TAM Axis Provide Valuable Insights into the Pathogenesis of Systemic Sclerosis? Curr Issues Mol Biol 2024; 46:7486-7504. [PMID: 39057085 PMCID: PMC11275301 DOI: 10.3390/cimb46070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular injury, extracellular matrix deposition, autoimmunity, inflammation, and fibrosis. The clinical complexity and high heterogeneity of the disease make the discovery of potential therapeutic targets difficult. However, the recent progress in the comprehension of its pathogenesis is encouraging. Growth Arrest-Specific 6 (Gas6) and Tyro3, Axl, and MerTK (TAM) receptors are involved in multiple biological processes, including modulation of the immune response, phagocytosis, apoptosis, fibrosis, inflammation, cancer development, and autoimmune disorders. In the present manuscript, we review the current evidence regarding SSc pathogenesis and the role of the Gas6/TAM system in several human diseases, suggesting its likely contribution in SSc and highlighting areas where further research is necessary to fully comprehend the role of TAM receptors in this condition. Indeed, understanding the involvement of TAM receptors in SSc, which is currently unknown, could provide valuable insights for novel potential therapeutic targets.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Davide D’Onghia
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Giulia Maria Ghirardi
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Daniele Sola
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- IRCCS Istituto Auxologico Italiano, UO General Medicine, 28824 Oggebbio, Italy
| | - Mattia Perazzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Donato Colangelo
- Department of Health Sciences, Pharmacology, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
11
|
Wu H, Jiang W, Pang P, Si W, Kong X, Zhang X, Xiong Y, Wang C, Zhang F, Song J, Yang Y, Zeng L, Liu K, Jia Y, Wang Z, Ju J, Diao H, Bian Y, Yang B. m 6A reader YTHDF1 promotes cardiac fibrosis by enhancing AXL translation. Front Med 2024; 18:499-515. [PMID: 38806989 DOI: 10.1007/s11684-023-1052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/04/2023] [Indexed: 05/30/2024]
Abstract
Cardiac fibrosis caused by ventricular remodeling and dysfunction such as post-myocardial infarction (MI) can lead to heart failure. RNA N6-methyladenosine (m6A) methylation has been shown to play a pivotal role in the occurrence and development of many illnesses. In investigating the biological function of the m6A reader YTHDF1 in cardiac fibrosis, adeno-associated virus 9 was used to knock down or overexpress the YTHDF1 gene in mouse hearts, and MI surgery in vivo and transforming growth factor-β (TGF-β)-activated cardiac fibroblasts in vitro were performed to establish fibrosis models. Our results demonstrated that silencing YTHDF1 in mouse hearts can significantly restore impaired cardiac function and attenuate myocardial fibrosis, whereas YTHDF1 overexpression could further enhance cardiac dysfunction and aggravate the occurrence of ventricular pathological remodeling and fibrotic development. Mechanistically, zinc finger BED-type containing 6 mediated the transcriptional function of the YTHDF1 gene promoter. YTHDF1 augmented AXL translation and activated the TGF-β-Smad2/3 signaling pathway, thereby aggravating the occurrence and development of cardiac dysfunction and myocardial fibrosis. Consistently, our data indicated that YTHDF1 was involved in activation, proliferation, and migration to participate in cardiac fibrosis in vitro. Our results revealed that YTHDF1 could serve as a potential therapeutic target for myocardial fibrosis.
Collapse
Affiliation(s)
- Han Wu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Weitao Jiang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ping Pang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Wei Si
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xue Kong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xinyue Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuting Xiong
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Chunlei Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Feng Zhang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jinglun Song
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yang Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Linghua Zeng
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Kuiwu Liu
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yingqiong Jia
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Zhuo Wang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jiaming Ju
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Hongtao Diao
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Yu Bian
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (National Key Laboratory of Frigid Zone Cardiovascular Diseases, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
12
|
Perez F, Iribarren ML, Olexen CM, Ruera CN, Errasti AE, Guzman L, Garbi L, Carrera Silva EA, Chirdo FG. Duodenal mucosa of untreated celiac disease patients has altered expression of the GAS6 and PROS1 and the negative regulator tyrosine kinase TAM receptors subfamily. Clin Immunol 2024; 263:110202. [PMID: 38575045 DOI: 10.1016/j.clim.2024.110202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/14/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Celiac disease (CD) is an immune-driven disease characterized by tissue damage in the small intestine of genetically-susceptible individuals. We evaluated here a crucial immune regulatory pathway involving TYRO3, AXL, and MERTK (TAM) receptors and their ligands PROS1 and GAS6 in duodenal biopsies of controls and CD patients. We found increased GAS6 expression associated with downregulation of PROS1 and variable TAM receptors levels in duodenum tissue of CD patients. Interestingly, CD3+ lymphocytes, CD68+, CD11c+ myeloid and epithelial cells, showed differential expressions of TAM components comparing CD vs controls. Principal component analysis revealed a clear segregation of two groups of CD patients based on TAM components and IFN signaling. In vitro validation demonstrated that monocytes, T lymphocytes and epithelial cells upregulated TAM components in response to IFN stimulation. Our findings highlight a dysregulated TAM axis in CD related to IFN signaling and contribute to a deeper understanding of the pathophysiology of CD.
Collapse
Affiliation(s)
- Federico Perez
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, CIC PBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Luz Iribarren
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, CIC PBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Cinthia Mariel Olexen
- Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina (ANM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de Argentina, Buenos Aires, Argentina
| | - Carolina Naymé Ruera
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, CIC PBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Andrea Emilse Errasti
- Instituto de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Luciana Guzman
- Servicio de gastroenterología del Hospital de Niños Sor María Ludovica de La Plata, Argentina
| | - Laura Garbi
- Servicio de gastroenterología del Hospital San Martín de la Plata, Argentina
| | - Eugenio Antonio Carrera Silva
- Instituto de Medicina Experimental (IMEX), Academia Nacional de Medicina (ANM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) de Argentina, Buenos Aires, Argentina.
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, CIC PBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
13
|
Moreno J, Gluud LL, Galsgaard ED, Hvid H, Mazzoni G, Das V. Identification of ligand and receptor interactions in CKD and MASH through the integration of single cell and spatial transcriptomics. PLoS One 2024; 19:e0302853. [PMID: 38768139 PMCID: PMC11104622 DOI: 10.1371/journal.pone.0302853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) and Metabolic dysfunction-associated steatohepatitis (MASH) are metabolic fibroinflammatory diseases. Combining single-cell (scRNAseq) and spatial transcriptomics (ST) could give unprecedented molecular disease understanding at single-cell resolution. A more comprehensive analysis of the cell-specific ligand-receptor (L-R) interactions could provide pivotal information about signaling pathways in CKD and MASH. To achieve this, we created an integrative analysis framework in CKD and MASH from two available human cohorts. RESULTS The analytical framework identified L-R pairs involved in cellular crosstalk in CKD and MASH. Interactions between cell types identified using scRNAseq data were validated by checking the spatial co-presence using the ST data and the co-expression of the communicating targets. Multiple L-R protein pairs identified are known key players in CKD and MASH, while others are novel potential targets previously observed only in animal models. CONCLUSION Our study highlights the importance of integrating different modalities of transcriptomic data for a better understanding of the molecular mechanisms. The combination of single-cell resolution from scRNAseq data, combined with tissue slide investigations and visualization of cell-cell interactions obtained through ST, paves the way for the identification of future potential therapeutic targets and developing effective therapies.
Collapse
Affiliation(s)
- Jaime Moreno
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Dept of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Henning Hvid
- Global Drug Discovery, Novo Nordisk A/S, Maløv, Denmark
| | - Gianluca Mazzoni
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| | - Vivek Das
- Digital Science and Innovation, Computational Biology – AI & Digital Research, Novo Nordisk A/S, Maløv, Denmark
| |
Collapse
|
14
|
Grøndal SM, Tutusaus A, Boix L, Reig M, Blø M, Hodneland L, Gausdal G, Jackson A, Garcia de Frutos P, Lorens JB, Morales A, Marí M. Dynamic changes in immune cell populations by AXL kinase targeting diminish liver inflammation and fibrosis in experimental MASH. Front Immunol 2024; 15:1400553. [PMID: 38817615 PMCID: PMC11137289 DOI: 10.3389/fimmu.2024.1400553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Background and aims Metabolic dysfunction-associated steatohepatitis (MASH) is a significant health concern with limited treatment options. AXL, a receptor tyrosine kinase activated by the GAS6 ligand, promotes MASH through activation of hepatic stellate cells and inflammatory macrophages. This study identified cell subsets affected by MASH progression and the effect of AXL inhibition. Methods Mice were fed chow or different fat-enriched diets to induce MASH, and small molecule AXL kinase inhibition with bemcentinib was evaluated. Gene expression was measured by qPCR. Time-of-flight mass cytometry (CyTOF) used single cells from dissociated livers, acquired on the Fluidigm Helios, and cell populations were studied using machine learning. Results In mice fed different fat-enriched diets, liver steatosis alone was insufficient to elevate plasma soluble AXL (sAXL) levels. However, in conjunction with inflammation, sAXL increases, serving as an early indicator of steatohepatitis progression. Bemcentinib, an AXL inhibitor, effectively reduced proinflammatory responses in MASH models, even before fibrosis appearance. Utilizing CyTOF analysis, we detected a decreased population of Kupffer cells during MASH while promoting infiltration of monocytes/macrophages and CD8+ T cells. Bemcentinib partially restored Kupffer cells, reduced pDCs and GzmB- NK cells, and increased GzmB+CD8+ T cells and LSECs. Additionally, AXL inhibition enhanced a subtype of GzmB+CD8+ tissue-resident memory T cells characterized by CX3CR1 expression. Furthermore, bemcentinib altered the transcriptomic landscape associated with MASH progression, particularly in TLR signaling and inflammatory response, exhibiting differential cytokine expression in the plasma, consistent with liver repair and decreased inflammation. Conclusion Our findings highlight sAXL as a biomarker for monitoring MASH progression and demonstrate that AXL targeting shifted liver macrophages and CD8+ T-cell subsets away from an inflammatory phenotype toward fibrotic resolution and organ healing, presenting a promising strategy for MASH treatment.
