1
|
Vijayan V, M Unagolla J, Panchal D, John JE, Menon SS, Menon JU. Biomimetic nanoparticles for targeted therapy of liver disease. RSC PHARMACEUTICS 2025:d5pm00044k. [PMID: 40321406 PMCID: PMC12045541 DOI: 10.1039/d5pm00044k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Liver fibrosis is a progressive and fatal condition characterized by stiffness and scarring of the liver due to excessive buildup of extracellular matrix (ECM) proteins. If left untreated, it can progress to liver cirrhosis and hepatocellular carcinoma (HCC)-one of the fastest-rising causes of cancer mortality in the United States. Despite the increased prevalence of liver fibrosis due to infections, exposure to toxins, and unhealthy lifestyles, there are no effective treatments available. Recent advances in nanomedicine can lead to more targeted and effective strategies for treating liver diseases than existing treatments. In particular, the use of biomimetic nanoparticles (NPs) such as liposomes and cell-membrane-coated NPs is of interest. NPs functionalized with cell membranes mimic the properties of the source cell used and provide inherent immune evasion ability, homologous adhesion, and prolonged circulation. This review explores the types of biomimetic coatings, different cargoes delivered through biomimetic NPs for various treatment modalities, and the type of core NPs used for targeting liver fibrosis and HCC.
Collapse
Affiliation(s)
- Veena Vijayan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Janitha M Unagolla
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Dhruvisha Panchal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | - Judith Eloyi John
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
| | | | - Jyothi U Menon
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island Kingston RI 02881 USA
- Department of Chemical Engineering, University of Rhode Island Kingston RI 02881 USA
| |
Collapse
|
2
|
Su Z, Dong H, Fang X, Zhang W, Duan H. Frontier progress and translational challenges of pluripotent differentiation of stem cells. Front Genet 2025; 16:1583391. [PMID: 40357368 PMCID: PMC12066753 DOI: 10.3389/fgene.2025.1583391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Stem cell research has significantly transformed regenerative medicine, with pluripotent stem cells (PSCs) serving as the cornerstone for disease modeling, drug screening, and therapeutic applications. Embryonic stem cells (ESCs) exhibit unparalleled self-renewal and tri-lineage differentiation, while induced pluripotent stem cells (iPSCs) bypass ethical constraints through somatic cell reprogramming. Clinical trials highlight the potential of mesenchymal stem cells (MSCs) in osteoarthritis and graft-versus-host disease, which leverage their immunomodulatory and paracrine effects. Despite advancements, challenges persist: iPSCs face epigenetic instability and tumorigenic risks, and adult stem cells struggle with inefficient differentiation. This paper systematically reviews stem cell source classification, differentiation regulatory mechanisms, cutting-edge technologies such as CRISPR/Cas9, and explores field-specific controversies (e.g., epigenetic stability of iPSCs) and future directions (e.g., integration of organoids and biomaterials). By analyzing current progress and challenges, it provides a multidimensional perspective for stem cell research.
Collapse
Affiliation(s)
| | | | | | | | - Hong Duan
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Villanueva C, Tripathi D, Bosch J. Preventing the progression of cirrhosis to decompensation and death. Nat Rev Gastroenterol Hepatol 2025; 22:265-280. [PMID: 39870944 DOI: 10.1038/s41575-024-01031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/29/2025]
Abstract
Two main stages are differentiated in patients with advanced chronic liver disease (ACLD), one compensated (cACLD) with an excellent prognosis, and the other decompensated (dACLD), defined by the appearance of complications (ascites, variceal bleeding and hepatic encephalopathy) and associated with high mortality. Preventing the progression to dACLD might dramatically improve prognosis and reduce the burden of care associated with ACLD. Portal hypertension is a major driver of the transition from cACLD to dACLD, and a portal pressure of ≥10 mmHg defines clinically significant portal hypertension (CSPH) as the threshold from which decompensating events may occur. In recent years, innovative studies have provided evidence supporting new strategies to prevent decompensation in cACLD. These studies have yielded major advances, including the development of noninvasive tests (NITs) to identify patients with CSPH with reasonable confidence, the demonstration that aetiological therapies can prevent disease progression and even achieve regression of cirrhosis, and the finding that non-selective β-blockers can effectively prevent decompensation in patients with cACLD and CSPH, mainly by reducing the risk of ascites, the most frequent decompensating event. Here, we review the evidence supporting new strategies to manage cACLD to prevent decompensation and the caveats for their implementation, from patient selection using NITs to ancillary therapies.
Collapse
Affiliation(s)
- Càndid Villanueva
- Department of Gastroenterology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.
- Department of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain.
| | - Dhiraj Tripathi
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham Health Partners, Birmingham, UK
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Jaume Bosch
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Ministerio de Sanidad, Madrid, Spain
- Department of Visceral Surgery and Medicine (Hepatology), Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Wang C, Felli E, Fallowfield JA, Dietrich CF, Rockey D, Hennig J, Teng GJ, Gracia-Sancho J, Qi X. Vasomics of the liver. Gut 2025:gutjnl-2024-334133. [PMID: 40044498 DOI: 10.1136/gutjnl-2024-334133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/07/2025] [Indexed: 03/09/2025]
Abstract
Chronic liver disease is a cluster of disorders associated with complex haemodynamic alterations, which is characterised by structural and functional disruptions of the intrahepatic and extrahepatic vasculature. 'Vasomics' is an emerging omics discipline that comprehensively analyses and models the vascular system by integrating pathophysiology of disease, biomechanics, medical imaging, computational science and artificial intelligence. Vasomics is further typified by its multidimensional, multiscale and high-throughput nature, which depends on the rapid and robust extraction of well-defined vascular phenotypes with clear clinical and/or biological interpretability. By leveraging multimodality medical imaging techniques, vascular functional assessments, pathological image evaluation, and related computational methods, integrated vasomics provides a deeper understanding of the associations between the vascular system and disease. This in turn reveals the crucial role of the vascular system in disease occurrence, progression and treatment responses, thereby supporting precision medicine approaches. Pathological vascular features have already demonstrated their key role in different clinical scenarios. Despite this, vasomics is yet to be widely recognised. Therefore, we furnished a comprehensive definition of vasomics providing a classification of existing hepatic vascular phenotypes into the following categories: anatomical, biomechanical, biochemical, pathophysiological and composite.
Collapse
Affiliation(s)
- Chengyan Wang
- State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Shanghai Pudong Hospital and Human Phenome Institute, Fudan University, Shanghai, China
| | - Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Bern, Switzerland
| | | | | | - Don Rockey
- Digestive Disease Research Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Jürgen Hennig
- Department of Radiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Baden-Württemberg, Germany
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Liver Vascular Biology Lab, Liver Unit IDIBAPS, Hospital Clínic Barcelona-CIBEREHD, Barcelona, Spain
| | - Xiaolong Qi
- State Key Laboratory of Digital Medical Engineering, Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
- Liver Disease Center of Integrated Traditional Chinese and Western Medicine, Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing, China
| |
Collapse
|
5
|
Li Y, Lyu L, Ding H. The potential roles of gut microbiome in porto-sinusoidal vascular disease: an under-researched crossroad. Front Microbiol 2025; 16:1556667. [PMID: 40099185 PMCID: PMC11911366 DOI: 10.3389/fmicb.2025.1556667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/14/2025] [Indexed: 03/19/2025] Open
Abstract
Accumulating evidence indicates that patients with liver diseases exhibit distinct microbiological profiles, which can be attributed to the bidirectional relationship of the gut-liver axis. Porto-sinusoidal vascular disease (PSVD) has recently been introduced to describe a group of vascular diseases of the liver, involving the portal venules and sinusoids. Although the pathophysiology of PSVD is not yet fully understood, several predisposing conditions, including immunodeficiency, inflammatory bowel disease, abdominal bacterial infections are associated with the increasing in intestinal permeability and microbial translocation, supporting the role of altered gut microbiota and gut-derived endotoxins in PSVD etiopathogenesis. Recent studies have proposed that the gut microbiome may play a crucial role in the pathophysiology of intrahepatic vascular lesions, potentially influencing the onset and progression of PSVD in this context. This review aims to summarize the current understanding of the gut microbiome's potential role in the pathogenesis of hepatic microvascular abnormalities and thrombosis, and to briefly describe their interactions with PSVD. The insights into gut microbiota and their potential influence on the onset and progression of PSVD may pave the way for new diagnostic, prognostic, and therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital Affiliated with Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Bromberg GK, Rasmussen RG, Sherman KE, Kalva SP, Goodarzi K, Glickman JN. Case 6-2025: A 62-Year-Old Man with Abdominal Pain. N Engl J Med 2025; 392:807-816. [PMID: 39970400 DOI: 10.1056/nejmcpc2412516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Affiliation(s)
- Gabrielle K Bromberg
- Department of Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston
| | - Robert G Rasmussen
- Department of Radiology, Massachusetts General Hospital, Boston
- Department of Radiology, Harvard Medical School, Boston
| | - Kenneth E Sherman
- Department of Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston
| | - Sanjeeva P Kalva
- Department of Radiology, Massachusetts General Hospital, Boston
- Department of Radiology, Harvard Medical School, Boston
| | - Katayoon Goodarzi
- Department of Medicine, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston
| | - Jonathan N Glickman
- Department of Pathology, Massachusetts General Hospital, Boston
- Department of Pathology, Harvard Medical School, Boston
| |
Collapse
|
7
|
Mo H, Yue P, Li Q, Tan Y, Yan X, Liu X, Xu Y, Luo Y, Palihati S, Yi C, Zhang H, Yuan M, Yang B. The role of liver sinusoidal endothelial cells in metabolic dysfunction-associated steatotic liver diseases and liver cancer: mechanisms and potential therapies. Angiogenesis 2025; 28:14. [PMID: 39899173 DOI: 10.1007/s10456-025-09969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Liver sinusoidal endothelial cells (LSECs), with their unique morphology and function, have garnered increasing attention in chronic liver disease research. This review summarizes the critical roles of LSECs under physiological conditions and in two representative chronic liver diseases: metabolic dysfunction-associated steatotic liver disease (MASLD) and liver cancer. Under physiological conditions, LSECs act as selective barriers, regulating substance exchange and hepatic blood flow. Interestingly, LSECs exhibit contrasting roles at different stages of disease progression: in the early stages, they actively resist disease advancement and help restore sinusoidal homeostasis; whereas in later stages, they contribute to disease worsening. During this transition, LSECs undergo capillarization, lose their characteristic markers, and become dysfunctional. As the disease progresses, LSECs closely interact with hepatocytes, hepatic stellate cells, various immune cells, and tumor cells, driving processes such as steatosis, inflammation, fibrosis, angiogenesis, and carcinogenesis. Consequently, targeting LSECs represents a promising therapeutic strategy for chronic liver diseases. Relevant therapeutic targets and potential drugs are summarized in this review.
Collapse
Affiliation(s)
- Hanjun Mo
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Pengfei Yue
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Qiaoqi Li
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yinxi Tan
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Xinran Yan
- Department of Nutrition, School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyue Liu
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuanwei Xu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yingzhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, No. 39 Shierqiao Road, Chengdu, 610075, Sichuan, China
| | - Suruiya Palihati
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Cheng Yi
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| | - Hua Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, China.
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, 610041, China.
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, China.
| | - Biao Yang
- Abdominal Oncology Ward, Division of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
8
|
Alvarado-Tapias E, Pose E, Gratacós-Ginès J, Clemente-Sánchez A, López-Pelayo H, Bataller R. Alcohol-associated liver disease: Natural history, management and novel targeted therapies. Clin Mol Hepatol 2025; 31:S112-S133. [PMID: 39481875 PMCID: PMC11925442 DOI: 10.3350/cmh.2024.0709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024] Open
Abstract
Alcohol consumption is a leading cause of preventable morbidity and mortality worldwide and the primary cause of advanced liver disease. Alcohol use disorder is a chronic, frequently relapsing condition characterized by persistent alcohol consumption despite its negative consequences. Alcohol-associated liver disease (ALD) encompasses a series of stages, from fatty liver (steatosis) to inflammation (steatohepatitis), fibrosis, and, ultimately, liver cirrhosis and its complications. The development of ALD is complex, involving both genetic and environmental factors, yet the exact mechanisms at play remain unclear. Alcohol-associated hepatitis (AH), a severe form of ALD, presents with sudden jaundice and liver failure. Currently, there are no approved targeted therapies able to interfere in the pathogenesis of ALD to stop the progression of the disease, making alcohol abstinence the most effective way to improve prognosis across all stages of ALD. For patients with advanced ALD who do not respond to medical therapy, liver transplantation is the only option that can improve prognosis. Recently, AH has become an early indication for liver transplantation in non-responders to medical treatment, showing promising results in carefully selected patients. This review provides an update on the epidemiology, natural history, pathogenesis, and current treatments for ALD. A deeper insight into novel targeted therapies investigated for AH focusing on new pathophysiologically-based agents is also discussed, including anti-inflammatory and antioxidative stress drugs, gut-liver axis modulators, and hepatocyte regenerative molecules.
