1
|
Hashemi Z, Hui T, Wu A, Matouba D, Zukowski S, Nejati S, Lim C, Bruzzese J, Lin C, Seabold K, Mills C, Wrath K, Wang H, Wang H, Verzi MP, Perekatt A. Epithelial-specific loss of Smad4 alleviates the fibrotic response in an acute colitis mouse model. Life Sci Alliance 2024; 7:e202402935. [PMID: 39366762 PMCID: PMC11452480 DOI: 10.26508/lsa.202402935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Mucosal healing is associated with better clinical outcomes in patients with inflammatory bowel disease. But the epithelial-specific contribution to mucosal healing in vivo is poorly understood. We evaluated mucosal healing in an acute dextran sulfate sodium mouse model that shows an alleviated colitis response after epithelial-specific loss of Smad4. We find that enhanced epithelial wound healing alleviates the fibrotic response. Dextran sulfate sodium caused increased mesenchymal collagen deposition-indicative of fibrosis-within a week in the WT but not in the Smad4 KO colon. The fibrotic response correlated with decreased epithelial proliferation in the WT, whereas uninterrupted proliferation and an expanded zone of proliferation were observed in the Smad4 KO colon epithelium. Furthermore, the Smad4 KO colon showed epithelial extracellular matrix alterations that promote epithelial regeneration. Our data suggest that epithelium is a key determinant of the mucosal healing response in vivo, implicating mucosal healing as a strategy against fibrosis in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Zahra Hashemi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Thompson Hui
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Alex Wu
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Dahlia Matouba
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Steven Zukowski
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Shima Nejati
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Crystal Lim
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Julianna Bruzzese
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Cindy Lin
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kyle Seabold
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Connor Mills
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Kylee Wrath
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Haoyu Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Hongjun Wang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Michael P Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Ansu Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| |
Collapse
|
2
|
Wang X, Chen K, Yao Y, Lin Y, Yang J, Zhu Y, Zhou B. TGFβ1-Induced Fibrotic Responses of Conjunctival Fibroblasts through the Wnt/β-Catenin/CRYAB Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1764-1779. [PMID: 38879081 DOI: 10.1016/j.ajpath.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/29/2024]
Abstract
Conjunctival fibrosis is a common postoperative complication of glaucoma filtration surgery, resulting in uncontrolled intraocular pressure and surgery failure. Therefore, there is an urgent need to understand the molecular mechanisms underlying conjunctival fibrosis and to explore novel pharmacologic anti-fibrosis therapies for glaucoma filtration surgery. Herein, the 4-dimensional data-independent acquisition (4D-DIA) quantitative proteomic results, coupled with experimental data, revealed the activation of the Wnt/β-catenin pathway in transforming growth factor (TGF)-β1-induced human conjunctival fibroblasts (HConFs). Treatment with ICG-001, a Wnt/β-catenin inhibitor, effectively inhibited cell proliferation and migration in TGFβ1-treated HConFs. ICG-001 treatment alleviated the increased generation of extracellular matrix proteins induced by TGFβ1. In addition, ICG-001 reduced the expression level of α smooth muscle actin (α-SMA) and inhibited cell contractility in TGFβ1-treated HConFs. Proteomics data further suggested that αB-crystallin (CRYAB) was a downstream target of Wnt/β-catenin, which was up-regulated by TGFβ1 and down-regulated by ICG-001. Immunoblotting assay also indicated that ICG-001 reduced the expressions of ubiquitin and β-catenin in TGFβ1-treated HConFs, implying that CRYAB stabilized β-catenin by inhibiting its ubiquitination degradation. Exogenous CRYAB promoted cell viability, increased extracellular matrix protein levels, and up-regulated α-SMA expression of HConFs under TGFβ1 stimulation. CRYAB rescued TGFβ1-induced fibrotic responses that were suppressed by ICG-001. In conclusion, this study elucidates the regulatory mechanism of the Wnt/β-catenin/CRYAB pathway in conjunctival fibrosis, offering promising therapeutic targets for mitigating bleb scarring after glaucoma filtration surgery.
