1
|
Agarwal G, Bhargava S, Dumoga S. Nanomaterial interventions for wound healing: Current status of preclinical and clinical studies. Wound Repair Regen 2025; 33:e70031. [PMID: 40322951 DOI: 10.1111/wrr.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/21/2025] [Accepted: 04/19/2025] [Indexed: 05/08/2025]
Abstract
Wound healing is a complex, highly coordinated process involving a series of molecular and cellular phases-haemostasis, inflammation, proliferation, and remodelling. These phases are regulated by growth factors such as cytokines and chemokines, coordinating the actions of fibroblasts, keratinocytes, progenitor, and endothelial cells. Disruptions in this process can lead to chronic wounds, an escalating global health issue. Despite advancements, current wound healing technologies face several limitations. Conventional dressings often fail to provide optimal moisture balance, leading to delayed healing. Bioengineered skin substitutes and growth factor therapies, while promising, are restricted by high costs, limited availability, immune rejection, and inconsistent efficacy. Moreover, infection control remains a significant challenge, necessitating alternative strategies that can enhance antimicrobial protection while promoting tissue regeneration. In response, nanotechnology has emerged as a potential game-changer in wound care, offering precise targeting of cells and regulatory molecules, enhanced therapeutic delivery, and tailored interaction with the wound environment. This review explores the role of nanomaterials in wound healing, emphasising their unique physicochemical properties and ability to promote tissue regeneration. We provide an overview of recent advances in nanotechnology, including nanoparticles, nanoengineered scaffolds, and gene and stem cell therapies. Additionally, we highlight the preclinical and clinical advancements of nanotechnology-based treatments, aiming to address the limitations of traditional wound care strategies.
Collapse
Affiliation(s)
- Garima Agarwal
- School of Pharmaceutical & Populations Health Economics, DIT University, Dehradun, India
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, Meerut, India
| | - Samir Bhargava
- School of Pharmaceutical & Populations Health Economics, DIT University, Dehradun, India
| | - Shweta Dumoga
- Department of Applied Science, Meerut Institute of Engineering & Technology, Meerut, India
| |
Collapse
|
2
|
Yan S, Yu Z, Yang H, Yang Y, Qin J, Wu X, Lin G. Near-infrared light-triggered silk fibroin hydrogels integrated with polydopamine-modified nanoparticles for enhanced wound healing and infection control. Int J Biol Macromol 2025; 309:142814. [PMID: 40185428 DOI: 10.1016/j.ijbiomac.2025.142814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
This study presents the development and evaluation of a novel silk fibroin (SF)-based hydrogel composite, SiPDA/Ag-C, enhanced with polydopamine (PDA)-modified silver nanoparticles (Ag@PDA) and PDA-modified curcumin (Cur-PDA), for skin wounds treatment and infection control. Dopamine readily oxidizes and reacts with SF to form hydrogels. By in-situ synthesizing silver nanoparticles (Ag NPs) on the surface of PDA nanospheres, Ag@PDA achieves a dual antibacterial effect. It combines the photothermal antibacterial property of PDA with the ability of Ag NPs to disrupt bacterial membranes and DNA. Coating PDA on the surface of curcumin creates Cur-PDA nanoparticles, which not only enhance curcumin's bioavailability but also integrate curcumin's anti-inflammatory and antioxidant properties with PDA's antioxidant and photothermal antibacterial capabilities. Combining Ag@PDA and Cur-PDA into the SF hydrogel matrix results in the SiPDA/Ag-C hydrogel. The hydrogel leverages the photothermal properties of PDA to achieve non-invasive wound healing under near-infrared (NIR) light irradiation. The SiPDA/Ag-C hydrogel could significantly inhibit the growth of Staphylococcus aureus and Escherichia coli in vitro and in vivo, and promote wound healing by reducing inflammation, enhancing antioxidant capacity, and stimulating tissue regeneration. In vivo study shows that compare with the treatment of SiPDA/Ag-C hydrogel alone, the combined treatment with NIR irradiation could significantly inhibit bacterial growth and improve tissue repair. The hydrogel also exhibited excellent biocompatibility, biodegradability, and minimal cytotoxic effects, making it a promising candidate for advanced wound care and tissue engineering applications.
Collapse
Affiliation(s)
- Shaorong Yan
- Cardiothoracic Surgery Department and Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China; Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Zhenxin Yu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Haomin Yang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Yongqiang Yang
- National Graphene Products Quality Inspection and Testing Center (Jiangsu), Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Yanxin Road 330, Wuxi 214174, China.
| | - Jien Qin
- Graphene Source technology Wuxi Co., Ltd., No. 3 Qingyan Road, Huishan District, Wuxi 214174, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road 53, Qingdao 266042, China
| | - Gaoyang Lin
- Cardiothoracic Surgery Department and Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao 266033, China.
| |
Collapse
|
3
|
Jia C, Li LY, Duan QY, Liu X, Zhu XY, Xu KF, Li C, Wang ZX, Wu FG. A Self-Assembled Nanoreactor for Realizing Antibacterial Photodynamic/Gas Therapy and Promoting Wound Healing. Adv Healthc Mater 2025:e2500487. [PMID: 40289403 DOI: 10.1002/adhm.202500487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/23/2025] [Indexed: 04/30/2025]
Abstract
Among various treatments employed to solve the global problem of bacterial infection, photodynamic therapy (PDT) is recognized as a method with great potential to inactivate a wide range of bacteria without the development of drug resistance. However, many commonly used photosensitizers (PSs) have the disadvantages of poor water-solubility and potential toxicity, which limits their clinical application. Additionally, nitric oxide (NO) has unique advantages in antibacterial treatments due to its small molecular weight. Herein, protoporphyrin IX (PpIX), L-arginine (L-Arg), and glycol chitosan (GC) are used to construct a self-assembled cationic Arg-GC-PpIX nanoreactor for efficient bacterial inactivation under white light illumination. The Arg-GC-PpIX nanoreactor with excellent water dispersity and stability can rapidly bind to bacteria through electrostatic interaction and produce local singlet oxygen (1O2)/NO under light irradiation, leading to a high antibacterial efficiency toward both Gram-negative and Gram-positive bacteria. Besides, these NPs also possess a desirable antibiofilm ability. Finally, Arg-GC-PpIX@Gel which is obtained through loading Arg-GC-PpIX into the sodium alginate (SA)/Ca2+ hydrogel shows a satisfactory ability to promote infected wound healing when combined with white light irradiation. Therefore, the rationally designed Arg-GC-PpIX nanoreactor with light-triggered 1O2/NO release is a promising antibacterial agent for achieving effective PDT/NO gas therapy.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ling-Yi Li
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Qiu-Yi Duan
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Xiao-Yu Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Ke-Fei Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Chengcheng Li
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Zi-Xi Wang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, P. R. China
| |
Collapse
|
4
|
Sawalha H, Moulton SE, Winkel A, Stiesch M, Zaferanloo B. Role of Endophytic Fungi in the Biosynthesis of Metal Nanoparticles and Their Potential as Nanomedicines. J Funct Biomater 2025; 16:129. [PMID: 40278237 PMCID: PMC12027871 DOI: 10.3390/jfb16040129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Metal nanoparticles (MNPs) produced through biosynthesis approaches have shown favourable physical, chemical, and antimicrobial characteristics. The significance of biological agents in the synthesis of MNPs has been acknowledged as a promising alternative to conventional approaches such as physical and chemical methods, which are confronted with certain challenges. To meet these challenges, the use of endophytic fungi as nano-factories for the synthesis of MNPs has become increasingly popular worldwide in recent times. This review provides an overview of the synthesis of MNPs using endophytic fungi, the mechanisms involved, and their important biomedical applications. A special focus on different biomedical applications of MNPs mediated endophytic fungi involved their antibacterial, antifungal, antiviral, and anticancer applications and their potential as drug delivery agents. Furthermore, this review highlights the significance of the use of endophytic fungi for the green synthesis of MNPs and discusses the benefits, challenges, and prospects in this field.
