1
|
Yi X, Liu CY, Yang ST, Zhu H, Zhang YY, Lv GP, Huang H. Decoding the difference of four species of Cordyceps based on polysaccharides and immunomodulation activity. Int J Biol Macromol 2025; 294:139424. [PMID: 39755302 DOI: 10.1016/j.ijbiomac.2024.139424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/09/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025]
Abstract
Nucleosides and polysaccharides are the main bioactive ingredients of Cordyceps genus. Nucleosides shows significant differences in different Cordyceps species. However, the differences of polysaccharides have not been decoded. Here, the structure characters of polysaccharides including molecular weight (Mw) distribution, compositional monosaccharides and glycosidic linkage types were compared in C. sinensis (CS), C. militaris (CM), silkworm-hosted C. militaris (SCM) and Cordyceps fermented products (CSF). Compositional monosaccharides including mannose, glucose and galactose, and 1,4-Glcp glycosidic linkage were found abundant in Cordyceps species. Chemometric analysis showed that Cordyceps exhibit significant differences in structural information especially glycosidic linkage types. Besides, polysaccharides in CS and CSF-4 had obviously strong capacity of stimulating phagocytic, NO production and cytokines secretion. Gray relational analysis and Pearson correlation analysis were performed to further investigate the relationship between key polysaccharide structure and immunomodulatory activities. The results indicated that polysaccharides with relatively large number of 1, 4-Glcp and Mw in range of 7.16 × 106 Da-7.99 × 107 Da and 1.43 × 104 D-6.94 × 105 Da probably contributed to its immunomodulatory activities. The chemical and biological evaluation of natural and various cultured cordyceps in this study is useful for understanding and regulating the quality of cultured Cordyceps.
Collapse
Affiliation(s)
- Xin Yi
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Chun-Yao Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Shu-Ting Yang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Hua Zhu
- School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Ying-Yue Zhang
- School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Guang-Ping Lv
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - He Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
2
|
He M, Wang T, Tang C, Xiao M, Pu X, Qi J, Li Y, Li X. Metabolomics and Transcriptomics Reveal the Effects of Different Fermentation Times on Antioxidant Activities of Ophiocordyceps sinensis. J Fungi (Basel) 2025; 11:51. [PMID: 39852470 PMCID: PMC11766798 DOI: 10.3390/jof11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
Ophiocordyceps sinensis is a fungus that is cultured through fermentation from wild Chinese cordyceps. While studies have examined its metabolites, the evaluation of its antioxidant capacity remains to be conducted. The antioxidant results of O. sinensis indicate that the ferric ion-reducing antioxidant power (FRAP), antioxidant capacity (2.74 ± 0.12 μmol Trolox/g), 2,2-diphenyl-1-picrylhydrazyl (DPPH•) free radical scavenging rate (60.21 ± 0.51%), and the hydroxyl free radical scavenging rate (91.83 ± 0.68%) reached a maximum on day 30. Using LC-MS/MS to measure the metabolites on D24, D30, and D36, we found that the majority of the differential accumulated metabolites (DAMs) primarily accumulate in lipids, organoheterocyclic compounds, and organic acids and their derivatives. Notably, the DAMs exhibiting high peaks include acetylcarnitine, glutathione, linoleic acid, and L-propionylcarnitine, among others. The transcriptome analysis results indicate that the differentially expressed genes (DEGs) exhibiting high expression peaks on D30 primarily included lnaA, af470, and ZEB1; high expression peaks on D24 comprised SPBC29A3.09c and YBT1; high expression peaks on D36 included dtxS1, PA1538, and katG. The combined analysis revealed significant and extremely significant positive and negative correlations between all the DAMs and DEGs. The primary enriched pathways (p < 0.05) included glutathione metabolism, tryptophan metabolism, carbon metabolism, biosynthesis of secondary metabolites, and phenylalanine metabolism. The metabolic pathway map revealed that the DAMs and DEGs influencing the antioxidant activity of O. sinensis were significantly up-regulated on D30 but down-regulated on D36. The correlation analysis suggests that an increase in the content of DEGs and DAMs promotes an increase in the levels of enzyme and non-enzyme substances, ultimately enhancing the antioxidant capacity of O. sinensis. These findings serve as a reference of how DAMs and DEGs affect the antioxidant activity of O. sinensis. This may contribute to the enhanced development and application of O. sinensis.
Collapse
Affiliation(s)
- Min He
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Tao Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Chuyu Tang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Mengjun Xiao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Xiaojian Pu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Jianzhao Qi
- Center of Edible Fungi, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Yuling Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| | - Xiuzhang Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal and Veterinary Science, Qinghai University, Xining 810016, China; (M.H.); (T.W.); (C.T.); (M.X.); (X.P.); (Y.L.)
| |
Collapse
|
3
|
Yang Y, Ren P, Sun Y, Li J, Zhou X, Zhang H, He C, Dai H, Guan L. Structure elucidation and molecular mechanism of an immunomodulatory polysaccharide from Nostoc commune. Int J Biol Macromol 2024; 283:137435. [PMID: 39537070 DOI: 10.1016/j.ijbiomac.2024.137435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Nostoc commune Vaucher, a terrestrial and benthic blue-green alga, widely used in food and medicine worldwide. N. commune Polysaccharides (NCVP) have excellent biological activities, especially immunomodulatory, hypoglycemic and anti-tumor activities. However, the mechanism and structure-activity relationship of NCVP has been less studied. In this study, based on methylation and NMR results, a novel polysaccharide NCVP2 with 135 kDa, containing→4)-α-D-Galp-(1→, → 4)-β-D-Glcp-(1→, and →4)-α-D-Xylp-(1→ residues as the backbon, was sequentially purified from N.commune by DEAE-52 and Sephadex G-100 column. NCVP2 (50 μg/mL) exhibited the strong in vitro immunomodulatory activity by promoting the generation of nitric oxide (NO) and reactive oxygen species (ROS). A total of 2048 differentially expressed genes (DEGs) were identified by RNA-seq, including 1019 down-regulated genes and 1065 up-regulated genes. These DEGs were mainly enriched in the immune-related biological processes, involving in Mitogen-activated protein kinase (MAPK) and Toll-like receptor (TLR) signaling pathways by GO and KEGG enrichment analysis. Furthermore, Western blot results proved NCVP2 could recognize TLR2 and TLR4/MD2, and regulate TLR7/IRF7, MAPK and PI3K/AKT signaling pathways. In summary, a novel polysaccharide NCVP2 from N.commune was proposed to exhibit significant immunomodulatory effects with multiple-paths and targets, and has great potential in the development of healthy foods such as immunomodulators.
