1
|
Cancela MB, Winter U, Zugbi S, Dinardi M, Alves da Quinta D, Aschero R, Ganiewich D, Sampor C, Sgroi M, Lagomarsino E, Fandiño A, Llera AS, Chantada G, Carcaboso AM, Schaiquevich P. Mimicking Retinoblastoma Treatment With Repeated Topotecan or Melphalan Develops Cross-Resistance to Classic Agents But Not to Repurposed Drugs. Invest Ophthalmol Vis Sci 2024; 65:14. [PMID: 39636723 PMCID: PMC11622161 DOI: 10.1167/iovs.65.14.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Purpose Refractory or recurrent retinoblastoma results from acquired chemoresistance and the management of these eyes often requires surgical removal. Our objective was to develop retinoblastoma models resistant to chemotherapy by exposing cancer cells to repeated chemotherapy mimicking the clinical scenario. These newly resistant cells were used to evaluate potential novel therapies. Methods Chemoresistant cells were obtained by exposing two primary retinoblastoma cell cultures to three weekly doses of melphalan or topotecan. The sensitivity of these resistant cells to each chemotherapy was evaluated, and cross-resistance to topotecan, melphalan, and carboplatin was assessed. Genomic alterations and differential expression of efflux/influx transporters between chemoresistant and parental cells were analyzed. Subsequently, sensitivity of both resistant and parental cells to the repurposed agents digoxin, methylene blue, and gemcitabine was assessed. Results Four chemoresistant models were successfully established, showing significantly higher half-maximal inhibitory concentration (IC50) values for melphalan and topotecan compared to their corresponding parental cells (P < 0.05). Cross-resistance between melphalan and topotecan was demonstrated, with a 3-fold increase in the IC50. Chemoresistant cells also showed reduced sensitivity to carboplatin (P < 0.05) compared to parental cells, whereas sensitivity to the evaluated repurposed agents remained unchanged. Genomic analysis revealed no selective alterations in the resistant cells, although differential expression of influx/efflux transporters was observed across all chemoresistant models. Conclusions In vitro simulation of patient treatment was useful to establish chemoresistant retinoblastomas and to identify strategies to overcome resistance to topotecan or melphalan through drug repurposed. Our results warrant further investigation to support the clinical translation.
Collapse
Affiliation(s)
- María Belen Cancela
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Ursula Winter
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Santiago Zugbi
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| | - Milagros Dinardi
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Daniela Alves da Quinta
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Rosario Aschero
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Daiana Ganiewich
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Claudia Sampor
- Hematology-Oncology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Mariana Sgroi
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Eduardo Lagomarsino
- Pharmacy Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Adriana Fandiño
- Ophthalmology Service, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
| | - Andrea S. Llera
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir – Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA), Buenos Aires, Argentina
| | - Guillermo Chantada
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Barcelona, Spain
- Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Paula Schaiquevich
- Unit of Innovative Treatments, Hospital de Pediatría JP Garrahan, Buenos Aires, Argentina
- National Scientific and Technical Research Council, CONICET, Buenos Aires, Argentina
| |
Collapse
|
2
|
Pascual-Pasto G, McIntyre B, Giudice AM, Alikarami F, Morrissey A, Matlaga S, Hofmann TJ, Burgueño V, Harvey K, Martinez D, Shah AC, Foster JB, Pogoriler J, Eagle RC, Carcaboso AM, Shields CL, Leahey AM, Bosse KR. Targeting GPC2 on Intraocular and CNS Metastatic Retinoblastomas with Local and Systemic Delivery of CAR T Cells. Clin Cancer Res 2024; 30:3578-3591. [PMID: 38864848 PMCID: PMC11326963 DOI: 10.1158/1078-0432.ccr-24-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Retinoblastoma is the most common intraocular malignancy in children. Although new chemotherapeutic approaches have improved ocular salvage rates, novel therapies are required for patients with refractory intraocular and metastatic disease. Chimeric antigen receptor (CAR) T cells targeting glypican-2 (GPC2) are a potential new therapeutic strategy. EXPERIMENTAL DESIGN GPC2 expression and its regulation by the E2F1 