Collapse
Affiliation(s)
- Hanadi Sawalha
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Simon E. Moulton
- School of Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
- Aikenhead Centre for Medical Discovery, St Vincent’s Hospital Melbourne, Melbourne, VIC 3065, Australia
- Iverson Health Innovation Research Institute, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (M.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, 30625 Hannover, Germany; (A.W.); (M.S.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Bita Zaferanloo
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
5
|
Chen X, Li X, Xiao X, Long R, Chen B, Lin Y, Wang S, Liu Y. Photothermal and Antibacterial PDA@Ag/SerMA Microneedles for Promoting Diabetic Wound Repair. ACS APPLIED BIO MATERIALS 2024; 7:6603-6616. [PMID: 39250682 DOI: 10.1021/acsabm.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Diabetic foot ulcer (DFU) is a common and severe complication of diabetes characterized by wound neuropathy, ischemia, and susceptibility to infection, making its treatment difficult. Dressings are commonly used in treating diabetic wounds; however, they have disadvantages, including lack of flexibility and mechanical strength, lack of coagulation activity, resistance to biodegradation, and low drug delivery efficiency. Developing more effective strategies for diabetic wound treatment has become a new focus. Microneedles (MN) can be used as a drug delivery platform for DFU wounds, allowing safe, effective, painless and minimally invasive medication administration through the skin. Herein, PDA@Ag/SerMA microneedles were prepared by combining the photothermal properties of polydopamine (PDA), the antimicrobial properties of argentum (Ag), and the ability of sericin methacryloyl (SerMA) to promote cell mitosis to accelerate wound healing and treat diabetic ulcer wounds. The results revealed that PDA@Ag/SerMA microneedles exhibited approximately 100% antimicrobial efficacy against Staphylococcus aureus and Escherichia coli under 808 nm near-infrared (NIR) irradiation. Furthermore, the wound healing rate of mice reached 95% within 12 days, which demonstrated the excellent antibacterial properties and wound healing efficacy of PDA@Ag/SerMA microneedles at cellular and animal levels, providing a potential solution for treating DFU.
Collapse
Affiliation(s)
- Xinyu Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xuemei Li
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Xi Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Ruimin Long
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Biaoqi Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Yi Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| | - Shibin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
- College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Yuangang Liu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Biochemical Technology & Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
6
|
Liu D, Chen J, Gao L, Chen X, Lin L, Wei X, Liu Y, Cheng H. Injectable Photothermal PDA/Chitosan/β-Glycerophosphate Thermosensitive Hydrogels for Antibacterial and Wound Healing Promotion. Macromol Biosci 2024; 24:e2400080. [PMID: 38752628 DOI: 10.1002/mabi.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/02/2024] [Indexed: 05/24/2024]
Abstract
Controlling infections while reducing the use of antibiotics is what doctors as well as researchers are looking for. As innovative smart materials, photothermal materials can achieve localized heating under light excitation for broad-spectrum bacterial inhibition. A polydopamine/chitosan/β-glycerophosphate temperature-sensitive hydrogel with excellent antibacterial ability is synthesized here. Initially, the hydrogel has good biocompatibility. In vitro experiments reveal its noncytotoxic property when cocultured with gingival fibroblasts and nonhemolytic capability. Concurrently, the in vivo biocompatibility is confirmed through liver and kidney blood markers and staining of key organs. Crucially, the hydrogel has excellent photothermal conversion performance, which can realize the photothermal conversion of hydrogel up to 3 mm thickness. When excited by near-infrared light, localized heating is attainable, resulting in clear inhibition impacts on both Staphylococcus aureus and Escherichia coli, with the inhibition rates of 91.22% and 96.69%, respectively. During studies on mice's infected wounds, it is observed that the hydrogel can decrease S. aureus' presence in the affected area when exposed to near-infrared light, and also lessen initial inflammation and apoptosis, hastening tissue healing. These findings provide valuable insights into the design of antibiotic-free novel biomaterials with good potential for clinical applications.