Collapse
Affiliation(s)
- Sturla Magnus Grøndal
- Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Anna Tutusaus
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Barcelona Clinic Liver Cancer Center (BCLC), Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Loreto Boix
- Barcelona Clinic Liver Cancer Center (BCLC), Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Maria Reig
- Barcelona Clinic Liver Cancer Center (BCLC), Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | | | | | | | | | - Pablo Garcia de Frutos
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Unidad Asociada (IMIM), Institute of Biomedical Research of Barcelona (IIBB-CSIC), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), ISCIII, Madrid, Spain
| | - James Bradley Lorens
- Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- BerGenBio ASA, Bergen, Norway
| | - Albert Morales
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Barcelona Clinic Liver Cancer Center (BCLC), Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Montserrat Marí
- Institute of Biomedical Research of Barcelona (IIBB-CSIC), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Barcelona Clinic Liver Cancer Center (BCLC), Hospital Clínic de Barcelona, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
15
|
Breitenecker K, Heiden D, Demmer T, Weber G, Primorac AM, Hedrich V, Ortmayr G, Gruenberger T, Starlinger P, Herndler-Brandstetter D, Barozzi I, Mikulits W. Tumor-Extrinsic Axl Expression Shapes an Inflammatory Microenvironment Independent of Tumor Cell Promoting Axl Signaling in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:4202. [PMID: 38673795 PMCID: PMC11050718 DOI: 10.3390/ijms25084202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The activation of the receptor tyrosine kinase Axl by Gas6 is a major driver of tumorigenesis. Despite recent insights, tumor cell-intrinsic and -extrinsic Axl functions are poorly understood in hepatocellular carcinoma (HCC). Thus, we analyzed the cell-specific aspects of Axl in liver cancer cells and in the tumor microenvironment. We show that tumor-intrinsic Axl expression decreased the survival of mice and elevated the number of pulmonary metastases in a model of resection-based tumor recurrence. Axl expression increased the invasion of hepatospheres by the activation of Akt signaling and a partial epithelial-to-mesenchymal transition (EMT). However, the liver tumor burden of Axl+/+ mice induced by diethylnitrosamine plus carbon tetrachloride was reduced compared to systemic Axl-/- mice. Tumors of Axl+/+ mice were highly infiltrated with cytotoxic cells, suggesting a key immune-modulatory role of Axl. Interestingly, hepatocyte-specific Axl deficiency did not alter T cell infiltration, indicating that these changes are independent of tumor cell-intrinsic Axl. In this context, we observed an upregulation of multiple chemokines in Axl+/+ compared to Axl-/- tumors, correlating with HCC patient data. In line with this, Axl is associated with a cytotoxic immune signature in HCC patients. Together these data show that tumor-intrinsic Axl expression fosters progression, while tumor-extrinsic Axl expression shapes an inflammatory microenvironment.
Collapse
Affiliation(s)
- Kristina Breitenecker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Denise Heiden
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Tobias Demmer
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Gerhard Weber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Ana-Maria Primorac
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Viola Hedrich
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Thomas Gruenberger
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University, 1100 Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Centre of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Herndler-Brandstetter
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Iros Barozzi
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| |
Collapse
|
16
|
Lee YJ, Kim M, Kim HS, Kang JL. Administration of Gas6 attenuates lung fibrosis via inhibition of the epithelial-mesenchymal transition and fibroblast activation. Cell Biol Toxicol 2024; 40:20. [PMID: 38578518 PMCID: PMC10997547 DOI: 10.1007/s10565-024-09858-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
The epithelial-mesenchymal transition (EMT) and fibroblast activation are major events in idiopathic pulmonary fibrosis pathogenesis. Here, we investigated whether growth arrest-specific protein 6 (Gas6) plays a protective role in lung fibrosis via suppression of the EMT and fibroblast activation. rGas6 administration inhibited the EMT in isolated mouse ATII cells 14 days post-BLM treatment based on morphologic cellular alterations, changes in mRNA and protein expression profiles of EMT markers, and induction of EMT-activating transcription factors. BLM-induced increases in gene expression of fibroblast activation-related markers and the invasive capacity of primary lung fibroblasts in primary lung fibroblasts were reversed by rGas6 administration. Furthermore, the hydroxyproline content and collagen accumulation in interstitial areas with damaged alveolar structures in lung tissue were reduced by rGas6 administration. Targeting Gas6/Axl signaling events with specific inhibitors of Axl (BGB324), COX-2 (NS-398), EP1/EP2 receptor (AH-6809), or PGD2 DP2 receptor (BAY-u3405) reversed the inhibitory effects of rGas6 on EMT and fibroblast activation. Finally, we confirmed the antifibrotic effects of Gas6 using Gas6-/- mice. Therefore, Gas6/Axl signaling events play a potential role in inhibition of EMT process and fibroblast activation via COX-2-derived PGE2 and PGD2 production, ultimately preventing the development of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Minsuk Kim
- Department of Pharmacology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, 25 Magokdong-Ro 2-Gil, Gangseo-Gu, Seoul, 07804, Korea.
| |
Collapse
|
17
|
Miao YR, Rankin EB, Giaccia AJ. Therapeutic targeting of the functionally elusive TAM receptor family. Nat Rev Drug Discov 2024; 23:201-217. [PMID: 38092952 PMCID: PMC11335090 DOI: 10.1038/s41573-023-00846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 03/07/2024]
Abstract
The TAM receptor family of TYRO3, AXL and MERTK regulates tissue and immune homeostasis. Aberrant TAM receptor signalling has been linked to a range of diseases, including cancer, fibrosis and viral infections. Specifically, the dysregulation of TAM receptors can enhance tumour growth and metastasis due to their involvement in multiple oncogenic pathways. For example, TAM receptors have been implicated in the epithelial-mesenchymal transition, maintaining the stem cell phenotype, immune modulation, proliferation, angiogenesis and resistance to conventional and targeted therapies. Therapeutically, multiple TAM receptor inhibitors are in preclinical and clinical development for cancers and other indications, with those targeting AXL being the most clinically advanced. Although there has been notable clinical advancement in recent years, challenges persist. This Review aims to provide both biological and clinical insights into the current therapeutic landscape of TAM receptor inhibitors, and evaluates their potential for the treatment of cancer and non-malignant diseases.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Erinn B Rankin
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
18
|
Chen L, Ye X, Yang L, Zhao J, You J, Feng Y. Linking fatty liver diseases to hepatocellular carcinoma by hepatic stellate cells. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:25-35. [PMID: 39036388 PMCID: PMC11256631 DOI: 10.1016/j.jncc.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 07/23/2024] Open
Abstract
Hepatic stellate cells (HSCs), a distinct category of non-parenchymal cells in the liver, are critical for liver homeostasis. In healthy livers, HSCs remain non-proliferative and quiescent. However, under conditions of acute or chronic liver damage, HSCs are activated and participate in the progression and regulation of liver diseases such as liver fibrosis, cirrhosis, and liver cancer. Fatty liver diseases (FLD), including nonalcoholic (NAFLD) and alcohol-related (ALD), are common chronic inflammatory conditions of the liver. These diseases, often resulting from multiple metabolic disorders, can progress through a sequence of inflammation, fibrosis, and ultimately, cancer. In this review, we focused on the activation and regulatory mechanism of HSCs in the context of FLD. We summarized the molecular pathways of activated HSCs (aHSCs) in mediating FLD and their role in promoting liver tumor development from the perspectives of cell proliferation, invasion, metastasis, angiogenesis, immunosuppression, and chemo-resistance. We aimed to offer an in-depth discussion on the reciprocal regulatory interactions between FLD and HSC activation, providing new insights for researchers in this field.
Collapse
Affiliation(s)
- Liang'en Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xiangshi Ye
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Lixian Yang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Hangzhou Medical College), Hangzhou, China
| | - Jiangsha Zhao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jia You
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yuxiong Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, First Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Tutusaus A, Morales A, García de Frutos P, Marí M. GAS6/TAM Axis as Therapeutic Target in Liver Diseases. Semin Liver Dis 2024; 44:99-114. [PMID: 38395061 PMCID: PMC11027478 DOI: 10.1055/a-2275-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
TAM (TYRO3, AXL, and MERTK) protein tyrosine kinase membrane receptors and their vitamin K-dependent ligands GAS6 and protein S (PROS) are well-known players in tumor biology and autoimmune diseases. In contrast, TAM regulation of fibrogenesis and the inflammation mechanisms underlying metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and, ultimately, liver cancer has recently been revealed. GAS6 and PROS binding to phosphatidylserine exposed in outer membranes of apoptotic cells links TAMs, particularly MERTK, with hepatocellular damage. In addition, AXL and MERTK regulate the development of liver fibrosis and inflammation in chronic liver diseases. Acute hepatic injury is also mediated by the TAM system, as recent data regarding acetaminophen toxicity and acute-on-chronic liver failure have uncovered. Soluble TAM-related proteins, mainly released from activated macrophages and hepatic stellate cells after hepatic deterioration, are proposed as early serum markers for disease progression. In conclusion, the TAM system is becoming an interesting pharmacological target in liver pathology and a focus of future biomedical research in this field.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Barcelona, Comunidad de Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| |
Collapse
|
20
|
Apostolo D, Ferreira LL, Vincenzi F, Vercellino N, Minisini R, Latini F, Ferrari B, Burlone ME, Pirisi M, Bellan M. From MASH to HCC: the role of Gas6/TAM receptors. Front Immunol 2024; 15:1332818. [PMID: 38298195 PMCID: PMC10827955 DOI: 10.3389/fimmu.2024.1332818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the replacement term for what used to be called nonalcoholic steatohepatitis (NASH). It is characterized by inflammation and injury of the liver in the presence of cardiometabolic risk factors and may eventually result in the development of hepatocellular carcinoma (HCC), the most common form of primary liver cancer. Several pathogenic mechanisms are involved in the transition from MASH to HCC, encompassing metabolic injury, inflammation, immune dysregulation and fibrosis. In this context, Gas6 (Growth Arrest-Specific 6) and TAM (Tyro3, Axl, and MerTK) receptors may play important roles. The Gas6/TAM family is involved in the modulation of inflammation, lipid metabolism, fibrosis, tumor progression and metastasis, processes which play an important role in the pathophysiology of acute and chronic liver diseases. In this review, we discuss MASH-associated HCC and the potential involvement of the Gas6/TAM system in disease development and progression. In addition, since therapeutic strategies for MASH and HCC are limited, we also speculate regarding possible future treatments involving the targeting of Gas6 or TAM receptors.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Luciana L. Ferreira
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Nicole Vercellino
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federico Latini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Barbara Ferrari
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Michela E. Burlone
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
- Center on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
- Center on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
21
|
Hayashi M, Abe K, Sugaya T, Takahata Y, Fujita M, Takahashi A, Ohira H. Influence of serum Gas6 levels on prognosis in patients with hepatocellular carcinoma. Jpn J Clin Oncol 2024; 54:62-69. [PMID: 37801445 DOI: 10.1093/jjco/hyad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVE The prediction of prognosis in hepatocellular carcinoma patients is important for switching treatment. The association between circulating growth arrest-specific 6 levels and prognosis in hepatocellular carcinoma patients is unknown. METHODS We retrospectively analysed the association between serum growth arrest-specific 6 levels and clinical findings in 132 patients with hepatocellular carcinoma. Serum growth arrest-specific 6 levels were measured using enzyme-linked immunosorbent assay. RESULTS Amongst 132 patients, the Barcelona Clinic Liver Cancer stage was classified as 0, A, B, C and D in 19, 48, 41, 18 and 6 patients, respectively. Serum growth arrest-specific 6 levels in hepatocellular carcinoma patients were higher than those in healthy controls (28.4 ng/mL vs. 19.6 ng/mL, P < 0.001), and growth arrest-specific 6 levels were positively correlated with soluble Axl levels. In the entire cohort, high growth arrest-specific 6 levels were associated with a shorter survival period (hazard ratio: 1.78 per 20 ng/mL, 95% confidence interval: 1.01-3.16, P = 0.045). In early and intermediate-stage hepatocellular carcinoma patients treated with transcatheter arterial chemoembolization (n = 59), we determined a cut-off value of 36.4 ng/mL based on the receiver operating characteristic curve to predict death within 3 years, and high growth arrest-specific 6 levels were associated with a high cumulative incidence of portal vein tumour thrombosis (Gray's test: P = 0.010) and shorter overall survival (log-rank: P = 0.005). CONCLUSIONS Serum growth arrest-specific 6 levels were associated with prognosis in hepatocellular carcinoma patients. In early and intermediate-stage hepatocellular carcinoma patients who underwent transcatheter arterial chemoembolization, high growth arrest-specific 6 levels were associated with a high incidence of portal vein tumour thrombosis. Circulating growth arrest-specific 6 levels may be a useful prognostic marker in hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Manabu Hayashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Tatsuro Sugaya
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Yosuke Takahata
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Masashi Fujita
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
22
|
Fang F, Dai Y, Wang H, Ji Y, Liang X, Peng X, Li J, Zhao Y, Li C, Wang D, Li Y, Zhang D, Zhang D, Geng M, Liu H, Ai J, Zhou Y. Structure-based drug discovery of novel fused-pyrazolone carboxamide derivatives as potent and selective AXL inhibitors. Acta Pharm Sin B 2023; 13:4918-4933. [PMID: 38045061 PMCID: PMC10692477 DOI: 10.1016/j.apsb.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/02/2023] [Accepted: 09/25/2023] [Indexed: 12/05/2023] Open
Abstract
As a novel and promising antitumor target, AXL plays an important role in tumor growth, metastasis, immunosuppression and drug resistance of various malignancies, which has attracted extensive research interest in recent years. In this study, by employing the structure-based drug design and bioisosterism strategies, we designed and synthesized in total 54 novel AXL inhibitors featuring a fused-pyrazolone carboxamide scaffold, of which up to 20 compounds exhibited excellent AXL kinase and BaF3/TEL-AXL cell viability inhibitions. Notably, compound 59 showed a desirable AXL kinase inhibitory activity (IC50: 3.5 nmol/L) as well as good kinase selectivity, and it effectively blocked the cellular AXL signaling. In turn, compound 59 could potently inhibit BaF3/TEL-AXL cell viability (IC50: 1.5 nmol/L) and significantly suppress GAS6/AXL-mediated cancer cell invasion, migration and wound healing at the nanomolar level. More importantly, compound 59 oral administration showed good pharmacokinetic profile and in vivo antitumor efficiency, in which we observed significant AXL phosphorylation suppression, and its antitumor efficacy at 20 mg/kg (qd) was comparable to that of BGB324 at 50 mg/kg (bid), the most advanced AXL inhibitor. Taken together, this work provided a valuable lead compound as a potential AXL inhibitor for the further antitumor drug development.
