1
|
Song K, Li S, Liu J, Kang Z. Global research trend of Herpes simplex keratitis: a bibliometric analysis and visualization from 1941 to 2024. Front Med (Lausanne) 2025; 12:1526116. [PMID: 40177280 PMCID: PMC11961934 DOI: 10.3389/fmed.2025.1526116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
Objective Herpes simplex keratitis (HSK), caused by the herpes simplex virus (HSV), is a leading cause of infectious blindness worldwide. This study aims to explore the research trends, key contributors, and emerging areas of focus in HSK research through bibliometric analysis. Methods Publications related to HSK from 1941 to 2024 were retrieved from the Web of Science Core Collection (WoSCC). Bibliometric and visual analyses were conducted using VOSviewer, CiteSpace, and R 4.3.3. Results A total of 1,076 publications on HSK were identified. The top three contributing countries were the United States (267 papers), China (99), and Japan (64). Harvard University was the leading institution with 75 publications, while the American Journal of Ophthalmology emerged as the most influential journal, boasting an h-index of 29. Kaufman, HE, was the most cited author, with 1,988 citations. The top three keywords were "infection" (82), "stromal keratitis" (73), and "penetrating keratoplasty" (62). Burst keyword analysis indicated a growing interest in terms such as "outcome" and "ultraviolet A" since 2018. Conclusion This bibliometric analysis underscores two primary research areas in HSK: the clinical management of stromal keratitis and infection, as well as the mechanisms of HSK recurrence, which include strategies for preventing reactivation and managing immune rejection. Future research is anticipated to focus on innovative treatments, particularly ultraviolet A therapy.
Collapse
Affiliation(s)
| | | | | | - Zefeng Kang
- China Academy of Traditional Chinese Medicine Hospital of Ophthalmology, Beijing, China
| |
Collapse
|
2
|
Mielnicki L, Hughes J, Irving M, McCourt M. Development of a general anti-viral therapeutic using cholestosome technology to exploit inhibition of intracellular viral production. Biochem Biophys Rep 2025; 41:101922. [PMID: 39926208 PMCID: PMC11803885 DOI: 10.1016/j.bbrep.2025.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 02/11/2025] Open
Abstract
The recent events of the worldwide Covid-19 pandemic showed the need for a general anti-viral therapeutic, independent of the specific characteristics of the virus, that targets intracellular mechanisms of viral production to prevent the rapid, overwhelming spread of infection and its devastating consequences. The development of the Cholestosome technology, a drug delivery system made exclusively of cholesteryl esters, is a solution for intracellular targeting of viral replication. It is well known that Zn2+ is capable of inhibiting viral replication but the control of intracellular Zn2+ concentration is tightly regulated. Cholestosome technology can encapsulate Zn2+ and deliver it to cells to inhibit viral replication. The human betacoronavirus OC43 (OC43) model system was used to infect cells and infected cells were treated with Zn2+ encapsulated in Cholestosomes as well as appropriate controls. Viral production was measured using CPE as well as PCR methods to determine inhibition of infection. Experimental results indicated a 55 % reduction in viral load for those cells treated with Zn2+ encapsulated in cholestosomes versus Zn2+ alone.
Collapse
Affiliation(s)
- Lawrence Mielnicki
- Department of Chemistry, Biochemistry and Physics, Niagara University, Lewiston, NY, 14109, USA
- Niagara University Biomedical Research Institute, 73 High Street, Buffalo, NY, 14203, USA
| | - Julie Hughes
- Department of Chemistry, Biochemistry and Physics, Niagara University, Lewiston, NY, 14109, USA
| | - Mary Irving
- Department of Chemistry, Biochemistry and Physics, Niagara University, Lewiston, NY, 14109, USA
| | - Mary McCourt
- Department of Chemistry, Biochemistry and Physics, Niagara University, Lewiston, NY, 14109, USA
- Niagara University Biomedical Research Institute, 73 High Street, Buffalo, NY, 14203, USA
| |
Collapse
|
3
|
Jasmine, Singh N, Nagpal D, Puniani S, Gupta P. Golden Therapeutic Approach to Combat Viral Diseases Using Gold Nanomaterials. Assay Drug Dev Technol 2025; 23:70-83. [PMID: 39660386 DOI: 10.1089/adt.2024.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Gold nanoparticles (AuNPs), due to their unique properties and surface modification abilities, have become a promising carrier for a range of biomedical applications. AuNPs have intrinsic antiviral characteristics because of their capacity to enhance drug distribution by making antiviral medications more stable and soluble, which assures that higher quantities reach the intended site. Through surface changes, AuNPs can bind directly to viral particles or infected cells, increasing therapeutic efficiency and reducing side effects. AuNPs efficiently damage cell membranes and hinder viral reproduction within a host cell. Furthermore, because of their large surface area-to-volume ratio, which enables many functional groups to connect, improving interaction with virus particles and ceasing their multiplication. By altering dimensions and morphology or conjugating it with additional antiviral drugs, AuNPs can array their synergistic antiviral activity. Thus, the development of AuNP conjugated therapy presents a promising avenue to address the demand for novel anti-viral therapeutics against infections resistant to several drugs.
Collapse
Affiliation(s)
- Jasmine
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Neelam Singh
- Noida Institute of Engineering and Technology (Pharmacy Institute), Noida, India
| | - Dheeraj Nagpal
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Sanchit Puniani
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| | - Puneet Gupta
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
4
|
Sohrabi R, Miri AH, Rad-Malekshahi M, Saadatpour F, Pourjabbar B, Keshel SH, Arefian E, Balalaei S, Masoumi A, Khalili F, Haririan I, Akrami M, Shahriari MH. Development of silk fibroin/collagen film containing GI-20 peptide-loaded PLGA nanoparticles against corneal herpes simplex virus-1. Int J Pharm 2025; 669:125022. [PMID: 39674383 DOI: 10.1016/j.ijpharm.2024.125022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/16/2024]
Abstract
Herpes simplex virus-1 (HSV-1) is the primary cause of infectious blindness. Despite impressive therapeutic outcomes of conventional treatments, HSV-1 drug resistance can be easily developed. Thus, more constructive strategies should be implemented. Led by this inspiration, this work describes the potential utility of a biodegradable silk fibroin/collagen (SF/Col) film combined with GI-20-loaded poly lactic-co-glycolic acid (PLGA) nanoparticle to provide efficient and sustained delivery platform for synthetic GI-20 peptide against HSV-1. A non-irritant film containing 90 % SF and 10 % Col incorporated with mentioned nanodrug showed some optimum physicochemical properties including loading efficiency (74.15 % ± 1.12), tensile strength (3.16 ± 0.67 MPa), water uptake ability (∼73 %), cytocompatibility (viable up to 35 µg/mL of GI-20), and sustained release paradigm (∼90 % within 14 days). Also, GI-20 peptide at concentration of 35 µg/mL could prophylactically attenuate viral titration by 5 log10 units. In addition, the corneal uptake was improved without vascular irritation. In accordance with in vitro results, no hallmarks of keratitis and significant neovascularization along with ignorable inflammatory responses were obtained. Taken together, these results could guarantee the potential of mentioned multifunctional biomaterial in the healing of infected corneal tissue.
Collapse
Affiliation(s)
- Razieh Sohrabi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Balalaei
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran, Iran
| | - Ahmad Masoumi
- Eye Research Center, Farabi Eye Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Fereshte Khalili
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Akrami
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hassan Shahriari
- Department of Biotechnology Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Castañeda Cataña MA, Rivas Marquina AP, Dodes Traian MM, Carlucci MJ, Damonte EB, Pérez OE, Arrua EC, Sepúlveda CS. Bovine Serum Albumin Nanoparticle-Mediated Delivery of Ribavirin and Mycophenolic Acid for Enhanced Antiviral Therapeutics. Viruses 2025; 17:138. [PMID: 40006893 PMCID: PMC11860702 DOI: 10.3390/v17020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
The global spread of viral diseases is a public health issue. Ribavirin (RBV) and mycophenolic acid (MPA) are well-known wide-spectrum antiviral agents. The present study evaluated the potential of bovine serum albumin (BSA) nanoparticles (NPs) as a vehicle to improve the efficacy of molecules with antiviral activity. The results demonstrated that NPs offer a promising strategy for the delivery of antiviral drugs, improving their stability and reducing toxicity compared to free agents. BSA-based NPs effectively encapsulated hydrophilic molecules such as MPA and water-soluble compounds such as RBV, achieving encapsulation efficiencies of 10% and 20%, respectively. The purified NPs exhibited a particle size between 60 and 100 nm and did not show toxicity at the evaluated concentrations. In cellular viral infection models against Zika virus (ZIKV), Junín virus (JUNV), vesicular stomatitis virus (VSV) and herpes simplex virus (HSV-1), the BSA-based NPs loaded with MPA or RBV demonstrated antiviral properties superior to those of non-encapsulated agents, as well as 100- and 200-fold effective dose reductions, respectively. These findings clearly indicate the potential of BSA NPs as a novel platform for the development of safer and more efficient antiviral therapies.
Collapse
Affiliation(s)
- Mayra A. Castañeda Cataña
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
| | - Andrea P. Rivas Marquina
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, Buenos Aires 4612, Argentina; (A.P.R.M.)
| | - Martín M. Dodes Traian
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
| | - M. Josefina Carlucci
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
| | - Elsa B. Damonte
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| | - Oscar E. Pérez
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
| | - Eva C. Arrua
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-CIDMEJu (CONICET-Universidad Nacional de Jujuy), Centro de Desarrollo Tecnológico General Savio, Buenos Aires 4612, Argentina; (A.P.R.M.)
| | - Claudia S. Sepúlveda
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-CONICET, Buenos Aires 1428, Argentina; (M.A.C.C.); (M.M.D.T.); (M.J.C.); (E.B.D.); (O.E.P.)