Collapse
Affiliation(s)
- Dingkun Liu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Jinbing Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Linjuan Gao
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Xing Chen
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Liujun Lin
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Xia Wei
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Yuan Liu
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
| | - Hui Cheng
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian, 350004, China
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian, 350002, China
| |
Collapse
|
7
|
Qin J, Li Z, Feng Y, Guo Y, Zhao Z, Sun S, Zheng J, Zhang M, Zhang J, Zhang Y, Wei J, Ding C, Xue W. Reactive Oxygen Species-Scavenging Mesoporous Poly(tannic acid) Nanospheres Alleviate Acute Kidney Injury by Inhibiting Ferroptosis. ACS Biomater Sci Eng 2024; 10:5856-5868. [PMID: 39164198 PMCID: PMC11389690 DOI: 10.1021/acsbiomaterials.4c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Acute kidney injury (AKI), predominantly associated with the excess production of endogenous ROS, is a serious renal dysfunction syndrome. Ferroptosis characterized by iron-dependent regulated cell death has significant involvement in AKI pathogenesis. As symptomatic treatment of AKI remains clinically limited, a new class of effective therapies has emerged, which is referred to as nanozyme. In our research, a natural mesoporous poly(tannic acid) nanosphere (referred to as PTA) was developed that can successfully mimic the activity of superoxide dismutase (SOD) by Mussel-inspired interface deposition strategy, for effective ROS scavenging and thus inhibition of ferroptosis to attenuate AKI. As anticipated, PTA mitigated oxidative stress and inhibited ferroptosis, as opposed to other modes of cell death such as pyroptosis or necrosis. Furthermore, PTA exhibited favorable biocompatibility and safeguarded the kidney against ferroptosis by enhancing the expression of SLC7a11/glutathione peroxidase 4(GPX4) and Nrf2/HO-1, while reducing the levels of ACSL4 protein in the ischemia and reperfusion injury (IRI)-induced AKI model. Moreover, PTA effectively suppressed aberrant expression of inflammatory factors. Overall, this study introduced antioxidative nanozymes in the form of mesoporous polyphenol nanospheres, showcasing exceptional therapeutic efficacy in addressing ROS-related diseases. This novel approach holds promise for clinical AKI treatment and broadens the scope of biomedical applications for nanozymes.
Collapse
Affiliation(s)
- Jingyue Qin
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zepeng Li
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yingcong Guo
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhenting Zhao
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Shirui Sun
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jin Zheng
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jing Zhang
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yilei Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University Xi'an ,Shaanxi710061,China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chenguang Ding
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Wujun Xue
- Department of Kidney Transplantation, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
- Institute of Organ Transplantation, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
8
|
Hakimi F, Balegh H, Sarmadi fard P, Kazeminava F, Moradi S, Eskandari M, Ahmadian Z. Silver/tannic acid nanoparticles/ poly-L-lysine decorated polyvinyl alcohol-hydrogel as a hybrid wound dressing. Heliyon 2024; 10:e35264. [PMID: 39161815 PMCID: PMC11332810 DOI: 10.1016/j.heliyon.2024.e35264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/21/2024] Open
Abstract
Hydrogels containing antimicrobial materials have emerged as attractive platforms for wound treatment in the past decade due to their favorable bio-mimicking properties, excellent modulation of bacterial infection, and ability to minimize bacterial resistance. Herein, a hybrid combination of polyvinyl alcohol (PVA), hyperbranched poly L-lysine (L), tannic acid decorated AgNPs (AgTA NPs), loaded with Allantoin (Alla) is used to fabricate PLAg-Alla hydrogel dressing via the freeze-thaw method without use of any chemical cross-linker. The PLAg-Alla hydrogel possesses a great structure, is biodegradable, and safe, and exhibits high antibacterial potential, all required for efficient wound healing. The incorporation of AgTA and poly L-lysine (L) within the hydrogel contributes to the enhancement of antibacterial ability, as well as effectively promoting the wound healing. This hybrid hydrogel possessed favorable physicochemical features, robust antibacterial properties, and accelerated wound healing in vivo as promising dressing for the clinical application.
Collapse
Affiliation(s)
- Fatemeh Hakimi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hadi Balegh
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Parham Sarmadi fard
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fahimeh Kazeminava
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sheyda Moradi
- Department of Chemistry, Faculty of Science, University of Mohagheg Ardabili, Ardabil, Iran
| | - Mehdi Eskandari
- Department of Physiology, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Korramabad, Iran
| |
Collapse
|
9
|
Crane B, Iles A, Banks CE, Rashid M, Linton PE, Shaw KJ. Multiplex antibiotic susceptibility testing of urinary tract infections using an electrochemical lab-on-a-chip. Biomed Microdevices 2024; 26:35. [PMID: 39120827 PMCID: PMC11315706 DOI: 10.1007/s10544-024-00719-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/10/2024]
Abstract
Urinary tract infections (UTIs) represent the most prevalent type of outpatient infection, with significant adverse health and economic burdens. Current culture-based antibiotic susceptibility testing can take up to 72 h resulting in ineffective prescription of broad-spectrum antibiotics, poor clinical outcomes and development of further antibiotic resistance. We report an electrochemical lab-on-a-chip (LOC) for testing samples against seven clinically-relevant antibiotics. The LOC contained eight chambers, each housing an antibiotic-loaded hydrogel (cephalexin, ceftriaxone, colistin, gentamicin, piperacillin, trimethoprim, vancomycin) or antibiotic-free control, alongside a resazurin bulk-modified screen-printed electrode for electrochemical detection of metabolically active bacteria using differential pulse voltammetry. Antibiotic susceptibility in simulated UTI samples or donated human urine with either Escherichia coli or Klebsiella pneumoniae could be established within 85 min. Incorporating electrochemical detection onto a LOC provides an inexpensive, simple method for the sensitive determination of antibiotic susceptibility that is significantly faster than using a culture-based approach.
Collapse
Affiliation(s)
- Benjamin Crane
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Alex Iles
- Department of Materials & Environmental Chemistry, University of Stockholm, Stockholm, Sweden
- Previously at Faculty of Science & Engineering, University of Hull, Hull, UK
| | - Craig E Banks
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Mamun Rashid
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Patricia E Linton
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Kirsty J Shaw
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK.
| |
Collapse
|
10
|
Cao L, Lu Y, Chen H, Su Y, Cheng Y, Xu J, Sun H, Song K. A 3D bioprinted antibacterial hydrogel dressing of gelatin/sodium alginate loaded with ciprofloxacin hydrochloride. Biotechnol J 2024; 19:e2400209. [PMID: 39212214 DOI: 10.1002/biot.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024]
Abstract
Skin plays a crucial role in human physiological functions, however, it was vulnerable to bacterial infection which delayed wound healing. Nowadays, designing an individual wound dressing with good biocompatibility and sustaining anti-infection capability for healing of chronic wounds are still challenging. In this study, various concentrations of the ciprofloxacin (CIP) were mixed with gelatine (Gel)/sodium alginate (SA) solution to prepare Gel/SA/CIP (GAC) bioinks, following the fabrication of GAC scaffold by an extrusion 3D bioprinting technology. The results showed that the GAC bioinks had good printability and the printed GAC scaffolds double-crosslinked by EDC/NHS and CaCl2 had rich porous structure with appropriate pore size, which were conducive to drug release and cell growth. It demonstrated that the CIP could be rapidly released by 70% in 5 min, which endowed the GAC composite scaffolds with an excellent antibacterial ability. Especially, the antibacterial activities of GAC7.5 against Escherichia coli and Staphylococcus aureus within 24 h were even close to 100%, and the inhibition zones were still maintained 14.78 ± 0.40 mm and 14.78 ± 0.40 mm, respectively, after 24 h. Meanwhile, GAC7.5 also demonstrated impressive biocompatibility which can promote the growth and migration of L929 and accelerate wound healing. Overall, the GAC7.5 3D bioprinting scaffold could be used as a potential skin dressing for susceptible wounds with excellent antibacterial activity and good biocompatibility to meet urgent clinical needs.