Collapse
Affiliation(s)
- Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ping Ren
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Ying Sun
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Junyi Li
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Xinjun Zhou
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Haipeng Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Chengguang He
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Huining Dai
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor and Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, Jilin, China.
| |
Collapse
|
4
|
Chen L, Liu X, Zheng K, Wang Y, Li M, Zhang Y, Cui Y, Deng S, Liu S, Zhang G, Li L, He Y. Cordyceps Polysaccharides: A Review of Their Immunomodulatory Effects. Molecules 2024; 29:5107. [PMID: 39519748 PMCID: PMC11547421 DOI: 10.3390/molecules29215107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Cordyceps primarily consists of ascomycetes, a parasitic fungus that infects insects and arthropods. Recently, Cordyceps has been shown to manifest a diverse range of pharmacological activities, rendering it applicable for the treatment and mitigation of various diseases, such as diabetes, acute liver injury, and colitis. Many active constituents have been identified from Cordyceps sinensis, including cordycepin, adenosine, sterols, and polysaccharides. Polysaccharides constitute a primary active component of Cordyceps, exhibiting immunomodulatory effects. We searched the Web of Science database with the keywords of cordyceps, polysaccharide, and immune modulation; collected related studies from 2004 to 2024; and eliminated articles with low influence and workload. A review of the research advancements regarding the immunomodulatory effects of Cordyceps polysaccharides was conducted with the aim of furnishing valuable reference information. Research indicates that polysaccharides exhibiting immunomodulatory activity are predominantly sourced from Cordyceps sinensis and Cordyceps militaris. Immunological experimental results demonstrate that Cordyceps polysaccharides can augment the activities of macrophages, lymphocytes, and dendritic cells while fostering the expression of immune-active substances such as cytokines and chemokines. Furthermore, animal experiments have substantiated the immunomodulatory effects of Cordyceps polysaccharides. These effects encompass ameliorating immune suppression induced by drugs or radiation, enhancing immune organ indices, elevating the expression of immunoreactive substances, and mitigating immune evasion prompted by tumors. In conclusion, Cordyceps polysaccharides exhibit significant immunomodulatory activity and merit further investigation.
Collapse
Affiliation(s)
- Liping Chen
- School of Comprehensive Health Management, Xihua University, Chengdu 610097, China;
| | - Xiao Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Kaiyue Zheng
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yang Wang
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Minglong Li
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yuyu Zhang
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yuan Cui
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Sichun Deng
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Shiqi Liu
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Gaoju Zhang
- Sichuan Chinese Herb Preparation, Chengdu 611732, China;
| | - Ling Li
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| | - Yuxin He
- School of Food and Bioengineering, Xihua University, Chengdu 610097, China; (X.L.); (K.Z.); (Y.W.); (M.L.); (Y.Z.); (Y.C.); (S.D.); (S.L.)
| |
Collapse
|
5
|
Zou J, Zhang Y, Luo Y, Fu M, Sun B, Liu S. MAT1-1 and MAT1-2 Ophiocordyceps xuefengensis and Comparison of Their Chemical Composition. BIOLOGY 2024; 13:686. [PMID: 39336113 PMCID: PMC11429096 DOI: 10.3390/biology13090686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Many Cordyceps sensu lato species are used as traditional Chinese medicines. However, Cordyceps are entomopathogenic fungi in the family Clavicipitaceae of Ascomycota, and excessive harvesting severely disrupts natural habitat ecosystems. Artificial cultivation of Cordyceps fruiting bodies offers a viable strategy to protect the ecological environment and mitigate the depletion of wild resource. In this study, mononucleate hyphae were selected using DAPI fluorescence staining, the MAT1-1 and MAT1-2 strains of O. xuefengensis were successfully distinguished using loop-mediated isothermal amplification (LAMP). The chemical composition and bioactive components of fruiting bodies produced by these strains were compared. Results showed that the levels of adenosine, thymidine, adenine, guanosine, uridine, total amino acids, and total essential amino acids in the fruiting bodies of MAT1-1 strains were 1.31 mg/g, 0.15 mg/g, 0.26 mg/g, 2.40 mg/g, 2.34 mg/g, 270.3 mg/g, and 102.5 mg/g, respectively, which were significantly higher than those in the MAT1-2 sample. Contrastingly, the fruiting bodies of MAT1-2 strains contained higher levels of mannose and polysaccharides, at 11.7% and 12.2%, respectively. The levels of toxic elements such as Al, Pb, As, and Hg in the MAT1-1 fruiting bodies were 1.862 mg/kg, 0.0848 mg/kg, 0.534 mg/kg, and 0.0054 mg/kg, respectively, which were markedly lower than those in the MAT1-2 fruiting bodies.