Collapse
Affiliation(s)
| | - Yang Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hao Wang
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinchun Ji
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jiyuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yangrong Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dong Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dan Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Jing Ai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yu Zhou
- Drug Discovery & Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
23
|
Chen CC, Chen CY, Yeh CT, Liu YT, Leu YL, Chuang WY, Shih YH, Chou LF, Shieh TM, Wang TH. Corylin Attenuates CCl 4-Induced Liver Fibrosis in Mice by Regulating the GAS6/AXL Signaling Pathway in Hepatic Stellate Cells. Int J Mol Sci 2023; 24:16936. [PMID: 38069259 PMCID: PMC10707553 DOI: 10.3390/ijms242316936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Liver fibrosis is reversible when treated in its early stages and when liver inflammatory factors are inhibited. Limited studies have investigated the therapeutic effects of corylin, a flavonoid extracted from Psoralea corylifolia L. (Fabaceae), on liver fibrosis. Therefore, we evaluated the anti-inflammatory activity of corylin and investigated its efficacy and mechanism of action in ameliorating liver fibrosis. Corylin significantly inhibited inflammatory responses by inhibiting the activation of mitogen-activated protein kinase signaling pathways and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-alpha in human THP-1 and mouse RAW264.7 macrophages. Furthermore, corylin inhibited the expression of growth arrest-specific gene 6 in human hepatic stellate cells (HSCs) and the activation of the downstream phosphoinositide 3-kinase/protein kinase B pathway. This inhibited the activation of HSCs and the expression of extracellular matrix proteins, including α-smooth muscle actin and type I collagen. Additionally, corylin induced caspase 9 and caspase 3 activation, which promoted apoptosis in HSCs. Moreover, in vivo experiments confirmed the regulatory effects of corylin on these proteins, and corylin alleviated the symptoms of carbon tetrachloride-induced liver fibrosis in mice. These findings revealed that corylin has anti-inflammatory activity and inhibits HSC activation; thus, it presents as a potential adjuvant in the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Chi-Yuan Chen
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Health Industry and Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Yi-Tsen Liu
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
| | - Yann-Lii Leu
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Tao-Yuan 33303, Taiwan
| | - Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan;
| | - Li-Fang Chou
- Kidney Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Tong-Hong Wang
- Biobank, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan; (C.-C.C.); (C.-Y.C.); (Y.-T.L.); (Y.-L.L.)
- Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33303, Taiwan
- Graduate Institute of Health Industry and Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Tao-Yuan 33303, Taiwan
- Liver Research Center, Department of Hepato-Gastroenterology, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| |
Collapse
|
24
|
Li V, Binder MD, Kilpatrick TJ. The Tolerogenic Influence of Dexamethasone on Dendritic Cells Is Accompanied by the Induction of Efferocytosis, Promoted by MERTK. Int J Mol Sci 2023; 24:15903. [PMID: 37958886 PMCID: PMC10650502 DOI: 10.3390/ijms242115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Many treatments for autoimmune diseases, caused by the loss of immune self-tolerance, are broadly immunosuppressive. Dendritic cells (DCs) can be induced to develop anti-inflammatory/tolerogenic properties to suppress aberrant self-directed immunity by promoting immune tolerance in an antigen-specific manner. Dexamethasone can generate tolerogenic DCs and upregulates MERTK expression. As MERTK can inhibit inflammation, we investigated whether dexamethasone's tolerogenic effects are mediated via MERTK, potentially providing a novel therapeutic approach. Monocyte-derived DCs were treated with dexamethasone, and with and without MERTK ligands or MERTK inhibitors. Flow cytometry was used to assess effects of MERTK modulation on co-stimulatory molecule expression, efferocytosis, cytokine secretion and T cell proliferation. The influence on expression of Rab17, which coordinates the diversion of efferocytosed material away from cell surface presentation, was assessed. Dexamethasone-treated DCs had upregulated MERTK expression, decreased expression of co-stimulatory molecules, maturation and proliferation of co-cultured T cells and increased uptake of myelin debris. MERTK ligands did not potentiate these properties, whilst specific MERTK inhibition only reversed dexamethasone's effect on myelin uptake. Cells undergoing efferocytosis had higher Rab17 expression. Dexamethasone-enhanced efferocytosis in DCs is MERTK-dependent and could exert its tolerogenic effects by increasing Rab17 expression to prevent the presentation of efferocytosed material on the cell surface to activate adaptive immune responses.
Collapse
Affiliation(s)
- Vivien Li
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.D.B.); (T.J.K.)
| | - Michele D. Binder
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.D.B.); (T.J.K.)
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Trevor J. Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3010, Australia; (M.D.B.); (T.J.K.)
| |
Collapse
|
25
|
Nordbø OP, Landolt L, Eikrem Ø, Scherer A, Leh S, Furriol J, Apeland T, Mydel P, Marti H. Transcriptomic analysis reveals partial epithelial-mesenchymal transition and inflammation as common pathogenic mechanisms in hypertensive nephrosclerosis and Type 2 diabetic nephropathy. Physiol Rep 2023; 11:e15825. [PMID: 37813528 PMCID: PMC10562137 DOI: 10.14814/phy2.15825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/12/2023] Open
Abstract
Hypertensive nephrosclerosis (HN) and Type 2 diabetic nephropathy (T2DN) are the leading causes of chronic kidney disease (CKD). To explore shared pathogenetic mechanisms, we analyzed transcriptomes of kidney biopsies from patients with HN or T2DN. Total RNA was extracted from 10 μm whole kidney sections from patients with HN, T2DN, and normal controls (Ctrl) (n = 6 for each group) and processed for RNA sequencing. Differentially expressed (log2 fold change >1, adjusted p < 0.05) genes (DEG) and molecular pathways were analyzed, and selected results were validated by immunohistochemistry (IHC). ELISA on serum samples was performed on a related cohort consisting of patients with biopsy-proven HN (n = 13) and DN (n = 9), and a normal control group (n = 14). Cluster analysis on RNA sequencing data separated diseased and normal tissues. RNA sequencing revealed that 88% (341 out of 384) of DEG in HN were also altered in T2DN, while gene set enrichment analysis (GSEA) showed that over 90% of affected molecular pathways, including those related to inflammation, immune response, and cell-cycle regulation, were similarly impacted in both HN and T2DN samples. The increased expression of genes tied to interleukin signaling and lymphocyte activation was more pronounced in HN, while genes associated with extracellular matrix organization were more evident in T2DN. Both HN and T2DN tissues exhibited significant upregulation of genes connected with inflammatory responses, T-cell activity, and partial epithelial to mesenchymal transition (p-EMT). Immunohistochemistry (IHC) further confirmed T-cell (CD4+ and CD8+ ) infiltration in the diseased tissues. Additionally, IHC revealed heightened AXL protein expression, a key regulator of inflammation and p-EMT, in both HN and T2DN, while serum analysis indicated elevated soluble AXL levels in patients with both conditions. These findings underline the shared molecular mechanisms between HN and T2DN, hinting at the potential for common therapeutic strategies targeting both diseases.