transcription factor were studied in retinoblastoma patient samples and cellular models. In vitro, we performed functional studies comparing GPC2 CAR T cells with different costimulatory domains (4-1BB and CD28). In vivo, the efficacy of local and systemic administration of GPC2 CAR T cells was evaluated in intraocular and leptomeningeal human retinoblastoma xenograft models. RESULTS Retinoblastoma tumors, but not healthy retinal tissues, expressed cell surface GPC2, and this tumor-specific expression was driven by E2F1. GPC2-directed CARs with 4-1BB costimulation (GPC2.BBz) were superior to CARs with CD28 stimulatory domains (GPC2.28z), efficiently inducing retinoblastoma cell cytotoxicity and enhancing T-cell proliferation and polyfunctionality. In vivo, GPC2.BBz CARs had enhanced persistence, which led to significant tumor regression compared with either control CD19 or GPC2.28z CARs. In intraocular models, GPC2.BBz CAR T cells efficiently trafficked to tumor-bearing eyes after intravitreal or systemic infusions, significantly prolonging ocular survival. In central nervous system (CNS) retinoblastoma models, intraventricular or systemically administered GPC2.BBz CAR T cells were activated in retinoblastoma-involved CNS tissues, resulting in robust tumor regression with substantially extended overall mouse survival. CONCLUSIONS GPC2-directed CAR T cells are effective against intraocular and CNS metastatic retinoblastomas.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Brendan McIntyre
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Anna M. Giudice
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Fatemeh Alikarami
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Amanda Morrissey
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Stephanie Matlaga
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Ted J. Hofmann
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Victor Burgueño
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Kyra Harvey
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Daniel Martinez
- Department of Pathology, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Amish C. Shah
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| | - Jessica B. Foster
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| | - Jennifer Pogoriler
- Department of Pathology, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Ralph C. Eagle
- Department of Pathology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
- Department of Ophthalmology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Angel M. Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, Spain
| | - Carol L. Shields
- Department of Ophthalmology, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
- Ocular Oncology Service, Wills Eye Hospital, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Ann-Marie Leahey
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
3
|
Mahmoud AM, Alqahtani YS, El-Wekil MM, Bellah H Ali AM. Dual modulation of blue-fluorescent carbon dots for simultaneous detection of topotecan and pantoprazole. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3287-3296. [PMID: 38738631 DOI: 10.1039/d4ay00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
This study introduces a novel approach for the simultaneous determination of topotecan (TOP) and pantoprazole (PNT), two drugs whose interaction is critical in clinical applications. The significance of this study originates from the need to understand the pharmacokinetic changes of TOP after PNT administration, which can inform necessary dose adjustments of TOP. To achieve this, nitrogen blue emissive carbon dots (B@NCDs) were produced and employed due to their unique fluorescent properties. When TOP is added to B@NCDs, it exhibits strong native fluorescence at 545 nm without influencing the B@NCDs' fluorescence at 447 nm. Conversely, PNT causes quenching of B@NCDs fluorescence, a property that enables the distinct detection of both drugs. The B@NCDs were fully characterized using different techniques, including ultraviolet-visible spectrophotometry, fluorescence analysis, X-ray diffraction (XRD), transmission electron microscopy (TEM), and FTIR spectroscopy. The proposed method demonstrated excellent linearity, selectivity, and sensitivity, with low detection limits (LOD, S/N = 3); 0.0016 μg mL-1 for TOP and 0.36 μg mL-1 for PNT. Applied to spiked rabbit plasma samples, this method offers a new approach for evaluating the pharmacokinetic interaction between TOP and PNT. It enables the determination of all pharmacokinetic parameters of TOP before and after coadministration with PNT, providing essential insights into whether dose adjustments are necessary. This research not only contributes to the field of drug monitoring and interaction studies but also exemplifies the potential of B@NCDs in complex biological matrices, paving the way for further pharmacological and therapeutic applications.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Yahya S Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Al-Montaser Bellah H Ali