Collapse
Affiliation(s)
- Juan Zou
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418000, China;
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China
- College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China (B.S.)
| | - Yating Zhang
- College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China (B.S.)
| | - Yan Luo
- College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China (B.S.)
| | - Miaohua Fu
- College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China (B.S.)
| | - Beilin Sun
- College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China (B.S.)
| | - Shenggui Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Huaihua University, Huaihua 418000, China;
- Hunan Provincial Higher Education Key Laboratory of Intensive Processing Research on Mountain Ecological Food, College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China
- College of Biological and Food Engineering, Huaihua University, Huaihua 418000, China (B.S.)
| |
Collapse
|
6
|
Pan Y, Liu C, Jiang S, Guan L, Liu X, Wen L. Ultrasonic-assisted extraction of a low molecular weight polysaccharide from Nostoc commune Vaucher and its structural characterization and immunomodulatory activity. ULTRASONICS SONOCHEMISTRY 2024; 108:106961. [PMID: 38936294 PMCID: PMC11260389 DOI: 10.1016/j.ultsonch.2024.106961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/29/2024]
Abstract
In the current study, a novel crude polysaccharide (cNCEP) was extracted from N. commune Vaucher utilizing ultrasonic-assisted extraction (UAE) with 60 % ethanol, employing response surface methodology. The optimal yield of cNCEP was determined to be 8.07 ± 0.08 mg/g, achieved through ultrasonic-assisted extraction under the conditions of a material-to-liquid ratio of 1:22, temperature of 56 °C, power of 570 W, and duration of 147 min. Subsequent purification of NCEP via Sephadex G75 resulted in a novel polysaccharide with a molecular weight of 20.466 kDa. NCEP exhibited significant scavenging activites against DPPH and hydroxyl radicals, as well as notable in vitro immunomodulatory properties. Furthermore, the mechanisms underlying the immunomodulatory effects of NCEP, involving enhancement of immunity, were investigated, revealing potential regulation of MAPK and TLR4-IRF7-NF-κB signaling pathways through RNA-Seq and Western blot analyses. These findings highlight the promising potential of NCEP as an organic immunomodulatory agent and functional food ingredient.
Collapse
Affiliation(s)
- Ying Pan
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Chunjuan Liu
- Jilin Province Economic Management Cadre College,Changchun 130012, PR China
| | - Shuo Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, PR China
| | - Xinyao Liu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| | - Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
7
|
Chen S, Zeng J, Li R, Zhang Y, Tao Y, Hou Y, Yang L, Zhang Y, Wu J, Meng X. Traditional Chinese medicine in regulating macrophage polarization in immune response of inflammatory diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117838. [PMID: 38310986 DOI: 10.1016/j.jep.2024.117838] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Numerous studies have demonstrated that various traditional Chinese medicines (TCMs) exhibit potent anti-inflammatory effects against inflammatory diseases mediated through macrophage polarization and metabolic reprogramming. AIM OF THE STUDY The objective of this review was to assess and consolidate the current understanding regarding the pathogenic mechanisms governing macrophage polarization in the context of regulating inflammatory diseases. We also summarize the mechanism action of various TCMs on the regulation of macrophage polarization, which may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization. MATERIALS AND METHODS We conducted a comprehensive review of recently published articles, utilizing keywords such as "macrophage polarization" and "traditional Chinese medicines" in combination with "inflammation," as well as "macrophage polarization" and "inflammation" in conjunction with "natural products," and similar combinations, to search within PubMed and Google Scholar databases. RESULTS A total of 113 kinds of TCMs (including 62 components of TCMs, 27 TCMs as well as various types of extracts of TCMs and 24 Chinese prescriptions) was reported to exert anti-inflammatory effects through the regulation of key pathways of macrophage polarization and metabolic reprogramming. CONCLUSIONS In this review, we have analyzed studies concerning the involvement of macrophage polarization and metabolic reprogramming in inflammation therapy. TCMs has great advantages in regulating macrophage polarization in treating inflammatory diseases due to its multi-pathway and multi-target pharmacological action. This review may contribute to facilitate the development of natural anti-inflammatory drugs based on reshaping macrophage polarization.
Collapse
Affiliation(s)
- Shiyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Rui Li
- The Affiliated Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620010, PR China
| | - Yingrui Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Lu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
8
|
Zhang J, Wu Y, Wang C, Xu W, Zhang Z, Zhang S, Guan X, Wang X. The antioxidant, anti-inflammatory and analgesic activity effect of ethyl acetate extract from the flowers of Syringa pubescens Turcz. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117561. [PMID: 38072290 DOI: 10.1016/j.jep.2023.117561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Syringa Pubescens Turcz. (SP), a member of the Oleaceae family, is a species of plant known as Syringa. Flowers, as the medicinal part, are commonly used in the treatment of hepatitis and tonsillitis. AIM OF THE STUDY The research was the first to assess the antioxidant and anti-inflammatory potential of different parts of SP flowers (SPF) in vitro. The most promising fraction was ethyl acetate fraction of SP flower (SPFEA). The antioxidant, anti-inflammatory and analgesic activities of SPFEA were further studied, and the chemical components were identified. METHODS HPLC was used to identify the major components in various fraction of SPF. DPPH and ABTS + radical scavenging assays as well as FRAP test and β-carotene bleaching test were employed to assess the antioxidant potential of SPF fraction in vitro. The inhibitory effect on NO production in LPS-treated RAW264.7 cells and heat-induced protein denaturation test were used to evaluate the anti-inflammatory potential of SPF fraction. Further analysis of the biological activity of SPFEA was performed. Acute toxicity test was conducted to assess the toxicity of SPFEA. The anti-inflammatory effect was assessed by utilizing xylene induced ear edema model, carrageenan-induced foot edema model and peritonitis model in vivo. The analgesic effect of SPFEA was evaluated using hot plate test, tail immersion test, formaldehyde test as well as acetic acid-induced abdominal writhing pain experiment in vivo. In carrageenan induced foot edema model, ELISA kits were employed to measure levels of inflammation factors (NO, TNF-α, IL-6, COX-2, IL-1β) in foot tissue as well as MDA, CAT, SOD, GSH-PX levels in liver tissue. RESULTS HPLC results showed that there were significant differences in bioactive substances among different fractions of SPF, and SPFEA was rich in bioacitve components. Compared with other fractions of SPF, SPFEA exhibited better antioxidant and anti-inflammatory abilities. The 3000 mg/kg SPFEA group in mice had no obvious side effects. The xylene-induced ear edema model, carrageenan-induced foot edema and peritonitis models demonstrated that the SPFEA had significant anti-inflammatory effect. Moreover, inflammation factors including NO, TNF-α, IL-6, COX-2, IL-1β were significantly reduced in SPFEA groups in foot tissue induced by carrageenan. Additionally, SPFEA effectively decreased liver tissue oxidative stress levels (MDA, SOD, GSH-PX and CAT). The bioactivities of SPFEA demonstrated a clear dose-dependent relationship. The results of the hot plate test, tail immersion test, formaldehyde test and acetic acid-induced abdominal writhing pain experiments indicated the SPFEA possessed an excellent analgesic effect, and this effect was in dose-dependent manner. CONCLUSION The study provides a scientific foundation for understanding the pharmacological action of SPFEA. It has been indicated that SPFEA has excellent antioxidant, analgesic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Jiameng Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Yanfang Wu
- College of Basic Medical Sciences, Henan University of Science and Technology, 471000, Luoyang, China.