Collapse
Affiliation(s)
- Xiaohui Wang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; the Department of Ophthalmology
| | - Kaiping Chen
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; the Department of Ophthalmology
| | - Yihua Yao
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; the Department of Ophthalmology
| | - Yijun Lin
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China; and the Department of Bioengineering and Biopharmaceutics
| | - Juhua Yang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Yihua Zhu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; the Department of Ophthalmology.
| | - Biting Zhou
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; the Department of Ophthalmology.
| |
Collapse
|
3
|
Ballout F, Lu H, Bhat N, Chen L, Peng D, Chen Z, Chen S, Sun X, Giordano S, Corso S, Zaika A, McDonald O, Livingstone AS, El-Rifai W. Targeting SMAD3 Improves Response to Oxaliplatin in Esophageal Adenocarcinoma Models by Impeding DNA Repair. Clin Cancer Res 2024; 30:2193-2205. [PMID: 38592373 PMCID: PMC11096039 DOI: 10.1158/1078-0432.ccr-24-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
PURPOSE TGFβ signaling is implicated in the progression of most cancers, including esophageal adenocarcinoma (EAC). Emerging evidence indicates that TGFβ signaling is a key factor in the development of resistance toward cancer therapy. EXPERIMENTAL DESIGN In this study, we developed patient-derived organoids and patient-derived xenograft models of EAC and performed bioinformatics analysis combined with functional genetics to investigate the role of SMAD family member 3 (SMAD3) in EAC resistance to oxaliplatin. RESULTS Chemotherapy nonresponding patients showed enrichment of SMAD3 gene expression when compared with responders. In a randomized patient-derived xenograft experiment, SMAD3 inhibition in combination with oxaliplatin effectively diminished tumor burden by impeding DNA repair. SMAD3 interacted directly with protein phosphatase 2A (PP2A), a key regulator of the DNA damage repair protein ataxia telangiectasia mutated (ATM). SMAD3 inhibition diminished ATM phosphorylation by enhancing the binding of PP2A to ATM, causing excessive levels of DNA damage. CONCLUSIONS Our results identify SMAD3 as a promising therapeutic target for future combination strategies for the treatment of patients with EAC.
Collapse
Affiliation(s)
- Farah Ballout
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Heng Lu
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Nadeem Bhat
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Lei Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Dunfa Peng
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Zheng Chen
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Steven Chen
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Xiaodian Sun
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Department of Public Health Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060, Torino, Italy
| | - Simona Corso
- Department of Oncology, University of Torino, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060, Torino, Italy
| | - Alexander Zaika
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
| | - Oliver McDonald
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Alan S. Livingstone
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Wael El-Rifai
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
- Department of Veterans Affairs, Miami Healthcare System, Miami, Florida, USA
| |
Collapse
|
4
|
Hashemi Z, Hui T, Wu A, Matouba D, Zukowski S, Nejati S, Lim C, Bruzzese J, Seabold K, Mills C, Lin C, Wrath K, Wang H, Wang H, Verzi MP, Perekatt A. Smad4 Loss in the Mouse Intestinal Epithelium Alleviates the Pathological Fibrotic Response to Injury in the Colon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.578000. [PMID: 38559102 PMCID: PMC10979917 DOI: 10.1101/2024.03.08.578000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Mucosal healing is associated with better clinical outcomes in patients with inflammatory bowel diseases (IBDs). Unresolved injury and inflammation, on the other hand, increases pathological fibrosis and the predisposition to cancer. Loss of Smad4, a tumor suppressor, is known to increase colitis-associated cancer in mouse models of chronic IBD. Since common biological processes are involved in both injury repair and tumor growth, we sought to investigate the effect of Smad4 loss on the response to epithelial injury. To this end, Smad4 was knocked out specifically in the intestinal epithelium and transcriptomic and morphological changes compared between wild type mice and Smad4 knock out mice after DSS-induced injury. We find that Smad4 loss alleviates pathological fibrosis and enhances mucosal repair. The transcriptomic changes specific to epithelium indicate molecular changes that affect epithelial extracellular matrix (ECM) and promote enhanced mucosal repair. These findings suggest that the biological processes that promote wound healing alleviate the pathological fibrotic response to DSS. Therefore, these mucosal repair processes could be exploited to develop therapies that promote normal wound healing and prevent fibrosis. NEW AND NOTEWORTHY We show that transcriptomic changes due to Smad4 loss in the colonic epithelium alleviates the pathological fibrotic response to DSS in an IBD mouse model of acute inflammation. Most notably, we find that collagen deposition in the epithelial ECM, as opposed to that in the lamina propria, correlates with epithelial changes that enhance wound healing. This is the first report on a mouse model providing alleviated fibrotic response in a DSS-IBD mouse model in vivo .