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
4
|
Wang R, Li Y, Gao S, Zhang Y, He Z, Ji J, Yang X, Ye L, Zhao L, Liu A, Zhai G. An active transport dual adaptive nanocarrier designed to overcome the corneal microenvironment for neovascularization therapy. Biomater Sci 2024; 12:361-374. [PMID: 37982147 DOI: 10.1039/d3bm01349a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
The eyes have a complicated microenvironment with many clearance mechanisms, making it challenging for effective drug delivery to the targeted areas of the eyes. Substrate transport mediated by active transporters is an important way to change drug metabolism in the ocular microenvironment. We designed multifunctional, dual-adaptive nanomicelles (GSCQ@NTB) which could overcome multiple physiological barriers by acting on both the efflux transporter and influx transporter to achieve deep delivery of the P-gp substrate in the cornea. Specifically, an effective "triple" antiangiogenic agent, nintedanib (NTB), was loaded into the biocompatible micelles. The expression of the efflux transporter was reversed by grafting quercetin. The peptide (glycylsarcosine, GS) was modified to target the influx transporter "Peptide Transporter-1" (PepT-1). Quercetin (QRT) and nintedanib (NTB) were transported to the cornea cooperatively, achieving long retention on the ocular surface and high compatibility. In a New Zealand rabbit model, within 8 hours after local administration, GSCQ@NTB was enriched in corneal stromal neovascularization and effectively inhibited the progress of neovascularization. Its effectiveness is slightly better than that in the first-line clinical application of steroids. In this study, we introduce the preparation of a dual adaptive nano-micelle system, which may provide an effective non-invasive treatment for corneal neovascularization.
Collapse
Affiliation(s)
- Rui Wang
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Pharmacy, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266035, P.R. China
| | - Yingying Li
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Shan Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Zhijing He
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| | - Lixia Zhao
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
| | - Anchang Liu
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
- Department of Pharmacy, Qilu Hospital of Shandong University (Qingdao), No. 758 Hefei Road, Qingdao, 266035, P.R. China
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xilu, Jinan 250012, P.R. China
| | - Guangxi Zhai
- Department of Pharmacy, Qilu Hospital of Shandong University, 107 Wenhua Xilu, Jinan 250012, P.R. China.
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
5
|
Che X, Wang L, Ma W, Wang R, Wang Z. Discordance of Aqueous/Plasma HIV Replication on ART. Curr HIV Res 2024; 22:27-30. [PMID: 38151835 DOI: 10.2174/011570162x268730231212112119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/01/2023] [Accepted: 10/26/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND The study was conducted to analyze HIV dynamics across blood-retinal barrier (BRB) and the relevant risk factors for HIV-associated ocular complications. METHODS This study included a case series of 40 HIV-positive patients with ocular lesions, which were studied retrospectively. Clinical and laboratory examinations included plasma and intraocular viral load (VL). RESULTS HIV VL on paired aqueous/plasma samples was available for 40 patients. Aqueous VL was negatively associated with antiretroviral treatment (ART) duration (p = 0.02 and p < 0.05), and plasma VL was independent of ART duration (p = 0.53). An aqueous/plasma discordance was found in 19/40 (47.5%) patients, eight of whom (20%) had detectable aqueous VL despite a suppressed plasma VL (escape). There were significant differences in CD4+ T-lymphocyte levels (p = 0.011 and p < 0.05) and ART duration (p = 0.007 and p < 0.05) between the patients with HIV-associated ocular complications and the patients without. CONCLUSION This study provides a rationale for initiating ART early in the course of infection to reduce HIV VL in the aqueous humor, and raises the possibility of the ocular sanctuary where HIV replicates. Meanwhile, early and standard ART would be an optimal option to protect against ocular opportunistic infection.