Collapse
Affiliation(s)
- Liuyuan Cao
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yueqi Lu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Hezhi Chen
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - YuneYee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Huanwei Sun
- Department of Hand and Foot Microsurgery, Dalian Municipal Central Hospital Affiliated of Dalian University of Technology, Dalian, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
11
|
Yan CJ, Yang SR, Yeh YC. Injectable pH- and Ultrasound-Responsive Dual-Crosslinked Dextran/Chitosan/TiO 2 Nanocomposite Hydrogels for Antibacterial Applications. Chem Asian J 2024; 19:e202301151. [PMID: 38782735 DOI: 10.1002/asia.202301151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Combining exogenous and endogenous antibacterial mechanisms has been demonstrated to enhance therapeutic efficacy significantly. This study constructs an innovative type of exogenous and endogenous antibacterial nanocomposite hydrogels with injectable dual-crosslinked networks and dual-stimuli responsiveness. The primary network establishes imine bonds between the functionalized dextran featuring norbornenes and aldehydes (NorAld-Dex) and the quaternized chitosan (QCS). The imine bonds provide self-healing, injectability, and pH-responsiveness to the hydrogel network. The secondary network is established by integrating thiolated mesoporous silica-coated titanium dioxide nanoparticles (TiO2@MS-SH) into the hydrogel network via an ultrasound-activated thiol-norbornene reaction with NorAld-Dex. The microstructures and properties of NorAld-Dex/QCS/TiO2@MS-SH hydrogels can be fine-tuned by adjusting the sonication time to increase the amount of thiol-norbornene crosslinks in the network. Effective antibacterial performance of NorAld-Dex/QCS/TiO2@MS-SH hydrogels at low pH has been demonstrated with the synergistic effect of the acid-induced dissociation of the hydrogel network, protonated QCS, and the reactive oxygen species (ROS) generated by TiO2@MS-SH nanoparticles under ultrasound irradiation. In summary, NorAld-Dex/QCS/TiO2@MS-SH nanocomposite hydrogel is an advanced dual stimuli-responsive antibacterial platform with customizable microstructures and properties, offering great potential for biomedical applications.
Collapse
Affiliation(s)
- Chen-Jie Yan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Su-Rung Yang
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, 106319, Taiwan
| |
Collapse
|
12
|
Zhou W, Jiang Z, Lin X, Chen Y, Wu Q, Chen J, Zhang F, Xie G, Zhang Y, Lin J, Guo N. Preparation of MPN@Zein-PpIX Membrane and Its Antibacterial Properties. ACS OMEGA 2024; 9:29274-29281. [PMID: 39005804 PMCID: PMC11238231 DOI: 10.1021/acsomega.4c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024]
Abstract
For antibacterial purposes, a photothermal and photodynamic antibacterial membrane was prepared through electrospinning. We used zein as the substrate and introduced Protoporphyrin IX (PpIX) into the protein structure. Then, we used electrospinning technology to weave the modified zein into a fiber structure. We finally introduced a metallic polyphenol network (MPN) coating on the fiber surface to form the final membrane: MPN@Zein-PpIX. Then, we investigated the photothermal and photodynamic properties of the membrane and assessed its antibacterial activity with in vitro agar plate counting methods. The MPN@Zein-PpIX membrane exhibited good singlet oxygen generation and excellent photothermal conversion. Additionally, it showed good antibacterial capacity in vitro, owing to the combination of photothermal and photodynamic properties. Our research provides a simple approach to prepare a multifunctional membrane with excellent antibacterial ability. We used the electrospinning technique to anchor PpIX onto zein to produce a fiber membrane (Zein-PpIX) that can be adhered in situ to improve the biocompatibility of PpIX, and the MPN makes the membrane surface more hydrophilic and more accessible to adhere to biological tissues. The MPN@Zein-PpIX membrane provided new ideas for combining PDT and PTT, and it had great potential for use in the antibacterial application field.
Collapse
Affiliation(s)
- Wenhong Zhou
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Zhonghao Jiang
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Xiao Lin
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Yanan Chen
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Quanxin Wu
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Jia Chen
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Feng Zhang
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Guolie Xie
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Yang Zhang
- South
China Institute of Collaborative Innovation, Dongguan 523000, China
- Guangdong
Dongguan Quality Supervision Testing Center, Dongguan 523000, China
| | - Jiantao Lin
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| | - Ning Guo
- The
First Dongguan Affiliated Hospital; School of Pharmacy, Guangdong Medical University, Dongguan 523000, China
| |
Collapse
|
13
|
Zhu S, Dou W, Zeng X, Chen X, Gao Y, Liu H, Li S. Recent Advances in the Degradability and Applications of Tissue Adhesives Based on Biodegradable Polymers. Int J Mol Sci 2024; 25:5249. [PMID: 38791286 PMCID: PMC11121545 DOI: 10.3390/ijms25105249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
In clinical practice, tissue adhesives have emerged as an alternative tool for wound treatments due to their advantages in ease of use, rapid application, less pain, and minimal tissue damage. Since most tissue adhesives are designed for internal use or wound treatments, the biodegradation of adhesives is important. To endow tissue adhesives with biodegradability, in the past few decades, various biodegradable polymers, either natural polymers (such as chitosan, hyaluronic acid, gelatin, chondroitin sulfate, starch, sodium alginate, glucans, pectin, functional proteins, and peptides) or synthetic polymers (such as poly(lactic acid), polyurethanes, polycaprolactone, and poly(lactic-co-glycolic acid)), have been utilized to develop novel biodegradable tissue adhesives. Incorporated biodegradable polymers are degraded in vivo with time under specific conditions, leading to the destruction of the structure and the further degradation of tissue adhesives. In this review, we first summarize the strategies of utilizing biodegradable polymers to develop tissue adhesives. Furthermore, we provide a symmetric overview of the biodegradable polymers used for tissue adhesives, with a specific focus on the degradability and applications of these tissue adhesives. Additionally, the challenges and perspectives of biodegradable polymer-based tissue adhesives are discussed. We expect that this review can provide new inspirations for the design of novel biodegradable tissue adhesives for biomedical applications.