Collapse
|
5
|
Martinez-Uribe O, Becker TC, Garman KS. Promises and Limitations of Current Models for Understanding Barrett's Esophagus and Esophageal Adenocarcinoma. Cell Mol Gastroenterol Hepatol 2024; 17:1025-1038. [PMID: 38325549 PMCID: PMC11041847 DOI: 10.1016/j.jcmgh.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND & AIMS This review was developed to provide a thorough and effective update on models relevant to esophageal metaplasia, dysplasia, and carcinogenesis, focusing on the advantages and limitations of different models of Barrett's esophagus (BE) and esophageal adenocarcinoma (EAC). METHODS This expert review was written on the basis of a thorough review of the literature combined with expert interpretation of the state of the field. We emphasized advances over the years 2012-2023 and provided detailed information related to the characterization of established human esophageal cell lines. RESULTS New insights have been gained into the pathogenesis of BE and EAC using patient-derived samples and single-cell approaches. Relevant animal models include genetic as well as surgical mouse models and emphasize the development of lesions at the squamocolumnar junction in the mouse stomach. Rat models are generated using surgical approaches that directly connect the small intestine and esophagus. Large animal models have the advantage of including features in human esophagus such as esophageal submucosal glands. Alternatively, cell culture approaches remain important in the field and allow for personalized approaches, and scientific rigor can be ensured by authentication of cell lines. CONCLUSIONS Research in BE and EAC remains highly relevant given the morbidity and mortality associated with cancers of the tubular esophagus and gastroesophageal junction. Careful selection of models and inclusion of human samples whenever possible will ensure relevance to human health and disease.
Collapse
Affiliation(s)
- Omar Martinez-Uribe
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina
| | - Thomas C Becker
- Division of Endocrinology, Department of Medicine, Duke University, Durham, North Carolina
| | - Katherine S Garman
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, North Carolina.
| |
Collapse
|
6
|
Foley K, Shorthouse D, Rahrmann E, Zhuang L, Devonshire G, Gilbertson RJ, Fitzgerald RC, Hall BA. SMAD4 and KCNQ3 alterations are associated with lymph node metastases in oesophageal adenocarcinoma. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166867. [PMID: 37648039 DOI: 10.1016/j.bbadis.2023.166867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
Metastasis in oesophageal adenocarcinoma (OAC) is an important predictor of survival. Radiological staging is used to stage metastases in patients, and guide treatment selection, but is limited by the accuracy of the approach. Improvements in staging will lead to improved clinical decision making and patient outcomes. Sequencing studies on primary tumours and pre-cancerous tissue have revealed the mutational landscape of OAC, and increasingly cheap and widespread sequencing approaches offer the potential to improve staging assessment. In this work we present an analysis of lymph node metastases found by radiological and pathological sampling, identifying new roles of the genes SMAD4 and KCNQ3 in metastasis. Through transcriptomic analysis we find that both genes are associated with canonical Wnt pathway activity, but KCNQ3 is uniquely associated with changes in planar cell polaritiy associated with non-canonical Wnt signalling. We go on to validate our observations in KCNQ3 in cell line and xenograph systems, showing that overexpression of KCNQ3 reduces wound closure and the number of metastases observed. Our results suggest both genes as novel biomarkers of metastatic risk and offer new potential routes to drug targeting.