Collapse
Affiliation(s)
- Edilmar Alvarado-Tapias
- Department of Gastroenterology and Hepatology, Hospital of Santa Creu and Sant Pau, Autonomus University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
| | - Elisa Pose
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Gratacós-Ginès
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Clemente-Sánchez
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Department of Gastroenterology and Hepatology, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
| | - Hugo López-Pelayo
- Addictions Unit, Psychiatry and Psychology Service, ICN, Hospital Clinic Barcelona, Barcelona; Health and Addictions Research Group, IDIBAPS, Barcelona, Spain
| | - Ramón Bataller
- Centre for Biomedical Research in Liver and Digestive Diseases Network (CIBERehd), Madrid, Spain
- Liver Unit, Hospital Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
9
|
Gad ES, Aldossary SA, El-Ansary MR, Abd El-Galil MM, Abd-El-Hamid AH, El-Ansary AR, Hassan NF. Cilostazol counteracts mitochondrial dysfunction in hepatic encephalopathy rat model: Insights into the role of cAMP/AMPK/SIRT1/ PINK-1/parkin hub and p-CREB /BDNF/ TrkB neuroprotective trajectory. Eur J Pharmacol 2025; 987:177194. [PMID: 39667427 DOI: 10.1016/j.ejphar.2024.177194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/17/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
A devasting stage of chronic hepatic dysfunction is strictly correlated with neurological impairment, signifying hepatic encephalopathy (HE). HE is a multifactorial condition; therefore, hyperammonemia, oxidative stress, neuroinflammation, and mitochondrial dysfunction interplay in HE's progressive development. Cilostazol (Cilo) has shown promising neuroprotective and hepatoprotective effectiveness in different neuronal and hepatic disorders; however, its efficiency against HE hasn't yet been explored. This study aimed to investigate the protective role of Cilo against thioacetamide (TAA)-induced HE in rats targeting mitochondrial dysfunction via modulation of Adenosine monophosphate-activated protein kinase (AMPK)/Silent information regulator 1 (SIRT1) dependent pathways. Rats were allocated into three groups: the normal control group, the TAA group received (100 mg/kg, three times per week, for six weeks) to induce HE, and the Cilo group received (Cilo 100 mg/kg/day for six weeks, oral gavage) concurrently with TAA. Cilo counteracted HE indicated in the enhancement of cognitive impairment and the motor performance of rats (P < 0.0001), modulation AMPK/SIRT1signaling pathway causing reduction of NF-kB p65 (P < 0.0001) evoked inflammation along with histopathological alterations and glial fibrillary acidic protein (GFAP) immunoreactivity (P < 0.0001), restoration nuclear factor E2-related factor 2 (Nrf2) (P < 0.0001) antioxidant effects, reduction of Bax and elevation of Bcl2 immunoreactivity (P < 0.0001) in addition to boosting mitochondrial biogenesis by upregulation of PTEN-induced kinase-1 (PINK-1)/Parkin (P < 0.0001)and restoration of Brain-derived neurotrophic factor (BDNF) (P = 0.0002)/tropomyosin-related kinase B (TrkB) (P < 0.0001)/cAMP response element-binding (CREB) (P < 0.0001) neuroprotective axis. Collectively, Cilo activates the SIRT1 trajectory to abridge mitochondrial dysfunction invigorated in the HE rat model via restoration of mitochondrial hemostasis.
Collapse
Affiliation(s)
- Enas S Gad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, AL Ahsa, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Kantara Branch, Ismailia, Egypt
| | - Sara A Aldossary
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, AL Ahsa, Saudi Arabia
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Mona M Abd El-Galil
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Asmaa Hassan Abd-El-Hamid
- Department of Histology and Cell Biology, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Cairo, Egypt
| | - Noha F Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
10
|
Dong Z, Wang Y, Jin W. Liver cirrhosis: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e721. [PMID: 39290252 PMCID: PMC11406049 DOI: 10.1002/mco2.721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Liver cirrhosis is the end-stage of chronic liver disease, characterized by inflammation, necrosis, advanced fibrosis, and regenerative nodule formation. Long-term inflammation can cause continuous damage to liver tissues and hepatocytes, along with increased vascular tone and portal hypertension. Among them, fibrosis is the necessary stage and essential feature of liver cirrhosis, and effective antifibrosis strategies are commonly considered the key to treating liver cirrhosis. Although different therapeutic strategies aimed at reversing or preventing fibrosis have been developed, the effects have not be more satisfactory. In this review, we discussed abnormal changes in the liver microenvironment that contribute to the progression of liver cirrhosis and highlighted the importance of recent therapeutic strategies, including lifestyle improvement, small molecular agents, traditional Chinese medicine, stem cells, extracellular vesicles, and gut remediation, that regulate liver fibrosis and liver cirrhosis. Meanwhile, therapeutic strategies for nanoparticles are discussed, as are their possible underlying broad application and prospects for ameliorating liver cirrhosis. Finally, we also reviewed the major challenges and opportunities of nanomedicine‒biological environment interactions. We hope this review will provide insights into the pathogenesis and molecular mechanisms of liver cirrhosis, thus facilitating new methods, drug discovery, and better treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Yeying Wang
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| | - Weilin Jin
- The First School of Clinical Medicine Lanzhou University Lanzhou People's Republic of China
- Institute of Cancer Neuroscience Medical Frontier Innovation Research Center The First Hospital of Lanzhou University Lanzhou People's Republic of China
| |
Collapse
|
11
|
Hagström H, Shang Y, Hegmar H, Nasr P. Natural history and progression of metabolic dysfunction-associated steatotic liver disease. Lancet Gastroenterol Hepatol 2024; 9:944-956. [PMID: 39243773 DOI: 10.1016/s2468-1253(24)00193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/09/2024]
Abstract
The natural history of metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease (NAFLD), is complex and long. A minority of patients develop inflammation and risk progressive fibrosis that can result in cirrhosis. Progression to cirrhosis occurs in 3-5% of patients and often takes more than 20 years. This narrative review presents an update on the natural history of MASLD, discussing studies and risk estimates for progression to severe outcomes, such as decompensated cirrhosis or hepatocellular carcinoma. We highlight the dynamic progression of liver damage, how to identify patients whose disease progresses over time, and how risk factors might be mitigated to reduce the risk for disease progression.
Collapse
Affiliation(s)
- Hannes Hagström
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Ying Shang
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hegmar
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Nasr
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden; Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Xie C, Sun S, Huang H, Li X, Qu W, Song H. A hemodynamic study of the relationship between the left and right liver volumes and the blood flow distribution in portal vein branches. Med Phys 2024; 51:6501-6512. [PMID: 38843522 DOI: 10.1002/mp.17184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 05/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Cirrhosis patients often exhibit clinical symptoms such as right liver atrophy, portal hypertension, spleen enlargement and increased blood supply, which exhibit considerable variation between the left and right liver sections. These differences are hypothesized to stem from disparities in blood flow within the left and right portal vein (PV) branches. However, rigorous quantitative evidence remains scarce. PURPOSE We mainly aim at quantitatively revealing the relationship between the blood flow rates of two PV branches and liver volumes, and providing quantitative evidence and theoretical support for the diagnosis and treatment of cirrhosis from the perspective of hemodynamics. METHODS Five cirrhotic patients and two healthy volunteers from Beijing Friendship Hospital are investigated. Their PV blood flow models are established based on computed tomography (CT) images and finite volume simulations. The volume of the left and right liver lobes are measured in 3-matic. The distributions of blood source in the PV branches are tracked by streamline analysis. The blood flow rates are quantitatively counted by integrating the blood source velocities. Linear analysis is performed to build the relationship between liver volumes and PV blood flow distributions. RESULTS Streamline analysis reveals significant differences in blood distribution between the left and right PV branches. The majority of blood from the superior mesenteric vein (SMV) flowed into the right portal vein (RPV), while most blood from the splenic vein (SV) entered the left portal vein (LPV). The main PV pressure drop linearly increases with the SV blood velocity for all PV structures of patients and healthy volunteers. The flow rate ratio QRPV/QLPV demonstrates an increase in tandem with the volume ratio VR/VL, exhibiting a linear correlation with the Pearson correlation coefficient being 0.93. CONCLUSION The differences in the blood distributions are consistent with the clinicians' knowledge and validate our simulations. We demonstrated a linear increase in PV pressure with elevated SV blood velocity. Additionally, the volumes of the left and right hepatic lobes exhibited a positive correlation with blood flow rates in the corresponding PV branches.
Collapse
Affiliation(s)
- Chiyu Xie
- University of Science and Technology Beijing, Beijing, China
| | - Shengda Sun
- University of Science and Technology Beijing, Beijing, China
| | - Hao Huang
- Liver Transplantation Section, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaofan Li
- University of Science and Technology Beijing, Beijing, China
| | - Wei Qu
- Liver Transplantation Section, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hongqing Song
- University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
13
|
Terbah R, Koshy AN, Majumdar A, Vaz K, Testro A, Sinclair M. Long-Term Continuous Terlipressin Infusion Improves Cardiac Reserve in Patients With Decompensated Cirrhosis. Clin Gastroenterol Hepatol 2024:S1542-3565(24)00778-X. [PMID: 39209185 DOI: 10.1016/j.cgh.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND AND AIMS Cardiac dysfunction is a key factor in the pathogenesis of hepatorenal syndrome, for which terlipressin is the recommended first-line treatment. This study investigates whether long-term terlipressin can ameliorate the subclinical cardiac dysfunction observed in decompensated cirrhosis. METHODS Twenty-two patients with decompensated cirrhosis and ascites enrolled in a prospective study of home continuous terlipressin infusion were included. Cardiac function was assessed using dobutamine stress echocardiogram before and after 12 weeks of terlipressin. The primary outcome was the impact of terlipressin on cardiac reserve, the change in cardiac output (CO) in response to stress. RESULTS The median age was 61 years (interquartile range, 56-64 years), the median Model for End-Stage Liver Disease score was 15 (interquartile range, 12.3-17.0), and 72.7% were male. The increase in CO in response to low-dose dobutamine was significantly higher following terlipressin (↑4.0 L/min [↑57.8%]) as compared with baseline (↑1.8 L/min [21.3%]) (P = .0001). The proportion of patients with impaired cardiac reserve (defined by ΔCO <25% after low-dose dobutamine) reduced from 81.8% at baseline to 40.9% after terlipressin, (P = .02), driven primarily by improvement in inotropic function. Resting CO decreased significantly after terlipressin from 8.9 ± 2.2 L/min to 7.2 ± 1.8 L/min (normal range 5-6 L/min) (P < .001), due to a decrease in stroke volume from 108 to 86 mL/beat (P = .006). CONCLUSIONS Long-term continuous terlipressin infusion resulted in a significant increase in cardiac reserve and attenuation of the hyperdynamic state usually observed in decompensated cirrhosis. These data provide important mechanistic insight into the pathogenesis and reversibility of cardiac dysfunction in cirrhosis. Future studies are required to evaluate whether long-term terlipressin can prevent hepatic decompensating events such as hepatorenal syndrome in high-risk individuals. Australian New Zealand Clinical Trials Registry, Number: ACTRN12619000891123.
Collapse
Affiliation(s)
- Ryma Terbah
- Department of Medicine, University of Melbourne, Victoria, Australia; Victorian Liver Transplant Unit, Austin Health, Heidelberg, Australia; Australian Centre for Transplantation Excellence and Research, Melbourne, Australia; Australian Cardiovascular Collaborative in Liver Transplant Medicine, Melbourne, Australia
| | - Anoop N Koshy
- Department of Medicine, University of Melbourne, Victoria, Australia; Victorian Liver Transplant Unit, Austin Health, Heidelberg, Australia; Australian Centre for Transplantation Excellence and Research, Melbourne, Australia; Australian Cardiovascular Collaborative in Liver Transplant Medicine, Melbourne, Australia; Department of Cardiology, Austin Health, Heidelberg, Australia
| | - Avik Majumdar
- Department of Medicine, University of Melbourne, Victoria, Australia; Victorian Liver Transplant Unit, Austin Health, Heidelberg, Australia; Australian Centre for Transplantation Excellence and Research, Melbourne, Australia; Australian Cardiovascular Collaborative in Liver Transplant Medicine, Melbourne, Australia
| | - Karl Vaz
- Department of Medicine, University of Melbourne, Victoria, Australia; Victorian Liver Transplant Unit, Austin Health, Heidelberg, Australia; Australian Centre for Transplantation Excellence and Research, Melbourne, Australia; Australian Cardiovascular Collaborative in Liver Transplant Medicine, Melbourne, Australia
| | - Adam Testro
- Department of Medicine, University of Melbourne, Victoria, Australia; Victorian Liver Transplant Unit, Austin Health, Heidelberg, Australia; Australian Centre for Transplantation Excellence and Research, Melbourne, Australia; Australian Cardiovascular Collaborative in Liver Transplant Medicine, Melbourne, Australia
| | - Marie Sinclair
- Department of Medicine, University of Melbourne, Victoria, Australia; Victorian Liver Transplant Unit, Austin Health, Heidelberg, Australia; Australian Centre for Transplantation Excellence and Research, Melbourne, Australia; Australian Cardiovascular Collaborative in Liver Transplant Medicine, Melbourne, Australia.
| |
Collapse
|
14
|
Lin TY, Su TH. Progression of portal hypertension after atezolizumab plus bevacizumab for hepatocellular carcinoma-report a case and literature review. J Formos Med Assoc 2024; 123:916-919. [PMID: 38565487 DOI: 10.1016/j.jfma.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Atezolizumab/bevacizumab combination therapy became the first-line therapy for advanced hepatocellular carcinoma (HCC). Gastroesophageal varices should be monitored and managed before treatment. The progression of portal hypertension during bevacizumab-containing therapy is unclear. METHOD A case of new development of esophageal varices, ascites, and hepatic hydrothorax during atezolizumab/bevacizumab therapy at National Taiwan University Hospital was reported, and relevant literature was reviewed. RESULTS We presented an 83-year-old male with resolved hepatitis B without cirrhosis. He had BCLC stage C HCC and received tri-weekly atezolizumab/bevacizumab therapy for 34 cycles with sustained partial response. Progressive ascites, esophageal varices, and hepatic hydrothorax developed, though his portal vein was patent and the tumor was under control. Five similar cases of HCC (BCLC B/C: n = 3/2) had been reported previously. Among them, three had cirrhosis with pre-existing small esophageal varices before treatment. After the administration of 1-15 cycles of atezolizumab/bevacizumab therapy, one patient had a progression of varices, and the other four developed variceal bleeding. The association between atezolizumab/bevacizumab and portal hypertension was possible, which might relate to the VEGF pathway and immune-related adverse events with progressive hepatic fibrosis. CONCLUSION Atezolizumab/bevacizumab treatment might exacerbate portal hypertension. Careful monitoring and management should be considered during treatment.