| | - Chenyu Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Weidong Xu
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Zichen Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Suya Zhang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Xinyi Guan
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China
| | - Xinsheng Wang
- College of Chemistry and Chemical Engineering, Henan University of Science and Technology, 471000, Luoyang, China.
| |
Collapse
|
9
|
Hyun JH, Woo IK, Kim KT, Park YS, Kang DK, Lee NK, Paik HD. Heat-Treated Paraprobiotic Latilactobacillus sakei KU15041 and Latilactobacillus curvatus KU15003 Show an Antioxidant and Immunostimulatory Effect. J Microbiol Biotechnol 2024; 34:358-366. [PMID: 37997261 PMCID: PMC10940752 DOI: 10.4014/jmb.2309.09007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/25/2023]
Abstract
The lactic acid bacteria, including Latilactobacillus sakei and Latilactobacillus curvatus, have been widely studied for their preventive and therapeutic effects. In this study, the underlying mechanism of action for the antioxidant and immunostimulatory effects of two strains of heat-treated paraprobiotics was examined. Heat-treated L. sakei KU15041 and L. curvatus KU15003 showed higher radical scavenging activity in both the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assays than the commercial probiotic strain LGG. In addition, treatment with these two strains exhibited immunostimulatory effects in RAW 264.7 macrophages, with L. curvatus KU15003 showing a slightly higher effect. Additionally, they promoted phagocytosis and NO production in RAW 264.7 cells without any cytotoxicity. Moreover, the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 was upregulated. These strains resulted in an increased expression of inducible nitric oxide synthase and cyclooxygenase-2. Moreover, the nuclear factor-κB and mitogen-activated protein kinase signaling pathways were stimulated by these strains. These findings suggest the potential of using L. sakei KU15041 and L. curvatus KU15003 in food or by themselves as probiotics with antioxidant and immune-enhancing properties.
Collapse
Affiliation(s)
- Jun-Hyun Hyun
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Im-Kyung Woo
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Kee-Tae Kim
- Research Institute, WithBio Inc., Seoul 05029, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
10
|
Zhang W, He J, Zheng D, Zhao P, Wang Y, Zhao J, Li P. Immunomodulatory Activity and Its Mechanisms of Two Polysaccharides from Poria cocos. Molecules 2023; 29:50. [PMID: 38202633 PMCID: PMC10780076 DOI: 10.3390/molecules29010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Polyporaceae is an important fungal family that has been a source of natural products with a range of pharmaceutical activities in China. In our previous study, two polysaccharides, PCWPW and PCWPS, with significant antioxidant and antidepressant activity were obtained from Poria cocos. In this study, we evaluated their potential molecular mechanisms in the immunomodulation of macrophages. PCWPW and PCWPS were characterized by GC-MS analysis to contain 1,3-linked Glcp. ELISA assays results demonstrated that the secretion of TNF-α was significantly enhanced by PCWPW/PCWPS. RNA-seq data demonstrated that PCWPS treatment modulated the expression of immune-related genes in macrophages, which was further confirmed by RT-qPCR assays. The activation of TNF-α secretion was found to be mannose receptor (MR) dependent and suppressed by MR inhibitor pretreatment. Moreover, the amount of TNF-α cytokine secretion in PCWPW/PCWPS-induced RAW264.7 cells was decreased when pretreated with NF-κB or MAPK signaling pathway inhibitors. Collectively, our results suggested that PCWPW and PCWPS possessed immunomodulatory activity that regulates TNF-α expression through the NF-κB/MAPK signaling pathway by binding to mannose receptors. Therefore, PCWPW and PCWPS isolated from Poria cocos have potential as drug candidates for immune-related disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Li
- Shanxi Key Laboratory for Modernization of TCVM, Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (J.H.); (D.Z.); (P.Z.); (Y.W.); (J.Z.)