Collapse
Affiliation(s)
- Kieran Foley
- Division of Cancer & Genetics, School of Medicine, Cardiff University, CF14 4XN, UK
| | | | - Eric Rahrmann
- Cancer Research UK Cambridge Institute, University of Cambridge, CB2 0RE, UK
| | - Lizhe Zhuang
- Early Cancer Institute, University of Cambridge, CB2 0XZ, UK
| | | | | | | | - Benjamin A Hall
- Department of Medical Physics and Biomedical Engineering, University College London, WC1E 6BT, UK.
| |
Collapse
|
7
|
Wang Q, Xiong F, Wu G, Wang D, Liu W, Chen J, Qi Y, Wang B, Chen Y. SMAD Proteins in TGF-β Signalling Pathway in Cancer: Regulatory Mechanisms and Clinical Applications. Diagnostics (Basel) 2023; 13:2769. [PMID: 37685308 PMCID: PMC10487229 DOI: 10.3390/diagnostics13172769] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Suppressor of mother against decapentaplegic (SMAD) family proteins are central to one of the most versatile cytokine signalling pathways in metazoan biology, the transforming growth factor-β (TGF-β) pathway. The TGF-β pathway is widely known for its dual role in cancer progression as both an inhibitor of tumour cell growth and an inducer of tumour metastasis. This is mainly mediated through SMAD proteins and their cofactors or regulators. SMAD proteins act as transcription factors, regulating the transcription of a wide range of genes, and their rich post-translational modifications are influenced by a variety of regulators and cofactors. The complex role, mechanisms, and important functions of SMAD proteins in tumours are the hot topics in current oncology research. In this paper, we summarize the recent progress on the effects and mechanisms of SMAD proteins on tumour development, diagnosis, treatment and prognosis, and provide clues for subsequent research on SMAD proteins in tumours.
Collapse
Affiliation(s)
- Qi Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Fei Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Guanhua Wu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Da Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Wenzheng Liu
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Junsheng Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongqiang Qi
- Key Laboratory of Laparoscopic Technology of Zhejiang Province, Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China;
| | - Bing Wang
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| | - Yongjun Chen
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; (Q.W.); (F.X.); (G.W.); (D.W.); (W.L.); (J.C.); (B.W.)
| |
Collapse
|
8
|
Lu B, Curtius K, Graham TA, Yang Z, Barnes CP. CNETML: maximum likelihood inference of phylogeny from copy number profiles of multiple samples. Genome Biol 2023; 24:144. [PMID: 37340508 PMCID: PMC10283241 DOI: 10.1186/s13059-023-02983-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
Phylogenetic trees based on copy number profiles from multiple samples of a patient are helpful to understand cancer evolution. Here, we develop a new maximum likelihood method, CNETML, to infer phylogenies from such data. CNETML is the first program to jointly infer the tree topology, node ages, and mutation rates from total copy numbers of longitudinal samples. Our extensive simulations suggest CNETML performs well on copy numbers relative to ploidy and under slight violation of model assumptions. The application of CNETML to real data generates results consistent with previous discoveries and provides novel early copy number events for further investigation.
Collapse
Affiliation(s)
- Bingxin Lu
- Department of Cell and Developmental Biology, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| | - Kit Curtius
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Trevor A Graham
- Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Chris P Barnes
- Department of Cell and Developmental Biology, University College London, London, UK.