- Laboratorio de Estrategias Antivirales, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires 1428, Argentina
| |
Collapse
|
6
|
Kapoor DU, Sharma D, Gaur M, Prajapati BG, Limmatvapirat S, Sriamornsak P. Overcoming Solubility Challenges: Self-emulsifying Systems for Enhancing the Delivery of Poorly Water-Soluble Antiviral Drugs. Pharm Nanotechnol 2025; 13:117-132. [PMID: 38192138 DOI: 10.2174/0122117385280541231130055458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 01/10/2024]
Abstract
The primary goal of drug formulation is to improve a drug's bioavailability in the body. However, poorly water-soluble drugs present challenging issues related to their solubility and bioavailability factors. Emerging technologies, such as lipid-based drug delivery systems, including micro- or nanoemulsifying drug delivery systems, have become increasingly relevant to address the above challenges. This review presents a thorough overview of self-emulsifying drug delivery systems (SEDDS). It covers the properties, principles, self-emulsification mechanism, formulation strategies, and characterization methods of SEDDS. This review also addresses the delivery of antiviral agents through SEDDS. Moreover, it summarizes the marketed formulations of SEDDS consisting of antiviral agents. This review offers a comprehensive and valuable resource for future perspectives on SEDDS and their potential applications in antiviral drug delivery.
Collapse
Affiliation(s)
- Devesh U Kapoor
- Dr. Dayaram Patel Pharmacy College, Bardoli, 394601, Gujarat, India
| | - Deepak Sharma
- Institute of Pharmacy, Assam Don Bosco University, Tapesia, Sonapur Gaon, 78240, Assam, India
| | - Mansi Gaur
- Integrity Healthcare Solutions Pvt Ltd., Ahmedabad, 380054, Gujarat, India
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, India
| | - Sontaya Limmatvapirat
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
7
|
Mahapatra C, Jadhav S, Kumar P, Roy DN, Kumar A, Paul MK. Potential activity of nanomaterials to combat SARS-CoV-2 and mucormycosis coinfection. Expert Rev Anti Infect Ther 2024; 22:1143-1155. [PMID: 39466600 DOI: 10.1080/14787210.2024.2423359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/26/2024] [Accepted: 10/27/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Mucormycosis, popularly known as the black fungus, has become a worldwide concern in the continuing COVID-19 pandemic, causing increased morbidity and death in immunocompromised people. Due to multi-drug resistance and the limited number of antifungals, surgical interventions, including the excision of infected tissue, remain a standard treatment option. Surgical treatment usually results in the loss of organs or their function, long-term intensive care, and a significant risk of reinfection during the procedure. A comprehensive approach is needed to treat the disease, and nanomaterials can be a powerful alternative therapeutic approach. AREAS COVERED We searched PubMed, Scopus, and Google Scholar with the keywords 'emerging role of nanomaterials,' and 'combating COVID-19-related mucormycosis,' and reviewed the related research paper. Antifungal nanomaterials and their delivery can significantly impact the treatment of COVID-19-related fungal infections like mucormycosis. However, the therapeutic options for mucormycosis are limited and drug resistance is also reported. EXPERT OPINION The current review encompasses a detailed overview of the recent developments in antifungal/antiviral nanomaterials and the properties of these therapeutic nanomaterials that may contribute to formulating an efficient strategy against invasive mucormycosis. Further extensive research is needed to develop nano-based therapeutics for the management of mucormycosis-viral coinfection with a definitive end-point.
Collapse
Affiliation(s)
- Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Sakshi Jadhav
- Department of Biotechnology and Medical Engineering, National Institute of Technology (NIT), Rourkela, India
| | - Prasoon Kumar
- Department of Biotechnology and Medical Engineering, National Institute of Technology (NIT), Rourkela, India
| | - Dijendra Nath Roy
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology (NIT), Raipur, India
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
8
|
Urbaniak T, Milasheuski Y, Musiał W. Zero-Order Kinetics Release of Lamivudine from Layer-by-Layer Coated Macromolecular Prodrug Particles. Int J Mol Sci 2024; 25:12921. [PMID: 39684632 DOI: 10.3390/ijms252312921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
To reduce the risk of side effects and enhance therapeutic efficiency, drug delivery systems that offer precise control over active ingredient release while minimizing burst effects are considered advantageous. In this study, a novel approach for the controlled release of lamivudine (LV) was explored through the fabrication of polyelectrolyte-coated microparticles. LV was covalently attached to poly(ε-caprolactone) via ring-opening polymerization, resulting in a macromolecular prodrug (LV-PCL) with a hydrolytic release mechanism. The LV-PCL particles were subsequently coated using the layer-by-layer (LbL) technique, with polyelectrolyte multilayers assembled to potentially modify the carrier's properties. The LbL assembly process was comprehensively analyzed, including assessments of shell thickness, changes in ζ-potential, and thermodynamic properties, to provide insights into the multilayer structure and interactions. The sustained LV release over 7 weeks was observed, following zero-order kinetics (R2 > 0.99), indicating a controlled and predictable release mechanism. Carriers coated with polyethylene imine/heparin and chitosan/heparin tetralayers exhibited a distinct increase in the release rate after 6 weeks and 10 weeks, respectively, suggesting that this coating can facilitate the autocatalytic degradation of the polyester microparticles. These findings indicate the potential of this system for long-term, localized drug delivery applications, requiring sustained release with minimal burst effects.
Collapse
Affiliation(s)
- Tomasz Urbaniak
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Yauheni Milasheuski
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Pharmaceutical Faculty, Wroclaw Medical University, Borowska 211, 50-556 Wrocław, Poland
| |
Collapse
|
9
|
Brouillard M, Mathieu T, Guillot S, Méducin F, Roy V, Marcheteau E, Gallardo F, Caire-Maurisier F, Favetta P, Agrofoglio LA. Lyotropic liquid crystal emulsions of LAVR-289: Influence of internal mesophase structure on cytotoxicity and in-vitro antiviral activity. Int J Pharm 2024; 665:124683. [PMID: 39265850 DOI: 10.1016/j.ijpharm.2024.124683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/14/2024]
Abstract
Emerging and reemerging viruses pose significant public health threats, underscoring the urgent need for new antiviral drugs. Recently, a novel family of antiviral acyclic nucleoside phosphonates (ANP) composed of a 4-(2,4-diaminopyrimidin-6-yl)oxy-but-2-enyl phosphonic acid skeleton (O-DAPy nucleobase) has shown promise. Among these, LAVR-289 stands out for its potent inhibitory effects against various DNA viruses. Despite its efficacy, LAVR-289s poor water solubility hampers effective drug delivery. To address this, innovative delivery systems utilizing lipidic derivatives have been explored for various administration routes. Submicron lyotropic liquid crystals (LLCs) are particularly promising drug carriers for the encapsulation, protection, and delivery of lipophilic drugs like LAVR-289. This study focuses on developing submicron-sized lipid mesophase dispersions, including emulsified L2 phase, cubosomes, and hexosomes, by adjusting lipidic compounds such as Dimodan® U/J, Lecithins E80, and Miglyol® 812 N. These formulations aim to enhance the solubility and bioavailability of LAVR-289. In vitro evaluations demonstrated that LAVR-289-loaded LLCs at a concentration of 1 µM efficiently inhibited vaccinia virus in infected human cells, with no observed cytotoxicity. Notably, hexosomes exhibited the most favorable antiviral outcomes, suggesting that the internal mesophase structure plays a critical role in optimizing the therapeutic efficacy of this drug class.
Collapse
Affiliation(s)
- Mathias Brouillard
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France
| | - Thomas Mathieu
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France
| | - Samuel Guillot
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN UMR 7374), Université d'Orléans, CNRS, F-45071 Orléans, France.
| | - Fabienne Méducin
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN UMR 7374), Université d'Orléans, CNRS, F-45071 Orléans, France
| | - Vincent Roy
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France
| | | | | | - François Caire-Maurisier
- Direction des Approvisionnements en produits de Santé des Armées, Pharmacie Centrale des Armées (PCA), F-45404 Fleury-les-Aubrais, France
| | - Patrick Favetta
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France.
| | - Luigi A Agrofoglio
- Institut de Chimie Organique et Analytique (ICOA UMR 7311), Université d'Orléans, CNRS, F-45067 Orléans, France.
| |
Collapse
|
10
|
Vasukutty A, Jang Y, Han D, Park H, Park IK. Navigating Latency-Inducing Viral Infections: Therapeutic Targeting and Nanoparticle Utilization. Biomater Res 2024; 28:0078. [PMID: 39416703 PMCID: PMC11480834 DOI: 10.34133/bmr.0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/17/2024] [Accepted: 08/10/2024] [Indexed: 10/19/2024] Open
Abstract
The investigation into viral latency illuminates its pivotal role in the survival strategies of diverse viruses, including herpesviruses, HIV, and HPV. This underscores the delicate balance between dormancy and the potential for reactivation. The study explores the intricate mechanisms governing viral latency, encompassing episomal and proviral forms, and their integration with the host's genetic material. This integration provides resilience against cellular defenses, substantially impacting the host-pathogen dynamic, especially in the context of HIV, with implications for clinical outcomes. Addressing the challenge of eradicating latent reservoirs, this review underscores the potential of epigenetic and genetic interventions. It highlights the use of innovative nanocarriers like nanoparticles and liposomes for delivering latency-reversing agents. The precision in delivery, capacity to navigate biological barriers, and sustained drug release by these nanocarriers present a promising strategy to enhance therapeutic efficacy. The review further explores nanotechnology's integration in combating latent viral infections, leveraging nanoparticle-based platforms for drug delivery, gene editing, and vaccination. Advances in lipid-based nanocarriers, polymeric nanoparticles, and inorganic nanoparticles are discussed, illustrating their potential for targeted, efficient, and multifunctional antiviral therapy. By merging a deep understanding of viral latency's molecular underpinnings with nanotechnology's transformative capabilities, this review underscores the promise of novel therapeutic interventions. These interventions have great potential for managing persistent viral infections, heralding a new era in the fight against diseases such as neuroHIV/AIDS, herpes, and HPV.