Collapse
Affiliation(s)
- Ole Petter Nordbø
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of Medicine, Haugesund HospitalHelse FonnaHaugesundNorway
| | - Lea Landolt
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Øystein Eikrem
- Department of Clinical ScienceUniversity of BergenBergenNorway
| | | | - Sabine Leh
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Jessica Furriol
- Department of Clinical MedicineUniversity of BergenBergenNorway
| | | | - Piotr Mydel
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| | - Hans‐Peter Marti
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of MedicineHaukeland University HospitalBergenNorway
| |
Collapse
|
26
|
Staufer K, Huber H, Zessner-Spitzenberg J, Stauber R, Finkenstedt A, Bantel H, Weiss TS, Huber M, Starlinger P, Gruenberger T, Reiberger T, Sebens S, McIntyre G, Tabibiazar R, Giaccia A, Zoller H, Trauner M, Mikulits W. Gas6 in chronic liver disease-a novel blood-based biomarker for liver fibrosis. Cell Death Discov 2023; 9:282. [PMID: 37532736 PMCID: PMC10397215 DOI: 10.1038/s41420-023-01551-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 07/10/2023] [Indexed: 08/04/2023] Open
Abstract
The expression of the receptor tyrosine kinase Axl and its cleavage product soluble Axl (sAxl) is increased in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). In this multicenter study, we evaluated the diagnostic value of Gas6, the high-affinity ligand of Axl, in patients with chronic liver disease. Levels of sAxl and Gas6, and their albumin (alb) ratios were analyzed in serum samples of patients with biopsy-proven liver fibrosis, end-stage liver disease, HCC, and healthy controls, and were compared to Fibrosis-4 (FIB-4), enhanced liver fibrosis (ELF™) test, Child-Pugh score (CPS), model of end-stage liver disease (MELD) score, hepatic venous pressure gradient, and α-fetoprotein, respectively. A total of 1111 patients (median age 57.8 y, 67.3% male) was analyzed. Gas6/alb showed high diagnostic accuracy for the detection of significant (≥F2: AUC 0.805) to advanced fibrosis (≥F3: AUC 0.818), and was superior to Fib-4 for the detection of cirrhosis (F4: AUC 0.897 vs. 0.878). In addition, Gas6/alb was highly predictive of liver disease severity (Odds ratios for CPS B/C, MELD ≥ 15, and clinically significant portal hypertension (CSPH) were 16.534, 10.258, and 12.115), and was associated with transplant-free survival (Hazard ratio 1.031). Although Gas6 and Gas6/alb showed high diagnostic accuracy for the detection of HCC in comparison to chronic liver disease patients without cirrhosis (AUC 0.852, 0.868), they failed to discriminate between HCC in cirrhosis versus cirrhosis only. In conclusion, Gas6/alb shows a high accuracy to detect significant to advanced fibrosis and cirrhosis, and predicts severity of liver disease including CSPH.
Collapse
Affiliation(s)
- Katharina Staufer
- Department of General Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Huber
- Center for Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Jasmin Zessner-Spitzenberg
- Center for Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Rudolf Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Armin Finkenstedt
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Thomas S Weiss
- Center for Liver Cell Research, Children's University Hospital (KUNO), University of Regensburg Hospital, Regensburg, Germany
| | - Markus Huber
- Department of Anesthesiology and Pain Therapy, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Patrick Starlinger
- Department of Surgery, Division of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Gruenberger
- Clinicum Favoriten, HPB Center, Vienna Health Network and Sigmund Freud Private University, Vienna, Austria
| | - Thomas Reiberger
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
- Christian-Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| | | | | | | | - Heinz Zoller
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Trauner
- Department of Internal Medicine III, Division of Gastroenterology & Hepatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Tang Z, Lin B, Li W, Li X, Liu F, Zhu X. Y-box binding protein 1 promotes chromatin accessibility to aggravate liver fibrosis. Cell Signal 2023:110750. [PMID: 37290675 DOI: 10.1016/j.cellsig.2023.110750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Y-box binding protein 1 (YBX1) has been reported to be involved in the transcriptional regulation of various pathophysiological processes, such as inflammation, oxidative stress, and epithelial-mesenchymal transformation. However, its precise role and mechanism in regulating hepatic fibrosis remain unclear. In this study, we aimed to investigate the effects of YBX1 on liver fibrosis and its potential mechanism. The expression of YBX1 in human liver microarray, mice tissues and primary mouse hepatic stellate cells (HSCs) was validated to be upregulated in several hepatic fibrosis models (CCl4 injection, TAA injection, and BDL). Hepatic-specific Ybx1 overexpression exacerbated the liver fibrosis phenotypes in vivo and in vitro. Moreover, the knockdown of YBX1 significantly improved TGF-β-induced fibrosis in the LX2 cell (a hepatic stellate cell line). Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) of hepatic-specific Ybx1 overexpression (Ybx1-OE) mice with CCl4 injection showed increasing chromatin accessibility than CCl4 only group. Functional enrichments of open regions in the Ybx1-OE group indicated that extracellular matrix (ECM) accumulation, lipid purine metabolism, and oxytocin-related pathways were more accessible in the Ybx1-OE group. Accessible regions of the Ybx1-OE group in the promoter also suggested significant activation of genes related to liver fibrogenesis, such as response to oxidative stress and ROS, lipid localization, angiogenesis and vascular development, and inflammatory regulation. Moreover, we screened and validated the expression of candidate genes (Fyn, Axl, Acsl1, Plin2, Angptl3, Pdgfb, Ccl24, and Arg2), which might be potential targets of Ybx1 in the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Zihui Tang
- Department of Gastroenterology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China
| | - Wei Li
- Department of Gastroenterology, Pinghu Second People's Hospital, Zhejiang 314201, China
| | - Xiaojuan Li
- Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Fei Liu
- Department of Gastroenterology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China; Department of Gastroenterology, Ji'an Hospital, Shanghai East Hospital, Ji'an, Jiangxi 343000, China.
| | - Xinyan Zhu
- Department of Gastroenterology, Shanghai East Hospital, Shanghai Tongji University School of Medicine, Shanghai 200120, China; Department of Gastroenterology, Ji'an Hospital, Shanghai East Hospital, Ji'an, Jiangxi 343000, China.
| |
Collapse
|
28
|
Nakamura R, Fujii H, Yamada T, Matsui Y, Yaoi T, Honda M, Tanaka N, Miyagawa-Hayashino A, Yoshimura A, Morimoto K, Iwasaku M, Tokuda S, Kim YH, Konishi E, Itoh K, Takayama K. Analysis of Tumor Heterogeneity Through AXL Activation in Primary Resistance to EGFR Tyrosine Kinase Inhibitors. JTO Clin Res Rep 2023; 4:100525. [PMID: 37426308 PMCID: PMC10329144 DOI: 10.1016/j.jtocrr.2023.100525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction EGFR tyrosine kinase inhibitors are standard therapeutic agents for patients with advanced NSCLC harboring EGFR mutations. Nevertheless, some patients exhibit primary resistance to EGFR tyrosine kinase inhibitors in the first-line treatment setting. AXL, a member of the TYRO3, AXL, and MERTK family of receptor tyrosine kinases, is involved in primary resistance to EGFR tyrosine kinase inhibitors in EGFR-mutated NSCLC. Methods We investigated spatial tumor heterogeneity using autopsy specimens and a patient-derived cell line from a patient with EGFR-mutated NSCLC having primary resistance to erlotinib plus ramucirumab. Results Quantitative polymerase chain reaction analysis revealed that AXL mRNA expression differed at each metastatic site. In addition, AXL expression levels were likely to be negatively correlated with the effectiveness of erlotinib plus ramucirumab therapy. Analysis of a patient-derived cell line established from the left pleural effusion before initiation of treatment revealed that the combination of EGFR tyrosine kinase inhibitors and an AXL inhibitor remarkably inhibited cell viability and increased cell apoptosis in comparison with EGFR tyrosine kinase inhibitor monotherapy or combination therapy of these inhibitors with ramucirumab. Conclusions Our observations suggest that AXL expression may play a critical role in the progression of spatial tumor heterogeneity and primary resistance to EGFR tyrosine kinase inhibitors in patients with EGFR-mutated NSCLC.
Collapse
Affiliation(s)
- Ryota Nakamura
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroyuki Fujii
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Matsui
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mizuki Honda
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriyuki Tanaka
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Miyagawa-Hayashino
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Akihiro Yoshimura
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kenji Morimoto
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Iwasaku
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinsaku Tokuda
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Young Hak Kim
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Surgical Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
29
|
Shaker ME, Gomaa HAM, Abdelgawad MA, El-Mesery M, Shaaban AA, Hazem SH. Emerging roles of tyrosine kinases in hepatic inflammatory diseases and therapeutic opportunities. Int Immunopharmacol 2023; 120:110373. [PMID: 37257270 DOI: 10.1016/j.intimp.2023.110373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Inflammation has been convicted of causing and worsening many liver diseases like acute liver failure, fibrosis, cirrhosis, fatty liver and liver cancer. Pattern recognition receptors (PRRs) like TLRs 4 and 9 localized on resident or recruited immune cells are well known cellular detectors of pathogen and damage-associated molecular patterns (PAMPs/DAMPs). Stimulation of these receptors generates the sterile and non-sterile inflammatory responses in the liver. When these responses are repeated, there will be a sustained liver injury that may progress to fibrosis and its outcomes. Crosstalk between inflammatory/fibrogenic-dependent streams and certain tyrosine kinases (TKs) has recently evolved in the context of hepatic diseases. Because of TKs increasing importance, their role should be elucidated to highlight effective approaches to manage the diverse liver disorders. This review will give a brief overview of types and functions of some TKs like BTK, JAKs, Syk, PI3K, Src and c-Abl, as well as receptors for TAM, PDGF, EGF, VEGF and HGF. It will then move to discuss the roles of these TKs in the regulation of the proinflammatory, fibrogenic and tumorigenic responses in the liver. Lastly, the therapeutic opportunities for targeting TKs in hepatic inflammatory disorders will be addressed. Overall, this review sheds light on the diverse TKs that have substantial roles in hepatic disorders and potential therapeutics modulating their activity.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Ahmed A Shaaban
- Department of Pharmacology & Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
30
|
Hedrich V, Breitenecker K, Ortmayr G, Pupp F, Huber H, Chen D, Sahoo S, Jolly MK, Mikulits W. PRAME Is a Novel Target of Tumor-Intrinsic Gas6/Axl Activation and Promotes Cancer Cell Invasion in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:2415. [PMID: 37173882 PMCID: PMC10177160 DOI: 10.3390/cancers15092415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
(1) Background: Activation of the receptor tyrosine kinase Axl by Gas6 fosters oncogenic effects in hepatocellular carcinoma (HCC), associating with increased mortality of patients. The impact of Gas6/Axl signaling on the induction of individual target genes in HCC and its consequences is an open issue. (2) Methods: RNA-seq analysis of Gas6-stimulated Axl-proficient or Axl-deficient HCC cells was used to identify Gas6/Axl targets. Gain- and loss-of-function studies as well as proteomics were employed to characterize the role of PRAME (preferentially expressed antigen in melanoma). Expression of Axl/PRAME was assessed in publicly available HCC patient datasets and in 133 HCC cases. (3) Results: Exploitation of well-characterized HCC models expressing Axl or devoid of Axl allowed the identification of target genes including PRAME. Intervention with Axl signaling or MAPK/ERK1/2 resulted in reduced PRAME expression. PRAME levels were associated with a mesenchymal-like phenotype augmenting 2D cell migration and 3D cell invasion. Interactions with pro-oncogenic proteins such as CCAR1 suggested further tumor-promoting functions of PRAME in HCC. Moreover, PRAME showed elevated expression in Axl-stratified HCC patients, which correlates with vascular invasion and lowered patient survival. (4) Conclusions: PRAME is a bona fide target of Gas6/Axl/ERK signaling linked to EMT and cancer cell invasion in HCC.