- UCL Genetics Institute, University College London, London, UK.
| |
Collapse
|
9
|
Orsini A, Mastracci L, Bozzarelli I, Ferrari A, Isidori F, Fiocca R, Lugaresi M, D’Errico A, Malvi D, Cataldi-Stagetti E, Spaggiari P, Tomezzoli A, Albarello L, Ristimäki A, Bottiglieri L, Krishnadath KK, Rosati R, Fumagalli Romario U, De Manzoni G, Räsänen J, Martinelli G, Mattioli S, Bonora E. Correlations between Molecular Alterations, Histopathological Characteristics, and Poor Prognosis in Esophageal Adenocarcinoma. Cancers (Basel) 2023; 15:1408. [PMID: 36900206 PMCID: PMC10000513 DOI: 10.3390/cancers15051408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is a severe malignancy with increasing incidence, poorly understood pathogenesis, and low survival rates. We sequenced 164 EAC samples of naïve patients (without chemo-radiotherapy) with high coverage using next-generation sequencing technologies. A total of 337 variants were identified across the whole cohort, with TP53 as the most frequently altered gene (67.27%). Missense mutations in TP53 correlated with worse cancer-specific survival (log-rank p = 0.001). In seven cases, we found disruptive mutations in HNF1alpha associated with other gene alterations. Moreover, we detected gene fusions through massive parallel sequencing of RNA, indicating that it is not a rare event in EAC. In conclusion, we report that a specific type of TP53 mutation (missense changes) negatively affected cancer-specific survival in EAC. HNF1alpha was identified as a new EAC-mutated gene.
Collapse
Affiliation(s)
- Arianna Orsini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Luca Mastracci
- Unit of Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, 16125 Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16125 Genova, Italy
| | - Isotta Bozzarelli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Anna Ferrari
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Federica Isidori
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Roberto Fiocca
- Unit of Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, 16125 Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16125 Genova, Italy
| | - Marialuisa Lugaresi
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
- Division of Thoracic Surgery, Maria Cecilia Hospital, GVM Care & Research Group, Cotignola, 48022 Ravenna, Italy
| | - Antonietta D’Errico
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Deborah Malvi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Erica Cataldi-Stagetti
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | - Paola Spaggiari
- Unit of Anatomic Pathology, Humanitas University, 20089 Milan, Italy
| | - Anna Tomezzoli
- Unit of Anatomic Pathology, Azienda Ospedaliera di Verona, 37122 Verona, Italy
| | - Luca Albarello
- Pathology Unit, San Raffaele Scientific Institute, 20135 Milan, Italy
| | - Ari Ristimäki
- Department of Pathology, HUSLAB and HUS Diagnostic Center, University of Helsinki, 00170 Helsinki, Finland
- Helsinki University Hospital, 00170 Helsinki, Finland
| | - Luca Bottiglieri
- Unit of Anatomic Pathology, Istituto Europeo di Oncologia, 20122 Milan, Italy
| | - Kausilia K. Krishnadath
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Department of Gastroenterology and Hepatology, University Hospital Antwerp, 2650 Antwerp, Belgium
| | - Riccardo Rosati
- Department of Gastrointestinal Surgery, San Raffaele Hospital, Vita-Salute San Raffaele University, 20135 Milan, Italy
| | | | - Giovanni De Manzoni
- Department of Surgery, General and Upper G.I. Surgery Division, University of Verona, 37126 Verona, Italy
| | - Jari Räsänen
- Department of General Thoracic and Esophageal Surgery, Helsinki University Hospital, 00170 Helsinki, Finland
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy
| | - Sandro Mattioli
- Division of Thoracic Surgery, Maria Cecilia Hospital, GVM Care & Research Group, Cotignola, 48022 Ravenna, Italy
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
| | | |
Collapse
|
10
|