Collapse
Affiliation(s)
- Tung-Yen Lin
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Tung-Hung Su
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
15
|
Guixé-Muntet S, Quesada-Vázquez S, Gracia-Sancho J. Pathophysiology and therapeutic options for cirrhotic portal hypertension. Lancet Gastroenterol Hepatol 2024; 9:646-663. [PMID: 38642564 DOI: 10.1016/s2468-1253(23)00438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 04/22/2024]
Abstract
Portal hypertension represents the primary non-neoplastic complication of liver cirrhosis and has life-threatening consequences, such as oesophageal variceal bleeding, ascites, and hepatic encephalopathy. Portal hypertension occurs due to increased resistance of the cirrhotic liver vasculature to portal blood flow and is further aggravated by the hyperdynamic circulatory syndrome. Existing knowledge indicates that the profibrogenic phenotype acquired by sinusoidal cells is the initial factor leading to increased hepatic vascular tone and fibrosis, which cause increased vascular resistance and portal hypertension. Data also suggest that the phenotype of hepatic cells could be further impaired due to the altered mechanical properties of the cirrhotic liver itself, creating a deleterious cycle that worsens portal hypertension in the advanced stages of liver disease. In this Review, we discuss recent discoveries in the pathophysiology and treatment of cirrhotic portal hypertension, a condition with few pharmacological treatment options.
Collapse
Affiliation(s)
- Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Sergio Quesada-Vázquez
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Hospital Clínic de Barcelona, Barcelona, Spain; Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
16
|
Zhang S, Chen Z, Jiang X, Zhou S, Liu Y, Liu M, Dai X, Lu B, Yi G, Yin W. Lifestyle factors modified the mediation role of liver fibrosis in the association between occupational physical activity and blood pressure. Front Public Health 2024; 12:1383065. [PMID: 38989121 PMCID: PMC11233708 DOI: 10.3389/fpubh.2024.1383065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/06/2024] [Indexed: 07/12/2024] Open
Abstract
Objectives The study aimed to estimate the role of liver fibrosis in the association between occupational physical activity (OPA) and blood pressure (BP), which is modified by lifestyle factors. Methods The questionnaire survey and physical examination were completed among 992 construction workers in Wuhan, China. Associations between OPA or lifestyle factors and liver fibrosis indices and blood pressure were assessed using generalized additive models. The mediation analysis was used to evaluate the role of liver fibrosis in the association between OPA and lifestyle factors and BP. Results Moderate/high OPA group workers had an increased risk of liver fibrosis [odds ratio (OR) = 1.69, 95% confidence intervals (CI): 1.16-2.47, P < 0.05] compared with low OPA group workers. Smoking or drinking alcohol was related to liver fibrosis (aspartate aminotransferase to platelet ratio index: OR = 2.22, 95% CI: 1.07-4.62 or OR = 2.04, 95% CI: 1.00-4.15; P < 0.05). Compared with non-drinkers, drinkers were related to a 2.35-mmHg increase in systolic blood pressure (95% CI: 0.09-4.61), and a 1.60-mmHg increase in diastolic blood pressure (95% CI: 0.08-3.13; P < 0.05). We found a significant pathway, "OPA → liver fibrosis → blood pressure elevation," and lifestyle factors played a regulatory role in the pathway. Conclusion OPA or lifestyle factors were associated with liver fibrosis indices or BP in construction workers. Furthermore, the association between OPA and BP may be partially mediated by liver fibrosis; lifestyle factors strengthen the relationship between OPA and BP and the mediation role of liver fibrosis in the relationship.
Collapse
Affiliation(s)
- Shangyi Zhang
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhenlong Chen
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Xinman Jiang
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Shenglan Zhou
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Yanru Liu
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Mingsheng Liu
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xiayun Dai
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Bifeng Lu
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Guilin Yi
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
| | - Wenjun Yin
- Wuhan Prevention and Treatment Center for Occupational Diseases (School of Public Health of Joint Training Base for Graduate Students, Hubei University of Medicine), Wuhan, Hubei, China
- School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
17
|
Guo Q, Wang J, Wang G, Wang X. Letter to the Editor: Is right heart assessment vital for evaluating terlipressin-related outcomes in hepatorenal syndrome-acute kidney injury? Hepatology 2024; 79:E161-E162. [PMID: 38456783 PMCID: PMC11095895 DOI: 10.1097/hep.0000000000000832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 03/09/2024]
|
18
|
L'Écuyer S, Charbonney E, Carrier FM, Rose CF. Implication of Hypotension in the Pathogenesis of Cognitive Impairment and Brain Injury in Chronic Liver Disease. Neurochem Res 2024; 49:1437-1449. [PMID: 36635437 DOI: 10.1007/s11064-022-03854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023]
Abstract
The incidence of chronic liver disease is on the rise. One of the primary causes of hospital admissions for patients with cirrhosis is hepatic encephalopathy (HE), a debilitating neurological complication. HE is defined as a reversible syndrome, yet there is growing evidence stating that, under certain conditions, HE is associated with permanent neuronal injury and irreversibility. The pathophysiology of HE primarily implicates a strong role for hyperammonemia, but it is believed other pathogenic factors are involved. The fibrotic scarring of the liver during the progression of chronic liver disease (cirrhosis) consequently leads to increased hepatic resistance and circulatory anomalies characterized by portal hypertension, hyperdynamic circulatory state and systemic hypotension. The possible repercussions of these circulatory anomalies on brain perfusion, including impaired cerebral blood flow (CBF) autoregulation, could be implicated in the development of HE and/or permanent brain injury. Furthermore, hypotensive insults incurring during gastrointestinal bleed, infection, or liver transplantation may also trigger or exacerbate brain dysfunction and cell damage. This review will focus on the role of hypotension in the onset of HE as well as in the occurrence of neuronal cell loss in cirrhosis.
Collapse
Affiliation(s)
- Sydnée L'Écuyer
- Hepato-Neuro Laboratory, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis - Pavillon R, R08.422 Montréal (Québec), Québec, H2X 0A9, Canada
| | - Emmanuel Charbonney
- Department of Medicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - François Martin Carrier
- Department of Medicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Anesthesiology, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Carrefour de l'innovation et santé des populations , Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Christopher F Rose
- Hepato-Neuro Laboratory, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis - Pavillon R, R08.422 Montréal (Québec), Québec, H2X 0A9, Canada.
| |
Collapse
|
19
|
Nimri F, Ichkhanian Y, Shinn B, Kowalski TE, Loren DE, Kumar A, Schlachterman A, Tantau A, Arevalo M, Taha A, Shamaa O, Viales MC, Khashab MA, Simmer S, Singla S, Piraka C, Zuchelli TE. Comprehensive analysis of adverse events associated with transmural use of LAMS in patients with liver cirrhosis: International multicenter study. Endosc Int Open 2024; 12:E740-E749. [PMID: 38847015 PMCID: PMC11156515 DOI: 10.1055/a-2312-1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
Background and study aims Endoscopic ultrasound (EUS)-guided transmural (TM) deployment of lumen-apposing metal stents (LAMS) is considered relatively safe in non-cirrhotic patients and is cautiously offered to cirrhotic patients. Patients and methods This was a retrospective, multicenter, international matched case-control study to study the safety of EUS-guided TM deployment of LAMS in cirrhotic patients. Results Forty-three cirrhotic patients with model for end-stage liver disease score 12.5 ± 5, with 23 having ascites and 16 with varices underwent EUS-guided TM LAMS deployment, including 19 for pancreatic fluid collection (PFC) drainage, 13 gallbladder drainage, six for endoscopic ultrasound-directed transgastric endoscopic retrograde cholangiopancreatography (ERCP), three for EDGI, one for endoscopic ultrasound-directed transenteric ERCP, and one postsurgical collection drainage. Technical failure occurred in one LAMS for PFC drainage. Clinical failure was encountered in another PFC. Nine adverse events (AEs) occurred. The most common AE was LAMS migration (3), followed by non-bleeding mucosal erosion (2), delayed bleeding (2), sepsis (1), and anesthesia-related complication (pulseless electrical activity) (1). Most AEs were graded as mild (6), followed by severe (2), and moderate (1); the majority were managed conservatively. On univariable comparison, risk of AE was higher when using a 20 × 10 mm LAMS and the absence of through-the-LAMS plastic stent(s). Conditional logistic regression of matched case-control patients did not show any association between potential predicting factors and occurrence of AEs. Conclusions Our study demonstrated that mainly in patients with Child-Pugh scores A and B cirrhosis and despite the presence of mild-to-moderate ascites in over half of cases, the majority of AEs were mild and could be managed conservatively. Further studies are warranted to verify the safety of LAMS in cirrhotic patients.
Collapse
Affiliation(s)
- Faisal Nimri
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, United States
| | - Yervant Ichkhanian
- Department of Internal Medicine, Henry Ford Hospital, Detroit, United States
| | - Brianna Shinn
- Division of Gastroenterology and Hepatology, Thomas Jefferson Hospital, Wayne, United States
| | - Thomas E. Kowalski
- Division of Gastroenterology and Hepatology, Thomas Jefferson Hospital, Wayne, United States
| | - David E. Loren
- Division of Gastroenterology and Hepatology, Thomas Jefferson Hospital, Wayne, United States
| | - Anand Kumar
- Division of Gastroenterology and Hepatology, Thomas Jefferson Hospital, Wayne, United States
| | - Alexander Schlachterman
- Division of Gastroenterology and Hepatology, Thomas Jefferson Hospital, Wayne, United States
| | - Alina Tantau
- Division of Gastroenterology and Hepatology Medical Center, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Martha Arevalo
- Instituto Ecuatoriano de Enfermedades Digestivas (IECED), Guayaquil, Ecuador
| | - Ashraf Taha
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, United States
| | - Omar Shamaa
- Department of Internal Medicine, Henry Ford Hospital, Detroit, United States
| | | | - Mouen A. Khashab
- Division of Gastroenterology and Hepatology, Johns Hopkins Hospital, Baltimore, United States
| | - Stephen Simmer
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, United States
| | - Sumit Singla
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, United States
| | - Cyrus Piraka
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, United States
| | - Tobias E. Zuchelli
- Division of Gastroenterology and Hepatology, Henry Ford Hospital, Detroit, United States
| |
Collapse
|
20
|
Lombardi M, Troisi J, Motta BM, Torre P, Masarone M, Persico M. Gut-Liver Axis Dysregulation in Portal Hypertension: Emerging Frontiers. Nutrients 2024; 16:1025. [PMID: 38613058 PMCID: PMC11013091 DOI: 10.3390/nu16071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Portal hypertension (PH) is a complex clinical challenge with severe complications, including variceal bleeding, ascites, hepatic encephalopathy, and hepatorenal syndrome. The gut microbiota (GM) and its interconnectedness with human health have emerged as a captivating field of research. This review explores the intricate connections between the gut and the liver, aiming to elucidate how alterations in GM, intestinal barrier function, and gut-derived molecules impact the development and progression of PH. A systematic literature search, following PRISMA guidelines, identified 12 original articles that suggest a relationship between GM, the gut-liver axis, and PH. Mechanisms such as dysbiosis, bacterial translocation, altered microbial structure, and inflammation appear to orchestrate this relationship. One notable study highlights the pivotal role of the farnesoid X receptor axis in regulating the interplay between the gut and liver and proposes it as a promising therapeutic target. Fecal transplantation experiments further emphasize the pathogenic significance of the GM in modulating liver maladies, including PH. Recent advancements in metagenomics and metabolomics have expanded our understanding of the GM's role in human ailments. The review suggests that addressing the unmet need of identifying gut-liver axis-related metabolic and molecular pathways holds potential for elucidating pathogenesis and directing novel therapeutic interventions.
Collapse
Affiliation(s)
- Martina Lombardi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
| | - Jacopo Troisi
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy;
- European Institute of Metabolomics (EIM) Foundation, Via G. Puccini, 3, 84081 Baronissi, SA, Italy
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Benedetta Maria Motta
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Pietro Torre
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Mario Masarone
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| | - Marcello Persico
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, SA, Italy; (B.M.M.); (P.T.); (M.M.)
| |
Collapse
|
21
|
De Gaetano V, Pallozzi M, Cerrito L, Santopaolo F, Stella L, Gasbarrini A, Ponziani FR. Management of Portal Hypertension in Patients with Hepatocellular Carcinoma on Systemic Treatment: Current Evidence and Future Perspectives. Cancers (Basel) 2024; 16:1388. [PMID: 38611066 PMCID: PMC11011056 DOI: 10.3390/cancers16071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
The management of CSPH in patients undergoing systemic treatment for HCC has emerged as a critical concern due to the absence of reliable diagnostic criteria and uncertainties surrounding therapeutic approaches. This review aims to underscore the primary pathophysiological aspects linking HCC and PH, while also addressing the current and emerging clinical strategies for the management of portal hypertension. A review of studies from January 2003 to June 2023 was conducted using the PubMed database and employing MeSH terms, such as "hepatocellular carcinoma", "immune checkpoint inhibitors", "systemic therapy", "portal hypertension", "variceal bleeding" and "tyrosine kinase inhibitors". Despite promising results of tyrosine kinase inhibitors in animal models for PH and fibrosis, only Sorafenib has demonstrated similar effects in human studies, whereas Lenvatinib appears to promote PH development. The impact of Atezolizumab/Bevacizumab on PH remains uncertain, with an increasing risk of bleeding related to Bevacizumab in patients with prior variceal hemorrhage. Given the absence of specific guidelines, endoscopic surveillance during treatment is advisable, and primary and secondary prophylaxis of variceal bleeding should adhere to the Baveno VII recommendations. Furthermore, in patients with advanced HCC, refinement of diagnostic criteria for CSPH and guidelines for its surveillance are warranted.