Collapse
Affiliation(s)
- Viola Hedrich
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Kristina Breitenecker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Franziska Pupp
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Heidemarie Huber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| | - Doris Chen
- Department of Chromosome Biology, Max Perutz Labs Vienna, University of Vienna, 1030 Vienna, Austria
| | - Sarthak Sahoo
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria; (V.H.)
| |
Collapse
|
31
|
Sîrbe C, Badii M, Crişan TO, Bența G, Grama A, Joosten LAB, Rednic S, Pop TL. Detection of Novel Biomarkers in Pediatric Autoimmune Hepatitis by Proteomic Profiling. Int J Mol Sci 2023; 24:7479. [PMID: 37108648 PMCID: PMC10141667 DOI: 10.3390/ijms24087479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Autoimmune hepatitis (AIH) is characterized by immune-mediated hepatocyte injury resulting in the destruction of liver cells, causing inflammation, liver failure, and fibrosis. Pediatric (AIH) is an autoimmune inflammatory disease that usually requires immunosuppression for an extended period. Frequent relapses after treatment discontinuation demonstrate that current therapies do not control intrahepatic immune processes. This study describes targeted proteomic profiling data in patients with AIH and controls. A total of 92 inflammatory and 92 cardiometabolic plasma markers were assessed for (i) pediatric AIH versus controls, (ii) AIH type 1 versus type 2, (iii) AIH and AIH-autoimmune sclerosing cholangitis overlapping syndrome and (iv) correlations with circulating vitamin D levels in AIH. A total of 16 proteins showed a nominally significant differential abundance in pediatric patients with AIH compared to controls. No clustering of AIH subphenotypes based on all protein data was observed, and no significant correlation of vitamin D levels was observed for the identified proteins. The proteins that showed variable expression include CA1, CA3, GAS6, FCGR2A, 4E-BP1 and CCL19, which may serve as potential biomarkers for patients with AIH. CX3CL1, CXCL10, CCL23, CSF1 and CCL19 showed homology to one another and may be coexpressed in AIH. CXCL10 seems to be the central intermediary link for the listed proteins. These proteins were involved in relevant mechanistic pathways for liver diseases and immune processes in AIH pathogenesis. This is the first report on the proteomic profile of pediatric AIH. The identified markers could potentially lead to new diagnostic and therapeutic tools. Nevertheless, considering the complex pathogenesis of AIH, more extensive studies are warranted to replicate and validate the present study's findings.
Collapse
Affiliation(s)
- Claudia Sîrbe
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.)
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Medeea Badii
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud University Medical Centre, 6525 XZ Nijmegen, The Netherlands
| | - Tania O. Crişan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Radboud University Medical Centre, 6525 XZ Nijmegen, The Netherlands
| | - Gabriel Bența
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.)
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Alina Grama
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.)
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| | - Leo A. B. Joosten
- Department of Internal Medicine, Radboud University Medical Centre, 6525 XZ Nijmegen, The Netherlands
| | - Simona Rednic
- Rheumatology Department, Emergency County Hospital Cluj, 400347 Cluj-Napoca, Romania
- Rheumatology Discipline, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Tudor Lucian Pop
- 2nd Pediatric Discipline, Department of Mother and Child, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (C.S.)
- 2nd Pediatric Clinic, Center of Expertise in Pediatric Liver Rare Disorders, Emergency Clinical Hospital for Children, 400177 Cluj-Napoca, Romania
| |
Collapse
|
32
|
Cristóbal H, Enjuanes C, Batlle M, Tajes M, Campos B, Francesch J, Moliner P, Farrero M, Andrea R, Ortiz-Pérez JT, Morales A, Sabaté M, Comin-Colet J, García de Frutos P. Prognostic Value of Soluble AXL in Serum from Heart Failure Patients with Preserved and Reduced Left Ventricular Ejection Fraction. J Pers Med 2023; 13:446. [PMID: 36983628 PMCID: PMC10056687 DOI: 10.3390/jpm13030446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Heart failure (HF) is classified according to the degree of reduction in left ventricular ejection fraction (EF) in HF with reduced, mildly reduced, and preserved EF. Biomarkers could behave differently depending on EF type. Here, we analyze the soluble form of the AXL receptor tyrosine kinase (sAXL) in HF patients with reduced and preserved EF. Two groups of HF patients with reduced (HFrEF; n = 134) and preserved ejection fraction (HFpEF; n = 134) were included in this prospective observational study, with measurements of candidate biomarkers and functional, clinical, and echocardiographic variables. A Cox regression model was used to determine predictors for clinical events: cardiovascular mortality and all-cause mortality. sAXL circulating values predicted outcome in HF: for a 1.0 ng/mL increase in serum sAXL, the mortality hazard ratio (HR) was 1.019 for HFrEF (95% CI 1.000 to 1.038) and 1.032 for HFpEF (95% CI 1.013 to 1.052). In a multivariable Cox regression analysis, sAXL and NT-proBNP were independent markers for all-cause and cardiovascular mortality in HFpEF. In contrast, only NT-proBNP remained significant in the HFrEF group. When analyzing the event-free survival at a mean follow-up of 3.6 years, HFrEF and HFpEF patients in the higher quartile of sAXL had a reduced survival time. Interestingly, sAXL is a reliable predictor for all-cause and cardiovascular mortality only in the HFpEF cohort. The results suggest an important role for AXL in HFpEF, supporting sAXL evaluation in larger clinical studies and pointing to AXL as a potential target for HF therapy.
Collapse
Affiliation(s)
- Helena Cristóbal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E08036 Barcelona, Spain
| | - Cristina Enjuanes
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
| | - Montserrat Batlle
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Marta Tajes
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
| | - Begoña Campos
- Department of Basic Clinical Practice, Universitat de Barcelona, E08036 Barcelona, Spain
| | - Josep Francesch
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
| | - Pedro Moliner
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
| | - Marta Farrero
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Rut Andrea
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - José Tomás Ortiz-Pérez
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E08036 Barcelona, Spain
| | - Manel Sabaté
- Cardiology Department, Clinical Cardiovascular Institute, Hospital Clinic and IDIBAPS, University of Barcelona, E08036 Barcelona, Spain
| | - Josep Comin-Colet
- Community Heart Failure Program, Department of Cardiology, Bellvitge University Hospital, E08907 L’Hospitalet de Llobregat, Spain
- Bio-Heart Cardiovascular Diseases Research Group, Bellvitge Biomedical Research Institute (IDIBELL), E08907 L’Hospitalet de Llobregat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, E08036 Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB-CSIC), August Pi i Sunyer Biomedical Research Institute (IDIBAPS), E08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), E28029 Madrid, Spain
- Hospital del Mar Medical Research Institute (IMIM) and IIBB-CSIC Associated RDI Unit, E08036 Barcelona, Spain
| |
Collapse
|
33
|
Bai YM, Yang F, Luo P, Xie LL, Chen JH, Guan YD, Zhou HC, Xu TF, Hao HW, Chen B, Zhao JH, Liang CL, Dai LY, Geng QS, Wang JG. Single-cell transcriptomic dissection of the cellular and molecular events underlying the triclosan-induced liver fibrosis in mice. Mil Med Res 2023; 10:7. [PMID: 36814339 PMCID: PMC9945401 DOI: 10.1186/s40779-023-00441-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 01/16/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Triclosan [5-chloro-2-(2,4-dichlorophenoxy) phenol, TCS], a common antimicrobial additive in many personal care and health care products, is frequently detected in human blood and urine. Therefore, it has been considered an emerging and potentially toxic pollutant in recent years. Long-term exposure to TCS has been suggested to exert endocrine disruption effects, and promote liver fibrogenesis and tumorigenesis. This study was aimed at clarifying the underlying cellular and molecular mechanisms of hepatotoxicity effect of TCS at the initiation stage. METHODS C57BL/6 mice were exposed to different dosages of TCS for 2 weeks and the organ toxicity was evaluated by various measurements including complete blood count, histological analysis and TCS quantification. Single cell RNA sequencing (scRNA-seq) was then carried out on TCS- or mock-treated mouse livers to delineate the TCS-induced hepatotoxicity. The acquired single-cell transcriptomic data were analyzed from different aspects including differential gene expression, transcription factor (TF) regulatory network, pseudotime trajectory, and cellular communication, to systematically dissect the molecular and cellular events after TCS exposure. To verify the TCS-induced liver fibrosis, the expression levels of key fibrogenic proteins were examined by Western blotting, immunofluorescence, Masson's trichrome and Sirius red staining. In addition, normal hepatocyte cell MIHA and hepatic stellate cell LX-2 were used as in vitro cell models to experimentally validate the effects of TCS by immunological, proteomic and metabolomic technologies. RESULTS We established a relatively short term TCS exposure murine model and found the TCS mainly accumulated in the liver. The scRNA-seq performed on the livers of the TCS-treated and control group profiled the gene expressions of > 76,000 cells belonging to 13 major cell types. Among these types, hepatocytes and hepatic stellate cells (HSCs) were significantly increased in TCS-treated group. We found that TCS promoted fibrosis-associated proliferation of hepatocytes, in which Gata2 and Mef2c are the key driving TFs. Our data also suggested that TCS induced the proliferation and activation of HSCs, which was experimentally verified in both liver tissue and cell model. In addition, other changes including the dysfunction and capillarization of endothelial cells, an increase of fibrotic characteristics in B plasma cells, and M2 phenotype-skewing of macrophage cells, were also deduced from the scRNA-seq analysis, and these changes are likely to contribute to the progression of liver fibrosis. Lastly, the key differential ligand-receptor pairs involved in cellular communications were identified and we confirmed the role of GAS6_AXL interaction-mediated cellular communication in promoting liver fibrosis. CONCLUSIONS TCS modulates the cellular activities and fates of several specific cell types (including hepatocytes, HSCs, endothelial cells, B cells, Kupffer cells and liver capsular macrophages) in the liver, and regulates the ligand-receptor interactions between these cells, thereby promoting the proliferation and activation of HSCs, leading to liver fibrosis. Overall, we provide the first comprehensive single-cell atlas of mouse livers in response to TCS and delineate the key cellular and molecular processes involved in TCS-induced hepatotoxicity and fibrosis.