Collapse
Affiliation(s)
- Arathy Vasukutty
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Yeonwoo Jang
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dongwan Han
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - In-Kyu Park
- Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP),
Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| |
Collapse
|
11
|
Wang D, Li X, Yao H, Liu X, Gao Y, Cong H, Yu B, Shen Y. Hydrophobic modification of polysaccharides and the construction and properties of their micelles: a review of applications in the field of biomedicine. Sci China Chem 2024; 67:1881-1903. [DOI: 10.1007/s11426-023-1916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2025]
|
12
|
Vojnikova M, Sukupova M, Stefanik M, Strakova P, Haviernik J, Kapolkova K, Gruberova E, Raskova K, Michalkova H, Svec P, Kudlickova MP, Huvarova I, Ruzek D, Salat J, Pekarik V, Eyer L, Heger Z. Nanoformulation of the Broad-Spectrum Hydrophobic Antiviral Vacuolar ATPase Inhibitor Diphyllin in Human Recombinant H-ferritin. Int J Nanomedicine 2024; 19:3907-3917. [PMID: 38708183 PMCID: PMC11069354 DOI: 10.2147/ijn.s452119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
Background As highlighted by recent pandemic outbreaks, antiviral drugs are crucial resources in the global battle against viral diseases. Unfortunately, most antiviral drugs are characterized by a plethora of side effects and low efficiency/poor bioavailability owing to their insolubility. This also applies to the arylnaphthalide lignin family member, diphyllin (Diph). Diph acts as a vacuolar ATPase inhibitor and has been previously identified as a promising candidate with broad-spectrum antiviral activity. However, its physicochemical properties preclude its efficient administration in vivo, complicating preclinical testing. Methods We produced human recombinant H- ferritin (HsaFtH) and used it as a delivery vehicle for Diph encapsulation through pH-mediated reversible reassembly of HsaFtH. Diph nanoformulation was subsequently thoroughly characterized and tested for its non-target cytotoxicity and antiviral efficiency using a panel of pathogenic viral strain. Results We revealed that loading into HsaFtH decreased the undesired cytotoxicity of Diph in mammalian host cells. We also confirmed that encapsulated Diph exhibited slightly lower antiviral activity than free Diph, which may be due to the differential uptake mechanism and kinetics of free Diph and Diph@HsaFtH. Furthermore, we confirmed that the antiviral effect was mediated solely by Diph with no contribution from HsaFtH. Conclusion It was confirmed that HsaFtH is a suitable vehicle that allows easy loading of Diph and production of highly homogeneous nanoparticles dispersion with promising broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Michaela Vojnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Martina Sukupova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michal Stefanik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Petra Strakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jan Haviernik
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Katerina Kapolkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Eliska Gruberova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Klara Raskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Hana Michalkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | | | - Ivana Huvarova
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
| | - Daniel Ruzek
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Jiri Salat
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Vladimir Pekarik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Ludek Eyer
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Department of infectious Diseases and Preventive Medicine, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
13
|
Hadian M, Fathi M, Mohammadi A, Eskandari MH, Asadsangabi M, Pouraghajan K, Shohrati M, Mohammadpour M, Samadi M. Characterization of chitosan/Persian gum nanoparticles for encapsulation of Nigella sativa extract as an antiviral agent against avian coronavirus. Int J Biol Macromol 2024; 265:130749. [PMID: 38467218 DOI: 10.1016/j.ijbiomac.2024.130749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to investigate the physicochemical characteristics of nanoparticles formed by the ionic gelation method between chitosan and water-soluble fraction of Persian gum (WPG) for encapsulation of Nigella sativa extract (NSE) as an antiviral agent. Our findings revealed that the particle size, polydispersity index (PDI), and zeta potential of the particles were in the range of 316.7-476.6 nm, 0.259-0.466, and 37.0-58.1 mV, respectively. The amounts of chitosan and WPG as the wall material and the NSE as the core had a considerable impact on the nanoparticle properties. The proper samples were detected at 1:1 chitosan:WPG mixing ratio (MR) and NSE concentration of 6.25 mg/mL. Fourier-transformed infrared (FTIR) spectroscopy proved the interactions between the two biopolymers. The effect of NSE on infectious bronchitis virus (IBV) known as avian coronavirus, was performed by the in-ovo method determining remarkable antiviral activity of NSE (25 mg/mL) and its enhancement through encapsulation in the nanoparticles. These nanoparticles containing NSE could have a promising capability for application in both poultry industry and human medicine as an antiviral product.
Collapse
Affiliation(s)
- Mohammad Hadian
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Morteza Fathi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mehdi Asadsangabi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Khadijeh Pouraghajan
- Bioinformatics Laboratory, Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Majid Shohrati
- Research Center of Chemical Injuries, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoomeh Mohammadpour
- Department of Biology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Samadi
- Exercise Physiology Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Megantara S, Rusdin A, Budiman A, Shamsuddin S, Mohtar N, Muchtaridi M. Revolutionizing Antiviral Therapeutics: Unveiling Innovative Approaches for Enhanced Drug Efficacy. Int J Nanomedicine 2024; 19:2889-2915. [PMID: 38525012 PMCID: PMC10961067 DOI: 10.2147/ijn.s447721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Since the beginning of the coronavirus pandemic in late 2019, viral infections have become one of the top three causes of mortality worldwide. Immunization and the use of immunomodulatory drugs are effective ways to prevent and treat viral infections. However, the primary therapy for managing viral infections remains antiviral and antiretroviral medication. Unfortunately, these drugs are often limited by physicochemical constraints such as low target selectivity and poor aqueous solubility. Although several modifications have been made to enhance the physicochemical characteristics and efficacy of these drugs, there are few published studies that summarize and compare these modifications. Our review systematically synthesized and discussed antiviral drug modification reports from publications indexed in Scopus, PubMed, and Google Scholar databases. We examined various approaches that were investigated to address physicochemical issues and increase activity, including liposomes, cocrystals, solid dispersions, salt modifications, and nanoparticle drug delivery systems. We were impressed by how well each strategy addressed physicochemical issues and improved antiviral activity. In conclusion, these modifications represent a promising way to improve the physicochemical characteristics, functionality, and effectiveness of antivirals in clinical therapy.
Collapse
Affiliation(s)
- Sandra Megantara
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Theranostic Radio Pharmaceuticals, National Research and Innovation Agency (BRIN), Sumedang, 45363, Indonesia
| | - Agus Rusdin
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Arif Budiman
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | | | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Theranostic Radio Pharmaceuticals, National Research and Innovation Agency (BRIN), Sumedang, 45363, Indonesia
- Functional Nano Powder University Center of Excellence (FiNder U CoE), Universitas Padjadjaran, Sumedang, 45363, Indonesia
| |
Collapse
|
15
|
Gericke M, Amaral AJR, Budtova T, De Wever P, Groth T, Heinze T, Höfte H, Huber A, Ikkala O, Kapuśniak J, Kargl R, Mano JF, Másson M, Matricardi P, Medronho B, Norgren M, Nypelö T, Nyström L, Roig A, Sauer M, Schols HA, van der Linden J, Wrodnigg TM, Xu C, Yakubov GE, Stana Kleinschek K, Fardim P. The European Polysaccharide Network of Excellence (EPNOE) research roadmap 2040: Advanced strategies for exploiting the vast potential of polysaccharides as renewable bioresources. Carbohydr Polym 2024; 326:121633. [PMID: 38142079 DOI: 10.1016/j.carbpol.2023.121633] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/25/2023]
Abstract
Polysaccharides are among the most abundant bioresources on earth and consequently need to play a pivotal role when addressing existential scientific challenges like climate change and the shift from fossil-based to sustainable biobased materials. The Research Roadmap 2040 of the European Polysaccharide Network of Excellence (EPNOE) provides an expert's view on how future research and development strategies need to evolve to fully exploit the vast potential of polysaccharides as renewable bioresources. It is addressed to academic researchers, companies, as well as policymakers and covers five strategic areas that are of great importance in the context of polysaccharide related research: (I) Materials & Engineering, (II) Food & Nutrition, (III) Biomedical Applications, (IV) Chemistry, Biology & Physics, and (V) Skills & Education. Each section summarizes the state of research, identifies challenges that are currently faced, project achievements and developments that are expected in the upcoming 20 years, and finally provides outlines on how future research activities need to evolve.
Collapse
Affiliation(s)
- Martin Gericke
- Friedrich Schiller University of Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Centre of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| | - Adérito J R Amaral
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tatiana Budtova
- MINES Paris, PSL University, CEMEF - Center for Materials Forming, UMR CNRS 7635, CS 10207, rue Claude Daunesse, 06904 Sophia Antipolis, France
| | - Pieter De Wever
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Thomas Heinze
- Friedrich Schiller University of Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Centre of Excellence for Polysaccharide Research, Humboldtstraße 10, D-07743 Jena, Germany
| | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Anton Huber
- University Graz, Inst.f. Chem./PS&HC - Polysaccharides & Hydrocolloids, Heinrichstrasse 28, 8010 Graz, Austria
| | - Olli Ikkala
- Department of Applied Physics, Aalto University School of Science, FI-00076 Espoo, Finland
| | - Janusz Kapuśniak
- Jan Dlugosz University in Czestochowa, Faculty of Science and Technology, Department of Dietetics and Food Studies, Waszyngtona 4/8, 42-200 Czestochowa, Poland
| | - Rupert Kargl
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria
| | - João F Mano
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Már Másson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavík, Iceland
| | - Pietro Matricardi
- Sapienza University of Rome, Department of Drug Chemistry and Technologies, P.le A. Moro 5, 00185 Rome, Italy
| | - Bruno Medronho
- MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Surface and Colloid Engineering, FSCN Research Center, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Magnus Norgren
- Surface and Colloid Engineering, FSCN Research Center, Mid Sweden University, SE-851 70 Sundsvall, Sweden
| | - Tiina Nypelö
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, 41296 Gothenburg, Sweden; Aalto University, Department of Bioproducts and Biosystems, 00076 Aalto, Finland
| | - Laura Nyström
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Anna Roig
- Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Michael Sauer
- University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University and Research, Bornse Weilanden 9, 6708WG Wageningen, the Netherlands
| | | | - Tanja M Wrodnigg
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria
| | - Chunlin Xu
- Åbo Akademi University, Laboratory of Natural Materials Technology, Henrikinkatu 2, Turku/Åbo, Finland
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, Food Structure and Biomaterials Group, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, United Kingdom
| | - Karin Stana Kleinschek
- Graz University of Technology, Institute of Chemistry and Technology of Biobased Systems, Stremayrgasse 9, A-8010 Graz, Austria.