Collapse
Affiliation(s)
- Xin Che
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital) of Northwestern University, Xi'an, China
| | - Luoziyi Wang
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| | - Weimei Ma
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital) of Northwestern University, Xi'an, China
| | - Rui Wang
- Department of Ophthalmology, Xi'an People's Hospital (Xi'an Fourth Hospital) of Northwestern University, Xi'an, China
| | - Zhiliang Wang
- Department of Ophthalmology, Huashan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Biali M, Auvity S, Cisternino S, Smirnova M, Hacker M, Zeitlinger M, Mairinger S, Tournier N, Bauer M, Langer O. Dissimilar Effect of P-Glycoprotein and Breast Cancer Resistance Protein Inhibition on the Distribution of Erlotinib to the Retina and Brain in Humans and Mice. Mol Pharm 2023; 20:5877-5887. [PMID: 37883694 PMCID: PMC10630959 DOI: 10.1021/acs.molpharmaceut.3c00715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023]
Abstract
P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are two ATP-binding cassette efflux transporters that are coexpressed at the human blood-brain barrier (BBB) and blood-retina barrier (BRB). While pharmacological inhibition of P-gp and/or BCRP results in increased brain distribution of dual P-gp/BCRP substrate drugs, such as the tyrosine kinase inhibitor erlotinib, the effect of P-gp and/or BCRP inhibition on the retinal distribution of such drugs has hardly been investigated. In this study, we used positron emission tomography (PET) imaging to assess the effect of transporter inhibition on the distribution of [11C]erlotinib to the human retina and brain. Twenty two healthy volunteers underwent two PET scans after intravenous (i.v.) injection of a microdose (<5 μg) of [11C]erlotinib, a baseline scan, and a second scan either with concurrent i.v. infusion of tariquidar to inhibit P-gp (n = 5) or after oral intake of single ascending doses of erlotinib (300 mg, 650 mg, or 1000 mg, n = 17) to saturate erlotinib transport. In addition, transport of [3H]erlotinib to the retina and brain was assessed in mice by in situ carotid perfusion under various drug transporter inhibition settings. In comparison to the baseline PET scan, coadministration of tariquidar or erlotinib led to a significant decrease of [11C]erlotinib total volume of distribution (VT) in the human retina by -25 ± 8% (p ≤ 0.05) and -41 ± 16% (p ≤ 0.001), respectively. In contrast, erlotinib intake led to a significant increase in [11C]erlotinib VT in the human brain (+20 ± 16%, p ≤ 0.001), while administration of tariquidar did not result in any significant changes. In situ carotid perfusion experiments showed that both P-gp and BCRP significantly limit the distribution of erlotinib to the mouse retina and brain but revealed a similar discordant effect at the mouse BRB and BBB following co-perfusion with tariquidar and erlotinib as in humans. Co-perfusion with prototypical inhibitors of solute carrier transporters did not reveal a significant contribution of organic cation transporters (e.g., OCTs and OCTNs) and organic anion-transporting polypeptides (e.g., OATP2B1) to the retinal and cerebral distribution of erlotinib. In conclusion, we observed a dissimilar effect after P-gp and/or BCRP inhibition on the retinal and cerebral distribution of [11C]erlotinib. The exact mechanism for this discrepancy remains unclear but may be related to the function of an unidentified erlotinib uptake carrier sensitive to tariquidar inhibition at the BRB. Our study highlights the great potential of PET to study drug distribution to the human retina and to assess the functional impact of membrane transporters on ocular drug distribution.