Collapse
Affiliation(s)
- Yun-Meng Bai
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020 China
| | - Fan Yang
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 China
| | - Piao Luo
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Lu-Lin Xie
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Jun-Hui Chen
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020 China
| | - Yu-Dong Guan
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Hong-Chao Zhou
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Teng-Fei Xu
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Hui-Wen Hao
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Bing Chen
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 China
| | - Jia-Hui Zhao
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632 China
| | - Cai-Ling Liang
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Ling-Yun Dai
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020 China
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Qing-Shan Geng
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020 China
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
| | - Ji-Gang Wang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020 China
- Department of Urology, Shenzhen People’s Hospital, the First Affiliated Hospital, Southern University Science and Technology, the Second Clinical Medical College, Jinan University, Shenzhen, 518020 China
- Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515 China
- Center for Reproductive Medicine, Dongguan Maternal and Child Health Care Hospital, Southern Medical University, Dongguan, 523125 Guangdong China
| |
Collapse
|
34
|
Rizzi M, Tonello S, D’Onghia D, Sainaghi PP. Gas6/TAM Axis Involvement in Modulating Inflammation and Fibrosis in COVID-19 Patients. Int J Mol Sci 2023; 24:ijms24020951. [PMID: 36674471 PMCID: PMC9861142 DOI: 10.3390/ijms24020951] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Gas6 (growth arrest-specific gene 6) is a widely expressed vitamin K-dependent protein that is involved in many biological processes such as homeostatic regulation, inflammation and repair/fibrotic processes. It is known that it is the main ligand of TAMs, a tyrosine kinase receptor family of three members, namely MerTK, Tyro-3 and Axl, for which it displays the highest affinity. Gas6/TAM axis activation is known to be involved in modulating inflammatory responses as well as fibrotic evolution in many different pathological conditions. Due to the rapidly evolving COVID-19 pandemic, this review will focus on Gas6/TAM axis activation in SARS-CoV-2 infection, where de-regulated inflammatory responses and fibrosis represent a relevant feature of severe disease manifestation. Furthermore, this review will highlight the most recent scientific evidence supporting an unsuspected role of Axl as a SARS-CoV-2 infection driver, and the potential therapeutic advantages of the use of existing Axl inhibitors in COVID-19 management. From a physiological point of view, the Gas6/TAM axis plays a dual role, fostering the tissue repair processes or leading to organ damage and loss of function, depending on the prevalence of its anti-inflammatory or profibrotic properties. This review makes a strong case for further research focusing on the Gas6/TAM axis as a pharmacological target to manage different disease conditions, such as chronic fibrosis or COVID-19.
Collapse
|
35
|
Assessing rupture risk by hemodynamics, morphology and plasma concentrations of the soluble form of tyrosine kinase receptor Axl in unruptured intracranial aneurysms. Clin Neurol Neurosurg 2022; 222:107451. [DOI: 10.1016/j.clineuro.2022.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022]
|
36
|
Steiner CA, Cartwright IM, Taylor CT, Colgan SP. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol 2022; 323:C866-C878. [PMID: 35912990 PMCID: PMC9467472 DOI: 10.1152/ajpcell.00227.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/23/2022] [Indexed: 11/22/2022]
Abstract
The healthy mammalian intestine is lined by a single layer of epithelial cells. These cells provide a selectively permeable barrier to luminal contents and normally do so in an efficient and effective manner. Barrier function in the healthy mucosa is provided via several mechanisms including epithelial junctional complexes, mucus production, as well as mucosal-derived antimicrobial proteins. As tissue metabolism is central to the maintenance of homeostasis in the mucosa, intestinal [Formula: see text] levels are uniquely low due to counter-current blood flow and the presence of the microbiota, resulting in the stabilization of the transcription factor hypoxia-inducible factor (HIF). Ongoing studies have revealed that HIF molds normal intestinal metabolism and is central to the coordination of barrier regulation during both homeostasis and active disease. During acute inflammation, HIF is central to controlling the rapid restitution of the epithelium consistent with normal wound healing responses. In contrast, HIF may also contribute to the fibrostenotic response associated with chronic, nonresolving inflammation. As such, HIF may function as a double-edged sword in the overall course of the inflammatory response. Here, we review recent literature on the contribution of HIF to mucosal barrier function, wound healing, and fibrosis.
Collapse
Affiliation(s)
- Calen A Steiner
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
| | - Ian M Cartwright
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Cormac T Taylor
- School of Medicine, Conway Institute and Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Sean P Colgan
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine and the Mucosal Inflammation Program, University of Colorado School of Medicine, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| |
Collapse
|
37
|
Epigenetic control of mitochondrial fission enables hepatic stellate cells activation in liver fibrosis via PGC-1α-Drp1 pathway. Mitochondrion 2022; 66:38-50. [PMID: 35905890 DOI: 10.1016/j.mito.2022.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/24/2022]
Abstract
Although excessive mitochondrial fission is linked to cell activation, its significance in hepatic stellate cells (HSCs) activation and liver fibrosis is unknown. Here we show that excessive mitochondrial fission triggers HSCs activation and liver fibrosis degradation by the epigenetic regulation. We used a combination of in vitro and in vivo models, including HSCs and clinical cases or CCl4-induced liver fibrosis mice, was performed to investigate the regulation and function of mitochondrial fission in HSCs activation and liver fibrosis. Herein, we show that DNMT3A and Drp1 is up regulated in fibrosis livers and mice liver fibrosis tissues, while PGC-1α was decreased. Interestingly, down expression of DNMT3A substantially reduced Drp1 levels, collagen accumulation, and interstitial fibrosis, while significantly increased PGC-1α levels. Furthermore, silencing DNMT3A remarkably inhibits HSCs activation and mitochondrial fission both in vivo and in vitro. Mechanistically, co-immunoprecipitation analysis revealed that DNMT3A bound to pull down the protein of PGC-1α. These findings indicated that epigenetic control of mitochondrial fission enables HSCs activation in liver fibrosis via PGC-1α-Drp1 pathway, and provide new insight into the relationship between mitochondrial fission and liver fibrosis.
Collapse
|
38
|
Yang G, Li S, Jin J, Xuan Y, Ding L, Huang M, Liu J, Wang B, Lan T. Protective effects of Longhu Rendan on chronic liver injury and fibrosis in mice. LIVER RESEARCH (BEIJING, CHINA) 2022; 6:93-102. [PMID: 39958622 PMCID: PMC11791823 DOI: 10.1016/j.livres.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/01/2021] [Accepted: 05/06/2021] [Indexed: 02/16/2023]
Abstract
Background and aim Liver fibrosis resulting from persistent liver injury represents a major healthcare problem globally. Traditional Chinese medicine has played an essential role in the treatment of liver fibrosis in recent years. Thus, this study aims to assess the effect of Longhu Rendan (LHRD), a Chinese traditional patent medicine, on liver fibrosis and its potential mechanism. Methods The liver fibrosis in mice was induced via the intraperitoneal injection of carbon tetrachloride (CCl4) for 6 weeks or bile duct ligation for 15 days. Various methods were used to judge the therapeutic effect of LHRD. Results LHRD significantly suppressed the activity of serum index of abnormal liver function, liver cell apoptosis, and necrosis, attenuating liver injury. Moreover, LHRD treatment alleviated liver fibrotic features, such as the reduction of collagen deposition and hepatic stellate cell activation as well as profibrotic gene expression. Mechanistically, LHRD treatment inhibited nuclear transcription factor-kappa B signaling and inflammatory gene expression and diminished the production of reactive oxygen species and 4-hydroxynonenal, along with the downregulation of NADPH oxidase 4. Conclusions Overall, the present study demonstrates that LHRD ameliorates liver injury and fibrosis via the inhibition of inflammation and oxidative stress in mice, indicating that LHRD is a potential medicine for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Guizhi Yang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shengwen Li
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiahua Jin
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Yuanyuan Xuan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Liqin Ding
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Minxia Huang
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jun Liu
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Biye Wang
- Shanghai Zhonghua Pharmaceutical Co., Ltd., Shanghai, China
| | - Tian Lan
- Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Ortmayr G, Brunnthaler L, Pereyra D, Huber H, Santol J, Rumpf B, Najarnia S, Smoot R, Ammon D, Sorz T, Fritsch F, Schodl M, Voill-Glaninger A, Weitmayr B, Födinger M, Klimpfinger M, Gruenberger T, Assinger A, Mikulits W, Starlinger P. Immunological Aspects of AXL/GAS-6 in the Context of Human Liver Regeneration. Hepatol Commun 2022; 6:576-592. [PMID: 34951136 PMCID: PMC8870037 DOI: 10.1002/hep4.1832] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/03/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
AXL and its corresponding ligand growth arrest-specific 6 (GAS-6) are critically involved in hepatic immunomodulation and regenerative processes. Pleiotropic inhibitory effects on innate inflammatory responses might essentially involve the shift of macrophage phenotype from a pro-inflammatory M1 to an anti-inflammatory M2. We aimed to assess the relevance of the AXL/GAS-6-pathway in human liver regeneration and, consequently, its association with clinical outcome after hepatic resection. Soluble AXL (sAXL) and GAS-6 levels were analyzed at preoperative and postoperative stages in 154 patients undergoing partial hepatectomy and correlated with clinical outcome. Perioperative dynamics of interleukin (IL)-6, soluble tyrosine-protein kinase MER (sMerTK), soluble CD163 (sCD163), and cytokeratin (CK) 18 were assessed to reflect pathophysiological processes. Preoperatively elevated sAXL and GAS-6 levels predicted postoperative liver dysfunction (area under the curve = 0.721 and 0.722; P < 0.005) and worse clinical outcome. These patients failed to respond with an immediate increase of sAXL and GAS-6 upon induction of liver regeneration. Abolished AXL pathway response resulted in a restricted increase of sCD163, suggesting a disrupted phenotypical switch to regeneratory M2 macrophages. No association with sMerTK was observed. Concomitantly, a distinct association of IL-6 levels with an absent increase of AXL/GAS-6 signaling indicated pronounced postoperative inflammation. This was further supported by increased intrahepatic secondary necrosis as reflected by CK18M65. sAXL and GAS-6 represent not only potent and easily accessible preoperative biomarkers for the postoperative outcome but also AXL/GAS-6 signaling might be of critical relevance in human liver regeneration. Refractory AXL/GAS-6 signaling, due to chronic overactivation/stimulation in the context of underlying liver disease, appears to abolish their immediate release following induction of liver regeneration, causing overwhelming immune activation, presumably via intrahepatic immune regulation.