| | - Pedro Fardim
- KU Leuven, Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
16
|
Ren C, Ke Q, Fan X, Ning K, Wu Y, Liang J. The shape-dependent inhibitory effect of rhein/silver nanocomposites on porcine reproductive and respiratory syndrome virus. DISCOVER NANO 2023; 18:126. [PMID: 37817016 PMCID: PMC10564707 DOI: 10.1186/s11671-023-03900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Traditional Chinese medicines (TCMs)/nanopreparations as viral antagonists exhibited a structure-function correlation, i.e., the differences in surface area/volume ratio caused by the variations in shape and size could result in different biochemical properties and biological activities, suggesting an important impact of morphology and structure on the antiviral activity of TCM-based nanoparticles. However, few studies paid attention to this aspect. Here, the effect of TCM-based nanoparticles with different morphologies on their antiviral activity was explored by synthesizing rhein/silver nanocomposites (Rhe@AgNPs) with spherical (S-Rhe/Ag) and linear (L-Rhe/Ag) morphologies, using rhein (an active TCM ingredient) as a reducing agent and taking its self-assembly advantage. Using porcine reproductive and respiratory syndrome virus (PRRSV) as a model virus, the inhibitory effects of S-Rhe/Ag and L-Rhe/Ag on PRRSV were compared. Results showed that the product morphology could be regulated by varying pH values, and both S- and L-Rhe/Ag exhibited good dispersion and stability, but with a smaller size for L-Rhe/Ag. Antiviral experiments revealed that Rhe@AgNPs could effectively inhibit PRRSV infection, but the antiviral effect was morphology-dependent. Compared with L-Rhe/Ag, S-Rhe/Ag could more effectively inactivate PRRSV in vitro and antagonize its adsorption, invasion, replication, and release stages. Mechanistic studies indicated that Rhe@AgNPs could reduce the production of reactive oxygen species (ROS) induced by PRRSV infection, and S-Rhe/Ag also had stronger ROS inhibitory effect. This work confirmed the inhibitory effect of Rhe@AgNPs with different morphologies on PRRSV and provided useful information for treating PRRSV infection with metal nanoparticles synthesized from TCM ingredients.
Collapse
Affiliation(s)
- Caifeng Ren
- State Key Laboratory of Agricultural Microbiology, College of Resource and Environment, College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiyun Ke
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, People's Republic of China
| | - Xiaoxia Fan
- State Key Laboratory of Agricultural Microbiology, College of Resource and Environment, College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Keke Ning
- College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuan Wu
- College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiangong Liang
- State Key Laboratory of Agricultural Microbiology, College of Resource and Environment, College of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
17
|
Argenziano M, Arduino I, Rittà M, Molinar C, Feyles E, Lembo D, Cavalli R, Donalisio M. Enhanced Anti-Herpetic Activity of Valacyclovir Loaded in Sulfobutyl-ether-β-cyclodextrin-decorated Chitosan Nanodroplets. Microorganisms 2023; 11:2460. [PMID: 37894118 PMCID: PMC10609596 DOI: 10.3390/microorganisms11102460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Valacyclovir (VACV) was developed as a prodrug of the most common anti-herpetic drug Acyclovir (ACV), aiming to enhance its bioavailability. Nevertheless, prolonged VACV oral treatment may lead to the development of important side effects. Nanotechnology-based formulations for vaginal administration represent a promising approach to increase the concentration of the drug at the site of infection, limiting systemic drug exposure and reducing systemic toxicity. In this study, VACV-loaded nanodroplet (ND) formulations, optimized for vaginal delivery, were designed. Cell-based assays were then carried out to evaluate the antiviral activity of VACV loaded in the ND system. The chitosan-shelled ND exhibited an average diameter of about 400 nm and a VACV encapsulation efficiency of approximately 91% and was characterized by a prolonged and sustained release of VACV. Moreover, a modification of chitosan shell with an anionic cyclodextrin, sulfobutyl ether β-cyclodextrin (SBEβCD), as a physical cross-linker, increased the stability and mucoadhesion capability of the nanosystem. Biological experiments showed that SBEβCD-chitosan NDs enhanced VACV antiviral activity against the herpes simplex viruses type 1 and 2, most likely due to the long-term controlled release of VACV loaded in the ND and an improved delivery of the drug in sub-cellular compartments.
Collapse
Affiliation(s)
- Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Irene Arduino
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Massimo Rittà
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Chiara Molinar
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Elisa Feyles
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - David Lembo
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10100 Torino, Italy; (M.A.); (C.M.); (R.C.)
| | - Manuela Donalisio
- Laboratory of Molecular Virology and Antiviral Research, Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (M.R.); (E.F.); (M.D.)
| |
Collapse
|
18
|
Elste J, Kumari S, Sharma N, Razo EP, Azhar E, Gao F, Nunez MC, Anwar W, Mitchell JC, Tiwari V, Sahi S. Plant Cell-Engineered Gold Nanoparticles Conjugated to Quercetin Inhibit SARS-CoV-2 and HSV-1 Entry. Int J Mol Sci 2023; 24:14792. [PMID: 37834240 PMCID: PMC10573121 DOI: 10.3390/ijms241914792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Recent studies have revealed considerable promise in the antiviral properties of metal nanomaterials, specifically when biologically prepared. This study demonstrates for the first time the antiviral roles of the plant cell-engineered gold nanoparticles (pAuNPs) alone and when conjugated with quercetin (pAuNPsQ). We show here that the quercetin conjugated nanoparticles (pAuNPsQ) preferentially inhibit the cell entry of two medically important viruses-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and herpes simplex virus type-1 (HSV-1) using different mechanisms. Interestingly, in the case of SARS-CoV-2, the pre-treatment of target cells with pAuNPsQ inhibited the viral entry, but the pre-treatment of the virus with pAuNPsQ did not affect viral entry into the host cell. In contrast, pAuNPsQ demonstrated effective blocking capabilities against HSV-1 entry, either during the pre-treatment of target cells or by inducing virus neutralization. In addition, pAuNPsQ also significantly affected HSV-1 replication, evidenced by the plaque-counting assay. In this study, we also tested the chemically synthesized gold nanoparticles (cAuNPs) of identical size and shape and observed comparable effects. The versatility of plant cell-based nanomaterial fabrication and its modification with bioactive compounds opens a new frontier in therapeutics, specifically in designing novel antiviral formulations.
Collapse
Affiliation(s)
- James Elste
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (E.A.)
| | - Sangeeta Kumari
- Department of Biology, Saint Joseph’s University, University City Campus, Philadelphia, PA 19131, USA; (S.K.); (W.A.)
| | - Nilesh Sharma
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101, USA;
| | - Erendira Palomino Razo
- College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA; (E.P.R.); (F.G.); (M.C.N.); (J.C.M.)
| | - Eisa Azhar
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (E.A.)
| | - Feng Gao
- College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA; (E.P.R.); (F.G.); (M.C.N.); (J.C.M.)
| | - Maria Cuevas Nunez
- College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA; (E.P.R.); (F.G.); (M.C.N.); (J.C.M.)
| | - Wasim Anwar
- Department of Biology, Saint Joseph’s University, University City Campus, Philadelphia, PA 19131, USA; (S.K.); (W.A.)
| | - John C. Mitchell
- College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA; (E.P.R.); (F.G.); (M.C.N.); (J.C.M.)
| | - Vaibhav Tiwari
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, Downers Grove, IL 60515, USA; (J.E.); (E.A.)
- College of Dental Medicine, Midwestern University, Downers Grove, IL 60515, USA; (E.P.R.); (F.G.); (M.C.N.); (J.C.M.)
| | - Shivendra Sahi
- Department of Biology, Saint Joseph’s University, University City Campus, Philadelphia, PA 19131, USA; (S.K.); (W.A.)
| |
Collapse
|
19
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
20
|
Pisu AA, Siddi F, Cappellini G, Cardia R. Optical properties of nanostructured antiviral and anticancer drugs. RSC Adv 2023; 13:22481-22492. [PMID: 37534260 PMCID: PMC10392868 DOI: 10.1039/d3ra00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
We present a computational study on the optical absorption properties of some systems of interest in the field of drug delivery. In particular we considered as drug molecules favipiravir (T705, an antiviral molecule) and 5-fluorouracil (5FU, an anticancer molecule) and, on the other hand, pure fullerenes (C24, B12N12, Ga12N12) and doped fullerenes (C23B, CB11N12) are considered as nanocarriers. Some combined configurations between the drug molecules and the carrier nanostructures have been then studied. The optical absorption properties of the above mentioned drug molecules and their carrier nanostructures in the free and bound states are obtained by a TD-DFT method, in gas phase and in aqueous solution. We perform a detailed analysis of the modifications arising in the absorption spectra that take place in some linked configurations between the drug molecules and the carrier nanostructures. These changes could be of importance as an optical fingerprint of the realized drug/carrier link.
Collapse
Affiliation(s)
- Alessandra Angela Pisu
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
| | - Francesco Siddi
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
| | - Giancarlo Cappellini
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
- European Theoretical Spectroscopy Facility (ETSF) Italy
| | - Roberto Cardia
- Department of Physics, University of Cagliari S.P. Monserrato-Sestu Km 0,700 Monserrato CA I-09042 Italy
| |
Collapse
|
21
|
Yin N, Zhang Z, Ge Y, Zhao Y, Gu Z, Yang Y, Mao L, Wei Z, Liu J, Shi J, Wang Z. Polydopamine-based nanomedicines for efficient antiviral and secondary injury protection therapy. SCIENCE ADVANCES 2023; 9:eadf4098. [PMID: 37315148 DOI: 10.1126/sciadv.adf4098] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/10/2023] [Indexed: 06/16/2023]
Abstract
Viral infections continue to threaten human health. It remains a major challenge to efficiently inhibit viral infection while avoiding secondary injury. Here, we designed a multifunctional nanoplatform (termed as ODCM), prepared by oseltamivir phosphate (OP)-loaded polydopamine (PDA) nanoparticles camouflaged by the macrophage cell membrane (CM). OP can be efficiently loaded onto the PDA nanoparticles through the π-π stacking and hydrogen bonding interactions with a high drug-loading rate of 37.6%. In particular, the biomimetic nanoparticles can accumulate actively in the damaged lung model of viral infection. At the infection site, PDA nanoparticles can consume excess reactive oxygen species and be simultaneously oxidized and degraded to achieve controlled release of OP. This system exhibits enhanced delivery efficiency, inflammatory storm suppression, and viral replication inhibition. Therefore, the system exerts outstanding therapeutic effects while improving pulmonary edema and protecting lung injury in a mouse model of influenza A virus infection.