Collapse
Affiliation(s)
- Valeria De Gaetano
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Maria Pallozzi
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Lucia Cerrito
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Francesco Santopaolo
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Leonardo Stella
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| | - Antonio Gasbarrini
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Liver Unit, Centro Malattie dell’Apparato Digerente (CEMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario GemelliIstituto di Ricovero e Cura a Carattere Scientifico, IRCCS, 00168 Rome, Italy; (V.D.G.); (M.P.); (L.C.); (F.S.); (L.S.); (F.R.P.)
| |
Collapse
|
22
|
Perazza F, Leoni L, Colosimo S, Musio A, Bocedi G, D’Avino M, Agnelli G, Nicastri A, Rossetti C, Sacilotto F, Marchesini G, Petroni ML, Ravaioli F. Metformin and the Liver: Unlocking the Full Therapeutic Potential. Metabolites 2024; 14:186. [PMID: 38668314 PMCID: PMC11052067 DOI: 10.3390/metabo14040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a highly effective medication for managing type 2 diabetes mellitus. Recent studies have shown that it has significant therapeutic benefits in various organ systems, particularly the liver. Although the effects of metformin on metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis are still being debated, it has positive effects on cirrhosis and anti-tumoral properties, which can help prevent the development of hepatocellular carcinoma. Furthermore, it has been proven to improve insulin resistance and dyslipidaemia, commonly associated with liver diseases. While more studies are needed to fully determine the safety and effectiveness of metformin use in liver diseases, the results are highly promising. Indeed, metformin has a terrific potential for extending its full therapeutic properties beyond its traditional use in managing diabetes.
Collapse
Affiliation(s)
- Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Laura Leoni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Santo Colosimo
- Doctorate School of Nutrition Science, University of Milan, 20122 Milan, Italy;
| | | | - Giulia Bocedi
- U.O. Diabetologia, Ospedale C. Magati, Scandiano, 42019 Reggio Emilia, Italy;
| | - Michela D’Avino
- S.C. Endocrinologia Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy;
| | - Giulio Agnelli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Alba Nicastri
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Chiara Rossetti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federica Sacilotto
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Giulio Marchesini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
- Division of Hepatobiliary and Immunoallergic Diseases, Department of Internal Medicine, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
23
|
Mannion R, Fitzpatrick E. Systemic Complications Secondary to Chronic Liver Disease. Indian J Pediatr 2024; 91:286-293. [PMID: 37440151 PMCID: PMC10866760 DOI: 10.1007/s12098-023-04694-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/19/2023] [Indexed: 07/14/2023]
Abstract
The systemic sequelae of chronic liver disease (CLD) may be due to portal hypertension and shunting, malnutrition, and/or a low grade inflammatory state. This article will focus on the consequences of chronic liver disease affecting extrahepatic organs. Portal hypertension underlies many systemic complications of CLD. Aside from varices and ascites, portal hypertension may cause both hepatopulmonary syndrome and portopulmonary hypertension leading to respiratory compromise. Cardiomyopathy may also occur secondary to end stage liver disease. Hepatorenal syndrome is also well recognised and hepatic encephalopathy is a consequence of the effect of liver dysfunction on the brain. Compromise of the immune system is well described in end-stage liver disease leading to sepsis and its consequences. Bony disease including osteoporosis and hepatic arthropathy may both be seen in children with CLD. CLD may be asymptomatic initially but then complications may present as the disease progresses. Furthermore, systemic effects of end stage liver disease may complicate liver transplant. These complications often present insidiously or at the time of acute decompensation. Thus, it is important that healthcare providers are vigilant when caring for children with CLD. This article outlines the secondary complications of CLD with an overview of the definition and diagnosis, pathophysiology, management and prognosis of each.
Collapse
Affiliation(s)
- Rory Mannion
- Department of Gastroenterology and Hepatology, Children's Health Ireland Crumlin, Dublin, Ireland
| | - Emer Fitzpatrick
- Department of Gastroenterology and Hepatology, Children's Health Ireland Crumlin, Dublin, Ireland.
- School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
24
|
Fan Q, Wu G, Chen M, Luo G, Wu Z, Huo H, Li H, Zheng L, Luo M. Cediranib ameliorates portal hypertensive syndrome via inhibition of VEGFR-2 signaling in cirrhotic rats. Eur J Pharmacol 2024; 964:176278. [PMID: 38158116 DOI: 10.1016/j.ejphar.2023.176278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Portal hypertension (PHT) is a syndrome caused by systemic and portal hemodynamic disturbances with the progression of cirrhosis. However, the exact mechanisms regulating angiogenesis-related responses in PHT remain unclear. Cediranib is a potent inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, exhibiting a greater affinity for VEGFR-2. Liver cirrhosis was induced by common bile duct ligation (BDL) in Sprague-Dawley rats. Sham-operated rats were controls. BDL and sham rats were randomly allocated to receive Cediranib or vehicle after BDL. On the 28th day, portal hypertension related parameters were surveyed. Cediranib treatment could significantly reduce the portal pressure (PP) in BDL rats, while it did not affect the mean arterial pressure (MAP) in sham groups and BDL groups. Cediranib treatment could significantly affect the stroke volume (SV), cardiac output (CO), cardiac index (CI), systemic vascular resistance (SVR), superior mesenteric artery (SMA) flow and SMA resistance in BDL groups and BDL with Cediranib groups. Cediranib treatment could improve the mesenteric vascular remodeling and contractility. Cediranib treatment significantly reduced mesenteric vascular density. And phospho-VEGFR-2 was significantly downregulated by Cediranib. On the other hand, phospho-endothelial Nitric Oxide Synthases (phospho-eNOS) expressions were upregulated. Cediranib not only improved splanchnic hemodynamics, extrahepatic vascular remodeling and vasodilation, but also alleviated intrahepatic fibrosis and collagen deposition significantly. Cediranib treatment could reduce intrahepatic angiogenesis between BDL-vehicle and BDL-Cediranib rats. In conclusion, Cediranib could improve extrahepatic hyperdynamic circulation by inhibiting extrahepatic angiogenesis through inhibition of the VEGFR-2 signaling pathway, portal collateral circulation formation, as well as eNOS-mediated vasodilatation and vascular remodeling, and at the same time, Cediranib improved intrahepatic fibrogenesis and angiogenesis, which together alleviate cirrhotic PHT syndrome.
Collapse
Affiliation(s)
- Qiang Fan
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangbo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guqing Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghao Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Li
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
25
|
Madir A, Grgurevic I, Tsochatzis EA, Pinzani M. Portal hypertension in patients with nonalcoholic fatty liver disease: Current knowledge and challenges. World J Gastroenterol 2024; 30:290-307. [PMID: 38313235 PMCID: PMC10835535 DOI: 10.3748/wjg.v30.i4.290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Portal hypertension (PH) has traditionally been observed as a consequence of significant fibrosis and cirrhosis in advanced non-alcoholic fatty liver disease (NAFLD). However, recent studies have provided evidence that PH may develop in earlier stages of NAFLD, suggesting that there are additional pathogenetic mechanisms at work in addition to liver fibrosis. The early development of PH in NAFLD is associated with hepatocellular lipid accumulation and ballooning, leading to the compression of liver sinusoids. External compression and intra-luminal obstacles cause mechanical forces such as strain, shear stress and elevated hydrostatic pressure that in turn activate mechanotransduction pathways, resulting in endothelial dysfunction and the development of fibrosis. The spatial distribution of histological and functional changes in the periportal and perisinusoidal areas of the liver lobule are considered responsible for the pre-sinusoidal component of PH in patients with NAFLD. Thus, current diagnostic methods such as hepatic venous pressure gradient (HVPG) measurement tend to underestimate portal pressure (PP) in NAFLD patients, who might decompensate below the HVPG threshold of 10 mmHg, which is traditionally considered the most relevant indicator of clinically significant portal hypertension (CSPH). This creates further challenges in finding a reliable diagnostic method to stratify the prognostic risk in this population of patients. In theory, the measurement of the portal pressure gradient guided by endoscopic ultrasound might overcome the limitations of HVPG measurement by avoiding the influence of the pre-sinusoidal component, but more investigations are needed to test its clinical utility for this indication. Liver and spleen stiffness measurement in combination with platelet count is currently the best-validated non-invasive approach for diagnosing CSPH and varices needing treatment. Lifestyle change remains the cornerstone of the treatment of PH in NAFLD, together with correcting the components of metabolic syndrome, using nonselective beta blockers, whereas emerging candidate drugs require more robust confirmation from clinical trials.
Collapse
Affiliation(s)
- Anita Madir
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb 10000, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, Zagreb 10000, Croatia
- School of Medicine, University of Zagreb, Zagreb 10000, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London NW3 2PF, United Kingdom
| | - Massimo Pinzani
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
26
|
Kotani K, Kawada N. Recent Advances in the Pathogenesis and Clinical Evaluation of Portal Hypertension in Chronic Liver Disease. Gut Liver 2024; 18:27-39. [PMID: 37842727 PMCID: PMC10791512 DOI: 10.5009/gnl230072] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/16/2023] [Accepted: 06/25/2023] [Indexed: 10/17/2023] Open
Abstract
In chronic liver disease, hepatic stellate cell activation and degeneration of liver sinusoidal endothelial cells lead to structural changes, which are secondary to fibrosis and the presence of regenerative nodules in the sinusoids, and to functional changes, which are related to vasoconstriction. The combination of such changes increases intrahepatic vascular resistance and causes portal hypertension. The subsequent increase in splanchnic and systemic hyperdynamic circulation further increases the portal blood flow, thereby exacerbating portal hypertension. In clinical practice, the hepatic venous pressure gradient is the gold-standard measure of portal hypertension; a value of ≥10 mm Hg is defined as clinically significant portal hypertension, which is severe and is associated with the risk of liver-related events. Hepatic venous pressure gradient measurement is somewhat invasive, so evidence on the utility of risk stratification by elastography and serum biomarkers is needed. The various stages of cirrhosis are associated with different outcomes. In viral hepatitis-related cirrhosis, viral suppression or elimination by nucleos(t)ide analog or direct-acting antivirals results in recompensation of liver function and portal pressure. However, careful follow-up should be continued, because some cases have residual clinically significant portal hypertension even after achieving sustained virologic response. In this study, we reviewed the current and future prospects for portal hypertension.
Collapse
Affiliation(s)
- Kohei Kotani
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
27
|
Haskal ZJ, Mohammed X, Koppula R. Transjugular Intrahepatic Portosystemic Shunt (TIPS) and Portal Hypertension. IR PLAYBOOK 2024:515-523. [DOI: 10.1007/978-3-031-52546-9_42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
28
|
Terbah R, Testro A, Gow P, Majumdar A, Sinclair M. Portal Hypertension in Malnutrition and Sarcopenia in Decompensated Cirrhosis-Pathogenesis, Implications and Therapeutic Opportunities. Nutrients 2023; 16:35. [PMID: 38201864 PMCID: PMC10780673 DOI: 10.3390/nu16010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Malnutrition and sarcopenia are highly prevalent in patients with decompensated cirrhosis and are associated with poorer clinical outcomes. Their pathophysiology is complex and multifactorial, with protein-calorie malnutrition, systemic inflammation, reduced glycogen stores and hormonal imbalances all well reported. The direct contribution of portal hypertension to these driving factors is however not widely documented in the literature. This review details the specific mechanisms by which portal hypertension directly contributes to the development of malnutrition and sarcopenia in cirrhosis. We summarise the existing literature describing treatment strategies that specifically aim to reduce portal pressures and their impact on nutritional and muscle outcomes, which is particularly relevant to those with end-stage disease awaiting liver transplantation.
Collapse
Affiliation(s)
- Ryma Terbah
- Liver Transplant Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia; (R.T.); (A.T.); (P.G.); (A.M.)
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Adam Testro
- Liver Transplant Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia; (R.T.); (A.T.); (P.G.); (A.M.)
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Paul Gow
- Liver Transplant Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia; (R.T.); (A.T.); (P.G.); (A.M.)
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Avik Majumdar
- Liver Transplant Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia; (R.T.); (A.T.); (P.G.); (A.M.)
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Marie Sinclair
- Liver Transplant Unit, Austin Health, 145 Studley Road, Heidelberg, VIC 3084, Australia; (R.T.); (A.T.); (P.G.); (A.M.)