Collapse
Affiliation(s)
- Shuzhuang Zhu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Wenguang Dou
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Xiaojun Zeng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Xingchao Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Yonglin Gao
- College of Life Sciences, Yantai University, Yantai 264005, China
| | - Hongliang Liu
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Sidi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
14
|
Tang Y, Zhao R, Yi M, Ge Z, Wang D, Wang G, Deng X. Multifunctional Hydrogel Enhances Inflammatory Control, Antimicrobial Activity, and Oxygenation to Promote Healing in Infectious Wounds. Biomacromolecules 2024; 25:2423-2437. [PMID: 38457661 DOI: 10.1021/acs.biomac.3c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Chronic infected wounds often fail to heal through normal repair mechanisms, and the persistent response of reactive oxygen species (ROS) and inflammation is a major contributing factor to the difficulty in their healing. In this context, we developed an ROS-responsive injectable hydrogel. This hydrogel is composed of ε-polylysine grafted (EPL) with caffeic acid (CA) and hyaluronic acid (HA) grafted with phenylboronic acid (PBA). Before the gelation process, a mixture CaO2@Cur-PDA (CCP) consisting of calcium peroxide (CaO2) coated with polydopamine (PDA) and curcumin (Cur) is embedded into the hydrogel. Under the conditions of chronic refractory wound environments, the hydrogel gradually dissociates. HA mimics the function of the extracellular matrix, while the released caffeic acid-grafted ε-polylysine (CE) effectively eliminates bacteria in the wound vicinity. Additionally, released CA also clears ROS and influences macrophage polarization. Subsequently, CCP further decomposes, releasing Cur, which promotes angiogenesis. This multifunctional hydrogel accelerates the repair of diabetic skin wounds infected with Staphylococcus aureus in vivo and holds promise as a candidate dressing for the healing of chronic refractory wounds.
Collapse
Affiliation(s)
- Yunfeng Tang
- Head & Neck Oncology Ward, Cancer Center, West China Hospital, Cancer Center, Sichuan University, Chengdu 610041, China
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Renliang Zhao
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Yi
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zilu Ge
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanglin Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangtian Deng
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Kurian AG, Singh RK, Sagar V, Lee JH, Kim HW. Nanozyme-Engineered Hydrogels for Anti-Inflammation and Skin Regeneration. NANO-MICRO LETTERS 2024; 16:110. [PMID: 38321242 PMCID: PMC10847086 DOI: 10.1007/s40820-024-01323-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/24/2023] [Indexed: 02/08/2024]
Abstract
Inflammatory skin disorders can cause chronic scarring and functional impairments, posing a significant burden on patients and the healthcare system. Conventional therapies, such as corticosteroids and nonsteroidal anti-inflammatory drugs, are limited in efficacy and associated with adverse effects. Recently, nanozyme (NZ)-based hydrogels have shown great promise in addressing these challenges. NZ-based hydrogels possess unique therapeutic abilities by combining the therapeutic benefits of redox nanomaterials with enzymatic activity and the water-retaining capacity of hydrogels. The multifaceted therapeutic effects of these hydrogels include scavenging reactive oxygen species and other inflammatory mediators modulating immune responses toward a pro-regenerative environment and enhancing regenerative potential by triggering cell migration and differentiation. This review highlights the current state of the art in NZ-engineered hydrogels (NZ@hydrogels) for anti-inflammatory and skin regeneration applications. It also discusses the underlying chemo-mechano-biological mechanisms behind their effectiveness. Additionally, the challenges and future directions in this ground, particularly their clinical translation, are addressed. The insights provided in this review can aid in the design and engineering of novel NZ-based hydrogels, offering new possibilities for targeted and personalized skin-care therapies.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Varsha Sagar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea.
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
- Cell and Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea.
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
16
|
Arabpour Z, Abedi F, Salehi M, Baharnoori SM, Soleimani M, Djalilian AR. Hydrogel-Based Skin Regeneration. Int J Mol Sci 2024; 25:1982. [PMID: 38396661 PMCID: PMC10888449 DOI: 10.3390/ijms25041982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The skin is subject to damage from the surrounding environment. The repair of skin wounds can be very challenging due to several factors such as severe injuries, concomitant infections, or comorbidities such as diabetes. Different drugs and wound dressings have been used to treat skin wounds. Tissue engineering, a novel therapeutic approach, revolutionized the treatment and regeneration of challenging tissue damage. This field includes the use of synthetic and natural biomaterials that support the growth of tissues or organs outside the body. Accordingly, the demand for polymer-based therapeutic strategies for skin tissue defects is significantly increasing. Among the various 3D scaffolds used in tissue engineering, hydrogel scaffolds have gained special significance due to their unique properties such as natural mimicry of the extracellular matrix (ECM), moisture retention, porosity, biocompatibility, biodegradability, and biocompatibility properties. First, this article delineates the process of wound healing and conventional methods of treating wounds. It then presents an examination of the structure and manufacturing methods of hydrogels, followed by an analysis of their crucial characteristics in healing skin wounds and the most recent advancements in using hydrogel dressings for this purpose. Finally, it discusses the potential future advancements in hydrogel materials within the realm of wound healing.
Collapse
Affiliation(s)
- Zohreh Arabpour
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Farshad Abedi
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud 3614773955, Iran;
| | - Seyed Mahbod Baharnoori
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Science, University of Illinois, Chicago, IL 60612, USA; (Z.A.); (F.A.); (S.M.B.); (M.S.)