Collapse
Affiliation(s)
- Na Yin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, China
| | - Zhongmou Zhang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
| | - Yongzhuang Ge
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
| | - Yuzhen Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, China
| | - Zichen Gu
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
- Zhengzhou University of Industrial Technology, Zhengzhou 450001, China
| | - Yue Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, China
| | - Lu Mao
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
| | - Zhanyong Wei
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Key Drug Preparation Technology Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou 450001, China
| | - Zhenya Wang
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of "Runliang" Antiviral Medicines Research and Development, Institute of Drug Discovery and Development, Zhengzhou University, Zhengzhou 450001, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
22
|
Mali A, Franci G, Zannella C, Chianese A, Anthiya S, López-Estévez AM, Monti A, De Filippis A, Doti N, Alonso MJ, Galdiero M. Antiviral Peptides Delivered by Chitosan-Based Nanoparticles to Neutralize SARS-CoV-2 and HCoV-OC43. Pharmaceutics 2023; 15:1621. [PMID: 37376070 DOI: 10.3390/pharmaceutics15061621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 06/29/2023] Open
Abstract
The COVID-19 pandemic has made it clear that there is a crucial need for the design and development of antiviral agents that can efficiently reduce the fatality rate caused by infectious diseases. The fact that coronavirus mainly enters through the nasal epithelial cells and spreads through the nasal passage makes the nasal delivery of antiviral agents a promising strategy not only to reduce viral infection but also its transmission. Peptides are emerging as powerful candidates for antiviral treatments, showing not only a strong antiviral activity, but also improved safety, efficacy, and higher specificity against viral pathogens. Based on our previous experience on the use of chitosan-based nanoparticles to deliver peptides intra-nasally the current study aimed to explore the delivery of two-novel antiviral peptides making use of nanoparticles consisting of HA/CS and DS/CS. The antiviral peptides were chemically synthesized, and the optimal conditions for encapsulating them were selected through a combination of physical entrapment and chemical conjugation using HA/CS and DS/CS nanocomplexes. Finally, we evaluated the in vitro neutralization capacity against SARS-CoV-2 and HCoV-OC43 for potential use as prophylaxis or therapy.
Collapse
Affiliation(s)
- Avinash Mali
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Gianluigi Franci
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Carla Zannella
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Annalisa Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Shubaash Anthiya
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ana M López-Estévez
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy
- CIRPEB, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, 80134 Naples, Italy
| | - Anna De Filippis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Naples, Italy
- CIRPEB, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, 80134 Naples, Italy
| | - María José Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Department of Pharmacy and Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Massimiliano Galdiero
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy
| |
Collapse
|
23
|
Žigrayová D, Mikušová V, Mikuš P. Advances in Antiviral Delivery Systems and Chitosan-Based Polymeric and Nanoparticulate Antivirals and Antiviral Carriers. Viruses 2023; 15:647. [PMID: 36992356 PMCID: PMC10054433 DOI: 10.3390/v15030647] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Current antiviral therapy research is focused on developing dosage forms that enable highly effective drug delivery, providing a selective effect in the organism, lower risk of adverse effects, a lower dose of active pharmaceutical ingredients, and minimal toxicity. In this article, antiviral drugs and the mechanisms of their action are summarized at the beginning as a prerequisite background to develop relevant drug delivery/carrier systems for them, classified and briefly discussed subsequently. Many of the recent studies aim at different types of synthetic, semisynthetic, and natural polymers serving as a favorable matrix for the antiviral drug carrier. Besides a wider view of different antiviral delivery systems, this review focuses on advances in antiviral drug delivery systems based on chitosan (CS) and derivatized CS carriers. CS and its derivatives are evaluated concerning methods of their preparation, their basic characteristics and properties, approaches to the incorporation of an antiviral drug in the CS polymer as well as CS nanoparticulate systems, and their recent biomedical applications in the context of actual antiviral therapy. The degree of development (i.e., research study, in vitro/ex vivo/in vivo preclinical testing), as well as benefits and limitations of CS polymer and CS nanoparticulate drug delivery systems, are reported for particular viral diseases and corresponding antivirotics.
Collapse
Affiliation(s)
- Dominika Žigrayová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
24
|
Spherical PEG/SiO 2 promising agents for Lamivudine antiviral drug delivery, a molecular dynamics simulation study. Sci Rep 2023; 13:3323. [PMID: 36849795 PMCID: PMC9969043 DOI: 10.1038/s41598-023-30493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
Spherical nanocarriers can lead to a bright future to lessen problems of virus infected people. Spherical polyethylene glycol (PEG) and spherical silica (SiO2) are novel attractive nanocarriers as drug delivery agents, especially they are recently noticed to be reliable for antiviral drugs like anti-HIV, anti-covid-19, etc. Lamivudine (3TC) is used as a first line drug for antiviral therapy and the atomic view of 3TC-PEG/SiO2 complexes enable scientist to help improve treatment of patients with viral diseases. This study investigates the interactions of 3TC with Spherical PEG/SiO2, using molecular dynamics simulations. The mechanism of adsorption, the stability of systems and the drug concentration effect are evaluated by analyzing the root mean square deviation, the solvent accessible surface area, the radius of gyration, the number of hydrogen bonds, the radial distribution function, and Van der Waals energy. Analyzed data show that the compression of 3TC is less on PEG and so the stability is higher than SiO2; the position and intensity of the RDF peaks approve this stronger binding of 3TC to PEG as well. Our studies show that PEG and also SiO2 are suitable for loading high drug concentrations and maintaining their stability; therefore, spherical PEG/SiO2 can reduce drug dosage efficiently.
Collapse
|
25
|
Bhatti A, DeLong RK. Nanoscale Interaction Mechanisms of Antiviral Activity. ACS Pharmacol Transl Sci 2023; 6:220-228. [PMID: 36798473 PMCID: PMC9926521 DOI: 10.1021/acsptsci.2c00195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Indexed: 01/12/2023]
Abstract
Nanomaterials have now found applications across all segments of society including but not limited to energy, environment, defense, agriculture, purification, food medicine, diagnostics, and others. The pandemic and the vulnerability of humankind to emerging viruses and other infectious diseases has renewed interest in nanoparticles as a potential new class of antivirals. In fact, a growing body of evidence in the literature suggests nanoparticles may have activity against multiple viruses including HIV, HNV, SARS-CoV-2, HBV, HCV, HSV, RSV, and others. The most described antiviral nanoparticles include copper, alloys, and oxides including zinc oxide (ZnO), titanium oxide, iron oxide, and their composites, nitrides, and other ceramic nanoparticles, as well as gold and silver nanoparticles, and sulfated and nonsulfated polysaccharides and other sulfated polymers including galactan, cellulose, polyethylenimine, chitosan/chitin, and others. Nanoparticles, synthesized via the biological or green method, also have great importance and are under major consideration these days, as their method of synthesis is easy, reliable, cost-effective, efficient, and eco-friendly, and is done using easily available sources such as bacteria, actinomycetes, yeast, fungi, algae, herbs, and plants, in comparison to chemically mediated synthesis. Chemical synthesis is highly expensive and involves toxic solvents, high pressure, energy, and high temperature conversion. Examples of biologically synthesized NPs include iron oxide, Cu and CuO NPs, and platinum and palladium NPs. In contrast to traditional medications, nanomedications have multiple advantages: their small size, increased surface to volume ratio, improved pharmacokinetics, improved biodistribution, and targeted delivery. In terms of antiviral activity, nanoscale interactions represent a unique mode of action. As reviewed here their biomedical application as an antiviral has shown four major mechanisms: (1) direct viral interaction prohibiting the virus from infecting the cell, (2) interaction to receptor or cell surface preventing the virus from entering the host cells, (3) preventing the replication of the virus, or (4) other processing mechanisms which inhibit the spread of virus. Here these pharmacologic mechanisms are reviewed and the challenges for technology translation are discussed in more detail.
Collapse
Affiliation(s)
- Abeera Bhatti
- Kansas
State University, College of Veterinary
Medicine, Nanotechnology Innovation Center, Department of Anatomy
and Physiology, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Landmark
Bio, Innovation Development Laboratory, Watertown, Massachusetts 02472, United States
| |
Collapse
|
26
|
Singh CK, Sodhi KK. The emerging significance of nanomedicine-based approaches to fighting COVID-19 variants of concern: A perspective on the nanotechnology’s role in COVID-19 diagnosis and treatment. FRONTIERS IN NANOTECHNOLOGY 2023. [DOI: 10.3389/fnano.2022.1084033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
COVID-19, one of the worst-hit pandemics, has quickly spread like fire across nations with very high mortality rates. Researchers all around the globe are making consistent efforts to address the main challenges faced due to COVID-19 infection including prompt diagnosis and therapeutics to reduce mortality. Conventional medical technology does not effectively contain the havoc caused by deadly COVID-19. This signals a crucial mandate for innovative and novel interventions in diagnostics and therapeutics to combat this ongoing pandemic and counter its successor or disease if it were ever to arise. The expeditious solutions can spring from promising areas such as nanomedicine and nanotechnology. Nanomedicine is a dominant tool that has a huge potential to alleviate the disease burden by providing nanoparticle-based vaccines and carriers. Nanotechnology encompasses multidisciplinary aspects including artificial intelligence, chemistry, biology, material science, physical science, and medicine. Nanoparticles offer many advantages compared to larger particles, including better magnetic properties and a multiplied surface-to-volume ratio. Given this, the present review focuses on promising nanomedicine-based solutions to combat COVID-19 and their utility to control a broad range of pathogens and viruses, along with understanding their role in the therapy, diagnosis, and prevention of COVID-19. Various studies, reports, and recent research and development from the nanotechnology perspective are discussed in this article.