| |
Collapse
|
11
|
Zhang S, Wang S, Fan YY, Liu WC, Zheng YN, Wang Z, Ren S, Li W. Preparation of a new resource food-arabinogalactan and its protective effect against enterotoxicity in IEC-6 cells by inhibiting endoplasmic reticulum stress. Int J Biol Macromol 2023; 249:126124. [PMID: 37543271 DOI: 10.1016/j.ijbiomac.2023.126124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Plant polysaccharides can be used as bioactive natural polymers that provide health benefits, however high molecular weight neutral polysaccharides have not shown good bioactivity. In this study, high molecular weight neutral arabinogalactan was isolated and structurally characterized to investigate it antioxidant activity against IEC-6 cells. In this study, a neutral polysaccharide (AG-40-I-II) was obtained from the roots of Larix gmelinii (Rupr.) Kuzen. and purified using ethanol fractional precipitation and purification on a DEAE-52 cellulose column and a Superose 12 gel filtration column. The structural characteristics of AG-40-I-II was detected by chemical and spectroscopic methods. The results showed that the average molecular weight of AG-40-I-II was 18.6 kDa, the main chain was composed of →4)-β-D-Gal-(1, → 4, 6)-β-D-Gal-(1 and →4)-β- D-Glc-(1, the side chain is composed of T-β-L-Araf(1 → 6). The effect of AG-40-I-II on H2O2-induced IEC-6 cell injury was determined by MTT method. Besides, AG-40-I-II could reduce the level of MDA and increase SOD activity on IEC-6 cells, which could significantly inhibit the production of ROS. Importantly, AG-40-I-II inhibited the splicing of XBP1 by IRE1α through the ERS pathway and reduced the cell apoptosis induced by H2O2. In summary, the results of this study indicate that AG-40-I-II, as a natural source of plant polysaccharides, has good antioxidant activity, and is expected to become a safe plant source of natural antioxidants, which has great potential in biomedicine potential.
Collapse
Affiliation(s)
- Shuai Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shuang Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yu-Ying Fan
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Northeast Normal University, Changchun 130024, China
| | - Wen-Cong Liu
- School of Food and Pharmaceutical Engineering, Wuzhou University, Wuzhou 543003, China
| | - Yi-Nan Zheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
12
|
Zhang H, Yuan C, Sun C, Zhang Q. Efficacy of Jinshuibao as an adjuvant treatment for chronic renal failure in China: A meta-analysis. Medicine (Baltimore) 2023; 102:e34575. [PMID: 37565918 PMCID: PMC10419584 DOI: 10.1097/md.0000000000034575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Research on Jinshuibao (JSB) for chronic renal failure (CRF) is limited, its clinical efficacy on CRF has not been evaluated. Our aim is to systematically evaluate the efficacy of JSB for the treatment of CRF in Chinese patients, and to provide evidence-based medical advice for clinical practice. METHODS Randomized controlled trials (RCTs) which compared JSB combined with conventional treatment (CT) with CT alone in CRF were searched in 8 databases including PubMed, EMBASE, Cochrane Library, Web of science, China Biology Medicine disc, Wanfang, Chinese Scientific Journal Database (VIP) and China National Knowledge Infrastructure form inception to March 31, 2023. RevMan5.4 statistical software was used for meta-analysis. RESULTS 17 trials involving 1431 cases were identified for meta-analysis. The results showed that total effective rate (relative risk [RR] = 1.25, 95% confidence internal [CI]: 1.17-1.34, P < .00001), creatinine clearance rate (Ccr) (MD = -8.63, 95% CI: -12.42 to -4.84, P < .00001), albumin (Alb) (MD = -2.88, 95% CI: -4.85 to -0.92, P = .004) and hemoglobin (Hb) (MD = -5.88, 95% CI: -7.42 to -4.34, P < .00001) in JSB plus CT were significantly higher than those in CT; while blood urea nitrogen (BUN) (MD = 2.03, 95% CI: 1.27-2.80, P < .00001), serum creatinine (Scr) (MD = 48.23, 95% CI: 31.96-64.49, P < .00001), 24-hour urine protein (24hpro) (MD = 0.19, 95% CI: 0.06-0.31, P = .003), uric acid (UA) (MD = 76.36, 95% CI: 12.40-140.31, P = .02), tumor necrosis factor-α (TNF-α) (MD = 10.74, 95% CI: 5.04-16.45, P = .0002), interleukin-6 (IL-6) (MD = 5.07,95% CI: 1.21-8.92, P = .01), high-sensitivity C-reactive protein (hs-CRP) (MD = 3.74, 95% CI: 0.96-6.52, P = .008) in JSB plus CT were significantly lower than those in CT. CONCLUSION Combining JSB with CT has a good effect on the treatment of CRF in Chinese people. High-quality RCTs are needed to further confirm the results.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Pharmacy, Henan NO.3 Provincial People’s Hospital, Zhengzhou, China
| | - Chao Yuan
- Department of Pharmacy, Weifang People’s Hospital, Weifang, China
| | - Cuicui Sun
- Department of Pharmacy, Qilu Hospital of Shan Dong University, Jinan, China
| | - Qiong Zhang
- Department of Renal Endocrinology, The Second Affiliated Hospital of Xi’an Medical University, Xi’an, China
| |
Collapse
|
13
|
Pasdaran A, Hassani B, Tavakoli A, Kozuharova E, Hamedi A. A Review of the Potential Benefits of Herbal Medicines, Small Molecules of Natural Sources, and Supplements for Health Promotion in Lupus Conditions. Life (Basel) 2023; 13:1589. [PMID: 37511964 PMCID: PMC10416186 DOI: 10.3390/life13071589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The Latin word lupus, meaning wolf, was in the medical literature prior to the 1200s to describe skin lesions that devour flesh, and the resources available to physicians to help people were limited. The present text reviews the ethnobotanical and pharmacological aspects of medicinal plants and purified molecules from natural sources with efficacy against lupus conditions. Among these molecules are artemisinin and its derivatives, antroquinonol, baicalin, curcumin, emodin, mangiferin, salvianolic acid A, triptolide, the total glycosides of paeony (TGP), and other supplements such as fatty acids and vitamins. In addition, medicinal plants, herbal remedies, mushrooms, and fungi that have been investigated for their effects on different lupus conditions through clinical trials, in vivo, in vitro, or in silico studies are reviewed. A special emphasis was placed on clinical trials, active phytochemicals, and their mechanisms of action. This review can be helpful for researchers in designing new goal-oriented studies. It can also help practitioners gain insight into recent updates on supplements that might help patients suffering from lupus conditions.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Bahareh Hassani
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
| | - Ali Tavakoli
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Ekaterina Kozuharova
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran;
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| |