| |
Collapse
|
17
|
Lee PC, Li CZ, Lu CT, Zhao MH, Lai SM, Liao MH, Peng CL, Liu HT, Lai PS. Microcurrent Cloth-Assisted Transdermal Penetration and Follicular Ducts Escape of Curcumin-Loaded Micelles for Enhanced Wound Healing. Int J Nanomedicine 2023; 18:8077-8097. [PMID: 38164267 PMCID: PMC10758166 DOI: 10.2147/ijn.s440034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose Larger nanoparticles of bioactive compounds deposit high concentrations in follicular ducts after skin penetration. In this study, we investigated the effects of microcurrent cloth on the skin penetration and translocation of large nanoparticle applied for wound repair applications. Methods A self-assembly of curcumin-loaded micelles (CMs) was prepared to improve the water solubility and transdermal efficiency of curcumin. Microcurrent cloth (M) was produced by Zn/Ag electrofabric printing to facilitate iontophoretic transdermal delivery. The transdermal performance of CMs combined with M was evaluated by a transdermal system and confocal microscopy. The CMs/iontophoretic combination effects on nitric oxide (NO) production and inflammatory cytokines were evaluated in Raw 264.7 cells. The wound-healing property of the combined treatment was assessed in a surgically created full-thickness circular wound mouse model. Results Energy-dispersive X-ray spectroscopy confirmed the presence of Zn/Ag on the microcurrent cloth. The average potential of M was measured to be +214.6 mV in PBS. Large particle CMs (CM-L) prepared using surfactant/cosurfactant present a particle size of 142.9 nm with a polydispersity index of 0.319. The solubility of curcumin in CM-L was 2143.67 μg/mL, indicating 250-fold higher than native curcumin (8.68 μg/mL). The combined treatment (CM-L+M) demonstrated a significant ability to inhibit NO production and increase IL-6 and IL-10 secretion. Surprisingly, microcurrent application significantly improved 20.01-fold transdermal performance of curcumin in CM-L with an obvious escape of CM-L from follicular ducts to surrounding observed by confocal microscopy. The CM-L+M group also exhibited a better wound-closure rate (77.94% on day 4) and the regenerated collagen intensity was approximately 2.66-fold higher than the control group, with a closure rate greater than 90% on day 8 in vivo. Conclusion Microcurrent cloth play as a promising iontophoretic transdermal drug delivery accelerator that enhances skin penetration and assists CMs to escape from follicular ducts for wound repair applications.
Collapse
Affiliation(s)
- Pei-Chi Lee
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Cun-Zhao Li
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Chun-Te Lu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Min-Han Zhao
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Syu-Ming Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| | - Man-Hua Liao
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Liang Peng
- Isotope Application Division, National Atomic Research Institute, Taoyuan, Taiwan
| | - Hsin-Tung Liu
- xTrans Corporate Research and Innovation Center, Taipei City, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
18
|
Ahmadian Z, Jelodar MZ, Rashidipour M, Dadkhah M, Adhami V, Sefareshi S, Ebrahimi HA, Ghasemian M, Adeli M. A self-healable and bioadhesive acacia gum polysaccharide-based injectable hydrogel for wound healing acceleration. Daru 2023; 31:205-219. [PMID: 37610559 PMCID: PMC10624782 DOI: 10.1007/s40199-023-00475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/30/2023] [Indexed: 08/24/2023] Open
Abstract
The present study aimed at developing an injectable hydrogel based on acacia gum (AG) for wound healing acceleration. The hydrogels were synthetized through metal-ligand coordination mediated by Fe3+ and characterized in terms of gelation time, gel content, initial water content, swelling capacity, water retention ratio, and porosity. Moreover, FTIR, XRD and TGA analyses were performed for the hydrogels and allantoin (Alla) loaded ones. Furthermore, bioadhessiveness, and self-healing as well as antibacterial, toxicity and wound healing potentials of the hydrogels were evaluated. The hydrogels displayed fast gelation time, high swelling, porosity, and bioadhessiveness, as well as antioxidant, self-healing, antibacterial, blood clotting, and injectability properties. FTIR, XRD and TGA analyses confirmed hydrogel synthesis and drug loading. The Alla-loaded hydrogels accelerated wound healing by decreasing the inflammation and increasing the cell proliferation as well as collagen deposition. Hemocompatibility, cell cytotoxicity, and in vivo toxicity experiments were indicative of a high biocompatibility level for the hydrogels. Given the advantages of fast gelation, injectability and beneficial biological properties, the use of Alla-loaded hydrogels could be considered a new remedy for efficient wound healing.
Collapse
Affiliation(s)
- Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Mahsa Zibanejad Jelodar
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Marzieh Rashidipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoumeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, 5618985991, Iran
| | - Vahed Adhami
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sajjad Sefareshi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hossein Ali Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Motaleb Ghasemian
- Department of Medicinal Chemistry, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohsen Adeli
- Institut für Chemieund Biochemie, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
19
|
Ghasemian M, Kazeminava F, Naseri A, Mohebzadeh S, Abbaszadeh M, Kafil HS, Ahmadian Z. Recent progress in tannic acid based approaches as a natural polyphenolic biomaterial for cancer therapy: A review. Biomed Pharmacother 2023; 166:115328. [PMID: 37591125 DOI: 10.1016/j.biopha.2023.115328] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/01/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023] Open
Abstract
Significant advancements have been noticed in cancer therapy for decades. Despite this, there are still many critical challenges ahead, including multidrug resistance, drug instability, and side effects. To overcome obstacles of these problems, various types of materials in biomedical research have been explored. Chief among them, the applications of natural compounds have grown rapidly due to their superb biological activities. Natural compounds, especially polyphenolic compounds, play a positive and great role in cancer therapy. Tannic acid (TA), one of the most famous polyphenols, has attracted widespread attention in the field of cancer treatment with unique structural, physicochemical, pharmaceutical, anticancer, antiviral, antioxidant and other strong biological features. This review concentrated on the basic structure along with the important role of TA in tuning oncological signal pathways firstly, and then focused on the use of TA in chemotherapy and preparation of delivery systems including nanoparticles and hydrogels for cancer therapy. Besides, the application of TA/Fe3+ complex coating in photothermal therapy, chemodynamic therapy, combined therapy and theranostics is discussed.