- Department of Medicine, The University of Melbourne, Parkville, VIC 3050, Australia
| |
Collapse
|
29
|
Nasr P, Forsgren M, Balkhed W, Jönsson C, Dahlström N, Simonsson C, Cai S, Cederborg A, Henriksson M, Stjernman H, Rejler M, Sjögren D, Cedersund G, Bartholomä W, Rydén I, Lundberg P, Kechagias S, Leinhard OD, Ekstedt M. A rapid, non-invasive, clinical surveillance for CachExia, sarcopenia, portal hypertension, and hepatocellular carcinoma in end-stage liver disease: the ACCESS-ESLD study protocol. BMC Gastroenterol 2023; 23:454. [PMID: 38129794 PMCID: PMC10734181 DOI: 10.1186/s12876-023-03093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Liver cirrhosis, the advanced stage of many chronic liver diseases, is associated with escalated risks of liver-related complications like decompensation and hepatocellular carcinoma (HCC). Morbidity and mortality in cirrhosis patients are linked to portal hypertension, sarcopenia, and hepatocellular carcinoma. Although conventional cirrhosis management centered on treating complications, contemporary approaches prioritize preemptive measures. This study aims to formulate novel blood- and imaging-centric methodologies for monitoring liver cirrhosis patients. METHODS In this prospective study, 150 liver cirrhosis patients will be enrolled from three Swedish liver clinics. Their conditions will be assessed through extensive blood-based markers and magnetic resonance imaging (MRI). The MRI protocol encompasses body composition profile with Muscle Assement Score, portal flow assessment, magnet resonance elastography, and a abbreviated MRI for HCC screening. Evaluation of lifestyle, muscular strength, physical performance, body composition, and quality of life will be conducted. Additionally, DNA, serum, and plasma biobanking will facilitate future investigations. DISCUSSION The anticipated outcomes involve the identification and validation of non-invasive blood- and imaging-oriented biomarkers, enhancing the care paradigm for liver cirrhosis patients. Notably, the temporal evolution of these biomarkers will be crucial for understanding dynamic changes. TRIAL REGISTRATION Clinicaltrials.gov, registration identifier NCT05502198. Registered on 16 August 2022. Link: https://classic. CLINICALTRIALS gov/ct2/show/NCT05502198 .
Collapse
Affiliation(s)
- Patrik Nasr
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Mikael Forsgren
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Wile Balkhed
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Cecilia Jönsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Nils Dahlström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Christian Simonsson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Shan Cai
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Anna Cederborg
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Martin Henriksson
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Henrik Stjernman
- Department of Internal Medicine, Ryhov Hospital Jönköping, Jönköping, Sweden
| | - Martin Rejler
- Department of Medicine, Höglandssjukhuset Eksjö, Region Jönköping County Council, Jönköping, Sweden
- The Jönköping Academy for Improvement of Health and Welfare, Hälsohögskolan, Jönköping University, Jönköping, Sweden
| | - Daniel Sjögren
- Department of Medicine, Höglandssjukhuset Eksjö, Region Jönköping County Council, Jönköping, Sweden
| | - Gunnar Cedersund
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- School of Medical Sciences and Inflammatory Response and Infection Susceptibility Centre (iRiSC), Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Wolf Bartholomä
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Ingvar Rydén
- Department of Research, Region Kalmar County, Kalmar, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Stergios Kechagias
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- AMRA Medical AB, Linköping, Sweden
| | - Mattias Ekstedt
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.
| |
Collapse
|
30
|
Simbrunner B, Villesen IF, Scheiner B, Paternostro R, Schwabl P, Stättermayer AF, Marculescu R, Pinter M, Quehenberger P, Trauner M, Karsdal M, Lisman T, Reiberger T, Leeming DJ, Mandorfer M. Von Willebrand factor processing in patients with advanced chronic liver disease and its relation to portal hypertension and clinical outcome. Hepatol Int 2023; 17:1532-1544. [PMID: 37605068 PMCID: PMC10661794 DOI: 10.1007/s12072-023-10577-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND AND AIMS Endothelial dysfunction and portal hypertension (PH) are reflected by increased von Willebrand factor antigen (VWF-Ag) levels in advanced chronic liver disease (ACLD). This study investigated VWF release and cleavage and their association with PH and clinical outcomes. METHODS Levels of VWF-Ag, VWF-N (VWF-propeptide), and VWF-A (VWF processed by the main VWF-cleaving protease ADAMTS13) were assessed in 229 patients with clinically stable ACLD (hepatic venous pressure gradient [HVPG] ≥ 6 mmHg; absence of bacterial infections or acute decompensation) undergoing HVPG-measurement. Liver-healthy individuals served as controls (n = 24). RESULTS VWF-Ag and VWF-N were similarly accurate for the identification of clinically significant PH (CSPH; HVPG ≥ 10 mmHg) in compensated ACLD (AUROC: VWF-Ag 0.748; VWF-N 0.728). ADAMTS13 activity was similar between patients with ACLD and controls and did not correlate with PH and disease severity, whereas VWF cleavage decreased in patients with CSPH (i.e., VWF-Ag/-A-ratio increased). In vitro VWF activity strongly reflected VWF-Ag levels (Spearman's r = 0.874, p < 0.001), but decreased (vs. controls) in patients with CSPH when normalized to VWF-Ag levels (VWF-activity/-Ag-ratio). VWF-Act/-Ag ratio correlated negatively with ADAMTS13 activity (r =- 0.256, p < 0.001). ADAMTS13 activity was independently predictive for (i) portal vein thrombosis (PVT) and (ii) hepatic decompensation or liver-related death. CONCLUSIONS VWF-Ag levels and its propeptide are similarly suitable surrogates of PH in patients with compensated ACLD. ADAMTS13-Act was not linked to disease and PH severity, however, when normalized to VWF-Ag, both VWF cleavage and VWF activity were decreased in patients with CSPH, as compared to liver-healthy individuals. Low ADAMTS13-Act was associated with presumably more procoagulant VWF and adverse outcomes. CLINICAL TRIAL NUMBER NCT03267615.
Collapse
Affiliation(s)
- Benedikt Simbrunner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ida Falk Villesen
- Nordic Bioscience, Herlev, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Bernhard Scheiner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Rafael Paternostro
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Albert Friedrich Stättermayer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias Pinter
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Peter Quehenberger
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | | | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Mattias Mandorfer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Vienna Hepatic Hemodynamic Lab, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
31
|
Shalaby S, Ronzoni L, Hernandez-Gea V, Valenti L. The genetics of portal hypertension: Recent developments and the road ahead. Liver Int 2023; 43:2592-2603. [PMID: 37718732 DOI: 10.1111/liv.15732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 09/02/2023] [Indexed: 09/19/2023]
Abstract
Portal hypertension (PH), defined as a pathological increase in the portal vein pressure, has different aetiologies and causes. Intrahepatic PH is mostly secondary to the presence of underlying liver disease leading to cirrhosis, characterized by parenchymal changes with deregulated accumulation of extracellular matrix and vascular abnormalities; liver sinusoidal endothelial cells and hepatic stellate cells are key players in PH progression, able to influence each other. However, PH may also develop independently of parenchymal damage, as occur in portosinusoidal vascular disorder (PSVD), a group of clinical and histological entities characterized by portal vasculature dysfunctions. In this particular group of disorders, the pathophysiology of PH is still poorly understood. In the last years, several genetic studies, based on genome-wide association studies or whole-exome sequencing analysis, have highlighted the importance of genetic heritability in PH pathogenesis, both in cirrhotic and non-cirrhotic cases. The common PNPLA3 p.I148M variant, one of the main determinants of the susceptibility to steatotic liver disease, has also been associated with decompensation in patients with PH. Genetic variations at loci influencing coagulation, mainly the ABO locus, may directly contribute to the pathogenesis of PH. Rare genetic variants have been associated with familiar cases of progressive PSVD. In this review, we summarize the recent knowledges on genetic variants predisposing to PH development, contributing to better understand the role of genetic factors in PH pathogenesis.
Collapse
Grants
- Commissioner for Universities and Research from the Department of Economy and Knowledge" of the "Generalitat de Catalunya" (AGAUR SGR2017_517) (VHG)
- Fondazione Patrimonio Ca' Granda, "Liver BIBLE" (PR-0361) (LV)
- Gilead_IN-IT-989-5790 (LV)
- Innovative Medicines Initiative 2 joint undertaking of European Union's Horizon 2020 research and innovation programme and EFPIA European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS (LV)
- Instituto de Salud Carlos III" FIS PI20/00569 FEDER from the European Union (Fondos FEDER, "Una manera de hacer Europa") (VHG)
- Italian Ministry of Health (Ministero della Salute), Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Ricerca Corrente (LV)
- Italian Ministry of Health (Ministero della Salute), Rete Cardiologica "CV-PREVITAL" (LV)
- Italian Ministry of Health (Ministero della Salute), Ricerca Finalizzata 2016, RF-2016-02364358 ("Impact of whole exome sequencing on the clinical management of patients with advanced nonalcoholic fatty liver and cryptogenic liver disease"), Ricerca Finalizzata 2021 RF-2021-12373889, Italian Ministry of Health, Ricerca Finalizzata PNRR 2022 "RATIONAL: Risk strAtificaTIon Of Nonalcoholic fAtty Liver" PNRR-MAD-2022-12375656 (LV)
- Italian Ministry of Health (Ministero della Salute). PNRR PNC-E3-2022-23683266 PNC-HLS-DA, INNOVA (LV)
- The European Union, H2020-ICT-2018-20/H2020-ICT-2020-2 programme "Photonics" under grant agreement No. 101016726 - REVEAL (LV)
- The European Union, HORIZON-MISS-2021-CANCER-02-03 programme "Genial" under grant agreement "101096312" (LV)
Collapse
Affiliation(s)
- Sarah Shalaby
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, CIBEREHD, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
- Department of Surgery, Oncology, and Gastroenterology, Padua University Hospital, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Padua, Italy
| | - Luisa Ronzoni
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
| | - Virginia Hernandez-Gea
- Barcelona Hepatic Hemodynamic Laboratory, Liver Unit, Hospital Clínic, Institut de Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, CIBEREHD, Health Care Provider of the European Reference Network on Rare Liver Disorders (ERN-Liver), Barcelona, Spain
| | - Luca Valenti
- Precision Medicine Lab, Biological Resource Center Unit, Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico Milano, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
32
|
Felli E, Selicean S, Guixé-Muntet S, Wang C, Bosch J, Berzigotti A, Gracia-Sancho J. Mechanobiology of portal hypertension. JHEP Rep 2023; 5:100869. [PMID: 37841641 PMCID: PMC10568428 DOI: 10.1016/j.jhepr.2023.100869] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 10/17/2023] Open
Abstract
The interplay between mechanical stimuli and cellular mechanobiology orchestrates the physiology of tissues and organs in a dynamic balance characterized by constant remodelling and adaptative processes. Environmental mechanical properties can be interpreted as a complex set of information and instructions that cells read continuously, and to which they respond. In cirrhosis, chronic inflammation and injury drive liver cells dysfunction, leading to excessive extracellular matrix deposition, sinusoidal pseudocapillarization, vascular occlusion and parenchymal extinction. These pathological events result in marked remodelling of the liver microarchitecture, which is cause and result of abnormal environmental mechanical forces, triggering and sustaining the long-standing and progressive process of liver fibrosis. Multiple mechanical forces such as strain, shear stress, and hydrostatic pressure can converge at different stages of the disease until reaching a point of no return where the fibrosis is considered non-reversible. Thereafter, reciprocal communication between cells and their niches becomes the driving force for disease progression. Accumulating evidence supports the idea that, rather than being a passive consequence of fibrosis and portal hypertension (PH), mechanical force-mediated pathways could themselves represent strategic targets for novel therapeutic approaches. In this manuscript, we aim to provide a comprehensive review of the mechanobiology of PH, by furnishing an introduction on the most important mechanisms, integrating these concepts into a discussion on the pathogenesis of PH, and exploring potential therapeutic strategies.
Collapse
Affiliation(s)
- Eric Felli
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Sonia Selicean
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Sergi Guixé-Muntet
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Spain
| | - Cong Wang
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Jaume Bosch
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Spain
| | - Annalisa Berzigotti
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
| | - Jordi Gracia-Sancho
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Switzerland
- Department for BioMedical Research, Visceral Surgery and Medicine, University of Bern, Switzerland
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, Spain
| |
Collapse
|
33
|
Gaspar R, Silva M, Cardoso P, Goncalves R, Andrade P, Macedo G. Spleen stiffness: a new tool to predict high-risk varices in cirrhotic patients. J Gastroenterol Hepatol 2023; 38:1840-1846. [PMID: 37655720 DOI: 10.1111/jgh.16344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 07/23/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Cirrhosis is one of the major causes of morbidity and mortality worldwide. Portal hypertension is the major contributor of cirrhosis-related complications and is defined as a hepatic venous pressure gradient (HVPG) > 5 mmHg. Measurement of HVPG is an invasive, difficult, and costly procedure. Therefore, it is only performed in specialized centers. Liver stiffness measured with transient elastography is one of the most studied noninvasive markers of portal hypertension, and spleen elastography has recently emerged as an important adjuvant tool. The development of a new probe (100 Hz) that more reliably reflect the grade of portal hypertension evaluated by spleen stiffness measurement has improved the accuracy of this technique. The aim of this work was to evaluate the accuracy of spleen stiffness with the new dedicated probe to predict the presence of high-risk varices, as well as to determine the ideal cutoff to predict it. METHODS Prospective study of cirrhotic patients admitted to upper endoscopy that were also submitted to liver and spleen elastography with the 100-Hz probe by the same blinded operator in a tertiary center. RESULTS We included 209 cirrhotic patients, with mean age of 61.9 years (±9.9), 77.0% male. The most common etiology was alcoholic liver disease (72.7%). The median value of liver elastography was 25.3 [4.5-75] kPa, and the median value of spleen elastography was 42.4 [7.6-100] kPa. At the cutoff of 53.25 kPa, we obtained sensitivity of 100% and specificity of 72.6% to predict high-risk varices, and, according to this cutoff, 133/175 of esophagogastroduodenoscopy could have been spared (76.0%), while according to Baveno guidelines, only 51/175 would have been spared (29.1%). CONCLUSION In the era of noninvasive exams, spleen elastography with the 100-Hz probe emerges as an excellent tool for prediction of presence of high-risk varices. At the cutoff of 53.25 kPa, spleen elastography avoids upper endoscopy for screening for high-risk varices, promising to be become part of the hepatologists' daily routine.