Collapse
|
27
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Iqbal R, Khan S, Ali HM, Khan M, Wahab S, Khan T. Application of nanomaterials against SARS-CoV-2: An emphasis on their usefulness against emerging variants of concern. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1060756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Researchers are now looking to nanomaterials to fight serious infectious diseases that cause outbreaks and even pandemics. SARS-CoV-2 brought chaos to almost every walk of life in the past 2 years and has challenged every available treatment method. Although vaccines were developed in no time against it, the most pressing issue was the emergence of variants of concern arising because of the rapidly evolving viral strains. The higher pathogenicity and, in turn, the higher mortality rate of infections caused by these variants renders the existing vaccines less effective and the effort to produce further vaccines a costly endeavor. While several techniques, such as immunotherapy and repurposed pharmaceutical research, are being studied to minimize viral infection, the fundamentals of nanotechnology must also be considered to enhance the anti-SARS-CoV-2 efforts. For instance, silver nanoparticles (AgNPs) have been applied against SARS-CoV-2 effectively. Similarly, nanomaterials have been tested in masks, gloves, and disinfectants to aid in controlling SARS-CoV-2. Nanotechnology has also contributed to diagnoses such as rapid and accurate detection and treatment such as the delivery of mRNA vaccines and other antiviral agents into the body. The development of polymeric nanoparticles has been dubbed a strategy of choice over traditional drugs because of their tunable release kinetics, specificity, and multimodal drug composition. Our article explores the potential of nanomaterials in managing the variants of concern. This will be achieved by highlighting the inherent ability of nanomaterials to act against the virus on fronts such as inhibition of SARS-CoV-2 entry, inhibition of RNA replication in SARS-CoV-2, and finally, inhibition of their release. In this review, a detailed discussion on the potential of nanomaterials in these areas will be tallied with their potential against the current and emerging future variants of concern.
Collapse
|
29
|
Nemade SM, Kakad SP, Kshirsagar SJ, Padole TR. Development of nanoemulsion of antiviral drug for brain targeting in the treatment of neuro-AIDS. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
Delivery of drugs via the nasal route directly to the brain utilizing the olfactory pathway is purportedly known to be a more efficient method to deliver neuro-therapeutics to the brain by circumventing the BBB, thereby increasing the bioavailability of these drugs in the brain. The main objective of the project work is to improve the bioavailability of the antiretroviral drug and to minimize the side effects of this therapy which are observed at the higher side in the chronic HIV treatment. The advantage of nasal drug delivery is its noninvasiveness and self-administration. Nanoformulation provides fast onset of action and helps to achieve site-specific delivery. In the current work, nanoemulsion formulation was developed with a ternary phase system. In vitro characterization of nanoemulsion was performed.
Result
Optimized batch B2 had a zeta potential of − 18.7 mV showing a stable emulsion system and a particle size of 156.2 nmin desirable size range. Batch B2 has the least variation in globule size with PDI 0.463. Results from ex vivo studies revealed that developed nanoemulsion (B2) possessed a higher rate of drug release compared to other formulations.
Conclusion
Phase diagrams indicated more width of the nanoemulsion region with an increase in surfactant ratio. Stable nanoemulsion was prepared with a combination of surfactant and co-surfactants. Nanoemulsions could prove one of the best alternatives for brain delivery of potent medications.
Graphical Abstract
Collapse
|
30
|
Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines 2022; 10:biomedicines10123051. [PMID: 36551806 PMCID: PMC9776363 DOI: 10.3390/biomedicines10123051] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Natural antioxidants from fruits and vegetables, meats, eggs and fish protect cells from the damage caused by free radicals. They are widely used to reduce food loss and waste, minimizing lipid oxidation, as well as for their effects on health through pharmaceutical preparations. In fact, the use of natural antioxidants is among the main efforts made to relieve the pressure on natural resources and to move towards more sustainable food and pharmaceutical systems. Alternative food waste management approaches include the valorization of by-products as a source of phenolic compounds for functional food formulations. In this review, we will deal with the chemistry of antioxidants, including their molecular structures and reaction mechanisms. The biochemical aspects will also be reviewed, including the effects of acidity and temperature on their partitioning in binary and multiphasic systems. The poor bioavailability of antioxidants remains a huge constraint for clinical applications, and we will briefly describe some delivery systems that provide for enhanced pharmacological action of antioxidants via drug targeting and increased bioavailability. The pharmacological activity of antioxidants can be improved by designing nanotechnology-based formulations, and recent nanoformulations include nanoparticles, polymeric micelles, liposomes/proliposomes, phytosomes and solid lipid nanoparticles, all showing promising outcomes in improving the efficiency and bioavailability of antioxidants. Finally, an overview of the pharmacological effects, therapeutic properties and future choice of antioxidants will be incorporated.
Collapse
|
31
|
Nanoparticles for Antimicrobial Agents Delivery-An Up-to-Date Review. Int J Mol Sci 2022; 23:ijms232213862. [PMID: 36430343 PMCID: PMC9696780 DOI: 10.3390/ijms232213862] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Infectious diseases constitute an increasing threat to public health and medical systems worldwide. Particularly, the emergence of multidrug-resistant pathogens has left the pharmaceutical arsenal unarmed to fight against such severe microbial infections. Thus, the context has called for a paradigm shift in managing bacterial, fungal, viral, and parasitic infections, leading to the collision of medicine with nanotechnology. As a result, renewed research interest has been noted in utilizing various nanoparticles as drug delivery vehicles, aiming to overcome the limitations of current treatment options. In more detail, numerous studies have loaded natural and synthetic antimicrobial agents into different inorganic, lipid, and polymeric-based nanomaterials and tested them against clinically relevant pathogens. In this respect, this paper reviews the most recently reported successfully fabricated nanoformulations that demonstrated a great potential against bacteria, fungi, viruses, and parasites of interest for human medicine.
Collapse
|
32
|
Li CZ, Chang HM, Hsu WL, Venkatesan P, Lin MHC, Lai PS. Curcumin-Loaded Oil-Free Self-Assembled Micelles Inhibit the Influenza A Virus Activity and the Solidification of Curcumin-Loaded Micelles for Pharmaceutical Applications. Pharmaceutics 2022; 14:2422. [PMID: 36365240 PMCID: PMC9697350 DOI: 10.3390/pharmaceutics14112422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 08/30/2023] Open
Abstract
Curcumin, a well-known natural lipophilic phenolic compound, plays a vital role in inhibiting the influenza infection. Currently, many kinds of formulations for the enhancement of a water dispersion of curcumin have been developed; however, the anti-influenza abilities of formulated curcumin have been much less investigated. In this study, the optimized self-assembled micelles of RH 40/Tween 80 loaded with curcumin (Cur-M) in an oil-free-based system were spherical with a hydrodynamic size at 13.55 nm ± 0.208 and polydispersity at 0.144 characterized by atomic force microscopy and dynamic light scattering, respectively. Additionally, Cur-M significantly increased the bioactivity/stability of curcumin and effectively inhibited the influenza A virus infection and its replication after viral entry, indicating the alteration of the inhibition mechanisms of curcumin against virus infection via RH 40/Tween 80 micelle formulation. Furthermore, a solid formulation (Cur-SM) of Cur-M was successfully developed by a one-pot physical adsorption method using a small amount of adsorbent and ~50% of curcumin/Cur-M that could be burst released from Cur-SM in 1 h, facilitating the fast-releasing applications. Ultimately, all of the results show that Cur-SM acts as a good nano-formulation of curcumin with improved solubility/dispersity in aqueous solutions and demonstrate new anti-influenza mechanisms of curcumin for pharmaceutical development.
Collapse
Affiliation(s)
- Cun-Zhao Li
- Department of Chemistry, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
| | - Hui-Min Chang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
| | - Parthiban Venkatesan
- Department of Chemistry, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
| | - Martin Hsiu-Chu Lin
- Department of Chemistry, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 613, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, No. 145, Xingda Road, Taichung 402, Taiwan
| |
Collapse
|
33
|
Bhattacharjee R, Dubey AK, Ganguly A, Bhattacharya B, Mishra YK, Mostafavi E, Kaushik A. State-of-art high-performance Nano-systems for mutated coronavirus infection management: From Lab to Clinic. OPENNANO 2022. [PMCID: PMC9463543 DOI: 10.1016/j.onano.2022.100078] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management.
Collapse
|
34
|
Progress and challenges of lyotropic liquid crystalline nanoparticles for innovative therapies. Int J Pharm 2022; 628:122299. [DOI: 10.1016/j.ijpharm.2022.122299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
|
35
|
Yasamineh S, Kalajahi HG, Yasamineh P, Yazdani Y, Gholizadeh O, Tabatabaie R, Afkhami H, Davodabadi F, Farkhad AK, Pahlevan D, Firouzi-Amandi A, Nejati-Koshki K, Dadashpour M. An overview on nanoparticle-based strategies to fight viral infections with a focus on COVID-19. J Nanobiotechnology 2022; 20:440. [PMID: 36209089 PMCID: PMC9547679 DOI: 10.1186/s12951-022-01625-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to COVID-19 and has become a pandemic worldwide with mortality of millions. Nanotechnology can be used to deliver antiviral medicines or other types of viral reproduction-inhibiting medications. At various steps of viral infection, nanotechnology could suggest practical solutions for usage in the fight against viral infection. Nanotechnology-based approaches can help in the fight against SARS-CoV-2 infection. Nanoparticles can play an essential role in progressing SARS-CoV-2 treatment and vaccine production in efficacy and safety. Nanocarriers have increased the speed of vaccine development and the efficiency of vaccines. As a result, the increased investigation into nanoparticles as nano-delivery systems and nanotherapeutics in viral infection, and the development of new and effective methods are essential for inhibiting SARS-CoV-2 infection. In this article, we compare the attributes of several nanoparticles and evaluate their capability to create novel vaccines and treatment methods against different types of viral diseases, especially the SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
- Department of Medical Biotechnology, Institute of Higher Education Rab-Rashid, Tabriz, Iran
| | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yalda Yazdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Omid Gholizadeh
- Department of Virology, Faculty of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raheleh Tabatabaie
- Department of Medical Immunology, Faculty of Medical Sciences, Hamadan University, Hamadan, Iran
| | - Hamed Afkhami
- Department of Medical Microbiology, Faculty of Medicine, Shahed University of Medical Science, Tehran, Iran
| | - Fatemeh Davodabadi
- Department of Biology, Faculty of Basic Science, Payame Noor University, Tehran, Iran
| | | | - Daryoush Pahlevan
- Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Akram Firouzi-Amandi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mehdi Dadashpour
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
36
|
Zheng J, Song X, Yang Z, Yin C, Luo W, Yin C, Ni Y, Wang Y, Zhang Y. Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 2022; 350:898-921. [PMID: 36089171 DOI: 10.1016/j.jconrel.2022.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Advanced drug delivery systems are of vital importance to enhance therapeutic efficacy. Among various recently developed formulations, self-assembling hydrogels composed of therapeutic agents have shown promising potential for local drug delivery owing to their excellent biocompatibility, high drug-loading efficiency, low systemic toxicity, and sustained drug release behavior. In particular, therapeutic agents self-assembling hydrogels with well-defined nanostructures are beneficial for direct delivery to the target site via injection, not only improving drug availability, but also extending their retention time and promoting cellular uptake. In brief, the self-assembly approach offers better opportunities to improve the precision of pharmaceutical treatment and achieve superior treatment efficacies. In this review, we intend to cover the recent developments in therapeutic agent self-assembling hydrogels. First, the molecular structures, self-assembly mechanisms, and application of self-assembling hydrogels are systematically outlined. Then, we summarize the various self-assembly strategies, including the single therapeutic agent, metal-coordination, enzyme-instruction, and co-assembly of multiple therapeutic agents. Finally, the potential challenges and future perspectives are discussed. We hope that this review will provide useful insights into the design and preparation of therapeutic agent self-assembling hydrogels.