Collapse
Affiliation(s)
- Motaleb Ghasemian
- Department of Medicinal Chemistry, School of Pharmacy, Lorestan University of Medical Science, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ashkan Naseri
- Department of Applied Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Soheila Mohebzadeh
- Department of Plant Production and Genetics, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mahmoud Abbaszadeh
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Department of Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
20
|
Jin S, Newton MAA, Cheng H, Zhang Q, Gao W, Zheng Y, Lu Z, Dai Z, Zhu J. Progress of Hydrogel Dressings with Wound Monitoring and Treatment Functions. Gels 2023; 9:694. [PMID: 37754375 PMCID: PMC10528853 DOI: 10.3390/gels9090694] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Hydrogels are widely used in wound dressings due to their moisturizing properties and biocompatibility. However, traditional hydrogel dressings cannot monitor wounds and provide accurate treatment. Recent advancements focus on hydrogel dressings with integrated monitoring and treatment functions, using sensors or intelligent materials to detect changes in the wound microenvironment. These dressings enable responsive treatment to promote wound healing. They can carry out responsive dynamic treatment in time to effectively promote wound healing. However, there is still a lack of comprehensive reviews of hydrogel wound dressings that incorporate both wound micro-environment monitoring and treatment functions. Therefore, this review categorizes hydrogel dressings according to wound types and examines their current status, progress, challenges, and future trends. It discusses various wound types, including infected wounds, burns, and diabetic and pressure ulcers, and explores the wound healing process. The review presents hydrogel dressings that monitor wound conditions and provide tailored treatment, such as pH-sensitive, temperature-sensitive, glucose-sensitive, pressure-sensitive, and nano-composite hydrogel dressings. Challenges include developing dressings that meet the standards of excellent biocompatibility, improving monitoring accuracy and sensitivity, and overcoming obstacles to production and commercialization. Furthermore, it provides the current status, progress, challenges, and future trends in this field, aiming to give a clear view of its past, present, and future.
Collapse
Affiliation(s)
- Shanshan Jin
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Md All Amin Newton
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Hongju Cheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Qinchen Zhang
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Weihong Gao
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Yuansheng Zheng
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Zan Lu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| | - Zijian Dai
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jie Zhu
- School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China; (S.J.); (M.A.A.N.); (H.C.); (Q.Z.); (W.G.); (Y.Z.); (Z.L.)
| |
Collapse
|
21
|
Cui S, Yang F, Yu D, Shi C, Zhao D, Chen L, Chen J. Double Network Physical Crosslinked Hydrogel for Healing Skin Wounds: New Formulation Based on Polysaccharides and Zn 2. Int J Mol Sci 2023; 24:13042. [PMID: 37685860 PMCID: PMC10488206 DOI: 10.3390/ijms241713042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Developing convenient, efficient, and natural wound dressings remain the foremost strategy for treating skin wounds. Thus, we innovatively combined the semi-dissolved acidified sol-gel conversion method with the internal gelation method to fabricate SA (sodium alginate)/CS (chitosan)/Zn2+ physically cross-linked double network hydrogel and named it SA/CS/Zn2+ PDH. The characterization results demonstrated that increased Zn2+ content led to hydrogels with improved physical and chemical properties, such as rheology, water retention, and swelling capacity. Moreover, the hydrogels exhibited favorable antibacterial properties and biocompatibility. Notably, the establishment of an in vitro pro-healing wound model further confirmed that the hydrogel had a superior ability to repair wounds and promote skin regeneration. In future, as a natural biomaterial with antimicrobial properties, it has the potential to promote wound healing.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, China; (S.C.); (F.Y.); (D.Y.); (C.S.); (D.Z.); (L.C.)
| |
Collapse
|
22
|
Ren Y, Huang T, Zhao X, Wang K, Zhao L, Tao A, Jiang J, Yuan M, Wang J, Tu Q. Double network hydrogel based on curdlan and flaxseed gum with photothermal antibacterial properties for accelerating infectious wound healing. Int J Biol Macromol 2023; 242:124715. [PMID: 37148939 DOI: 10.1016/j.ijbiomac.2023.124715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/23/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
The healing of infected wounds has always been a clinical challenge. With the increasing threat of drug resistance due to antibiotic overuse, it is imperative to improve antibacterial wound dressings. In this study, we designed a double network (DN) hydrogel via a "one pot method" with antibacterial activity, and natural polysaccharides with the potential to promote skin wound healing were used. That is, a DN hydrogel matrix was formed by the hydrogen bond crosslinking of curdlan and the covalent crosslinking of flaxseed gum under the action of borax. We added ε-polylysine (ε-PL) as a bactericide. Tannic acid/ferric ion (TA/Fe3+) complex was also introduced into the hydrogel network as a photothermal agent to induce photothermal antibacterial properties. The hydrogel had fast self-healing, tissue adhesion, mechanical stability, good cell compatibility and photothermal antibacterial activity. In vitro studies of hydrogel showed its ability to inhibit S. aureus and E. coli. In vivo experiments also demonstrated the significant healing effect of hydrogel when used to treat wounds infected by S. aureus by promoting collagen deposition and accelerating the formation of skin appendage. This work provides a new design for the preparation of safe antibacterial hydrogel wound dressings and demonstrates great potential for promoting wound healing of bacterial infections.
Collapse
Affiliation(s)
- Yu Ren
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyao Zhao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Keke Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhao
- The Hospital of NWAFU, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Anju Tao
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingjing Jiang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Maosen Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
23
|
Saeed Z, Alkheraije KA. Botanicals: A promising approach for controlling cecal coccidiosis in poultry. Front Vet Sci 2023; 10:1157633. [PMID: 37180056 PMCID: PMC10168295 DOI: 10.3389/fvets.2023.1157633] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/10/2023] [Indexed: 05/15/2023] Open
Abstract
Avian species have long struggled with the problem of coccidiosis, a disease that affects various parts of the intestine, including the anterior gut, midgut, and hindgut. Among different types of coccidiosis, cecal coccidiosis is particularly dangerous to avian species. Chickens and turkeys are commercial flocks; thus, their parasites have remained critical due to their economic importance. High rates of mortality and morbidity are observed in both chickens and turkeys due to cecal coccidiosis. Coccidiostats and coccidiocidal chemicals have traditionally been added to feed and water to control coccidiosis. However, after the EU banned their use because of issues of resistance and public health, alternative methods are being explored. Vaccines are also being used, but their efficacy and cost-effectiveness remain as challenges. Researchers are attempting to find alternatives, and among the alternatives, botanicals are a promising choice. Botanicals contain multiple active compounds such as phenolics, saponins, terpenes, sulfur compounds, etc., which can kill sporozoites and oocysts and stop the replication of Eimeria. These botanicals are primarily used as anticoccidials due to their antioxidant and immunomodulatory activities. Because of the medicinal properties of botanicals, some commercial products have also been developed. However, further research is needed to confirm their pharmacological effects, mechanisms of action, and methods of concentrated preparation. In this review, an attempt has been made to summarize the plants that have the potential to act as anticoccidials and to explain the mode of action of different compounds found within them.