Collapse
Affiliation(s)
- Gregor Ortmayr
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Laura Brunnthaler
- Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - David Pereyra
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria.,Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Heidemarie Huber
- Department of Medicine IInstitute of Cancer ResearchComprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Jonas Santol
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Benedikt Rumpf
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Sina Najarnia
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Rory Smoot
- Department of SurgeryMayo ClinicRochesterMNUSA
| | - Daphni Ammon
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Thomas Sorz
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Fabian Fritsch
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Michael Schodl
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria
| | - Astrid Voill-Glaninger
- Department of Laboratory MedicineViennese Health Network, Clinic LandstraßeViennaAustria
| | - Barbara Weitmayr
- Department of PathologyViennese Health Network, Clinic LandstraßeViennaAustria
| | - Manuela Födinger
- Department of Laboratory MedicineViennese Health NetworkClinic FavoritenViennaAustria
| | - Martin Klimpfinger
- Department of PathologyViennese Health NetworkClinic FavoritenViennaAustria
| | - Thomas Gruenberger
- Department of SurgeryHPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private UniversityViennaAustria
| | - Alice Assinger
- Center of Physiology and PharmacologyInstitute of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - Wolfgang Mikulits
- Department of Medicine IInstitute of Cancer ResearchComprehensive Cancer CenterMedical University of ViennaViennaAustria
| | - Patrick Starlinger
- Department of SurgeryMedical University of ViennaGeneral HospitalViennaAustria.,Department of SurgeryMayo ClinicRochesterMNUSA
| |
Collapse
|
40
|
Pastore M, Caligiuri A, Raggi C, Navari N, Piombanti B, Di Maira G, Rovida E, Piccinni MP, Lombardelli L, Logiodice F, Rombouts K, Petta S, Marra F. Macrophage MerTK promotes profibrogenic cross-talk with hepatic stellate cells via soluble mediators. JHEP Rep 2022; 4:100444. [PMID: 35252828 PMCID: PMC8891698 DOI: 10.1016/j.jhepr.2022.100444] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 11/29/2022] Open
Abstract
Background & Aims Activation of Kupffer cells and recruitment of monocytes are key events in fibrogenesis. These cells release soluble mediators which induce the activation of hepatic stellate cells (HSCs), the main fibrogenic cell type within the liver. Mer tyrosine kinase (MerTK) signaling regulates multiple processes in macrophages and has been implicated in the pathogenesis of non-alcoholic steatohepatitis-related fibrosis. In this study, we explored if MerTK activation in macrophages influences the profibrogenic phenotype of HSCs. Methods Macrophages were derived from THP-1 cells or differentiated from peripheral blood monocytes towards MerTK+/CD206+/CD163+/CD209- macrophages. The role of MerTK was assessed by pharmacologic and genetic inhibition. HSC migration was determined in Boyden chambers, viability was measured by the MTT assay, and proliferation was evaluated by the BrdU incorporation assay. Results Gas-6 induced MerTK phosphorylation and Akt activation in macrophages, and these effects were inhibited by UNC569. During polarization, MerTK+/CD206+/CD163+/CD209- macrophages exhibited activation of STAT3, ERK1/2, p38 and increased expression of VEGF-A. Activation of MerTK in THP-1 macrophages induced a secretome which promoted a significant increase in migration, proliferation, viability and expression of profibrogenic factors in HSCs. Similarly, conditioned medium from MerTK+ macrophages induced a significant increase in cell migration, proliferation, STAT3 and p38 phosphorylation and upregulation of IL-8 expression in HSCs. Moreover, conditioned medium from Gas-6-stimulated Kupffer cells induced a significant increase in HSC proliferation. These effects were specifically related to MerTK expression and activity in macrophages, as indicated by pharmacologic inhibition and knockdown experiments. Conclusions MerTK activation in macrophages modifies the secretome to promote profibrogenic features in HSCs, implicating this receptor in the pathogenesis of hepatic fibrosis. Lay summary Fibrosis represents the process of scarring occurring in patients with chronic liver diseases. This process depends on production of scar tissue components by a specific cell type, named hepatic stellate cells, and is regulated by interaction with other cells. Herein, we show that activation of MerTK, a receptor present in a population of macrophages, causes the production of factors that act on hepatic stellate cells, increasing their ability to produce scar tissue.
MerTK, a member of the TAM family of proteins, is highly expressed in MerTK+/CD206+/CD163+/CD209- macrophages. In these macrophages, activation of MerTK induces phosphorylation of Akt, STAT3, ERK1/2, p38 and increased expression of VEGF-A. MerTK activation in macrophages modulates the secretome to promote the profibrogenic phenotype of human HSCs. Profibrogenic effects of macrophages expressing high levels of MerTK were blocked by knockdown or inhibition of MerTK.
Collapse
|
41
|
Therapeutic Targeting of Intestinal Fibrosis in Crohn's Disease. Cells 2022; 11:cells11030429. [PMID: 35159238 PMCID: PMC8834168 DOI: 10.3390/cells11030429] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
Intestinal fibrosis is one of the most threatening complications of Crohn’s disease. It occurs in more than a third of patients with this condition, is associated with increased morbidity and mortality, and surgery often represents the only available therapeutic option. The mechanisms underlying intestinal fibrosis are partly known. Studies conducted so far have shown a relevant pathogenetic role played by mesenchymal cells (especially myofibroblasts), cytokines (e.g., transforming growth factor-β), growth factors, microRNAs, intestinal microbiome, matrix stiffness, and mesenteric adipocytes. Further studies are still necessary to elucidate all the mechanisms involved in intestinal fibrosis, so that targeted therapies can be developed. Although several pre-clinical studies have been conducted so far, no anti-fibrotic therapy is yet available to prevent or reverse intestinal fibrosis. The aim of this review is to provide an overview of the main therapeutic targets currently identified and the most promising anti-fibrotic therapies, which may be available in the near future.
Collapse
|
42
|
AXL Receptor Tyrosine Kinase as a Promising Therapeutic Target Directing Multiple Aspects of Cancer Progression and Metastasis. Cancers (Basel) 2022; 14:cancers14030466. [PMID: 35158733 PMCID: PMC8833413 DOI: 10.3390/cancers14030466] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/15/2023] Open
Abstract
Simple Summary Metastasis is a complex process that requires the acquisition of certain traits by cancer cells as well as the cooperation of several non-neoplastic cells that populate the stroma. Cancer-related deaths are predominantly associated with complications arising from metastases. Limiting metastasis therefore represents an important clinical challenge. The receptor tyrosine kinase AXL is required at many steps of the metastatic cascade and contributes to tumor microenvironment deregulation. In this review, we describe how AXL contributes to metastatic progression by governing various biological processes in cancer cells and in stromal cells, highlighting the potential of its inhibition. Abstract The receptor tyrosine kinase AXL is emerging as a key player in tumor progression and metastasis and its expression correlates with poor survival in a plethora of cancers. While studies have shown the benefits of AXL inhibition for the treatment of metastatic cancers, additional roles for AXL in cancer progression are still being explored. This review discusses recent advances in understanding AXL’s functions in different tumor compartments including cancer, vascular, and immune cells. AXL is required at multiple steps of the metastatic cascade where its activation in cancer cells leads to EMT, invasion, survival, proliferation and therapy resistance. AXL activation in cancer cells and various stromal cells also results in tumor microenvironment deregulation, leading to modulation of angiogenesis, fibrosis, immune response and hypoxia. A better understanding of AXL’s role in these processes could lead to new therapeutic approaches that would benefit patients suffering from metastatic diseases.
Collapse
|
43
|
Solhi R, Lotfi AS, Lotfinia M, Farzaneh Z, Piryaei A, Najimi M, Vosough M. Hepatic stellate cell activation by TGFβ induces hedgehog signaling and endoplasmic reticulum stress simultaneously. Toxicol In Vitro 2022; 80:105315. [PMID: 35051607 DOI: 10.1016/j.tiv.2022.105315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/11/2022]
Abstract
Activation of hepatic stellates (HSCs) is known as the major cause of initiation and progression of liver fibrosis. A wide array of events occurs during HSC activation including induction of hedgehog (Hh) signaling and endoplasmic reticulum (ER) stress. Targeting HSC activation may provide promising insights into liver fibrosis treatment. In this regard, establishing in vitro models which can mimic the molecular pathways of interest is very important. We aimed to activate HSC in which Hh signaling and ER stress are stimulated simultaneously. We used 5 ng/ml TGFβ to activate LX-2 cells, HSC cell line. Gene expression analysis using qRT-PCR, immunostaining and immunoblotting were performed to show HSC activation associated markers. Furthermore, the migration capacity of the TGFβ treated cells is evaluated. The results demonstrated that major fibrogenic markers including collagen1a, lysyl oxidase, and tissue inhibitor of matrix metalloproteinase 1 genes are up-regulated significantly. In addition, our immunofluorescence and immunoblotting results showed that protein levels of GLI-2 and XBP1, were enhanced. Moreover, we found that TGFβ treatment reduced the migration of LX-2 cells. Our results are compatible with high throughput data analysis with respect to differentially expressed genes of activated HSC compared to the quiescent ones. Moreover, our findings suggest that quercetin can reduce fibrogenic markers of activated HSCs as well as osteopontin expression, a target gene of hedgehog signaling.
Collapse
Affiliation(s)
- Roya Solhi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Lotfinia
- Physiology Research Center, Basic Sciences Research Institute, Kashan University of Medical Sciences, Kashan, Iran; Core Research Lab, Kashan University of Medical Sciences, Kashan, Iran
| | - Zahra Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Abbas Piryaei
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran.
| |
Collapse
|
44
|
Abstract
TAM receptors (Tyro3, Axl and MerTK) are a family of tyrosine kinase receptors that are expressed in a variety of cell populations, including liver parenchymal and non-parenchymal cells. These receptors are vital for immune homeostasis, as they regulate the innate immune response by suppressing inflammation via toll-like receptor inhibition and by promoting tissue resolution through efferocytosis. However, there is increasing evidence indicating that aberrant TAM receptor signaling may play a role in pathophysiological processes in the context of liver disease. This review will explore the roles of TAM receptors and their ligands in liver homeostasis as well as a variety of disease settings, including acute liver injury, steatosis, fibrosis, cirrhosis-associated immune dysfunction and hepatocellular carcinoma. A better understanding of our current knowledge of TAM receptors in liver disease may identify new opportunities for disease monitoring as well as novel therapeutic targets. Nonetheless, this review also aims to highlight areas where further research on TAM receptor biology in liver disease is required.
Collapse
|
45
|
Dun RL, Lan TY, Tsai J, Mao JM, Shao YQ, Hu XH, Zhu WJ, Qi GC, Peng Y. Protective Effect of Melatonin for Renal Ischemia-Reperfusion Injury: A Systematic Review and Meta-Analysis. Front Physiol 2022; 12:791036. [PMID: 35095558 PMCID: PMC8793910 DOI: 10.3389/fphys.2021.791036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Background: Renal ischemia-reperfusion (I/R) injury is one of the major causes related to acute kidney damage. Melatonin has been shown as a powerful antioxidant, with many animal experiments have been designed to evaluate the therapeutic effect of it to renal I/R injury. Objectives: This systematic review aimed to assess the therapeutic effect of melatonin for renal I/R injury in animal models. Methods and Results: The PubMed, Web of Science, Embase, and Science Direct were searched for animal experiments applying melatonin to treat renal I/R injury to February 2021. Thirty-one studies were included. The pooled analysis showed a greater reduction of blood urea nitrogen (BUN) (21 studies, weighted mean difference (WMD) = −30.00 [−42.09 to −17.91], p < 0.00001), and serum creatinine (SCr) (20 studies, WMD = −0.91 [−1.17 to −0.66], p < 0.00001) treated with melatonin. Subgroup analysis suggested that multiple administration could reduce the BUN compared with control. Malondialdehyde and myeloperoxidase were significantly reduced, meanwhile, melatonin significantly improved the activity of glutathione, as well as superoxide dismutase. The possible mechanism for melatonin to treat renal I/R injury is inhibiting endoplasmic reticulum stress, apoptosis, inflammation, autophagy, and fibrillation in AKI to chronic kidney disease. Conclusions: From the available data of small animal studies, this systematic review demonstrated that melatonin could improve renal function and antioxidative effects to cure renal I/R injury through, then multiple administration of melatonin might be more appropriate. Nonetheless, extensive basic experiments are need to study the mechanism of melatonin, then well-designed randomized controlled trials to explore the protective effect of melatonin.