Collapse
Affiliation(s)
- Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyang Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
37
|
The efficient role of algae as green factories for nanotechnology and their vital applications. Microbiol Res 2022; 263:127111. [DOI: 10.1016/j.micres.2022.127111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/09/2022] [Accepted: 06/28/2022] [Indexed: 11/20/2022]
|
38
|
Alavi M, Kamarasu P, McClements DJ, Moore MD. Metal and metal oxide-based antiviral nanoparticles: Properties, mechanisms of action, and applications. Adv Colloid Interface Sci 2022; 306:102726. [PMID: 35785596 DOI: 10.1016/j.cis.2022.102726] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/05/2022] [Accepted: 06/24/2022] [Indexed: 11/30/2022]
Abstract
Certain types of metal-based nanoparticles are effective antiviral agents when used in their original form ("bare") or after their surfaces have been functionalized ("modified"), including those comprised of metals (e.g., silver) and metal oxides (e.g., zinc oxide, titanium dioxide, or iron dioxide). These nanoparticles can be prepared with different sizes, morphologies, surface chemistries, and charges, which leads to different antiviral activities. They can be used as aqueous dispersions or incorporated into composite materials, such as coatings or packaging materials. In this review, we provide an overview of the design, preparation, and characterization of metal-based nanoparticles. We then discuss their potential mechanisms of action against various kinds of viruses. Finally, the applications of some of the most common metal and metal oxide nanoparticles are discussed, including those fabricated from silver, zinc oxide, iron oxide, and titanium dioxide. In general, the major antiviral mechanisms of metal and metal oxide nanoparticles have been observed to be 1) attachment of nanoparticles to surface moieties of viral particles like spike glycoproteins, that disrupt viral attachment and uncoating in host cells; 2) generation of reactive oxygen species (ROS) that denature viral macromolecules such as nucleic acids, capsid proteins, and/or lipid envelopes; and 3) inactivation of viral glycoproteins by the disruption of the disulfide bonds of viral proteins. Several physicochemical properties of metal and metal oxide nanoparticles including size, shape, zeta potential, stability in physiological conditions, surface modification, and porosity can all impact the antiviral efficacy of the nanoparticles.
Collapse
Affiliation(s)
- Mehran Alavi
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Kurdistan, Iran; Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Pragathi Kamarasu
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Matthew D Moore
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
39
|
Mirkasymov AB, Zelepukin IV, Ivanov IN, Belyaev IB, Sh. Dzhalilova D, Trushina DB, Yaremenko AV, Yu. Ivanov V, Nikitin MP, Nikitin PI, Zvyagin AV, Deyev SM. Macrophage Blockade using Nature-Inspired Ferrihydrite for Enhanced Nanoparticle Delivery to Tumor. Int J Pharm 2022; 621:121795. [DOI: 10.1016/j.ijpharm.2022.121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 11/28/2022]
|
40
|
Ribeiro AI, Dias AM, Zille A. Synergistic Effects Between Metal Nanoparticles and Commercial Antimicrobial Agents: A Review. ACS APPLIED NANO MATERIALS 2022; 5:3030-3064. [PMID: 36568315 PMCID: PMC9773423 DOI: 10.1021/acsanm.1c03891] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nanotechnology has expanded into a broad range of clinical applications. In particular, metal nanoparticles (MNPs) display unique antimicrobial properties, a fundamental function of novel medical devices. The combination of MNPs with commercial antimicrobial drugs (e.g., antibiotics, antifungals, and antivirals) may offer several opportunities to overcome some disadvantages of their individual use and enhance effectiveness. MNP conjugates display multiple advantages. As drug delivery systems, the conjugates can extend the circulation of the drugs in the body, facilitate intercellular targeting, improve drug stabilization, and possess superior delivery. Concomitantly, they reduce the required drug dose, minimize toxicity, and broaden the antimicrobial spectrum. In this work, the common strategies to combine MNPs with clinically used antimicrobial agents are underscored. Furthermore, a comprehensive survey about synergistic antimicrobial effects, the mechanism of action, and cytotoxicity is depicted.
Collapse
Affiliation(s)
- Ana Isabel Ribeiro
- 2C2T
- Centre for Textile Science and Technology, Department of Textile
Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| | - Alice Maria Dias
- Centre
of Chemistry, Department of Chemistry, University
of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Andrea Zille
- 2C2T
- Centre for Textile Science and Technology, Department of Textile
Engineering, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
41
|
Madkhali OA. Perspectives and Prospective on Solid Lipid Nanoparticles as Drug Delivery Systems. Molecules 2022; 27:1543. [PMID: 35268643 PMCID: PMC8911793 DOI: 10.3390/molecules27051543] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 01/02/2023] Open
Abstract
Combating multiple drug resistance necessitates the delivery of drug molecules at the cellular level. Novel drug delivery formulations have made it possible to improve the therapeutic effects of drugs and have opened up new possibilities for research. Solid lipid nanoparticles (SLNs), a class of colloidal drug carriers made of lipids, have emerged as potentially effective drug delivery systems. The use of SLNs is associated with numerous advantages such as low toxicity, high bioavailability of drugs, versatility in the incorporation of hydrophilic and lipophilic drugs, and the potential for production of large quantities of the carrier systems. The SLNs and nanostructured lipid carriers (NLCs) are the two most frequently used types of nanoparticles. These types of nanoparticles can be adjusted to deliver medications in specific dosages to specific tissues, while minimizing leakage and binding to non-target tissues.
Collapse
Affiliation(s)
- Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45124, Saudi Arabia
| |
Collapse
|
42
|
Panggabean JA, Adiguna SP, Rahmawati SI, Ahmadi P, Zainuddin EN, Bayu A, Putra MY. Antiviral Activities of Algal-Based Sulfated Polysaccharides. Molecules 2022; 27:molecules27041178. [PMID: 35208968 PMCID: PMC8874489 DOI: 10.3390/molecules27041178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
An antiviral agent is urgently needed based on the high probability of the emergence and re-emergence of future viral disease, highlighted by the recent global COVID-19 pandemic. The emergence may be seen in the discovery of the Alpha, Beta, Gamma, Delta, and recently discovered Omicron variants of SARS-CoV-2. The need for strategies besides testing and isolation, social distancing, and vaccine development is clear. One of the strategies includes searching for an antiviral agent that provides effective results without toxicity, which is well-presented by significant results for carrageenan nasal spray in providing efficacy against human coronavirus-infected patients. As the primary producer of sulfated polysaccharides, marine plants, including macro- and microalgae, offer versatility in culture, production, and post-isolation development in obtaining the needed antiviral agent. Therefore, this review will describe an attempt to highlight the search for practical and safe antiviral agents from algal-based sulfated polysaccharides and to unveil their features for future development.
Collapse
Affiliation(s)
- Jonathan Ardhianto Panggabean
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (J.A.P.); (S.P.A.)
- Research Center for Biotechnology, Research Organization for Life Sciences, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia;
| | - Sya’ban Putra Adiguna
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta 55281, Indonesia; (J.A.P.); (S.P.A.)
- Research Center for Biotechnology, Research Organization for Life Sciences, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia;
| | - Siti Irma Rahmawati
- Research Center for Biotechnology, Research Organization for Life Sciences, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia;
| | - Peni Ahmadi
- Research Center for Biotechnology, Research Organization for Life Sciences, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (E.N.Z.); (A.B.); (M.Y.P.)
| | - Elmi Nurhaidah Zainuddin
- Faculty of Marine Science and Fisheries, Hasanuddin University, Makassar 90245, Indonesia
- Center of Excellent for Development and Utilization of Seaweed, Hasanuddin University, Makassar 90245, Indonesia
- Correspondence: (P.A.); (E.N.Z.); (A.B.); (M.Y.P.)
| | - Asep Bayu
- Research Center for Biotechnology, Research Organization for Life Sciences, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (E.N.Z.); (A.B.); (M.Y.P.)
| | - Masteria Yunovilsa Putra
- Research Center for Biotechnology, Research Organization for Life Sciences, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong 16911, Indonesia;
- Correspondence: (P.A.); (E.N.Z.); (A.B.); (M.Y.P.)
| |
Collapse
|
43
|
Huang Z, Wu L, Wang W, Zhou Y, Zhang X, Huang Y, Pan X, Wu C. Unraveling the publication trends in inhalable nano-systems. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2022; 24:10. [PMID: 35018138 PMCID: PMC8739024 DOI: 10.1007/s11051-021-05384-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/06/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Nano-systems (size range: 1 ~ 1000 nm) have been widely investigated as pulmonary drug delivery carriers, and the safety of inhaled nano-systems has aroused general interests. In this work, bibliometric analysis was performed to describe the current situation of related literature, figure out the revolutionary trends, and eventually forecast the possible future directions. The relevant articles and reviews from 2001 to 2020 were retrieved from the Web of Science Core Collection. The documents were processed by Clarivate Analytic associated with Web of Science database, Statistical Analysis Toolkit for Informetric, bibliometric online platform and VOSviewer, and the data were visualized. The bibliometric overview of the literature was described, citation analysis was performed, and research hotspots were showcased. The bibliometric analysis of 3362 documents of interest indicated that most of the relevant source titles were in the fields of toxicology, pharmacy, and materials science. The three research hotspots were the biological process of inhalable nano-systems in vivo, the manufacture of inhalable nano-systems, and the impact of nano-systems on human health in the environment. Toxicity and safety have always been the keywords. The USA was the major contributing country, and international collaboration and co-authorship were common phenomena. The general situation and development trend of literature of inhalable nano-systems were summarized. It was anticipated that bibliometrics analysis could provide new ideas for the future research of inhalable nano-systems. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11051-021-05384-1.