Collapse
|
14
|
Tong C, Luo J, Xie C, Wei J, Pan G, Zhou Z, Li C. Characterization and Biological Activities of Melanin from the Medicinal Fungi Ophiocordyceps sinensis. Int J Mol Sci 2023; 24:10282. [PMID: 37373428 DOI: 10.3390/ijms241210282] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Melanin is a complex natural pigment that is widely present in fungi. The mushroom Ophiocordyceps sinensis has a variety of pharmacological effects. The active substances of O. sinensis have been extensively studied, but few studies have focused on the O. sinensis melanin. In this study, the production of melanin was increased by adding light or oxidative stress, namely, reactive oxygen species (ROS) or reactive nitrogen species (RNS), during liquid fermentation. Subsequently, the structure of the purified melanin was characterized using elemental analysis, ultraviolet-visible absorption spectrum, Fourier transform infrared (FTIR), electron paramagnetic resonance (EPR), and pyrolysis gas chromatography and mass spectrometry (Py-GCMS). Studies have shown that O. sinensis melanin is composed of C (50.59), H (6.18), O (33.90), N (8.19), and S (1.20), with maximum absorbance at 237 nm and typical melanin structures such as benzene, indole, and pyrrole. Additionally, the various biological activities of O. sinensis melanin have been discovered; it can chelate heavy metals and shows a strong ultraviolet-blocking ability. Moreover, O. sinensis melanin can reduce the levels of intracellular reactive oxygen species and counteract the oxidative damage of H2O2 to cells. These results can help us to develop applications of O. sinensis melanin in radiation resistance, heavy metal pollution remediation, and antioxidant use.
Collapse
Affiliation(s)
- Chaoqun Tong
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Jian Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou 571199, China
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou 571199, China
| | - Chaolu Xie
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Junhong Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Guoqing Pan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| | - Zeyang Zhou
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Chunfeng Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Prevention, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Guo ZJ, Liu Y, Yang JY, Jin MY, Mao PW, Zhou XW. Evaluating the Application Potential of a Recombinant Ganoderma Protein as Bioactive Ingredients in Cosmetics. Molecules 2023; 28:molecules28073272. [PMID: 37050035 PMCID: PMC10096787 DOI: 10.3390/molecules28073272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The aim of this study was to evaluate the application potential of a recombinant fungal immunomodulatory protein from Ganoderma lucidum (rFIP-glu). First, a recombinant plasmid pPIC9K::FIP-glu-His was transferred into Pichia pastoris for the production of protein. The protein was then to assess its free radical scavenging abilities and the effect on the viability of both human immortalized keratinocytes (HaCaT cells) and mouse B16-F10 melanoma cells (B16 cells) in vitro, followed by the effect on the melanin synthesis of B16 cells. The results of SDS-PAGE and western blot showed that rFIP-glu was successfully expressed. Furtherly, a bioactivity assay in vitro indicated that the scavenging rate of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals reached 84.5% at 6.0 mg/mL (p ≤ 0.0001) of rFIP-glu, showing strong antioxidant activity. Subsequently, a safety evaluation demonstrated that rFIP-glu promoted the proliferation of HaCaT cells, with the cell viability reaching 124.3% at 48 μg/mL (p ≤ 0.01), regarding the cell viability of B16 cells after exposure to rFIP-glu (48 μg/mL) significantly inhibited, to 80.7% (p ≤ 0.01). Besides, rFIP-glu inhibited the melanin synthesis of B16 cells in a dose-dependent manner from 100–1000 μg/mL, and rFIP-glu at 500 μg/mL (p ≤ 0.01) exhibited the highest intracellular melanin amount reduction of 16.8%. Furthermore, a mechanism analysis showed that rFIP-glu inhibited tyrosinase (TYR) activity by up-regulating the expression of the microphthalmia-associated transcription factor (MITF) and down-regulating the gene expression of TYR and tyrosinase-related protein-1 (TYRP-1), thus inhibiting melanin synthesis. The data implied that rFIP-glu had significant antioxidant activity and whitening potency. It should be used as raw materials for cosmeceutical applications.
Collapse
Affiliation(s)
- Zhi-Jian Guo
- School of Agriculture and Biology, Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Agriculture and Biology, Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia-Yi Yang
- School of Agriculture and Biology, Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng-Yuan Jin
- School of Agriculture and Biology, Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei-Wen Mao
- School of Agriculture and Biology, Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, Engineering Research Center of Therapeutic Antibody (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Zhang J, Wang N, Chen W, Zhang W, Zhang H, Yu H, Yi Y. Integrated metabolomics and transcriptomics reveal metabolites difference between wild and cultivated Ophiocordyceps sinensis. Food Res Int 2023; 163:112275. [PMID: 36596185 DOI: 10.1016/j.foodres.2022.112275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Ophiocordyceps sinensis is a traditional medicinal fungus endemic to the alpine and high-altitude areas of the Qinghai-Tibet plateau. The scarcity of the wild resource has led to increased attention to artificially cultivated O. sinensis. However, little is known about the metabolic differences and the regulatory mechanisms between cultivated and wild O. sinensis. This study exploited untargeted metabolomics and transcriptomics to uncover the differences in accumulated metabolites and expressed genes between wild and cultivated O. sinensis. Metabolomics results revealed that 368 differentially accumulated metabolites were mainly enriched in biosynthesis of amino acids, biosynthesis of plant secondary metabolites and purine nucleotide metabolism. Cultivated O. sinensis contained more amino acids and derivatives, carbohydrates and derivatives, and phenolic acids than wild O. sinensis, whereas the contents of most nucleosides and nucleotides in wild O. sinensis were significantly higher than in cultivated O. sinensis. Transcriptome analysis indicated that 4430 annotated differentially expressed genes were identified between two types. Integrated metabolomics and transcriptomics analyses suggested that IMPDH, AK, ADSS, guaA and GUK genes might be related to the synthesis of purine nucleotides and nucleosides. Our findings will provide a new insight into the molecular basis of metabolic variations of this medicinal fungus.