Collapse
Affiliation(s)
- Rui Gaspar
- Gastroenterology Department, Centro Hospitalar São João, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Marco Silva
- Gastroenterology Department, Centro Hospitalar São João, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Pedro Cardoso
- Gastroenterology Department, Centro Hospitalar São João, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Raquel Goncalves
- Gastroenterology Department, Centro Hospitalar São João, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Patrícia Andrade
- Gastroenterology Department, Centro Hospitalar São João, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Guilherme Macedo
- Gastroenterology Department, Centro Hospitalar São João, Faculty of Medicine of the University of Porto, Porto, Portugal
| |
Collapse
|
34
|
Li ZW, Ruan B, Yang PJ, Liu JJ, Song P, Duan JL, Wang L. Oit3, a promising hallmark gene for targeting liver sinusoidal endothelial cells. Signal Transduct Target Ther 2023; 8:344. [PMID: 37696816 PMCID: PMC10495338 DOI: 10.1038/s41392-023-01621-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) play a pivotal role in maintaining liver homeostasis and influencing the pathological processes of various liver diseases. However, neither LSEC-specific hallmark genes nor a LSEC promoter-driven Cre mouse line has been introduced before, which largely restricts the study of liver diseases with vascular disorders. To explore LSEC-specific hallmark genes, we compared the top 50 marker genes between liver endothelial cells (ECs) and liver capillary ECs and identified 18 overlapping genes. After excluding globally expressed genes and those with low expression percentages, we narrowed our focus to two final candidates: Oit3 and Dnase1l3. Through single-cell RNA sequencing (scRNA-seq) and analysis of the NCBI database, we confirmed the extrahepatic expression of Dnase1l3. The paired-cell sequencing data further demonstrated that Oit3 was predominantly expressed in the midlobular liver ECs. Subsequently, we constructed inducible Oit3-CreERT2 transgenic mice, which were further crossed with ROSA26-tdTomato mice. Microscopy validated that the established Oit3-CreERT2-tdTomato mice exhibited significant fluorescence in the liver rather than in other organs. The staining analysis confirmed the colocalization of tdTomato and EC markers. Ex-vivo experiments further confirmed that isolated tdTomato+ cells exhibited well-differentiated fenestrae and highly expressed EC markers, confirming their identity as LSECs. Overall, Oit3 is a promising hallmark gene for tracing LSECs. The establishment of Oit3-CreERT2-tdTomato mice provides a valuable model for studying the complexities of LSECs in liver diseases.
Collapse
Affiliation(s)
- Zhi-Wen Li
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Bai Ruan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
- Center of Clinical Aerospace Medicine & Department of Aviation Medicine, Fourth Military Medical University, 710032, Xi'an, China
| | - Pei-Jun Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Jing-Jing Liu
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Ping Song
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Juan-Li Duan
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, 710032, Xi'an, China.
| |
Collapse
|
35
|
Wu Y, Yin AH, Sun JT, Xu WH, Zhang CQ. Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells. World J Gastroenterol 2023; 29:4975-4990. [PMID: 37732000 PMCID: PMC10507507 DOI: 10.3748/wjg.v29.i33.4975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/27/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Liver fibrosis is the common pathological process associated with the occurrence and development of various chronic liver diseases. At present, there is still a lack of effective prevention and treatment methods in clinical practice. Hepatic stellate cell (HSC) plays a key role in liver fibrogenesis. In recent years, the study of liver fibrosis targeting HSC autophagy has become a hot spot in this research field. Angiotensin-converting enzyme 2 (ACE2) is a key negative regulator of renin-angiotensin system, and its specific molecular mechanism on autophagy and liver fibrosis needs to be further explored. AIM To investigate the effect of ACE2 on hepatic fibrosis in mice by regulating HSC autophagy through the Adenosine monophosphate activates protein kinases (AMPK)/mammalian target of rapamycin (mTOR) pathway. METHODS Overexpression of ACE2 in a mouse liver fibrosis model was induced by injection of liver-specific recombinant adeno-associated virus ACE2 vector (rAAV2/8-ACE2). The degree of liver fibrosis was assessed by histopathological staining and the biomarkers in mouse serum were measured by Luminex multifactor analysis. The number of apoptotic HSCs was assessed by terminal deoxynucleoitidyl transferase-mediated dUTP nick-end labeling (TUNEL) and immunofluorescence staining. Transmission electron microscopy was used to identify the changes in the number of HSC autophagosomes. The effect of ACE2 overexpression on autophagy-related proteins was evaluated by multicolor immunofluorescence staining. The expression of autophagy-related indicators and AMPK pathway-related proteins was measured by western blotting. RESULTS A mouse model of liver fibrosis was successfully established after 8 wk of intraperitoneal injection of carbon tetrachloride (CCl4). rAAV2/8-ACE2 administration reduced collagen deposition and alleviated the degree of liver fibrosis in mice. The serum levels of platelet-derived growth factor, angiopoietin-2, vascular endothelial growth factor and angiotensin II were decreased, while the levels of interleukin (IL)-10 and angiotensin- (1-7) were increased in the rAAV2/8-ACE2 group. In addition, the expression of alpha-smooth muscle actin, fibronectin, and CD31 was down-regulated in the rAAV2/8-ACE2 group. TUNEL and immunofluorescence staining showed that rAAV2/8-ACE2 injection increased HSC apoptosis. Moreover, rAAV2/8-ACE2 injection notably decreased the number of autophagosomes and the expression of autophagy-related proteins (LC3I, LC3II, Beclin-1), and affected the expression of AMPK pathway-related proteins (AMPK, p-AMPK, p-mTOR). CONCLUSION ACE2 overexpression can inhibit HSC activation and promote cell apoptosis by regulating HSC autophagy through the AMPK/mTOR pathway, thereby alleviating liver fibrosis and hepatic sinusoidal remodeling.
Collapse
Affiliation(s)
- Ying Wu
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Ai-Hong Yin
- Department of Gastroenterology, Shandong Second Provincial General Hospital, Jinan 250000, Shandong Province, China
| | - Jun-Tao Sun
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Wei-Hua Xu
- Department of Gastroenterology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Chun-Qing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong Province, China
| |
Collapse
|
36
|
Giuli L, Pallozzi M, Venturini G, Gasbarrini A, Ponziani FR, Santopaolo F. Molecular Mechanisms Underlying Vascular Liver Diseases: Focus on Thrombosis. Int J Mol Sci 2023; 24:12754. [PMID: 37628933 PMCID: PMC10454315 DOI: 10.3390/ijms241612754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Vascular liver disorders (VLDs) comprise a wide spectrum of clinical-pathological entities that primarily affect the hepatic vascular system of both cirrhotic and non-cirrhotic patients. VLDs more frequently involve the portal and the hepatic veins, as well as liver sinusoids, resulting in an imbalance of liver homeostasis with serious consequences, such as the development of portal hypertension and liver fibrosis. Surprisingly, many VLDs are characterized by a prothrombotic phenotype. The molecular mechanisms that cause thrombosis in VLD are only partially explained by the alteration in the Virchow's triad (hypercoagulability, blood stasis, and endothelial damage) and nowadays their pathogenesis is incompletely described and understood. Studies about this topic have been hampered by the low incidence of VLDs in the general population and by the absence of suitable animal models. Recently, the role of coagulation imbalance in liver disease has been postulated as one of the main mechanisms linked to fibrogenesis, so a novel interest in vascular alterations of the liver has been renewed. This review provides a detailed analysis of the current knowledge of molecular mechanisms of VLD. We also focus on the promising role of anticoagulation as a strategy to prevent liver complications and to improve the outcome of these patients.
Collapse
Affiliation(s)
- Lucia Giuli
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
| | - Maria Pallozzi
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
| | - Giulia Venturini
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
| | - Antonio Gasbarrini
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Francesca Romana Ponziani
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
| | - Francesco Santopaolo
- Hepatology Unit, CEMAD Centro Malattie Dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Gemelli IRCCS, 00168 Rome, Italy; (L.G.); (M.P.); (G.V.); (F.R.P.); (F.S.)
| |
Collapse
|
37
|
Singh S, Hoque S, Zekry A, Sowmya A. Radiological Diagnosis of Chronic Liver Disease and Hepatocellular Carcinoma: A Review. J Med Syst 2023; 47:73. [PMID: 37432493 PMCID: PMC10335966 DOI: 10.1007/s10916-023-01968-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Medical image analysis plays a pivotal role in the evaluation of diseases, including screening, surveillance, diagnosis, and prognosis. Liver is one of the major organs responsible for key functions of metabolism, protein and hormone synthesis, detoxification, and waste excretion. Patients with advanced liver disease and Hepatocellular Carcinoma (HCC) are often asymptomatic in the early stages; however delays in diagnosis and treatment can lead to increased rates of decompensated liver diseases, late-stage HCC, morbidity and mortality. Ultrasound (US) is commonly used imaging modality for diagnosis of chronic liver diseases that includes fibrosis, cirrhosis and portal hypertension. In this paper, we first provide an overview of various diagnostic methods for stages of liver diseases and discuss the role of Computer-Aided Diagnosis (CAD) systems in diagnosing liver diseases. Second, we review the utility of machine learning and deep learning approaches as diagnostic tools. Finally, we present the limitations of existing studies and outline future directions to further improve diagnostic accuracy, as well as reduce cost and subjectivity, while also improving workflow for the clinicians.
Collapse
Affiliation(s)
- Sonit Singh
- School of CSE, UNSW Sydney, High St, Kensington, 2052, NSW, Australia.
| | - Shakira Hoque
- Gastroenterology and Hepatology Department, St George Hospital, Hogben St, Kogarah, 2217, NSW, Australia
| | - Amany Zekry
- St George and Sutherland Clinical Campus, School of Clinical Medicine, UNSW, High St, Kensington, 2052, NSW, Australia
- Gastroenterology and Hepatology Department, St George Hospital, Hogben St, Kogarah, 2217, NSW, Australia
| | - Arcot Sowmya
- School of CSE, UNSW Sydney, High St, Kensington, 2052, NSW, Australia
| |
Collapse
|
38
|
Jones AK, Chen H, Ng KJ, Villalona J, McHugh M, Zeveleva S, Wilks J, Brilisauer K, Bretschneider T, Qian HS, Fryer RM. Soluble Guanylyl Cyclase Activator BI 685509 Reduces Portal Hypertension and Portosystemic Shunting in a Rat Thioacetamide-Induced Cirrhosis Model. J Pharmacol Exp Ther 2023; 386:70-79. [PMID: 37230799 DOI: 10.1124/jpet.122.001532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Portal hypertension (PT) commonly occurs in cirrhosis. Nitric oxide (NO) imbalance contributes to PT via reduced soluble guanylyl cyclase (sGC) activation and cGMP production, resulting in vasoconstriction, endothelial cell dysfunction, and fibrosis. We assessed the effects of BI 685509, an NO-independent sGC activator, on fibrosis and extrahepatic complications in a thioacetamide (TAA)-induced cirrhosis and PT model. Male Sprague-Dawley rats received TAA twice-weekly for 15 weeks (300-150 mg/kg i.p.). BI 685509 was administered daily for the last 12 weeks (0.3, 1, and 3 mg/kg p.o.; n = 8-11 per group) or the final week only (Acute, 3 mg/kg p.o.; n = 6). Rats were anesthetized to measure portal venous pressure. Pharmacokinetics and hepatic cGMP (target engagement) were measured by mass spectrometry. Hepatic Sirius Red morphometry (SRM) and alpha-smooth muscle actin (αSMA) were measured by immunohistochemistry; portosystemic shunting was measured using colored microspheres. BI 685509 dose-dependently increased hepatic cGMP at 1 and 3 mg/kg (3.92 ± 0.34 and 5.14 ± 0.44 versus 2.50 ± 0.19 nM in TAA alone; P < 0.05). TAA increased hepatic SRM, αSMA, PT, and portosystemic shunting. Compared with TAA, 3 mg/kg BI 685509 reduced SRM by 38%, αSMA area by 55%, portal venous pressure by 26%, and portosystemic shunting by 10% (P < 0.05). Acute BI 685509 reduced SRM and PT by 45% and 21%, respectively (P < 0.05). BI 685509 improved hepatic and extrahepatic cirrhosis pathophysiology in TAA-induced cirrhosis. These data support the clinical investigation of BI 685509 for PT in patients with cirrhosis. SIGNIFICANCE STATEMENT: BI 685509 is an NO-independent sGC activator that was tested in a preclinical rat model of TAA-induced nodular, liver fibrosis, portal hypertension, and portal systemic shunting. BI 685509 reduced liver fibrosis, portal hypertension, and portal-systemic shunting in a dose-dependent manner, supporting its clinical assessment to treat portal hypertension in patients with cirrhosis.