Collapse
Affiliation(s)
- Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou, 510006 People’s Republic of China
| | - Linjing Wu
- College of Pharmacy, Jinan University, Guangzhou, 510006 People’s Republic of China
| | - Wenhao Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 People’s Republic of China
| | - Yue Zhou
- College of Pharmacy, Jinan University, Guangzhou, 510006 People’s Republic of China
| | - Xuejuan Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510006 People’s Republic of China
| | - Ying Huang
- College of Pharmacy, Jinan University, Guangzhou, 510006 People’s Republic of China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006 People’s Republic of China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, 510006 People’s Republic of China
| |
Collapse
|
44
|
Formulation and characterization of hydroxyethyl cellulose-based gel containing metronidazole-loaded solid lipid nanoparticles for buccal mucosal drug delivery. Int J Biol Macromol 2022; 194:1010-1018. [PMID: 34843817 DOI: 10.1016/j.ijbiomac.2021.11.161] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022]
Abstract
Local delivery of drug is a promising strategy to manage periodontitis characterized by chronic inflammation of the soft tissue surrounding the teeth. An optimized system should prolong the drug retention time and exhibit controlled drug permeation through the buccal mucosal layer. This study was aimed to develop hydroxyethyl cellulose (HEC)-based gel containing metronidazole (MTZ) loaded in solid lipid nanoparticles (SLNs), and to enhance the antimicrobial activity of MTZ. SLNs were prepared using a combination method of solvent evaporation and hot homogenization. The results showed that the fabricated SLNs, comprising of Precirol (2.93%, w/v), Tween 80 (1.8%, w/v), and the drug:lipid ratio of 19.3% (w/w), were approximately 200 nm in size, with a narrow distribution. The HEC (3%, w/w)-based gel formed a smooth, homogeneous structure and had preferable mechanical and rheological properties. Moreover, the MTZ-loaded SLNs-based HEC gel (equivalent to 1% of MTZ, w/w) exhibited a sustained in vitro drug release pattern, optimal ex vivo permeability, and enhanced in vitro antimicrobial activity after 24 h of treatment. These findings indicate the potential of the MTZ-loaded SLNs-based HEC formulation for local drug delivery at the buccal mucosa in managing periodontal disease.
Collapse
|
45
|
Pasupuleti VR. Nanoscience and nanotechnology advances in food industry. FUTURE FOODS 2022. [DOI: 10.1016/b978-0-323-91001-9.00011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
46
|
Dodero A, Alberti S, Gaggero G, Ferretti M, Botter R, Vicini S, Castellano M. An Up‐to‐Date Review on Alginate Nanoparticles and Nanofibers for Biomedical and Pharmaceutical Applications. ADVANCED MATERIALS INTERFACES 2021; 8. [DOI: 10.1002/admi.202100809] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 01/06/2025]
Abstract
AbstractAlginate is a naturally occurring polysaccharide commonly derived from brown algae cell walls which possesses unique features that make it extremely promising for several biomedical and pharmaceutical purposes. Alginate biomaterials are indeed nowadays gaining increasing interest in drug delivery and tissue engineering applications owing to their intrinsic biocompatibility, non‐toxicity, versatility, low cost, and ease of functionalization. Specifically, alginate‐based nanostructures show enhanced capabilities with respect to alginate bulk materials in the targeted delivery of drugs and chemotherapies, as well as in helping tissue reparation and regeneration. Hence, it is not surprising that the number of scientific reports related to this topic have rapidly grown in the last decade. With these premises, the present review aims to provide a comprehensive state‐of‐the‐art of the most recent advances in the preparation of alginate‐based nanoparticles and electrospun nanofibers for drug delivery, cancer therapy, and tissue engineering purposes. After a short introduction concerning the general properties and uses of alginate and the concept of nanotechnology, the recent literature is then critically presented to highlight the main advantages of alginate‐based nanostructures. Finally, the current limitations and the future perspectives and objectives are discussed in detail.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Stefano Alberti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Giulia Gaggero
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Maurizio Ferretti
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Rodolfo Botter
- Department of Civil, Chemical and Environmental Engineering Università degli Studi di Genova Via All'Opera Pia 15 Genoa 16145 Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry Università degli Studi di Genova Via Dodecaneso 31 Genoa 16146 Italy
| |
Collapse
|
47
|
Tayeb HH, Felimban R, Almaghrabi S, Hasaballah N. Nanoemulsions: Formulation, characterization, biological fate, and potential role against COVID-19 and other viral outbreaks. COLLOID AND INTERFACE SCIENCE COMMUNICATIONS 2021; 45:100533. [PMID: 34692429 PMCID: PMC8526445 DOI: 10.1016/j.colcom.2021.100533] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 05/08/2023]
Abstract
Viral diseases are emerging as global threats. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), that causes coronavirus disease (COVID-19), has severe global impacts. Safety, dosage, and potency of vaccines recently approved for emergency use against SARS-CoV-2 need further evaluation. There is still no effective treatment against COVID-19; therefore, safe, and effective vaccines or therapeutics against SARS-CoV-2 are urgently needed. Oil-in-water nanoemulsions (O/W NEs) are emerging as sophisticated, protective, and therapeutic platforms. Encapsulation capacity, which offers better drug pharmacokinetics, coupled with the tunable surfaces present NEs as promising tools for pharmaceutical applications. The challenges facing drug discovery, and the advancements of NEs in drug delivery demonstrate the potential of NEs against evolving diseases, like COVID-19. Here we summarize current COVID-19 knowledge and discuss the composition, stability, preparation, characterization, and biological fate of O/W NEs. We also provide insights into NE structural-functional properties that may contribute to therapeutic or preventative solutions against COVID-19.
Collapse
Affiliation(s)
- Hossam H Tayeb
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Raed Felimban
- 3D Bioprinting Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Sarah Almaghrabi
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Nojod Hasaballah
- Nanomedicine Unit, Center of Innovations in Personalized Medicine (CIPM), King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
48
|
Kamat S, Kumari M, Jayabaskaran C. Nano-engineered tools in the diagnosis, therapeutics, prevention, and mitigation of SARS-CoV-2. J Control Release 2021; 338:813-836. [PMID: 34478750 PMCID: PMC8406542 DOI: 10.1016/j.jconrel.2021.08.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 01/07/2023]
Abstract
The recent outbreak of SARS-CoV-2 has forever altered mankind resulting in the COVID-19 pandemic. This respiratory virus further manifests into vital organ damage, resulting in severe post COVID-19 complications. Nanotechnology has been moonlighting in the scientific community to combat several severe diseases. This review highlights the triune of the nano-toolbox in the areas of diagnostics, therapeutics, prevention, and mitigation of SARS-CoV-2. Nanogold test kits have already been on the frontline of rapid detection. Breath tests, magnetic nanoparticle-based nucleic acid detectors, and the use of Raman Spectroscopy present myriads of possibilities in developing point of care biosensors, which will ensure sensitive, affordable, and accessiblemass surveillance. Most of the therapeutics are trying to focus on blocking the viral entry into the cell and fighting with cytokine storm, using nano-enabled drug delivery platforms. Nanobodies and mRNA nanotechnology with lipid nanoparticles (LNPs) as vaccines against S and N protein have regained importance. All the vaccines coming with promising phase 3 clinical trials have used nano-delivery systems for delivery of vaccine-cargo, which are currently administered widely in many countries. The use of chemically diverse metal, carbon and polymeric nanoparticles, nanocages and nanobubbles demonstrate opportunities to develop anti-viral nanomedicine. In order to prevent and mitigate the viral spread, high-performance charged nanofiber filters, spray coating of nanomaterials on surfaces, novel materials for PPE kits and facemasks have been developed that accomplish over 90% capture of airborne SARS-CoV-2. Nano polymer-based disinfectants are being tested to make smart-transport for human activities. Despite the promises of this toolbox, challenges in terms of reproducibility, specificity, efficacy and emergence of new SARS-CoV-2 variants are yet to overcome.
Collapse
Affiliation(s)
- Siya Kamat
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| | - Madhuree Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India.
| | - C Jayabaskaran
- Department of Biochemistry, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
49
|
Delshadi R, Bahrami A, Assadpour E, Williams L, Jafari SM. Nano/microencapsulated natural antimicrobials to control the spoilage microorganisms and pathogens in different food products. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
50
|
Lim JW, Ahn YR, Park G, Kim HO, Haam S. Application of Nanomaterials as an Advanced Strategy for the Diagnosis, Prevention, and Treatment of Viral Diseases. Pharmaceutics 2021; 13:1570. [PMID: 34683863 PMCID: PMC8540357 DOI: 10.3390/pharmaceutics13101570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic poses serious global health concerns with the continued emergence of new variants. The periodic outbreak of novel emerging and re-emerging infectious pathogens has elevated concerns and challenges for the future. To develop mitigation strategies against infectious diseases, nano-based approaches are being increasingly applied in diagnostic systems, prophylactic vaccines, and therapeutics. This review presents the properties of various nanoplatforms and discusses their role in the development of sensors, vectors, delivery agents, intrinsic immunostimulants, and viral inhibitors. Advanced nanomedical applications for infectious diseases have been highlighted. Moreover, physicochemical properties that confer physiological advantages and contribute to the control and inhibition of infectious diseases have been discussed. Safety concerns limit the commercial production and clinical use of these technologies in humans; however, overcoming these limitations may enable the use of nanomaterials to resolve current infection control issues via application of nanomaterials as a platform for the diagnosis, prevention, and treatment of viral diseases.
Collapse
Affiliation(s)
- Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Yu-Rim Ahn
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea;
- Biohealth-machinery Convergence Engineering, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea; (J.-W.L.); (G.P.)
| |
Collapse
|