Collapse
Affiliation(s)
- Rong-liang Dun
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tian-ying Lan
- Nephrology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jennifer Tsai
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-min Mao
- Urology Surgery, Shanghai Seventh People's Hospital, Shanghai, China
| | - Yi-qun Shao
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-hua Hu
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-jing Zhu
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang-chong Qi
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Peng
- Urology Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yu Peng
| |
Collapse
|
46
|
Martínez-Bosch N, Cristóbal H, Iglesias M, Gironella M, Barranco L, Visa L, Calafato D, Jiménez-Parrado S, Earl J, Carrato A, Manero-Rupérez N, Moreno M, Morales A, Guerra C, Navarro P, García de Frutos P. Soluble AXL is a novel blood marker for early detection of pancreatic ductal adenocarcinoma and differential diagnosis from chronic pancreatitis. EBioMedicine 2022; 75:103797. [PMID: 34973624 PMCID: PMC8724936 DOI: 10.1016/j.ebiom.2021.103797] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 02/07/2023] Open
Abstract
Background Early diagnosis is crucial for patients with pancreatic ductal adenocarcinoma (PDAC). The AXL receptor tyrosine kinase is proteolytically processed releasing a soluble form (sAXL) into the blood stream. Here we explore the use of sAXL as a biomarker for PDAC. Methods AXL was analysed by immunohistochemistry in human pancreatic tissue samples. RNA expression analysis was performed using TCGA/GTEx databases. The plasma concentrations of sAXL, its ligand GAS6, and CA19-9 were studied in two independent cohorts, the HMar cohort (n = 59) and the HClinic cohort (n = 142), including healthy controls, chronic pancreatitis (CP) or PDAC patients, and in a familial PDAC cohort (n = 68). AXL expression and sAXL release were studied in PDAC cell lines and murine models. Findings AXL is increased in PDAC and precursor lesions as compared to CP or controls. sAXL determined in plasma from two independent cohorts was significantly increased in the PDAC group as compared to healthy controls or CP patients. Patients with high levels of AXL have a lower overall survival. ROC analysis of the plasma levels of sAXL, GAS6, or CA19-9 in our cohorts revealed that sAXL outperformed CA19-9 for discriminating between CP and PDAC. Using both sAXL and CA19-9 increased the diagnostic value. These results were validated in murine models, showing increased sAXL specifically in animals developing PDAC but not those with precursor lesions or acinar tumours. Interpretation sAXL appears as a biomarker for early detection of PDAC and PDAC–CP discrimination that could accelerate treatment and improve its dismal prognosis. Funding This work was supported by grants PI20/00625 (PN), RTI2018-095672-B-I00 (AM and PGF), PI20/01696 (MG) and PI18/01034 (AC) from MICINN-FEDER and grant 2017/SGR/225 (PN) from Generalitat de Catalunya.
Collapse
Affiliation(s)
- Neus Martínez-Bosch
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain
| | - Helena Cristóbal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Mar Iglesias
- Department of Pathology, Autonomous University of Barcelona, Hospital del Mar, Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Barcelona, Spain
| | - Meritxell Gironella
- Gastrointestinal & Pancreatic Oncology Group, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD); Hospital Clínic of Barcelona and IDIBAPS; Barcelona, Spain
| | - Luis Barranco
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain; Department of Gastroenterology, Hospital del Mar, Barcelona, Spain
| | - Laura Visa
- Department of Medical Oncology, Hospital del Mar, Barcelona, Spain
| | - Domenico Calafato
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Silvia Jiménez-Parrado
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumour Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain. CIBERONC
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumour Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Madrid, Spain. CIBERONC
| | - Noemí Manero-Rupérez
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain
| | - Mireia Moreno
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic, CIBEREHD and IDIBAPS, Barcelona, Spain
| | - Carmen Guerra
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Pilar Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Unidad Asociada IIBB-CSIC, Barcelona, Spain; Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB)-CSIC and Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain.
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, Unidad Asociada IMIM/IIBB-CSIC; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), and IDIBAPS, Barcelona, Spain.
| |
Collapse
|
47
|
Bhave S, Ho HK. Exploring the Gamut of Receptor Tyrosine Kinases for Their Promise in the Management of Non-Alcoholic Fatty Liver Disease. Biomedicines 2021; 9:1776. [PMID: 34944593 PMCID: PMC8698495 DOI: 10.3390/biomedicines9121776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, non-alcoholic fatty liver disease (NAFLD) has emerged as a predominant health concern affecting approximately a quarter of the world's population. NAFLD is a spectrum of liver ailments arising from nascent lipid accumulation and leading to inflammation, fibrosis or even carcinogenesis. Despite its prevalence and severity, no targeted pharmacological intervention is approved to date. Thus, it is imperative to identify suitable drug targets critical to the development and progression of NAFLD. In this quest, a ray of hope is nestled within a group of proteins, receptor tyrosine kinases (RTKs), as targets to contain or even reverse NAFLD. RTKs control numerous vital biological processes and their selective expression and activity in specific diseases have rendered them useful as drug targets. In this review, we discuss the recent advancements in characterizing the role of RTKs in NAFLD progression and qualify their suitability as pharmacological targets. Available data suggests inhibition of Epidermal Growth Factor Receptor, AXL, Fibroblast Growth Factor Receptor 4 and Vascular Endothelial Growth Factor Receptor, and activation of cellular mesenchymal-epithelial transition factor and Fibroblast Growth Factor Receptor 1 could pave the way for novel NAFLD therapeutics. Thus, it is important to characterize these RTKs for target validation and proof-of-concept through clinical trials.
Collapse
Affiliation(s)
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117559, Singapore;
| |
Collapse
|
48
|
Zhang J, Liu Q, He J, Li Y. Novel Therapeutic Targets in Liver Fibrosis. Front Mol Biosci 2021; 8:766855. [PMID: 34805276 PMCID: PMC8602792 DOI: 10.3389/fmolb.2021.766855] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Liver fibrosis is end-stage liver disease that can be rescued. If irritation continues due to viral infection, schistosomiasis and alcoholism, liver fibrosis can progress to liver cirrhosis and even cancer. The US Food and Drug Administration has not approved any drugs that act directly against liver fibrosis. The only treatments currently available are drugs that eliminate pathogenic factors, which show poor efficacy; and liver transplantation, which is expensive. This highlights the importance of clarifying the mechanism of liver fibrosis and searching for new treatments against it. This review summarizes how parenchymal, nonparenchymal cells, inflammatory cells and various processes (liver fibrosis, hepatic stellate cell activation, cell death and proliferation, deposition of extracellular matrix, cell metabolism, inflammation and epigenetics) contribute to liver fibrosis. We highlight discoveries of novel therapeutic targets, which may provide new insights into potential treatments for liver fibrosis.
Collapse
Affiliation(s)
- Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China.,Department of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Sichuan, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, China
| |
Collapse
|
49
|
Intrinsic and Extrinsic Control of Hepatocellular Carcinoma by TAM Receptors. Cancers (Basel) 2021; 13:cancers13215448. [PMID: 34771611 PMCID: PMC8582520 DOI: 10.3390/cancers13215448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Tyro3, Axl, and MerTK are receptor tyrosine kinases of the TAM family, which are activated by their ligands Gas6 and Protein S. TAM receptors have large physiological implications, including the removal of dead cells, activation of immune cells, and prevention of bleeding. In the last decade, TAM receptors have been suggested to play a relevant role in liver fibrogenesis and the development of hepatocellular carcinoma. The understanding of TAM receptor functions in tumor cells and their cellular microenvironment is of utmost importance to advances in novel therapeutic strategies that conquer chronic liver disease including hepatocellular carcinoma. Abstract Hepatocellular carcinoma (HCC) is the major subtype of liver cancer, showing high mortality of patients due to limited therapeutic options at advanced stages of disease. The receptor tyrosine kinases Tyro3, Axl and MerTK—belonging to the TAM family—exert a large impact on various aspects of cancer biology. Binding of the ligands Gas6 or Protein S activates TAM receptors causing homophilic dimerization and heterophilic interactions with other receptors to modulate effector functions. In this context, TAM receptors are major regulators of anti-inflammatory responses and vessel integrity, including platelet aggregation as well as resistance to chemotherapy. In this review, we discuss the relevance of TAM receptors in the intrinsic control of HCC progression by modulating epithelial cell plasticity and by promoting metastatic traits of neoplastic hepatocytes. Depending on different etiologies of HCC, we further describe the overt role of TAM receptors in the extrinsic control of HCC progression by focusing on immune cell infiltration and fibrogenesis. Additionally, we assess TAM receptor functions in the chemoresistance against clinically used tyrosine kinase inhibitors and immune checkpoint blockade in HCC progression. We finally address the question of whether inhibition of TAM receptors can be envisaged for novel therapeutic strategies in HCC.
Collapse
|
50
|
Viswanathan P, Sharma Y, Jaber FL, Tchaikovskaya T, Gupta S. Transplanted hepatocytes rescue mice in acetaminophen-induced acute liver failure through paracrine signals for hepatic ATM and STAT3 pathways. FASEB J 2021; 35:e21471. [PMID: 33683737 DOI: 10.1096/fj.202002421r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/29/2022]
Abstract
Acute liver failure constitutes a devastating condition that needs novel cell and molecular therapies. To elicit synergisms in cell types of therapeutic interest, we studied hepatocytes and liver sinusoidal endothelial in mice with acetaminophen-induced acute liver failure. The context of regenerative signals was examined by transplants in peritoneal cavity because it possesses considerable capacity and allows soluble signals to enter the systemic circulation. Whereas transplanted hepatocytes and liver sinusoidal endothelial cells engrafted in peritoneal cavity, only the former could rescue mice in liver failure by improving injury outcomes, activating hepatic DNA damage repair, and inducing liver regeneration. The cytokines secreted by donor hepatocytes or liver sinusoidal endothelial cells differed and in hepatocytes from mice undergoing acetaminophen toxicity major cytokines were even rendered deficient (eg, G-CSF, VEGF, and others). Significantly, recapitulating hepatotoxicity-related DNA damage response in cultured cells identified impairments in ATM and JAK/STAT3 intersections since replacing cytokines produced less from injured hepatocytes restored these pathways to avoid acetaminophen hepatotoxicity. Similarly, hepatocyte transplantation in acute liver failure restored ATM and JAK/STAT3 pathways to advance DNA damage/repair and liver regeneration. The unexpected identification of novel hepatic G-CSF receptor expression following injury allowed paradigmatic studies of G-CSF supplementation to confirm the centrality of this paracrine ATM and STAT3 intersection. Remarkably, DNA damage/repair and hepatic regeneration directed by G-CSF concerned rebalancing of regulatory gene networks overseeing inflammation, metabolism, and cell viability. We conclude that healthy donor hepatocytes offer templates for generating specialized cell types to replace metabolic functions and regenerative factors in liver failure.
Collapse
Affiliation(s)
- Preeti Viswanathan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, NY, USA.,Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yogeshwar Sharma
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Fadi-Luc Jaber
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tatyana Tchaikovskaya
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanjeev Gupta
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.,Diabetes Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, USA.,Irwin S. and Sylvia Chanin Institute for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|