Collapse
Affiliation(s)
- Amanda K Jones
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| | - Hongxing Chen
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| | - Khing Jow Ng
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| | - Jorge Villalona
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| | - Mark McHugh
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| | - Svetlana Zeveleva
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| | - James Wilks
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| | - Klaus Brilisauer
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| | - Tom Bretschneider
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| | - Hu Sheng Qian
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| | - Ryan M Fryer
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut (A.K.J., H.C., K.J.N., J.V., M.M., S.Z., J.W., H.S.Q., R.M.F.); and Department of Drug Discovery Sciences, Discovery Science Technologies, Boehringer Ingelheim Pharma GmbH & Co., Biberach an der Riss, Germany (K.B., T.B.)
| |
Collapse
|
39
|
Lazaro A, Stoll P, von Elverfeldt D, Kreisel W, Deibert P. Close Relationship between Systemic Arterial and Portal Venous Pressure in an Animal Model with Healthy Liver. Int J Mol Sci 2023; 24:9963. [PMID: 37373109 PMCID: PMC10298130 DOI: 10.3390/ijms24129963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
It is unclear to what extent systemic arterial blood pressure influences portal pressure. This relationship is clinically important as drugs, which are conventionally used for therapy of portal hypertension, may also influence systemic arterial blood pressure. This study investigated the potential correlation between mean arterial (MAP) and portal venous pressure (PVP) in rats with healthy livers. In a rat model with healthy livers, we investigated the effect of manipulation of MAP on PVP. Interventions consisted of 0.9% NaCl (group 1), 0.1 mg/kg body weight (bw) Sildenafil (low dose), an inhibitor of phosphodiesterase-5 (group 2), and 1.0 mg/kg bw Sildenafil (high dose, group 3) in 600 µL saline injected intravenously. Norepinephrine was used to increase MAP in animals with circulatory failure while PVP was monitored. Injection of the fluids induced a transient drop in MAP and PVP, probably due to a reversible cardiac decompensation. The drop in MAP and drop in PVP are significantly correlated. The time lag between change in MAP and change in PVP by 24 s in all groups suggests a cause-and-effect relationship. Ten minutes after the injection of the fluid, cardiac function was normalized. Thereafter, MAP gradually decreased. In the NaCl group, PVP decreases by 0.485% for a 1% drop of MAP, by 0.550% in the low-dose sildenafil group, and by 0.651% in the high-dose sildenafil group (p < 0.05 for difference group two vs. group one, group three vs. group one, and group three vs. group two). These data suggest that Sildenafil has an inherent effect on portal pressure that exceeds the effect of MAP. Injection of norepinephrine led to a sudden increase in MAP followed by an increase in PVP after a time lag. These data show a close relationship between portal venous pressure and systemic arterial pressure in this animal model with healthy livers. A change in MAP is consequently followed by a change in PVP after a distinct time lag. This study, furthermore, suggests that Sildenafil influences portal pressure. Further studies should be performed in a model with cirrhotic livers, as these may be important in the evaluation of vasoactive drugs (e.g., PDE-5-inhibitors) for therapy of portal hypertension.
Collapse
Affiliation(s)
- Adhara Lazaro
- Institute of Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (A.L.); (P.D.)
| | | | - Dominik von Elverfeldt
- Department of Diagnostic and Interventional Radiology, Division of Medical Physics, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany;
| | - Wolfgang Kreisel
- Department of Medicine II, Gastroenterology, Hepatology, Endocrinology and Infectious Diseases, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Peter Deibert
- Institute of Exercise and Occupational Medicine, Faculty of Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany; (A.L.); (P.D.)
| |
Collapse
|
40
|
Ortega-Ribera M, Gibert-Ramos A, Abad-Jordà L, Magaz M, Téllez L, Paule L, Castillo E, Pastó R, de Souza Basso B, Olivas P, Orts L, Lozano JJ, Villa R, Bosch J, Albillos A, García-Pagán JC, Gracia-Sancho J. Increased sinusoidal pressure impairs liver endothelial mechanosensing, uncovering novel biomarkers of portal hypertension. JHEP Rep 2023; 5:100722. [PMID: 37151732 PMCID: PMC10154975 DOI: 10.1016/j.jhepr.2023.100722] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 05/09/2023] Open
Abstract
Background & Aims Portal hypertension (PH) is a frequent and severe clinical syndrome associated with chronic liver disease. Considering the mechanobiological effects of hydrostatic pressure and shear stress on endothelial cells, we hypothesised that PH might influence the phenotype of liver sinusoidal endothelial cells (LSECs) during disease progression. The aim of this study was to investigate the effects of increased hydrodynamic pressure on LSECs and to identify endothelial-derived biomarkers of PH. Methods Primary LSECs were cultured under normal or increased hydrodynamic pressure within a pathophysiological range (1 vs. 12 mmHg) using a microfluidic liver-on-a-chip device. RNA sequencing was used to identify pressure-sensitive genes, which were validated in liver biopsies from two independent cohorts of patients with chronic liver disease with PH (n = 73) and participants without PH (n = 23). Biomarker discovery was performed in two additional independent cohorts of 104 patients with PH and 18 patients without PH. Results Transcriptomic analysis revealed marked deleterious effect of pathological pressure in LSECs and identified chromobox 7 (CBX7) as a key transcription factor diminished by pressure. Hepatic CBX7 downregulation was validated in patients with PH and significantly correlated with hepatic venous pressure gradient. MicroRNA 181a-5p was identified as pressure-induced upstream regulator of CBX7. Two downstream targets inhibited by CBX7, namely, E-cadherin (ECAD) and serine protease inhibitor Kazal-type 1 (SPINK1), were found increased in the bloodstream of patients with PH and were highly predictive of PH and clinically significant PH. Conclusions We characterise the detrimental effects of increased hydrodynamic pressure on the sinusoidal endothelium, identify CBX7 as a pressure-sensitive transcription factor, and propose the combination of two of its reported products as biomarkers of PH. Impact and Implications Increased pressure in the portal venous system that typically occurs during chronic liver disease (called portal hypertension) is one of the main drivers of related clinical complications, which are linked to a higher risk of death. In this study, we found that pathological pressure has a harmful effect on liver sinusoidal endothelial cells and identified CBX7 as a key protein involved in this process. CBX7 regulates the expression of E-cadherin and SPINK1, and consequently, measuring these proteins in the blood of patients with chronic liver disease allows the prediction of portal hypertension and clinically significant portal hypertension.
Collapse
Affiliation(s)
- Martí Ortega-Ribera
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Albert Gibert-Ramos
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Laia Abad-Jordà
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Marta Magaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Luis Téllez
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramon y Cajal, Instituto Ramon y Cajal de Investigacion Biosanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Lorena Paule
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramon y Cajal, Instituto Ramon y Cajal de Investigacion Biosanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Elisa Castillo
- Gastroenterology and Hepatology Department, Hospital Universitario Ramon y Cajal, Instituto Ramon y Cajal de Investigacion Biosanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Raül Pastó
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Bruno de Souza Basso
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- PUCRS, Escola de Ciências, Laboratório de Pesquisa em Biofísica Celular e Inflamação, Porto Alegre, Brazil
| | - Pol Olivas
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
| | - Lara Orts
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Juan José Lozano
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Rosa Villa
- Grupo de Aplicaciones Biomédicas, Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Bellaterra, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBERBBN), Madrid, Spain
| | - Jaime Bosch
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Agustín Albillos
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
- Gastroenterology and Hepatology Department, Hospital Universitario Ramon y Cajal, Instituto Ramon y Cajal de Investigacion Biosanitaria (IRYCIS), Universidad de Alcalá, Madrid, Spain
| | - Joan Carles García-Pagán
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Laboratory, IDIBAPS Biomedical Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBEREHD), Madrid, Spain
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Corresponding author. Address: IDIBAPS Biomedical Research Institute, Rosselló 149, 08036, Barcelona, Spain. Tel.: +34 932275400 #4306
| |
Collapse
|
41
|
Díaz LA, Pages J, Mainardi V, Mendizabal M. Inpatient Hepatology Consultation: A Practical Approach for Clinicians. Med Clin North Am 2023; 107:555-565. [PMID: 37001953 DOI: 10.1016/j.mcna.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Cirrhosis is the end-stage of chronic liver disease and constitutes a leading cause of potential years of working life lost, especially in the Americas and Europe. Its natural history is characterized by an asymptomatic phase called compensated cirrhosis, followed by a rapidly progressive phase characterized by liver-related complications termed decompensated cirrhosis. Complications could be related to portal hypertension and/or liver dysfunction, including ascites, portal hypertensive gastrointestinal bleeding, encephalopathy, and jaundice. This review will discuss some of the most important precipitants of hepatic decompensation, including acute variceal bleeding, spontaneous bacterial peritonitis, and hepatic encephalopathy.
Collapse
Affiliation(s)
- Luis Antonio Díaz
- Department of Gastroenterology, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Josefina Pages
- Hepatology and Liver Transplant Unit, Hospital Universitario Austral, Pilar, Provincia de Buenos Aires, Argentina
| | - Victoria Mainardi
- Hepatology and Liver Transplant Unit, Hospital Central de Las Fuerzas Armadas, Montevideo, Uruguay
| | - Manuel Mendizabal
- Hepatology and Liver Transplant Unit, Hospital Universitario Austral, Pilar, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
42
|
Chen S, Wang B, Zhou J, Wu X, Meng T, Liu H, Wang T, Zhao X, Wu S, Kong Y, Ou X, Jia J, Wee A, You H, Sun Y. A new glutamine synthetase index to evaluate hepatic lobular restoration in advanced fibrosis during anti-HBV therapy. J Med Virol 2023; 95:e28555. [PMID: 36738235 DOI: 10.1002/jmv.28555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Hepatic lobular architecture distortion is a deleterious turning point and a crucial histological feature of advanced liver fibrosis in chronic liver diseases. Regression of fibrosis has been documented in chronic hepatitis B (CHB) patients. However, whether lobular architecture could be restored following fibrosis regression after antiviral therapy is still unclear. Glutamine synthetase (GS) is generally expressed by perivenular hepatocytes around hepatic veins (HV). In this study, we defined abnormal lobular architecture (GSPT ) as GS expressing in the vicinity of portal tracts (PT), which denotes parenchymal extinction and lobular collapse. We defined normal lobular architecture (GSHV ) as GS positivity area not approximating PTs. Therefore, we propose a new GS-index, defined as the percentage of GSHV /(GSHV + GSPT ), to evaluate the extent of architectural disruption and restoration. We evaluated 43 CHB patients with advanced fibrosis (Ishak stage ≥4). Posttreatment liver biopsy was performed after 78 weeks of anti-HBV therapy. The median GS-index improved from 7% (interquartile range [IQR]: 0%-23%) at baseline to 36% (IQR: 20%-57%) at Week 78 (p < 0.001). Totals of 22 patients (51%) had significant GS-index improvement from 0% (IQR: 0%-13%) to 55% (IQR: 44%-81%), while the other half had almost no change between 17% (IQR: 0%-33%) to 20% (IQR: 12%-31%). When GS-index78w ≥ 50% was used to define hepatic lobular restoration, 37% of patients (16/43) achieved lobular restoration, with much improvement in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels (median value of ∆/Baseline in ALT: restored vs. nonrestored was 79.1% vs. 48.8%, p = 0.018; median value of ∆/Baseline in AST: restored vs. nonrestored was 69.1% vs. 32.5%, p = 0.005). More importantly, lobular restoration correlated with fibrosis regression (median value of ∆/Baseline in Ishak stage: restored vs. nonrestored was 25.0% vs. 0%, p = 0.008). Therefore, in the era of antiviral therapy for CHB, restoration of hepatic lobular architecture is achievable in patients with advanced fibrosis. GS-index provides additional insight into fibrosis regression that goes beyond collagen degradation.
Collapse
Affiliation(s)
- Shuyan Chen
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Bingqiong Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jialing Zhou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Xiaoning Wu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Tongtong Meng
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Hui Liu
- Department of Pathology, Beijing You-an Hospital, Capital Medical University, Beijing, China
| | - Tailing Wang
- Department of Pathology, China-Japan Friendship Hospital, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Shanshan Wu
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Yuanyuan Kong
- Clinical Epidemiology and EBM Unit, Beijing Friendship Hospital, Capital Medical University, Beijing Clinical Research Institute, Beijing, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Aileen Wee
- Department of Pathology, National University Hospital, Singapore, Singapore
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, National Clinical Research Center of Digestive Diseases, Beijing, China
| |
Collapse
|
43
|
Tseng TC, Yin WY. Minor hepatectomy for hepatocellular carcinoma in a patient with portal hypertension: A case report and review of the literature. Medicine (Baltimore) 2022; 101:e32176. [PMID: 36482633 PMCID: PMC9726341 DOI: 10.1097/md.0000000000032176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Curative modalities for early hepatocellular carcinoma (HCC) include liver resection (LR) and transplantation. For patients with portal hypertension (PH), liver transplantation (LT) is the preferred treatment but is oftentimes limited by organ shortage and can lead candidates to drop off due to disease progression, while hepatectomy has a higher risk of complications. This would pose a dilemma as to whether wait for donor organs or prioritize hepatectomy. PATIENT CONCERNS The patient was a 56-year-old male, a case of liver cirrhosis due to hepatitis C with sustained virological response following direct-acting antiviral agents. He was a liver transplant candidate, presented to the gastroenterology outpatient department for a recently-diagnosed liver tumor during a regular follow-up session. Pre-operative survey revealed PH manifested by thrombocytopenia, splenomegaly, huge splenorenal shunt and varices. The patient's Child-Pugh score was 7. INTERVENTIONS AND DIAGNOSIS Considering the patient's overall condition, tumor size and location, and a shortage of grafts, he underwent segment 5 and 6 partial hepatectomy. The pathological diagnosis was moderately differentiated HCC. OUTCOMES His postoperative course was complicated by refractory intraabdominal infection (IAI) and recovered under aggressive antibiotics treatment. He remained recurrence-free for over a year. CONCLUSION For patients with early resectable HCC, the approach of having a minor hepatectomy followed by salvage transplantation should serve as a compromising strategy. Tumor resection retards the progression of the disease. Comprehensive healthcare can expectantly improve clinical outcomes.