Collapse
Affiliation(s)
- Myriam
El Biali
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Sylvain Auvity
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service
Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, F-75015 Paris, France
| | - Salvatore Cisternino
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
- Service
Pharmacie, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire-Necker-Enfants Malades, F-75015 Paris, France
| | - Maria Smirnova
- Inserm
UMRS1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, F-75006 Paris, France
| | - Marcus Hacker
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Zeitlinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Severin Mairinger
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Nicolas Tournier
- Laboratoire
d’Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS,
Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, 91401 Orsay, France
| | - Martin Bauer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
| | - Oliver Langer
- Department
of Clinical Pharmacology, Medical University
of Vienna, 1090 Vienna, Austria
- Division
of Nuclear Medicine, Department of Biomedical Imaging and Image-guided
Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
7
|
Kodetova M, Hobzova R, Sirc J, Uhlik J, Dunovska K, Svojgr K, Cocarta AI, Felsoova A, Slanar O, Sima M, Kozak I, Pochop P. The Role of Cryotherapy in Vitreous Concentrations of Topotecan Delivered by Episcleral Hydrogel Implant. Pharmaceutics 2022; 14:pharmaceutics14050903. [PMID: 35631489 PMCID: PMC9144907 DOI: 10.3390/pharmaceutics14050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 01/16/2023] Open
Abstract
Transscleral diffusion delivery of chemotherapy is a promising way to reach the vitreal seeds of retinoblastoma, the most common intraocular malignancy in childhood. In this in vivo study, the delivery of topotecan via lens-shaped, bi-layered hydrogel implants was combined with transconjunctival cryotherapy to assess whether cryotherapy leads to higher concentrations of topotecan in the vitreous. The study included 18 New Zealand albino rabbits; nine rabbits received a topotecan-loaded implant episclerally and another nine rabbits received transconjunctival cryotherapy superotemporally 2 weeks before implant administration. Median vitreous total topotecan exposures (area under the curve, AUC) were 455 ng·h/mL for the cryotherapy group and 281 ng·h/mL for the non-cryotherapy group, and were significantly higher in the cryotherapy group, similar to maximum levels. Median plasma AUC were 50 ng·h/mL and 34 ng·h/mL for the cryotherapy and non-cryotherapy groups, respectively, with no statistically significant differences between them. In both groups, AUC values in the vitreous were significantly higher than in plasma, with plasma exposure at only approximately 11–12% of the level of vitreous exposure. The results confirmed the important role of the choroidal vessels in the pharmacokinetics of topotecan during transscleral administration and showed a positive effect of cryotherapy on intravitreal penetration, resulting in a significantly higher total exposure in the vitreous.
Collapse
Affiliation(s)
- Martina Kodetova
- Department of Ophthalmology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic; (M.K.); (P.P.)
| | - Radka Hobzova
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic; (R.H.); (A.-I.C.)
| | - Jakub Sirc
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic; (R.H.); (A.-I.C.)
- Correspondence:
| | - Jiri Uhlik
- Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (J.U.); (A.F.)
| | - Katerina Dunovska
- Department of Medical Chemistry and Clinical Biochemistry, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
| | - Karel Svojgr
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic;
| | - Ana-Irina Cocarta
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 162 06 Prague, Czech Republic; (R.H.); (A.-I.C.)
| | - Andrea Felsoova
- Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic; (J.U.); (A.F.)
- Clinical and Transplant Pathology Centre, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Ondrej Slanar
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (O.S.); (M.S.)
| | - Martin Sima
- Department of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 00 Prague, Czech Republic; (O.S.); (M.S.)
| | - Igor Kozak
- Moorfields Eye Hospital, Abu Dhabi P.O. Box 62807, United Arab Emirates;
| | - Pavel Pochop
- Department of Ophthalmology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, 150 06 Prague, Czech Republic; (M.K.); (P.P.)