Matsumura K, Hayashi H, Uemura N, Ogata Y, Zhao L, Sato H, Shiraishi Y, Kuroki H, Kitamura F, Kaida T, Higashi T, Nakagawa S, Mima K, Imai K, Yamashita YI, Baba H. Thrombospondin-1 overexpression stimulates loss of Smad4 and accelerates malignant behavior via TGF-β signal activation in pancreatic ductal adenocarcinoma. Transl Oncol 2022; 26:101533. [PMID: 36115074 PMCID: PMC9483797 DOI: 10.1016/j.tranon.2022.101533] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is characterized by abundant stroma and cancer-associated fibroblasts (CAFs) provide a favorable tumor microenvironment. Smad4 is known as tumor suppressor in several types of cancers including PDAC, and loss of Smad4 triggers accelerated cell invasiveness and metastatic potential. The thrombospondin-1 (TSP-1) can act as a major activator of latent transforming growth factor-β (TGF-β) in vivo. However, the roles of TSP-1 and the mediator of Smad4 loss and TGF-β signal activation during PDAC progression have not yet been addressed. The aim is to elucidate the biological role of TSP-1 in PDAC progression. METHODS AND RESULTS High substrate stiffness stimulated TSP-1 expression in CAFs, and TSP-1 knockdown inhibited cell proliferation with suppressed profibrogenic and activated stroma-related gene expressions in CAFs. Paracrine TSP-1 treatment for PDAC cells promoted cell proliferation and epithelial mesenchymal transition (EMT) with activated TGF-β signals such as phosphorylated Akt and Smad2/3 expressions. Surprisingly, knockdown of DPC4 (Smad4 gene) induced TSP-1 overexpression with TGF-β signal activation in PDAC cells. Interestingly, TSP-1 overexpression also induced downregulation of Smad4 expression and enhanced cell proliferation in vitro and in vivo. Treatment with LSKL peptide, which antagonizes TSP-1-mediated latent TGF-β activation, attenuated cell proliferation, migration and chemoresistance with enhanced apoptosis in PDAC cells. CONCLUSIONS TSP-1 derived from CAFs stimulates loss of Smad4 expression in cancer cells and accelerates malignant behavior by TGF-β signal activation in PDAC. TSP-1 could be a novel therapeutic target, not only for CAFs in stiff stroma, but also for cancer cells in the PDAC microenvironment.
Collapse
Affiliation(s)
- Kazuki Matsumura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Norio Uemura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Yoko Ogata
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Liu Zhao
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Hiroki Sato
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Yuta Shiraishi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Hideyuki Kuroki
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Fumimasa Kitamura
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Takayoshi Kaida
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Takaaki Higashi
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Shigeki Nakagawa
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Kosuke Mima
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.
| |
Collapse
|
11
|
Park JW, Seo MJ, Cho KS, Kook MC, Jeong JM, Roh SG, Cho SY, Cheon JH, Kim HK. Smad4 and p53 synergize in suppressing autochthonous intestinal cancer. Cancer Med 2022; 11:1925-1936. [PMID: 35274815 PMCID: PMC9089223 DOI: 10.1002/cam4.4533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/25/2022] Open
Abstract
Background Smad4 and p53 mutations are the most common mutations in human colorectal cancers (CRCs). We evaluated whether and how they are synergistic in intestinal carcinogenesis using novel autochthonous mouse models. Method To recapitulate human CRCs, we generated Villin‐Cre;Smad4F/F;Trp53F/F mice. We then compared the intestinal phenotype of Villin‐Cre;Smad4F/F;Trp53F/F mice (n = 40) with Villin‐Cre;Smad4F/F (n = 30) and Villin‐Cre;Trp53F/F mice (n = 45). Results Twenty‐week‐old Villin‐Cre;Smad4F/F;Trp53F/F mice displayed spontaneous highly proliferative intestinal tumors, and 85% of mice developed adenocarcinomas. p21 was downregulated in the intestinal mucosa in Villin‐Cre;Smad4F/F;Trp53F/F mice than in Villin‐Cre;Smad4F/F and Villin‐Cre;Trp53F/F mice. Villin‐Cre;Smad4F/F;Trp53F/F mice displayed multistep intestinal tumorigenesis and Wnt activation. Long‐term CWP232291 (small‐molecule Wnt inhibitor) treatment of Villin‐Cre;Smad4F/F;Trp53F/F mice suppressed intestinal tumorigenesis and progression. CWP232291 treatment downregulated cancer stem cell (CSC) tumor markers including CD133, Lgr‐5, and Sca‐1. CWP232291 treatment reduced the CSC frequency. Small‐molecule Wnt inhibitors reduced intestinal CSC populations and inhibited their growth, along with Bcl‐XL downregulation. Furthermore, BH3I‐1, a Bcl‐XL antagonist, increasingly inhibited intestinal CSCs than bulk tumor cells. Conclusion Smad4 loss and p53 loss are synergistic in autochthonous intestinal carcinogenesis, by downregulating p21 and activating Wnt/β‐catenin pathway.