Collapse
Affiliation(s)
| | - Wen-Yao Yin
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Surgery, Dalin Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- * Correspondence: Wen-Yao Yin, Division of Transplant Surgery, Department of Surgery, Dalin Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, No. 2, Minsheng Road, Dalin Town, Chiayi County 622401, Taiwan (e-mail: )
| |
Collapse
|
44
|
Sakiani S, Heller T, Koh C. Current and investigational drugs in early clinical development for portal hypertension. Front Med (Lausanne) 2022; 9:974182. [PMID: 36300180 PMCID: PMC9589453 DOI: 10.3389/fmed.2022.974182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction The development of portal hypertension leads to a majority of complications associated with chronic liver disease. Therefore, adequate treatment of portal hypertension is crucial in the management of such patients. Current treatment options are limited and consist mainly of medications that decrease the hyperdynamic circulation, such as non-selective beta blockers, and treatment of hypervolemia with diuretics. Despite these options, mortality rates have not improved over the last two decades. Newer, more effective treatment options are necessary to help improve survival and quality of life in these patients. Areas covered Multiple preclinical models and clinical studies have demonstrated potential efficacy of a variety of new treatment modalities. We introduce treatment options including the use of vasodilation promotors, vasoconstriction inhibitors, anticoagulants, antiangiogenics, and anti-inflammatory drugs. We examine the most recent studies for treatment options within these drug classes and offer insights as to which show the most promise in this field. Methodology Published studies that identified novel medical treatment options of portal hypertension were searched using PubMed (https://pubmed.ncbi.nlm.nih.gov/). Clinical trials listed in Clinicaltrials.gov were also searched with a focus on more recent and ongoing studies, including those with completed recruitment. Searching with key terms including "portal hypertension" as well as individually searching specific treatment medications that were listed in other publications was carried out. Finally, current societal guidelines and recent review articles relevant to the management of portal hypertension were evaluated, and listed references of interest were included. Conclusion Many ongoing early phase studies demonstrate promising results and may shape the field of portal hypertension management in future. As concrete results become available, larger RCTs will be required before making definitive conclusions regarding safety and efficacy and whether or not they can be incorporated into routine clinical practice. Statins, anticoagulants, and PDE inhibitors have been among the most studied and appear to be most promising.
Collapse
Affiliation(s)
- Sasan Sakiani
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, United States
| | - Theo Heller
- Liver Diseases Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Christopher Koh
- Liver Diseases Branch, Division of Intramural Research, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
45
|
Human stem cells for decompensated cirrhosis in adults. Cochrane Database Syst Rev 2022; 2022:CD015173. [PMCID: PMC9531721 DOI: 10.1002/14651858.cd015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the benefits and harms of stem cell treatment in adults with decompensated cirrhosis, regardless of ethnicity, sex, types of stem cells, route of stem cell injection, and administered dose.
Collapse
|
46
|
Kristensen H, Kimer N, Møller S. Indications and methods for measuring portal hypertension in cirrhosis. Scand J Gastroenterol 2022; 57:1149-1157. [PMID: 35514215 DOI: 10.1080/00365521.2022.2065889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background and objectives: Over the last decade our understanding of the pathophysiology of portal hypertension has increased. Novel diagnostic technologies have facilitated and improved the diagnosis and treatment of hepatic fibrosis and cirrhosis. With this review we aim to provide an overview of contemporary diagnostic principles of portal hypertension and indications for measuring portal pressure in cirrhosis.Methods: By review of current literature, we assessed new and old principles of measuring portal hypertension and the diagnostic values of the methods.Results: Invasive measurement of the portal pressure is still the gold standard to quantitate portal hypertension and to assess response to vasoactive treatment. The size of the portal pressure is important to assess since it contains information on the course of the disease and risk of developing hepatic decompensation, hepatocellular carcinoma, and mortality. Reliable non-invasive Elastography techniques are emerging that adequately assess portal pressure, but the available methods are not yet sufficiently accurate.Conclusion: Although elastography techniques provide valuable information and are good monitoring tools, liver vein catheterization remains valuable in diagnosing and monitoring portal hypertension, especially in combination with a trans-jugular liver biopsy.
Collapse
Affiliation(s)
- Helle Kristensen
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Nina Kimer
- Gastro Unit, Medical Division, University Hospital Hvidovre, Hvidovre, Denmark
| | - Søren Møller
- Department of Clinical Physiology and Nuclear Medicine, Center of Functional Imaging and Research, Copenhagen University Hospital, Hvidovre, Denmark.,Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Sun X, Ni HB, Xue J, Wang S, Aljbri A, Wang L, Ren TH, Li X, Niu M. Bibliometric-analysis visualization and review of non-invasive methods for monitoring and managing the portal hypertension. Front Med (Lausanne) 2022; 9:960316. [PMID: 36186776 PMCID: PMC9520322 DOI: 10.3389/fmed.2022.960316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundPortal hypertension monitoring is important throughout the natural course of cirrhosis. Hepatic venous pressure gradient (HVPG), regarded as the golden standard, is limited by invasiveness and technical difficulties. Portal hypertension is increasingly being assessed non-invasively, and hematological indices, imaging data, and statistical or computational models are studied to surrogate HVPG. This paper discusses the existing non-invasive methods based on measurement principles and reviews the methodological developments in the last 20 years.MethodsFirst, we used VOSviewer to learn the architecture of this field. The publications about the non-invasive assessment of portal hypertension were retrieved from the Web of Science Core Collection (WoSCC). VOSviewer 1.6.17.0 was used to analyze and visualize these publications, including the annual trend, the study hotspots, the significant articles, authors, journals, and organizations in this field. Next, according to the cluster analysis result of the keywords, we further retrieved and classified the related studies to discuss.ResultsA total of 1,088 articles or review articles about our topic were retrieved from WoSCC. From 2000 to 2022, the number of publications is generally growing. “World Journal of Gastroenterology” published the most articles (n = 43), while “Journal of Hepatology” had the highest citations. “Liver fibrosis” published in 2005 was the most influential manuscript. Among the 20,558 cited references of 1,088 retrieved manuscripts, the most cited was a study on liver stiffness measurement from 2007. The highest-yielding country was the United States, followed by China and Italy. “Berzigotti, Annalisa” was the most prolific author and had the most cooperation partners. Four study directions emerged from the keyword clustering: (1) the evaluation based on fibrosis; (2) the evaluation based on hemodynamic factors; (3) the evaluation through elastography; and (4) the evaluation of variceal bleeding.ConclusionThe non-invasive assessment of portal hypertension is mainly based on two principles: fibrosis and hemodynamics. Liver fibrosis is the major initiator of cirrhotic PH, while hemodynamic factors reflect secondary alteration of splanchnic blood flow. Blood tests, US (including DUS and CEUS), CT, and magnetic resonance imaging (MRI) support the non-invasive assessment of PH by providing both hemodynamic and fibrotic information. Elastography, mainly USE, is the most important method of PH monitoring.
Collapse
Affiliation(s)
- XiaoHan Sun
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Hong Bo Ni
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Jian Xue
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Afaf Aljbri
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Liuchun Wang
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Tian Hang Ren
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xiao Li,
| | - Meng Niu
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, China
- Meng Niu,
| |
Collapse
|
48
|
Olmesartan Improves Hepatic Sinusoidal Remodeling in Mice with Carbon Tetrachloride-Induced Liver Fibrosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4710993. [PMID: 36060127 PMCID: PMC9439923 DOI: 10.1155/2022/4710993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/04/2022] [Accepted: 07/30/2022] [Indexed: 11/24/2022]
Abstract
Aim In mice with liver fibrosis produced by carbon tetrachloride (CCl4), the effects of olmesartan on intrahepatic angiogenesis and sinusoidal remodeling will be evaluated. Methods By injecting CCl4 into the peritoneal cavity, we established a mouse model of liver fibrosis. Using Sirius red and Masson trichrome staining, the extent of liver fibrosis in the animals was determined. Using immunohistochemical labeling and western blotting, the level of α-smooth muscle actin (α-SMA) expression, a characteristic of hepatic stellate cell activation, was assessed. Electron microscopy was used to determine the effect of olmesartan on hepatic sinusoidal capillarization, and immunohistochemical labeling was used to determine the expression levels of endothelial and basement membrane proteins in mouse liver tissues. Platelet-derived growth factor (PDGF), IL-10, vascular endothelial growth factor (VEGF), and angiotensin II levels in mouse serum were measured by Luminex multifactor analysis and ELISA. Olmesartan's effect on the angiotensin II type 1 receptor (AT1R) and the VEGF receptor (VEGFR) was evaluated using western blotting. Results Olmesartan reduced CCl4-induced inflammatory cell infiltration and collagen deposition to alleviate liver fibrosis. α-SMA expression was decreased, and HSC activation was inhibited in mouse liver tissues by olmesartan treatment. In addition, hepatic sinusoidal capillarization was improved under the action of olmesartan. The expression of collagen IV, fibronectin, CD31, and von Willebrand factor (VWF) in the olmesartan group was also markedly downregulated. In fibrotic mice, olmesartan medication decreased the levels of PDGF, VEGF, and angiotensin II, but it increased the level of IL-10. Moreover, olmesartan reduced the expression of VEGFR-1, VEGFR-2, and AT1R relative to CCl4-induced liver fibrosis. Conclusions In mice with CCl4-induced fibrosis, olmesartan lowers angiogenesis and improves hepatic sinusoidal remodeling, according to our findings. By acting on the angiotensin II-AT1R-VEGF axis, this is achieved.
Collapse
|
49
|
Cardiovascular Mapping in Cirrhosis From the Compensated Stage to Hepatorenal Syndrome: A Magnetic Resonance Study. Am J Gastroenterol 2022; 117:1269-1278. [PMID: 35916685 DOI: 10.14309/ajg.0000000000001847] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/02/2022] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Arterial vasodilation and hyperdynamic circulation are considered hallmarks of the pathophysiological mechanisms of decompensation in cirrhosis. However, detailed characterization of peripheral, splanchnic, renal, and cardiac hemodynamic have not previously been published in a spectrum from healthy stage to advanced decompensated liver disease with hepatorenal syndrome-acute kidney injury (HRS-AKI). METHODS We included 87 patients with cirrhosis and 27 healthy controls in this prospective cohort study. The population comprised patients with compensated cirrhosis (n = 27) and decompensated cirrhosis (n = 60); patients with decompensated cirrhosis were further separated into subsets of responsive ascites (33), refractory ascites (n = 16), and HRS-AKI (n = 11). We measured portal pressure and assessed regional blood flow by magnetic resonance imaging. RESULTS Patients with compensated cirrhosis experienced higher azygos venous flow and higher hepatic artery flow fraction of cardiac index than controls ( P < 0.01), but other flow parameters were not significantly different. Patients with decompensated cirrhosis experienced significantly higher cardiac index ( P < 0.01), higher superior mesenteric artery flow ( P = 0.01), and lower systemic vascular resistance ( P < 0.001) compared with patients with compensated cirrhosis. Patients with HRS-AKI had the highest cardiac output and lowest renal flow of all groups ( P < 0.01 and P = 0.02, respectively). Associations of single hemodynamic parameters were stronger with model for end-stage liver disease than with portal pressure. DISCUSSION The regional cardiocirculatory changes seem closely linked to clinical symptoms with 3 distinguished hemodynamic stages from compensated to decompensated cirrhosis and, finally, to HRS-AKI. The attenuated renal perfusion despite high cardiac output in patients with HRS-AKI challenges the prevailing pathophysiological hypothesis of cardiac dysfunction as a causal factor in HRS-AKI. Finally, magnetic resonance imaging seems an accurate and reliable noninvasive method to assess hemodynamics and has potential as a diagnostic tool in patients with cirrhosis.
Collapse
|
50
|
Zhao X, Li L, Li S, Liu J, Wang H, Lin Y, Cai D. Diammonium glycyrrhizinate ameliorates portal hypertension by regulating portal macrophage oxidation and superoxide dismutase 3. Eur J Pharmacol 2022; 929:175115. [PMID: 35738453 DOI: 10.1016/j.ejphar.2022.175115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022]
Abstract
Portal hypertension (PHT) is a complication of liver diseases. Increased intrahepatic vascular resistance is attributed to reduced bioavailability of vasodilator substances. The macrophage activation and superoxide dismutase 3 (SOD3) involve in the pathogenesis of PHT. Diammonium glycyrrhizinate (DG) is the salt form of glycyrrhizin derived from Radix glycyrrhizae, exerting anti-oxidant activities and be beneficial for liver injury. Here, we aimed to investigate effects of DG on PHT and explore its underlying mechanisms on regulation of macrophages and SOD3. The carbon tetrachloride induced PHT rats received administration of liposome-encapsulated clodronate for hepatic macrophage depletion, or PBS liposomes for matched control. DG (25 mg/kg) or vehicle was gavaged. Portal pressure in vivo, and serum biomarkers of macrophage activation were measured. The nitric oxide (NO) and prostacyclin (PGI2) bioavailability was evaluated in the isolated portal perfused rat livers. Liver tissues were collected to evaluate cirrhosis, macrophage oxidation, and SOD3 activity. Depletion of hepatic macrophages decreased portal pressure, increased bioavailability of NO and PGI2, and restored SOD3 activity. DG effectively decreased portal pressure, relieved cirrhosis, inhibited macrophage activation. DG increased bioavailability of NO and PGI2 to relax portal veins. DG relieved portal macrophage oxidation through decreasing nicotinamide adenine dinucleotide phosphate oxidase 2 and inducible NO synthase expressions, elevated SOD3 activities and increased SOD3 expressions at portal triads. These findings indicated that DG restored SOD3 activity, against portal macrophage oxidation, protected bioavailability of NO and PGI2, thereby reduced portal pressure. It suggested a potential use of DG for PHT treatment.
Collapse
Affiliation(s)
- Xin Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Lingyu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Shuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jinyu Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Hongya Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Yulin Lin
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Dayong Cai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|