| |
Collapse
|
8
|
Cuadrado‐Vilanova M, Liu J, Paco S, Aschero R, Burgueño V, Sirab N, Pascual‐Pasto G, Correa G, Balaguer‐Lluna L, Castillo‐Ecija H, Perez‐Jaume S, Muñoz‐Aznar O, Roldan M, Suñol M, Schaiquevich P, Aerts I, Doz F, Cassoux N, Lubieniecki F, Benitez‐Ribas D, Lavarino C, Mora J, Chantada GL, Catala‐Mora J, Radvanyi F, Carcaboso AM. Identification of immunosuppressive factors in retinoblastoma cell secretomes and aqueous humor from patients. J Pathol 2022; 257:327-339. [DOI: 10.1002/path.5893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/10/2022] [Accepted: 03/03/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Maria Cuadrado‐Vilanova
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Jing Liu
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center Paris France
- Institut Curie PSL Research University Paris France
| | - Sonia Paco
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Rosario Aschero
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Victor Burgueño
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Nanor Sirab
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center Paris France
- Institut Curie PSL Research University Paris France
| | - Guillem Pascual‐Pasto
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Genoveva Correa
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Leire Balaguer‐Lluna
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Helena Castillo‐Ecija
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Sara Perez‐Jaume
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Oscar Muñoz‐Aznar
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Monica Roldan
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Genetic and Molecular Medicine ‐ IPER, Hospital Sant Joan de Deu, Esplugues de Llobregat Barcelona Spain
| | - Mariona Suñol
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pathology, Hospital Sant Joan de Deu Barcelona Spain
| | - Paula Schaiquevich
- Precision Medicine, Hospital de Pediatria JP Garrahan Buenos Aires Argentina
- CONICET Buenos Aires Argentina
| | - Isabelle Aerts
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center Paris France
| | - François Doz
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center Paris France
- University of Paris Paris France
| | - Nathalie Cassoux
- University of Paris Paris France
- Institut Curie, Ophthalmic Oncology Paris France
| | | | | | - Cinzia Lavarino
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Jaume Mora
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| | - Guillermo L. Chantada
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
- CONICET Buenos Aires Argentina
- Universidad Austral‐CONICET Institute for Research in Translational Medicine (IIMT) Pilar Argentina
| | | | - François Radvanyi
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center Paris France
- Institut Curie PSL Research University Paris France
| | - Angel M. Carcaboso
- Institut de Recerca Sant Joan de Deu Barcelona Spain
- Pediatric Oncology, Hospital Sant Joan de Deu Barcelona Spain
| |
Collapse
|
9
|
El Biali M, Karch R, Philippe C, Haslacher H, Tournier N, Hacker M, Zeitlinger M, Schmidl D, Langer O, Bauer M. ABCB1 and ABCG2 Together Limit the Distribution of ABCB1/ABCG2 Substrates to the Human Retina and the ABCG2 Single Nucleotide Polymorphism Q141K (c.421C> A) May Lead to Increased Drug Exposure. Front Pharmacol 2021; 12:698966. [PMID: 34220523 PMCID: PMC8242189 DOI: 10.3389/fphar.2021.698966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/04/2021] [Indexed: 12/26/2022] Open
Abstract
The widely expressed and poly-specific ABC transporters breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1) are co-localized at the blood-brain barrier (BBB) and have shown to limit the brain distribution of several clinically used ABCB1/ABCG2 substrate drugs. It is currently not known to which extent these transporters, which are also expressed at the blood-retinal barrier (BRB), may limit drug distribution to the human eye and whether the ABCG2 reduced-function single-nucleotide polymorphism (SNP) Q141K (c.421C > A) has an impact on retinal drug distribution. Ten healthy male volunteers (five subjects with the c.421CC and c.421CA genotype, respectively) underwent two consecutive positron emission tomography (PET) scans after intravenous injection of the model ABCB1/ABCG2 substrate [11C]tariquidar. The second PET scan was performed with concurrent intravenous infusion of unlabelled tariquidar to inhibit ABCB1 in order to specifically reveal ABCG2 function.In response to ABCB1 inhibition with unlabelled tariquidar, ABCG2 c.421C > A genotype carriers showed significant increases (as compared to the baseline scan) in retinal radiotracer influx K 1 (+62 ± 57%, p = 0.043) and volume of distribution V T (+86 ± 131%, p = 0.043), but no significant changes were observed in subjects with the c.421C > C genotype. Our results provide the first evidence that ABCB1 and ABCG2 may together limit the distribution of systemically administered ABCB1/ABCG2 substrate drugs to the human retina. Functional redundancy between ABCB1 and ABCG2 appears to be compromised in carriers of the c.421C > A SNP who may therefore be more susceptible to transporter-mediated drug-drug interactions at the BRB than non-carriers.