Collapse
Affiliation(s)
- Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| | - Khalid A. Alkheraije
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
24
|
Kong X, Chen H, Li F, Zhang F, Jiang Y, Song J, Sun Y, Zhao B, Shi J. Three-dimension chitosan hydrogel loading melanin composite nanoparticles for wound healing by anti-bacteria, immune activation and macrophage autophagy promotion. Int J Biol Macromol 2023; 237:124176. [PMID: 37023589 DOI: 10.1016/j.ijbiomac.2023.124176] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Application of Combined photodynamic therapy (PDT) and photothermal therapy (PTT) has become one of the most promising strategy to replace antibiotics and avoid the epidemic of drug-resistant strains during wound healing. However, high amount of reactive oxygen species (ROS) and high temperature cause severe stress response to normal tissues, leading to potential risks of wound healing. Herein, a three-dimension chitosan hydrogel melanin-glycine-C60 nanoparticles (MGC NPs) were prepared to realized effective anti-bacterial activity, immune activation and macrophage autophagy promotion in three-dimensional wound space without triggering stress response. MGC NP is a composite polymer material composed of natural melanin polymer, oligopeptide and carbon-based material, which showed excellent biological safety. By regulating the peptide length between melanin and C60 and nanoparticle content, a high ROS/heat environment at the upper wound site and a low ROS/heat environment at the lower region adjacent to the wound tissue were established to obtain a three-dimension hydrogel with precise PDT and PTT efficiency in different regions. Highly effective PDT/PTT was used to kill microorganisms in upper region, thus providing a barrier to reduce microbial infection. Mild PDT/PTT in lower region promoted the polarization of M1 macrophage to M2 macrophage and activated autophagy of M2 macrophages, regulating the immune microenvironment and promoting wound repair. In conclusion, the novel three-dimensional PDT/PTT therapy based on natural macromolecules proposed in this study accelerates wound healing through dual pathways on the premise of avoiding wound stress response, which is of great significance for the development of clinical strategies for phototherapy.
Collapse
Affiliation(s)
- Xiaoying Kong
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, China
| | - Haoyu Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, China
| | - Fuqiang Li
- Department of Physics, Pukyong National University, Busan 48513, South Korea
| | - Fenglan Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, China
| | - Yuping Jiang
- School of medicine and pharmacy, Ocean University of China, No. 5 Yushan road, Qingdao, China
| | - Junyao Song
- Bassars college of future agricultural science and technology, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, China
| | - Yuanliang Sun
- Department of Spine Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu road, Qingdao, China.
| | - Bin Zhao
- Qingdao Shenkang Stem Cell Biotechnology Co., Ltd, Qingdao, China.
| | - Jinsheng Shi
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, China; Department of public course teaching, University of Health and Rehabilitation Sciences, Oingdao, China.
| |
Collapse
|
25
|
Aslam A, Ashraf MU, Barkat K, Mahmood A, Hussain MA, Farid-ul-Haq M, Lashkar MO, Gad HA. Fabrication of Stimuli-Responsive Quince/Mucin Co-Poly (Methacrylate) Hydrogel Matrices for the Controlled Delivery of Acyclovir Sodium: Design, Characterization and Toxicity Evaluation. Pharmaceutics 2023; 15:650. [PMID: 36839971 PMCID: PMC9961270 DOI: 10.3390/pharmaceutics15020650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Free-radical polymerization technique was adopted to fabricate a stimuli-responsive intelligent quince/mucin co-poly (methacrylate) hydrogel for the controlled delivery of acyclovir sodium. The developed hydrogel matrices were appraised using different parameters, such as drug loading (%), swelling kinetics, pH- and electrolyte-responsive swelling, and sol-gel fraction. Drug-excipient compatibility study, scanning electron microscopy, thermal analysis, powder X-ray diffraction (PXRD) analysis, in vitro drug release studies, drug release kinetics and acute oral toxicity studies were conducted. The results of drug loading revealed an acyclovir sodium loading of 63-75% in different formulations. The hydrogel discs exhibited pH-responsive swelling behavior, showing maximum swelling in a phosphate buffer with a pH of 7.4, but negligible swelling was obvious in an acidic buffer with a pH of 1.2. The swelling kinetics of the developed hydrogel discs exhibited second-order kinetics. Moreover, the hydrogel discs responded to the concentration of electrolytes (CaCl2 and NaCl). The results of the FTIR confirm the formation of the hydrogel via free-radical polymerization. However, the major peaks of acyclovir remain intact, proving drug-excipient compatibility. The results of the SEM analysis reveal the porous, rough surface of the hydrogel discs with multiple cracks and pores over the surface. The results of the PXRD disclose the amorphous nature of the fabricated hydrogel. The dissolution studies showed a minor amount of acyclovir sodium released in an acidic environment, while an extended release up to 36 h in the phosphate buffer was observed. The drug release followed Hixen-Crowell's kinetics with Fickian diffusion mechanism. The toxicity studies demonstrated the non-toxic nature of the polymeric carrier system. Therefore, these results signify the quince/mucin co-poly (methacrylate) hydrogel as a smart material with the potential to deliver acyclovir into the intestine for an extended period of time.
Collapse
Affiliation(s)
- Aysha Aslam
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | | | - Kashif Barkat
- Faculty of Pharmacy, The University of Lahore, Lahore 54000, Pakistan
| | - Asif Mahmood
- Department of Pharmacy, University of Chakwal, Chakwal 48800, Pakistan
| | | | | | - Manar O. Lashkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Heba A. Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
| |
Collapse
|
26
|
Zheng BD, Xiao MT. Polysaccharide-based hydrogel with photothermal effect for accelerating wound healing. Carbohydr Polym 2023; 299:120228. [PMID: 36876827 DOI: 10.1016/j.carbpol.2022.120228] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Polysaccharide-based hydrogel has excellent biochemical function, abundant sources, good biocompatibility and other advantages, and has a broad application prospect in biomedical fields, especially in the field of wound healing. With its inherent high specificity and low invasive burden, photothermal therapy has shown great application prospect in preventing wound infection and promoting wound healing. Combining polysaccharide-based hydrogel with photothermal therapy (PTT), multifunctional hydrogel with photothermal, bactericidal, anti-inflammatory and tissue regeneration functions can be designed, so as to achieve better therapeutic effect. This review first focuses on the basic principles of hydrogel and PTT, and the types of polysaccharides that can be used to design hydrogels. In addition, according to the different materials that produce photothermal effects, the design considerations of several representative polysaccharide-based hydrogels are emphatically introduced. Finally, the challenges faced by polysaccharide-based hydrogels with photothermal properties are discussed, and the future prospects of this field are put forward.
Collapse
Affiliation(s)
- Bing-De Zheng
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Mei-Tian Xiao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|