Collapse
Affiliation(s)
- Jianshuang Zhang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Na Wang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Wanxuan Chen
- The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Weiping Zhang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Haoshen Zhang
- The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China
| | - Hao Yu
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China.
| | - Yin Yi
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of life sciences, Guizhou Normal University, Guiyang 550025, China; The Key Laboratory of Plant Physiology and Development in Guizhou Province, School of life sciences, Guizhou Normal University, Guiyang 550025, China.
| |
Collapse
|
17
|
Liu Y, Guo ZJ, Zhou XW. Chinese Cordyceps: Bioactive Components, Antitumor Effects and Underlying Mechanism-A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196576. [PMID: 36235111 PMCID: PMC9572669 DOI: 10.3390/molecules27196576] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Chinese Cordyceps is a valuable source of natural products with various therapeutic effects. It is rich in various active components, of which adenosine, cordycepin and polysaccharides have been confirmed with significant immunomodulatory and antitumor functions. However, the underlying antitumor mechanism remains poorly understood. In this review, we summarized and analyzed the chemical characteristics of the main components and their pharmacological effects and mechanism on immunomodulatory and antitumor functions. The analysis revealed that Chinese Cordyceps promotes immune cells' antitumor function by via upregulating immune responses and downregulating immunosuppression in the tumor microenvironment and resetting the immune cells' phenotype. Moreover, Chinese Cordyceps can inhibit the growth and metastasis of tumor cells by death (including apoptosis and autophagy) induction, cell-cycle arrest, and angiogenesis inhibition. Recent evidence has revealed that the signal pathways of mitogen-activated protein kinases (MAPKs), nuclear factor kappaB (NF-κB), cysteine-aspartic proteases (caspases) and serine/threonine kinase Akt were involved in the antitumor mechanisms. In conclusion, Chinese Cordyceps, one type of magic mushroom, can be potentially developed as immunomodulator and anticancer therapeutic agents.
Collapse
|
18
|
The Purification and Biochemical Characterization of a Weissella cibaria F1 Derived β-Mannanase for Its Use in the Preparation of Konjac Oligo-Glucomannan with Immunomodulatory Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mannanase with a molecular weight of 33.1 kDa was purified from Weissella cibaria F1. The F1 mannanase contained 289 amino acid residues and shared 70.0% similarity with mannanase from Bacillus subtilis (P55278 (MANB_BACIU)). The optimum reaction conditions of F1 mannanase were 50 °C and pH 6.5. After incubation at pH 4.5–8.0 and 30–60 °C for 2 h, the enzyme activity remained above 60%. The effects of metal ions on mannanase enzyme activity were measured, and Mn2+, Mg2+, and Cu2+ increased enzyme activity. The Km (16.96 ± 0.01 μmol·mL−1) and Vmax (1119.05 ± 0.14 μmol·min−1) values showed that the enzyme exhibited high affinity for locust bean gum. Mannanase was used to hydrolyze konjac glucomannan to produce konjac oligo-glucomannan (KOGM). KOGM increased the proliferation and phagocytosis of RAW264.7 macrophages and enhanced nitric oxide, and cytokine production in macrophages, which showed potent immunostimulatory activity. In this study, the advantages of mannanase derived from lactic acid bacteria were utilized to expand the application of KOGM in the medical field, which is helpful to explore the broad prospects of KOGM in functional food or medicine.
Collapse
|
19
|
Qiao Z, Zhao Y, Wang M, Cao J, Chang M, Yun S, Cheng Y, Cheng F, Feng C. Effects of Sparassis latifolia neutral polysaccharide on immune activity via TLR4-mediated MyD88-dependent and independent signaling pathways in RAW264.7 macrophages. Front Nutr 2022; 9:994971. [PMID: 36185691 PMCID: PMC9515474 DOI: 10.3389/fnut.2022.994971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSparassis latifolia (S. latifolia) is a precious edible fungus with multiple biological activities. To date, no study has been investigated the underlying molecular mechanism of immunoregulation caused by the neutral polysaccharide of S. latifolia.Materials and methodsTo investigate immunomodulatory mechanism of S. latifolia neutral polysaccharide (SLNP), SLNP was obtained from S. latifolia and its structure, immune receptors and regulation mechanism were studied.ResultsS. latifolia neutral polysaccharide consisted of arabinose, galactose, glucose, xylose, and mannose with a molar ratio of 6:12:63:10:5. SLNP was a pyran polysaccharide with a relative molecular weight of 3.2 × 105 Da. SLNP promoted the proliferation of RAW264.7, which further induced the secretions of nitric oxide, TNF-α, IL-6, and IFN-β, and upregulated the immune receptor TLR4 expression. Moreover, SLNP increased remarkably the levels of TRAF6, IRF3, JNK, ERK, p38, and p38 mRNA and protein mediated by TLR4.ConclusionS. latifolia neutral polysaccharide regulated the immune function of RAW264.7 through MyD88-dependent and -independent signaling pathways mediated by TLR4 receptor, which suggests that SLNP is a new immunomodulator.