Collapse
Affiliation(s)
- Myriam El Biali
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Rudolf Karch
- Centre for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, VIE, Austria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, VIE, Austria
| | - Nicolas Tournier
- Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), CEA, CNRS, Inserm, Service Hospitalier Frédéric Joliot, Université Paris-Saclay, Orsay, France
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Markus Zeitlinger
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Doreen Schmidl
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, VIE, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, VIE, Austria
| |
Collapse
|
10
|
Pascual-Pasto G, Bazan-Peregrino M, Olaciregui NG, Restrepo-Perdomo CA, Mato-Berciano A, Ottaviani D, Weber K, Correa G, Paco S, Vila-Ubach M, Cuadrado-Vilanova M, Castillo-Ecija H, Botteri G, Garcia-Gerique L, Moreno-Gilabert H, Gimenez-Alejandre M, Alonso-Lopez P, Farrera-Sal M, Torres-Manjon S, Ramos-Lozano D, Moreno R, Aerts I, Doz F, Cassoux N, Chapeaublanc E, Torrebadell M, Roldan M, König A, Suñol M, Claverol J, Lavarino C, Carmen de T, Fu L, Radvanyi F, Munier FL, Catalá-Mora J, Mora J, Alemany R, Cascalló M, Chantada GL, Carcaboso AM. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci Transl Med 2020; 11:11/476/eaat9321. [PMID: 30674657 DOI: 10.1126/scitranslmed.aat9321] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/22/2018] [Indexed: 12/12/2022]
Abstract
Retinoblastoma is a pediatric solid tumor of the retina activated upon homozygous inactivation of the tumor suppressor RB1 VCN-01 is an oncolytic adenovirus designed to replicate selectively in tumor cells with high abundance of free E2F-1, a consequence of a dysfunctional RB1 pathway. Thus, we reasoned that VCN-01 could provide targeted therapeutic activity against even chemoresistant retinoblastoma. In vitro, VCN-01 effectively killed patient-derived retinoblastoma models. In mice, intravitreous administration of VCN-01 in retinoblastoma xenografts induced tumor necrosis, improved ocular survival compared with standard-of-care chemotherapy, and prevented micrometastatic dissemination into the brain. In juvenile immunocompetent rabbits, VCN-01 did not replicate in retinas, induced minor local side effects, and only leaked slightly and for a short time into the blood. Initial phase 1 data in patients showed the feasibility of the administration of intravitreous VCN-01 and resulted in antitumor activity in retinoblastoma vitreous seeds and evidence of viral replication markers in tumor cells. The treatment caused local vitreous inflammation but no systemic complications. Thus, oncolytic adenoviruses targeting RB1 might provide a tumor-selective and chemotherapy-independent treatment option for retinoblastoma.