Collapse
Affiliation(s)
- Jun Won Park
- National Cancer Center, Goyang, Republic of Korea.,Department of Biomedical Convergence, Kangwon National University, Kangwon, Republic of Korea
| | - Min-Jung Seo
- National Cancer Center, Goyang, Republic of Korea
| | - Kye Soo Cho
- National Cancer Center, Goyang, Republic of Korea.,Department of Infectious Disease & Immunobiology, Yonsei University College of Medical Science, Seoul, Republic of Korea
| | | | | | - Seul-Gi Roh
- National Cancer Center, Goyang, Republic of Korea.,Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | | | - Jae Hee Cheon
- Department of Infectious Disease & Immunobiology, Yonsei University College of Medical Science, Seoul, Republic of Korea
| | | |
Collapse
|
12
|
The Immune Underpinnings of Barrett's-Associated Adenocarcinogenesis: a Retrial of Nefarious Immunologic Co-Conspirators. Cell Mol Gastroenterol Hepatol 2022; 13:1297-1315. [PMID: 35123116 PMCID: PMC8933845 DOI: 10.1016/j.jcmgh.2022.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/10/2022]
Abstract
There is no doubt that chronic gastroesophageal reflux disease increases the risk of esophageal adenocarcinoma (EAC) by several fold (odds ratio, 6.4; 95% CI, 4.6-9.1), and some relationships between reflux disease-mediated inflammation and oncogenic processes have been explored; however, the precise interconnections between the immune response and genomic instabilities underlying these pathologic processes only now are emerging. Furthermore, the precise cell of origin of the precancerous stages associated with EAC development, Barrett's esophagus, be it cardia resident or embryonic remnant, may shape our interpretation of the likely immune drivers. This review integrates the current collective knowledge of the immunology underlying EAC development and outlines a framework connecting proinflammatory pathways, such as those mediated by interleukin 1β, tumor necrosis factor α, leukemia inhibitory factor, interleukin 6, signal transduction and activator of transcription 3, nuclear factor-κB, cyclooxygenase-2, and transforming growth factor β, with oncogenic pathways in the gastroesophageal reflux disease-Barrett's esophagus-EAC cancer sequence. Further defining these immune and molecular railroads may show a map of the routes taken by gastroesophageal cells on their journey toward EAC tumor phylogeny. The selective pressures applied by this immune-induced journey likely impact the phenotype and genotype of the resulting oncogenic destination and further exploration of lesser-defined immune drivers may be useful in future individualized therapies or enhanced selective application of recent immune-driven therapeutics.
Collapse
|
13
|
Garman KS. Drivers of Esophageal Adenocarcinoma and Opportunities for Cancer Interception. Cell Mol Gastroenterol Hepatol 2021; 12:787-788. [PMID: 34029533 PMCID: PMC8348867 DOI: 10.1016/j.jcmgh.2021.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/10/2022]
Affiliation(s)
- Katherine S. Garman
- Correspondence Address correspondence to: Katherine S. Garman, MD, Duke University, Division of Gastroenterology, Department of Medicine, Box 3913 DUMC, Durham, North Carolina 27710.
| |
Collapse
|