Collapse
|
20
|
Gao J, Li Q, Liu Y, Yang B, Ahmed Sadiqb F, Li X, Mi S, Sang Y. Immunoregulatory effect of Lactobacillus paracasei VL8 exopolysaccharide on RAW264.7 cells by NF-κB and MAPK pathways. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Hong YH, Mai ZH, Li CJ, Zheng QY, Guo LX. Microbial Diversity Analyses of Fertilized Thitarodes Eggs and Soil Provide New Clues About the Occurrence of Chinese Cordyceps. Curr Microbiol 2022; 79:229. [PMID: 35767080 DOI: 10.1007/s00284-022-02919-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Chinese cordyceps is a well-known fungus-larva complex with medicinal and economic importance. At present the occurrence of Chinese cordyceps has not been fully illuminated. In this study, the microbial diversities of fertilized Thitarodes eggs from sites A (high occurrence rates of Chinese cordyceps), B (low occurrence rates), and C (no Chinese cordyceps) were analyzed using 16S rRNA and ITS gene-sequencing technique. The previous sequencing data of soil from the same sites were conjointly analyzed. The results showed that bacterial communities among the eggs were significantly different. The bacterial diversity and evenness were much higher on site A. Wolbachia was overwhelmingly predominant in the eggs of sites B and C, while Spiroplasma showed preference on site A. The fungal between-group differences in the eggs were not as significant as that of bacteria. Purpureocillium in Cordyceps-related families showed preference on site A. Wolbachia, Spiroplasma, and Purpureocillium were inferred to be closely related to Chinese cordyceps occurrence. Intra-kingdom and inter-kingdom network analyses suggest that closer correlations of microbial communities (especially closer fungal positive correlations) in fertilized eggs might promote Chinese cordyceps occurrence. Besides, metabolic pathway analysis showed that in fertilized eggs or soil the number of bacterial metabolic pathways with significant differences in every comparison between two sites was greater than that of fungi. Collectively, this study provides novel information about the occurrence of Chinese cordyceps, contributing to the large-scale artificial cultivation of Chinese cordyceps.
Collapse
Affiliation(s)
- Yue-Hui Hong
- School of Basic Medicine, Guangdong Jiangmen Chinese Medicine College, Jiangmen, 529000, China
| | - Zhan-Hua Mai
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Cheng-Ji Li
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Qiu-Yi Zheng
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China
| | - Lian-Xian Guo
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
22
|
Zheng Q, Chen J, Yuan Y, Zhang X, Li L, Zhai Y, Gong X, Li B. Structural characterization, antioxidant, and anti-inflammatory activity of polysaccharides from Plumula Nelumbinis. Int J Biol Macromol 2022; 212:111-122. [PMID: 35594937 DOI: 10.1016/j.ijbiomac.2022.05.097] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/18/2022]
Abstract
A polysaccharide from Plumula Nelumbinis (PNP), was isolated and purified. PNP had a molecular weight of 450 kDa and consisted five monosaccharides, including rhamnose, galacturonic acid, xylose, galactose, and arabinose. The methylation and nuclear magnetic resonance (NMR) analysis revealed that the main glycosidic linkage types of PNP were →5)-α-L-Araf-(1→, →3)-β-D-Galp-(1→, β-D-Xylp-(→1, →3,4)-β-D-Rhap-(1→, →4)-β-D-GalpA-(1→. In the range of 25-1200 μg/mL, PNP had no cytotoxicity to RAW264.7 cells. PNP could protect RAW264.7 cell from oxidative damage by reducing the production of ROS and MDA and the secretion of LDH, enhancing the activity of SOD, CAT, and GSH-Px, and increasing the content of GSH. Anti-inflammatory activity experiments showed that PNP inhibited the expression of NO, TNF-α, INF-γ, IL-1β, and IL-6. PNP could inhibit the activation of MAPK/NF-κB cell pathways. PNP could be used as a potential natural antioxidant and anti-inflammatory substance in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Qingsong Zheng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Juncheng Chen
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Yi Yuan
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xia Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China; School of Chemical Engineering and Energy Technology, Dongguan University of Technology, College Road 1, Dongguan, 523808, China
| | - Yongzhen Zhai
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China
| | - Xiao Gong
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China.
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Ministry of Education Engineering Research Center of Starch & Protein Processing, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
23
|
Liu W, Gao Y, Zhou Y, Yu F, Li X, Zhang N. Mechanism of Cordyceps sinensis and its Extracts in the Treatment of Diabetic Kidney Disease: A Review. Front Pharmacol 2022; 13:881835. [PMID: 35645822 PMCID: PMC9136174 DOI: 10.3389/fphar.2022.881835] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is the major reason of chronic kidney disease (CKD)-caused end-stage renal failure (ESRF), and leads to high mortality worldwide. At present, the treatment of DKD is mainly focused on controlling the hyperglycemia, proteinuria, and hypertension, but is insufficient on the effective delay of DKD progression. Cordyceps sinensis is a kind of wild-used precious Chinese herb. Its extracts have effects of nephroprotection, hepatoprotection, neuroprotection, and protection against ischemia/reperfusion-induced injury, as well as anti-inflammatory and anti-oxidant activities. According to the theory of traditional Chinese medicine, Cordyceps sinensis can tonify the lung and the kidney. Several Chinese patent medicines produced from Cordyceps sinensis are often used to treat DKD and achieved considerable efficacy. This review summarized the clinical usage of Cordyceps sinensis, as well as its mainly biological activities including anti-hyperglycemic, anti-inflammatory, immunomodulatory, anti-oxidant, anti-fibrotic activities and regulation of apoptosis.
Collapse
Affiliation(s)
- Wu Liu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yiwei Gao
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Zhou
- Department of Graduate Student, Beijing University of Chinese Medicine, Beijing, China
| | - Fangning Yu
- Department of Graduate Student, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyi Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Ning Zhang,
| |
Collapse
|
24
|
Extraction, structure and pharmacological effects of the polysaccharides from Cordyceps sinensis: A review. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|