Collapse
Affiliation(s)
- Guillem Pascual-Pasto
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | | | - Nagore G Olaciregui
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | | | | | - Daniela Ottaviani
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | - Klaus Weber
- AnaPath GmbH, Oberbuchsiten 4625, Switzerland
| | - Genoveva Correa
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Sonia Paco
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Monica Vila-Ubach
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Maria Cuadrado-Vilanova
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Helena Castillo-Ecija
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Gaia Botteri
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Laura Garcia-Gerique
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Helena Moreno-Gilabert
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | | | | | | | - Silvia Torres-Manjon
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Dolores Ramos-Lozano
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael Moreno
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isabelle Aerts
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | - François Doz
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Paris Descartes University, 75006 Paris, France
| | - Nathalie Cassoux
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Paris Descartes University, 75006 Paris, France.,Institut Curie, Ophthalmic Oncology, 75248 Paris, France
| | - Elodie Chapeaublanc
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | - Montserrat Torrebadell
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Monica Roldan
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pathology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Andrés König
- Vivotecnia Research S.L., Tres Cantos, Madrid 28760, Spain
| | - Mariona Suñol
- Pathology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Joana Claverol
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Clinical Trials Unit, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Cinzia Lavarino
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Torres Carmen de
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Ligia Fu
- Pediatric Hematology-Oncology, Hospital Escuela Universitario, Tegucigalpa, Honduras
| | - François Radvanyi
- Institut Curie, CNRS, UMR144, SIREDO Oncology Center, 75248 Paris, France.,Institut Curie, PSL Research University, 75248 Paris, France
| | | | | | - Jaume Mora
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| | - Ramón Alemany
- Translational Research Laboratory, IDIBELL-Institut Catala d'Oncologia, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manel Cascalló
- VCN Biosciences, Sant Cugat del Valles, Barcelona 08174, Spain
| | - Guillermo L Chantada
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain.,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain.,Hospital de Pediatria JP Garrahan, Buenos Aires 1245, Argentina.,CONICET, Buenos Aires 1245, Argentina
| | - Angel M Carcaboso
- Institut de Recerca Sant Joan de Deu, Barcelona 08950, Spain. .,Pediatric Hematology and Oncology, Hospital Sant Joan de Deu, Barcelona 08950, Spain
| |
Collapse
|
11
|
Spugnini EP, Fais S. Drug repurposing for anticancer therapies. A lesson from proton pump inhibitors. Expert Opin Ther Pat 2019; 30:15-25. [PMID: 31847622 DOI: 10.1080/13543776.2020.1704733] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Worldwide, the annual expenditure on anticancer drugs is grossly calculated to be in the order of US$100 billion, and is expected to escalate up to $150 billion by 2020. It is evident that the vast majority of the most recently devised anticancer drugs are unaffordable in economically developing nations, frequently resulting in subpar therapies. In this complex medical and economic scenario, the repurposing of older drugs for anticancer therapies becomes a necessity. The repurposing of antiacid drugs such as the proton pump inhibitors as antitumoral agents and chemosensitizers is probably one of the most recent and promising phenomenon in oncology.Areas covered: Important research articles and patents focusing on proton pump inhibitors as a potential class of therapeutics, published between the period of 2006-2019, have been covered. This review mainly focuses on the therapeutic applications, as direct anticancer agents as well as modifiers of the tumor microenvironment and modulator of chemoresistance.Expert opinion: PPIs have significant anticancer applications and are proving to be safe, effective and inexpensive. Here the authors review the current knowledge regarding the influence of PPIs on the efficacy and safety of cancer chemotherapeutics through the regulation of targets other than the H+/K+-ATPase.
Collapse
Affiliation(s)
| | - Stefano Fais
- Department of Oncology and Molecular Medicine Istituto Superiore di Sanità, National Institute of Health, Rome, Italy
| |
Collapse
|
12
|
Sharma M, Khetan V. Commentary: Periocular topotecan for retinoblastoma. Indian J Ophthalmol 2018; 66:1838-1839. [PMID: 30451191 PMCID: PMC6256899 DOI: 10.4103/ijo.ijo_1626_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Minal Sharma
- Department of Vitreoretina and Ocular Oncology, Medical Research Foundation, 18, College Road, Chennai, India
| | - Vikas Khetan
- Department of Vitreoretina and Ocular Oncology, Medical Research Foundation, 18, College Road, Chennai, India
| |
Collapse
|